Search for


TEXT SIZE

search for



CrossRef (0)
Anti-oxidant, Anti-inflammatory, and Anti-obesity Effects of Ethanol Extracts from Ulmus divididiana var. japonica
Biomed Sci Letters 2019;25:227-236
Published online September 30, 2019;  https://doi.org/10.15616/BSL.2019.25.3.227
© 2019 The Korean Society For Biomedical Laboratory Sciences.

Sung-Gyu Lee* and Hyun Kang†,*

Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
Correspondence to: Hyun Kang. Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si, Chungnam, 31116, Korea.
Tel: +82-41-550-3015, Fax: +82-41-559-7934, e-mail: hkang@dankook.ac.kr
*Professor.
Received August 5, 2019; Revised September 18, 2019; Accepted September 19, 2019.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
In this study, the anti-oxidant, anti-inflammatory, and anti-obesity activities of an ethanol extracts of Ulmus divididiana var. japonica (UDE) were investigated in vitro and in vivo. UDE anti-oxidant activity was evaluated with an Electron Spin Resonance (ESR) spectrometer, which measured 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity. Cell viabilities were estimated using 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay. LPS-stimulated BV-2 microglia were used to study the production of nitric oxide (NO). Cells stimulated with LPS produce more NO than normal control cells. However, cells treated with the UDE decreased this production in a concentration dependent manner (100, 250, 500, 1,000 µg/mL). Also, we investigated the anti-obese activity of UDE in SD rats. The SD rats were randomly divided into five groups: 10% low fat diet (N), 45% high fat diet (H), 45% high fat diet + garcinia extracts 200 mg/kg/day (HG200), high fat diet + UDE 200 mg/kg/day (HU200), high fat diet + UDE 400 mg/kg/day (HU400). UDE was found to lower whole body and abdominal and epididymal adipose tissue weights and lowered plasma levels of triglyceride (TG), compared to those in H group. Histological analyses of the liver and fat tissues of rat treated with UDE revealed significantly decreased number of lipid droplets and decreased size of adipocytes compared to the H group. These results suggest that UDE might be used to develop potent anti-oxidant, anti-inflammatory, and anti-obesity agents, and may be useful as ingredients for related new functional raw materials.
Keywords : Ulmus divididiana var. japonica, Anti-oxidant, Anti-inflammatory, Anti-obesity, Functional raw materials
꽌 濡

뒓由낅굹臾닿낵(Ulmaceae)뿉 냽븯뒗 뒓由낅굹臾(Ulmus divididiana var. japonica)뒗 굺뿽援먮ぉ쑝濡 뒓由낅굹臾댁쓽 猿띿쭏쓣 嫄댁“븳 寃껋쓣 쑀諛깊뵾, 肉뚮━쓽 猿띿쭏쓣 쑀洹쇳뵾씪 븳떎(Ji and Lee, 1988). 臾명뿄뿉 뵲瑜대㈃, 뒓由낅굹臾대뒗 쑀꽑뿼, 엫吏, 닔醫낃낵 媛숈 吏덈퀝뿉 냼뿼젣濡 씠슜릺뼱 솕쑝硫(Shin, 1977), 듅엳 쑀洹쇳뵾뒗 빆븫옉슜(Yang et al., 1996), 빆洹좎옉슜, 빆뿼(Hong el al., 1990)怨 媛숈 깮由ы솢꽦 슚怨쇨 蹂닿퀬릺뿀떎. 씠쇅 쑀洹쇳뵾쓽 꽦遺꾩뿉 븳 뿰援щ줈뒗 씠(Lee et al., 2001) 벑씠 쑀洹쇳뵾뿉꽌 lyoniside, 5’-methoxyioslariciresinol-9’-O-β-D-xylopyranoside, isolariciresinol-9’-O-β-D-xylopyranoside, reltrans-dihydrodehydroconiferyl alcohol 4’-O-α-rhamnoside, icariside E3 벑쓽 lignan 諛 neolignan쓣 遺꾨━븯떎. 쑀洹쇳뵾媛 誘쇨컙슂踰뺤쑝濡 쁽옱源뚯 떎뼇븳 吏덈퀝쓽 삁諛⑹뿉 궗슜릺뼱吏怨 엳떎뒗 젏 깉濡쒖슫 湲곕뒫꽦 떊냼옱 媛쒕컻 媛뒫꽦씠 넂 냼옱濡 룊媛릺怨 엳떎.

끂솕 뿬윭 吏덈퀝쓽 썝씤씠 릺怨 엳뒗 솢꽦궛냼뒗 궛솕쟻 뒪듃젅뒪쓽 쁺뼢쑝濡 깮꽦릺硫, superoxide anion radical (O2-), 怨쇱궛솕닔냼(H2O2), hydroxyl radical (·OH), lipid peroxide (ROOH) 벑쓽 醫낅쪟媛 엳떎(Wefers et al., 1984). 씠뱾 솢꽦궛냼뱾 怨좏삁븬, 怨좎삁利, 뿼利앸컲쓳뿉꽌 꽭룷떊샇 쟾떖怨쇱젙쓣 쑀룄븯怨 吏곸젒쟻씤 議곗쭅 넀긽쓣 쑀諛쒗븯硫 삁愿湲곕뒫쓣 븯떆궓떎(Talalay and Benson, 1982; Ohara et al., 1993). 씪諛섏쟻씤 빆궛솕젣濡 butylated hydroxyanisole (BHA) 샊 butylated hydroxytoluene (BHT) 媛숈 빀꽦 臾쇱쭏씠 씠슜릺뼱 솕쑝굹, 怨쇰웾 꽠痍⑦븷 寃쎌슦 닚솚怨, 媛, 떊옣, 룓, 쐞옣젏留 벑뿉 떖媛곹븳 룆꽦쓣 쑀諛쒗븯뒗 寃껋쑝濡 븣젮졇 엳뼱, 씠瑜 泥댄븷 븞쟾븳 냼옱 媛쒕컻씠 슂援щ릺怨 엳떎.

삉븳 뿼利앸컲쓳 臾쇰━쟻 샊 솕븰쟻 옄洹뱀뿉 쓽븳 쇅긽씠굹 諛뺥뀒由ъ븘굹 諛붿씠윭뒪 媛숈 쇅遺 臾쇱쭏씠 泥대궡濡 쑀엯릺뿀쓣 븣 泥대궡 硫댁뿭諛⑹뼱湲곗쟾쓽 씪醫낆쑝濡 씠臾쇱쭏쓣 怨듦꺽븯湲 쐞빐 free radical쓣 깮꽦븯뿬 깮泥 諛⑹뼱뿉 以묒슂븳 뿭븷쓣 븳떎(Takeshi et al., 2010). 븯吏留 鍮꾩젙긽쟻씤 뿼利앸컲쓳 뿼利앸ℓ媛쒖껜쓽 솢꽦쓣 怨쇰룄븯寃 씪쑝궎怨, 씠뒗 떎뼇븳 뿼利앹꽦 吏덊솚뱾쓣 쑀諛쒗븯寃 맂떎(Tak and Firestein, 2001).

鍮꾨쭔 留뚯꽦吏덊솚씤 떦눊蹂, 븫, 怨좏삁븬, 떖삁愿怨꾩쭏솚怨 媛숈 吏덊솚쓽 諛쒕퀝怨 궗留앸쪧쓣 利앷떆궎뒗 썝씤쑝濡 븣젮졇 엳떎(Bray, 2000). 鍮꾨쭔 솚寃쎌쟻, 쑀쟾쟻, 궗쉶쟻 슂씤 벑 떎뼇븳 썝씤뱾뿉 쓽빐 諛쒖깮릺硫 뿉꼫吏 怨쇱엵 꽠痍⑥ 쑁泥댄솢룞 媛먯냼濡 떊泥 궡쓽 뿉꼫吏 遺덇퇏삎씠 씪뼱굹 泥댁“吏곸뿉 怨쇰룄븳 吏諛⑹씠 異뺤쟻릺뼱 굹굹뒗 쁽긽쑝濡, 쟾꽭怨꾩쟻쑝濡 湲됱냽룄濡 솗궛릺怨 엳뼱(Kopelman, 2000), 빆鍮꾨쭔뿉 愿젴맂 븞쟾븳 移섎즺젣 媛쒕컻씠 젅떎븯寃 슂援щ릺怨 엳뒗 떎젙씠떎(Jahromi et al., 1993). 媛숈 궗꽦 利앺썑援곗 吏덈퀝쑝濡 遺꾨쪟븯湲 뼱젮슦硫, 쁽옱 궗슜븯怨 엳뒗 빆鍮꾨쭔 쓽빟뭹쓽 遺옉슜쓣 媛먯븞븳떎硫 븞쟾븯怨 利앹긽쓣 媛쒖꽑븷 닔 엳뒗 떇뭹쓽빟씠 젅떎븳 遺꾩빞씠떎.

뵲씪꽌, 蹂 뿰援ъ뿉꽌뒗 쑀洹쇳뵾 異붿텧臾쇱뿉 쓽븳 빆궛솕, 빆뿼利, 빆鍮꾨쭔 벑 떎뼇븳 깮由ы솢꽦 슚怨쇰 뿰援ы븯떎. 씠윭븳 뿰援щ뒗 쑀洹쇳뵾瑜 솢슜븳 떎뼇븳 깮由ы솢꽦 湲곕뒫꽦 떊냼옱瑜 諛쒓뎬븯湲 쐞빐 닔뻾븯떎.

옱猷 諛 諛⑸쾿

떎뿕옱猷 諛 異붿텧諛⑸쾿

蹂 뿰援ъ뿉 궗슜맂 쑀洹쇳뵾뒗 꽌슱빟졊떆옣뿉꽌 嫄댁“맂 빟옱瑜 援ъ엯븯뿬 궗슜븯떎. 嫄댁“맂 쑀洹쇳뵾瑜 200 mesh 씠븯濡 議곕텇뇙븯뿬 떆猷 100 g怨 70% 뿉깂삱 1 L瑜 샎빀븯뿬 긽삩뿉꽌 3씪 룞븞 異붿텧븳 썑 Whatman filter paper (No. 1 & 3)濡 뿬怨쇳븯떎. 뿬怨쇰맂 異붿텧븸쓣 媛먯븬냽異뺢린(N-1000S-WD, Eyela Co., Tokyo, Japan)瑜 씠슜븯뿬 55°C 닔슃긽뿉꽌 슜留ㅻ 젣嫄고븯怨, 룞寃곌굔議(FDU-1100, Eyela Co., Tokyo, Japan) 썑 떎뿕뿉 궗슜븯떎. 쑀洹쇳뵾 뿉깂삱 異붿텧臾쇱쓽 異붿텧 닔쑉 11.3%濡 굹궗떎.

珥 럹 諛 뵆씪蹂대끂씠뱶 븿웾 痢≪젙

珥 럹 븿웾 Folin-Denis踰(Folin and Denis, 1912)쓣 쓳슜븯뿬 痢≪젙븯떎. 쑀洹쇳뵾 異붿텧臾쇱뿉 2諛 씗꽍븳 Folin-Ciocalteu 떆빟쓣 룞웾 샎빀븯뿬 3遺꾧컙 諛섏쓳떆궓 썑, 10% Na2CO3 슜븸쓣 룞웾 媛븯뿬 1떆媛 젙移섏떆궓 썑 ELISA reader (TECAN, Salzburg, Austria)瑜 궗슜븯뿬 700 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 씠븣, 珥 럹 븿웾 gallic acid瑜 씠슜븯뿬 뼸 寃웾꽑쓣 씠슜븯뿬 궛異쒗븯떎.

珥 뵆씪蹂대끂씠뱶 븿웾 Nieva Moreno 벑(Nieva Moreno et al., 2000)쓽 諛⑸쾿쓣 쓳슜븯뿬 痢≪젙븯떎. 異붿텧臾 1 mg/mL쓽 냽룄濡 80% 뿉깂삱뿉 끃뿬꽌 100 μL瑜 痍⑦븳 뮘 10% aluminium nitrate 1 M potassium acetate瑜 媛곴컖 20 μL 泥④븳 썑 80% 뿉깂삱쓣 860 μL 泥④ 썑 떎삩뿉꽌 40遺 諛섏쓳떆궓 썑 415 nm쓽 씉愿묐룄濡 痢≪젙븯떎. 씠븣, 珥 뵆씪蹂대끂씠뱶 븿웾 quercetin쓣 씠슜븯뿬 寃웾꽑쓣 옉꽦븯떎.

α-α-Diphenyl-β-picrylhydrazyl (DPPH) radical 냼嫄고솢꽦

쑀洹쇳뵾 異붿텧臾쇱쓽 DPPH radical 냼嫄고솢꽦 異붿텧臾 슜븸 30 μL 硫뷀깂삱뿉 슜빐븳 60 μM DPPH 슜븸 30 μL瑜 媛곴컖 媛븯怨, 긽삩뿉꽌 2遺 룞븞 諛섏쓳떆耳 capillary tube뿉 삷湲 떎쓬 electron spin resonance (ESR) spectrometer (JESPX 2300, JEOL, Akishima, Japan)濡 痢≪젙븯떎. 씠 븣 ESR spectrophotometer쓽 痢≪젙議곌굔 magnetic field, 337.394 ± 7.5 mT; power, 5 mW; sweep time, 30 sec; sweep width, 10 mT; modulation width, 0.8 mT; amplitude, 1,000쑝濡 꽕젙븯뿬 痢≪젙븯떎. 異붿텧臾쇱뿉 븳 DPPH free radical 빐 솢꽦(%)(ESR signal intensity for medium containing the additives of concern/ESR signal intensity for the control medium) X100쑝濡 怨꾩궛븯떎.

Mouse microglia BV-2 cell 諛곗뼇

Mouse microglia BV-2 cells ATCC뿉꽌 룞寃곗긽깭濡 援ъ엯븯쑝硫 10% fetal bovine serum (FBS; Gibco, BRL, USA), penicillin G (100 IU/mL), streptomycin (100 μg/mL)쓣 룷븿븳 RPMI1640 諛곗 (Gibco, BRL, USA)瑜 씠슜븯뿬 37°C 5%쓽 CO2瑜 怨듦툒븯뒗 諛곗뼇湲곗뿉꽌 諛곗뼇븯쑝硫, 1~2씪留덈떎 꽭룷쓽 꽦옣 젙룄뿉 뵲씪 怨꾨 諛곗뼇븯떎.

MTT assay

LPS濡 옄洹밸맂 BV-2 cells뿉 븳 쑀洹쇳뵾 異붿텧臾쇱쓽 꽭룷 룆꽦 諛 떎뿕 떆 泥섎━ 냽룄瑜 寃곗젙븯湲 쐞빐 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay瑜 떆뻾븯떎. BV-2 cells쓣 RPMI1640 諛곗 1 mL 떦 5×105媛쒕줈 96 well plate뿉 100 μL뵫 遺꾩<븯뿬 12떆媛 룞븞 諛곗뼇븯뿬 cell뱾씠 遺李⑸릺룄濡 븯怨, 100 ng/mL쓽 LPS媛 泥④맂 깉 諛곗 180 μL 냽룄蹂꾨줈 씗꽍븳 쑀洹쇳뵾 異붿텧臾 20 μL瑜 泥④븯떎. 24떆媛 諛곗뼇 썑, MTT瑜 理쒖쥌 냽룄媛 0.5 mg/mL媛 릺寃 泥④븳 썑, 4떆媛 룞븞 諛곗뼇븯뿬 蹂대씪깋쑝濡 깮꽦맂 formazan쓣 dimethylsulfoxide (DMSO) 100 μL 泥④븯뿬 슜빐떆궓 썑, ELISA reader瑜 씠슜븯뿬 540 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎(Mosmann, 1983). 꽭룷 깮議댁쑉 LPS瑜 泥섎━븯吏 븡 議곌뎔怨 鍮꾧탳븯뿬 諛깅텇쑉(%)濡 굹궡뿀떎.

Nitric oxide (NO) 깮꽦 빐옉슜 痢≪젙

Nitric oxide 깮꽦 빐옉슜 Griess쓽 諛⑸쾿(Green et al., 1982)쑝濡 痢≪젙븯떎. 利, Griess 떆빟(1% sulfanilamide, 0.1% naphthylethylendiaminein 25% phosphoric acid) NO瑜 궛솕떆耳 NO2濡 蹂솕떆궎硫 깮꽦맂 NO2뒗 540 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯硫, NaNO2瑜 씠슜븯뿬 寃웾꽑쓣 援ы븯떎. 利, BV-2 cell쓣 RPMI1640 諛곗 1 mL 떦 5×105媛쒕줈 96 well plate뿉 100 μL뵫 遺꾩<븯뿬 12떆媛 룞븞 諛곗뼇븯뿬 cell뱾씠 遺李⑸릺룄濡 븯怨, 100 ng/mL쓽 LPS媛 泥④맂 깉 諛곗 180 μL 냽룄蹂꾨줈 씗꽍븳 쑀洹쇳뵾 異붿텧臾 20 μL瑜 泥④븯뿬 24떆媛 諛곗뼇 썑, 諛곗뼇븸뿉 깮꽦릺뼱 엳뒗 NO쓽 뼇쓣 Griess 떆빟쓣 씠슜븯뿬 痢≪젙븯떎.

떎뿕룞臾쇱쓽 궗쑁 諛 떎뿕떇씠

떎뿕룞臾쇱 븳諛붿씠삤留곹겕(Korea)濡쒕꽣 5二쇰졊(120~150 g)쓽 Sprague-Dawley (SD)醫 닔而 씛伊 30留덈━瑜 援ъ엯븯뿬 궗슜븯떎. 궗쑁떎 삩룄뒗 23±2°C, 긽뒿룄뒗 60±5%瑜 쑀吏떆궎怨, 紐낆븫 12떆媛 二쇨린濡 씪젙븯寃 쑀吏븯떎. 泥섏쓬 1二쇱씪媛 pellet삎쓽 lab chow 떇씠瑜 젣怨듯븯硫댁꽌 쟻쓳떆궓 썑, 8二쇨컙 떎뿕쓣 떎떆븯떎. 떎뿕援곗 Table 1怨 媛숈씠 10% 吏諛⑹씠 븿쑀맂 吏諛⑹떇씠援(N), 45% 怨좎諛⑹떇씠援(H), 45% 怨좎諛⑹떇씠+媛瑜댁떆땲븘 異붿텧臾 200 mg/kg/day援(HG200), 45% 怨좎諛⑹떇씠+쑀洹쇳뵾 異붿텧臾 200 mg/kg/day援(HU200), 45% 怨좎諛⑹떇씠+쑀洹쇳뵾 異붿텧臾 400 mg/kg/day援(HG400)쑝濡 굹늻뼱 떎뿕븯떎. 媛 援곕퀎 6留덈━쓽 씛伊먮 궗슜븯쑝硫, 떇씠 利앸쪟닔뒗 옄쑀 꽠痍⑥떆耳곗쑝硫 媛瑜댁떆땲븘 諛 쑀洹쇳뵾 異붿텧臾쇱쓽 떆뿕 빟臾쇱 씪젙븳 떆媛 寃쎄뎄닾뿬 븯떎. 떇씠 꽠痍⑤웾 씪二쇱씪 媛꾧꺽쑝濡 議곗궗븯뿬 떇씠 꽠痍⑤웾(g/day)쓣 궛異쒗븯쑝硫, 泥댁쨷 留ㅼ< 씪젙븳 떆媛꾩뿉 痢≪젙븯떎. 蹂 룞臾쇱떎뿕 떒援븰援 룞臾쇱떎뿕 쑄由ъ쐞썝쉶 듅씤쓣 쉷뱷븳 썑 떎떆븯떎.

Experimental groups

Group Diet Sample
N 10% low fat diet DW
H 45% high fat diet DW
HG200 45% high fat diet Garcinia extracts 200 mg/kg
HU200 45% high fat diet Ulmus divididiana var. japonica extracts 200 mg/kg
HU400 45% high fat diet Ulmus divididiana var. japonica extracts 400 mg/kg


삁븸 諛 옣湲 닔吏

12떆媛 젅떇떆궓 씛伊먮 뿉뀒瑜대줈 留덉랬떆耳 빐遺븯떎. 蹂듬룞留μ쑝濡쒕꽣 삁븸쓣 梨꾩랬븯뿬, 썝떖遺꾨━ 썑 삁泥쓣 遺꾨━, -70°C뿉꽌 깋룞蹂닿 븯떎. 씗깮 썑 利됱떆 媛, 떊옣, 鍮꾩옣怨 蹂듬吏諛, 遺怨좏솚吏諛⑸룄 쟻異쒗븯뿬 깮由ъ떇뿼닔뿉 꽭泥숉븳 썑 뿬怨쇱濡 닔遺꾩쓣 젣嫄고븯뿬 臾닿쾶瑜 痢≪젙븯떎.

삁븸쓽 깮솕븰쟻 遺꾩꽍

삁泥遺꾩꽍 빆紐⑹ 珥 肄쒕젅뒪뀒濡, 以묒꽦吏諛, HDL-肄쒕젅뒪뀒濡ㅻ줈뜥 옄룞삁븸遺꾩꽍湲(Konelab20XT, Thermo, MA, USA)濡 遺꾩꽍븯떎. 삁泥쓽 LDL-肄쒕젅뒪뀒濡ㅼ 遺꾩꽍쓣 넻빐 뼸 珥 肄쒕젅뒪뀒濡, HDL-肄쒕젅뒪뀒濡 洹몃━怨 以묒꽦吏諛⑹쓽 닔移섎 씠슜븯뿬 븘옒쓽 怨꾩궛떇뿉 쓽빐 怨꾩궛븯떎(Friedewald et al., 1972).

LDL-肄쒕젅뒪뀒濡 = 珥 肄쒕젅뒪뀒濡-(HDL-肄쒕젅뒪뀒濡 + 以묒꽦吏吏/5)

媛꾧낵 蹂듬吏諛 議곗쭅쓽 삎깭븰쟻 愿李

씛伊먯뿉꽌 쟻異쒗븳 媛, 蹂듬吏諛⑹쓣 10% neutral buffered formalin쓣 궗슜븯뿬 24떆媛 룞븞 怨좎젙븳 썑 깉닔 諛 룷留 怨쇱젙쓣 嫄몄퀜 4 μm 몢猿섏쓽 뙆씪 젅렪쓣 젣옉븯떎. 뙆씪 젅렪 xylene쑝濡 뙆씪쓣 젣嫄곗떆궎怨, 븯媛 怨꾩뿴 븣肄붿삱濡 移쒖닔솕 떆궓 썑 hematoxylin-eosin (H&E)쑝濡 뿼깋븯뿬 愿묓븰쁽誘멸꼍(Olympus, Japan)쑝濡 愿李고븯떎(Yuan et al., 2008).

넻怨꾨텇꽍

떎뿕寃곌낵뒗 SAS program (SAS institute, Inc. SAS/SAAT user’s Guide. Version 6, 4th ed. Cary, NC, USA)쓣 씠슜븯뿬 遺꾩궛遺꾩꽍븳 썑 쑀쓽꽦씠 엳뒗 빆紐⑹뿉 빐꽌뒗 Duncan’s multiple range test濡 P<0.05 닔以뿉꽌 떆猷뚭컙쓽 쑀쓽꽦쓣 寃젙븯떎.

寃 怨

珥 럹 諛 뵆씪蹂대끂씠뱶 븿웾

蹂 뿰援ъ뿉꽌뒗 珥 럹怨 뵆씪蹂대끂씠뱶쓽 몴以 臾쇱쭏濡 蹂댄렪쟻쑝濡 옒 솢슜릺怨 엳뒗 gallic acid quercetin쓣 媛곴컖 궗슜븳 寃웾꽑쑝濡쒕꽣 쑀洹쇳뵾 異붿텧臾쇱쓽 珥 럹 諛 뵆씪蹂대끂씠뱶 븿웾쓣 솗씤븯떎. 洹 寃곌낵, 쑀洹쇳뵾 異붿텧臾 궡쓽 럹 諛 뵆씪蹂대끂씠뱶 븿웾 Fig. 1怨 媛숈씠 媛곴컖 184.68, 9.25 mg/g쓽 냽룄濡 븿쑀븯怨 엳쓬쓣 솗씤븯떎.

Fig. 1.

Total phenolic and flavonoid contents of UDE (Ulmus divididiana var. japonica extracts).



DPPH radical 냼嫄고솢꽦 슚怨

쑀洹쇳뵾 異붿텧臾쇱쓽 빆궛솕뒫쓣 痢≪젙븯湲 쐞빐 DPPH radical 냼嫄고솢꽦쓣 痢≪젙븳 寃곌낵뒗 Fig. 2 媛숇떎. 쑀洹쇳뵾 異붿텧臾쇱쓣 媛곴컖 5, 25, 50 μg/mL쓽 냽룄濡 泥섎━븯뿬 DPPH radical 냼嫄곕뒫쓣 諛깅텇쑉濡 굹궦 寃곌낵, 媛곴컖 18.24, 63.97, 82.15%쓽 냼嫄곕뒫쓣 蹂댁떎(Fig. 2A). 삉븳, ESR spectrometer濡 뼸뼱궦 寃곌낵濡 peak쓽 넂씠瑜 control怨 鍮꾧탳븯쓣 븣, 냽룄쓽議댁쟻쑝濡 peak 넂씠媛 궙븘吏뒗 寃껋쓣 솗씤븯떎 (Fig. 2B).

Fig. 2.

Effect of UDE (Ulmus divididiana var. japonica extracts) on DPPH radical scavenging activity. The capacity scavenge DPPH free radicals at different concentrations UDE (A), shown to vary through ESR spectra (B) measurements.



꽭룷 룆꽦 諛 NO 깮꽦 빐 슚怨

쑀洹쇳뵾 異붿텧臾쇱쓽 뿼利앹꽦 吏덊솚 媛쒖꽑 냼옱濡쒖꽌 솢슜 媛뒫꽦쓣 솗씤븯湲 쐞빐 BV-2 microglia cell line뿉 LPS濡 쑀룄맂 NO 깮꽦 빐뒫쓣 떎뿕븯湲곗뿉 븵꽌 떎뿕뿉 궗슜맂 쑀洹쇳뵾 異붿텧臾 100~1,000 μg/mL쓽 紐⑤뱺 냽룄뿉꽌 MTT assay瑜 넻빐꽌 꽭룷 룆꽦쓣 솗씤븳 寃곌낵 Fig. 3怨 媛숈씠 紐⑤뱺 냽룄뿉꽌 꽭룷깮議댁쑉씠 90% 씠긽쑝濡 쑀洹쇳뵾 異붿텧臾쇱쓽 꽭룷 룆꽦씠 愿李곕릺吏 븡븯떎. 쑀洹쇳뵾 異붿텧臾쇱쓽 NO 깮꽦 빐 슚怨쇰 痢≪젙븳 寃곌낵뒗 Fig. 4뿉 굹궡뿀떎. LPS瑜 泥섎━븯吏 븡 寃쎌슦 빟 2.91 μM쓽 궙 냽룄濡 NO媛 議댁옱븯吏留, LPS瑜 泥섎━븳 援곗쓽 寃쎌슦 23.12 μM濡 빟 7諛 씠긽 NO 깮꽦씠 利앷맖쓣 솗씤븯떎. 씠뿉 諛섑빐, 쑀洹쇳뵾 異붿텧臾쇱쓣 泥섎━븯쓣 寃쎌슦 냽룄쓽議댁쟻쑝濡 NO 깮꽦씠 媛먯냼릺뒗 寃껋쓣 솗씤븯怨, 듅엳 1,000 μg/mL쓽 냽룄뿉꽌뒗 LPS 泥섎━븯吏 븡 援곌낵 쑀궗븳 寃쏀뼢쓣 蹂댁뿬 쑀洹쇳뵾 異붿텧臾쇱 媛뺣젰븳 NO 깮꽦 빐 슚뒫씠 엳쓬쓣 솗씤븯떎.

Fig. 3.

UDE’s (Ulmus divididiana var. japonica extracts) effect on microglial BV-2 cells using MTT assay. The results are displayed in percentages relative to control sample without LPS/UDE treatment.


Fig. 4.

Effect of UDE (Ulmus divididiana var. japonica extracts) on NO production in LPS-stimulated microglial BV-2 cells. BV-2 Cells were treated with UDE at various concentrations (100, 250, 500, 1,000 μg/mL) with or without LPS (100 ng/mL) for 24 h. The nitrite in the culture supernatant was evaluated using Griess reagent. Values with a common superscript letter within the same column are significantly different (P<0.05).



쑀洹쇳뵾 異붿텧臾쇱씠 怨좎諛⑹쑝濡 쑀룄맂 씛伊먯쓽 泥댁쨷蹂솕 諛 떇씠 꽠痍⑤웾뿉 誘몄튂뒗 쁺뼢

쑀洹쇳뵾 異붿텧臾쇱쓽 鍮꾨쭔 쑀룄맂 씛伊먯뿉 엳뼱꽌 鍮꾨쭔쓽 媛쒖꽑뿉 誘몄튂뒗 쁺뼢쓣 議곗궗븯湲 쐞빐 떎뿕룞臾쇱쓽 泥댁쨷 利앷웾, 떇씠 꽠痍⑤웾 諛 떇씠슚쑉쓣 痢≪젙븳 寃곌낵뒗 Table 2뿉 굹궡뿀떎. 8二 썑 媛 援곕퀎쓽 泥댁쨷 利앷웾 吏諛⑹떇씠 N援곌낵 鍮꾧탳븯뿬 怨좎諛⑹떇씠 H援곗뿉꽌 쑀쓽쟻쑝濡 利앷븯떎. 怨좎諛⑹떇씠뿉 뼇꽦議곌뎔씤 媛瑜댁떆땲븘 異붿텧臾(HG200)怨 쑀洹쇳뵾 異붿텧臾(HU200, HU400)쓣 닾빟븳 洹몃9쓽 寃쎌슦 H援곕낫떎 쑀쓽쟻쑝濡 泥댁쨷씠 媛먯냼맂 寃껋쓣 솗씤븯떎. 泥댁쨷 利앷웾怨 떇씠 꽠痍⑤웾쓽 鍮꾩쑉濡 궡렣蹂 떇씠슚쑉 N援곗뿉 鍮꾪빐 H援곗뿉꽌 쑀쓽쟻쑝濡 利앷맂 寃껋쓣 솗씤븯怨, HG200, HU200, HU400쓽 援곗뿉꽌뒗 궗猷뚰슚쑉씠 떎냼 媛먯냼븯뒗 寃쏀뼢쓣 蹂댁떎.

Body weight gain, food intake, and FER

Groups1) Body weight gain (g/8 weeks) Food intake (g/day) fer4)
N 256.74±21.83b2) 19.92±2.00ns3) 24.34±1.32c
H 299.88±15.60a 16.42±2.81 31.87± 1.14a
HG200 266.56±12.33b 16.09±5.68 28.21±1.15b
HU200 258.96±25.86ab 17.90±2.37 27.14±1.97bc
HU400 258.02±15.00b 18.64±2.26 26.18±0.86c
N: 10% low fat diet, H: 45% high fat diet, HG200: 45% high fat diet + garcinia extracts 200 mg/kg/day, HU200: high fat diet + Ulmus divididiana var. japonica extracts 200 mg/kg/day, HU400: high fat diet + Ulmus divididiana var. japonica extracts 400 mg/kg/day
The values are mean± S.D. (n=6). Values with a common superscript letter within the same column are significantly different (P<0.05) ns: not significant
FER: food efficiency ratio = body weight gain / food intake


쑀洹쇳뵾 異붿텧臾쇱씠 怨좎諛⑹쑝濡 쑀룄맂 씛伊먯쓽 옣湲 諛 吏諛⑹“吏 臾닿쾶뿉 誘몄튂뒗 쁺뼢

떒쐞 泥댁쨷 떦 옣湲 諛 吏諛⑹“吏 臾닿쾶뒗 Table 3뿉 굹궡뿀떎. 泥댁쨷 100 g떦 臾닿쾶濡 솚궛븳 옣湲곗쓽 以묐웾쓣 鍮꾧탳븳 떎뿕뿉꽌 媛, 遺怨좏솚吏諛, 蹂듬吏諛 臾닿쾶媛 H援곗뿉꽌 쑀쓽쟻쑝濡 利앷릺뿀쑝硫 HG200, HU200, HU400쓽 援곗뿉꽌뒗 媛꾩쓽 臾닿쾶媛 쑀쓽쟻쑝濡 媛먯냼맂 寃껋쓣 솗씤븯떎. 듅엳, 遺怨좏솚吏諛 諛 蹂듬吏諛⑹쓽 寃쎌슦 HU400 援곗뿉꽌 H援곗뿉 鍮꾪빐 쑀쓽꽦 엳뒗 臾닿쾶 媛먯냼瑜 솗씤븯떎. 洹몃윭굹 鍮꾩옣怨 떊옣 紐⑤뱺 援곗뿉꽌 쑀쓽븳 李⑥씠媛 蹂댁씠吏 븡븯떎.

Different organ weights of rats (unit: %)

Groups1) Liver Spleen Kidney Epididymal fat Abdominal fat
N 2.35±0.17ab2) 0.24±0.04ns3) 0.65±0.05ns 1.53±0.38b 1.86±0.39b
H 2.59±0.14a 0.19±0.04 0.57±0.04 2.35±0.24a 3.08±0.64a
HG200 2.30±0.07b 0.19±0.04 0.62±0.04 2.23±0.26a 2.69±0.36a
HU200 2.27±0.13b 0.21±0.03 0.61±0.09 2.39±0.45ab 2.61±0.56ab
HU400 2.39±0.16ab 0.20±0.04 0.59±0.10 1.75±0.18b 1.86±0.34b
N: 10% low fat diet, H: 45% high fat diet, HG200: 45% high fat diet + garcinia extracts 200 mg/kg/day, HU200: high fat diet + Ulmus divididiana var. japonica extracts 200 mg/kg/day, HU400: high fat diet + Ulmus divididiana var. japonica extracts 400 mg/kg/day
The values are mean± S.D. (n=6). Values with a common superscript letter within the same column are significantly different (P<0.05)
ns: not significant


삁以묒吏 냽룄

怨좎諛⑹떇씠 쑀洹쇳뵾 異붿텧臾쇱쓣 泥④븯뿬 8二쇨컙 湲됱뿬븳 씛伊먯쓽 삁泥 以 珥 肄쒕젅뒪뀒濡, 以묒꽦吏吏, HDL-肄쒕젅뒪뀒濡, LDL-肄쒕젅뒪뀒濡 븿웾 Fig. 5 媛숇떎. 삁泥 以 以묒꽦吏吏 븿웾 H援곗뿉꽌 76.56±15.46 mg/dL濡 N援(57.31±17.05 mg/dL) 蹂대떎 삁以 以묒꽦吏吏 냽룄媛 넂븘議뚯쓬쓣 솗씤븯떎. 뼇꽦議곌뎔씤 媛瑜댁떆땲븘 異붿텧臾쇱쓣 닾빟븳 HG200援곗 43.50±14.20 mg/dL濡 H援곗뿉 鍮꾪빐 쑀쓽쟻쑝濡 媛먯냼맂 寃껋쓣 솗씤븯怨, 쑀洹쇳뵾 異붿텧臾쇱쓣 닾빟븳 HU200怨 HU400援곗씠 媛곴컖 34.96±5.61 mg/dL, 63.34±21.93 mg/dL濡 쑀쓽쟻쑝濡 媛먯냼맂 寃껋쓣 솗씤븯떎(Fig. 5B). 洹 쇅 珥 肄쒕젅뒪뀒濡, HDL-肄쒕젅뒪뀒濡, LDL-肄쒕젅뒪뀒濡 븿웾 媛 援곕퀎 쑀쓽븳 李⑥씠媛 굹굹吏 븡븯떎(Fig. 5A, 5B, 5C).


吏諛 移⑥갑 諛 議곗쭅쓽 삎깭븰쟻 愿李

Fig. 6 쑀洹쇳뵾 異붿텧臾쇱씠 씛伊먯쓽 蹂듬 諛 옣湲곗쓽 吏諛 移⑥갑 젙룄 媛, 蹂듬吏諛 議곗쭅쓽 삎깭뿉 誘몄튂뒗 쁺뼢쓣 H&E 뿼깋쑝濡 궡렣蹂 寃곌낵씠떎. 洹몃┝뿉꽌 蹂대뒗 諛붿 媛숈씠 N援곗뿉 鍮꾪빐 H援곗뿉꽌 蹂듬 諛 옣湲 二쇰쑝濡 吏諛 移⑥갑씠 利앷맂 寃껋쓣 솗씤븷 닔 엳怨, 媛瑜댁떆땲븘 異붿텧臾쇨낵 쑀洹쇳뵾 異붿텧臾쇱쓣 닾빟븳 援곗뿉꽌뒗 H援곗뿉 鍮꾪빐 吏諛 移⑥갑씠 媛먯냼맂 寃껋쓣 솗씤븷 닔 엳뿀떎. 媛 議곗쭅쓽 뿼깋寃곌낵뿉꽌 쑁븞쑝濡 愿李 떆, N援곗뿉 鍮꾪빐 H援곗뿉꽌 留롮 吏諛⑸뱾씠 愿李곕릺뿀吏留, HG200, HU200, HU400 援곗뿉꽌뒗 吏諛⑷뎄媛 N援곗쓽 닔以쑝濡 쁽븯寃 以꾩뼱뱺 寃껋쓣 솗씤븷 닔엳뿀떎. 蹂듬吏諛 size瑜 鍮꾧탳븳 寃곌낵 H援(110.21 μm) 蹂대떎 HU400援(75.12 μm)쓽 吏諛 size媛 쑀쓽쟻쑝濡 以꾩뼱뱺 寃껋쓣 솗씤븷 닔 엳뿀떎.

怨 李

蹂 뿰援щ뒗 쑀洹쇳뵾 異붿텧臾쇱쓽 留뚯꽦吏덊솚쓽 삁諛, 移섎즺젣 諛 嫄닿컯湲곕뒫떇뭹쑝濡쒖꽌쓽 솢슜 媛뒫꽦쓣 룊媛븯湲 쐞빐 쑀洹쇳뵾 뿉깂삱 異붿텧臾쇱쓣 긽쑝濡 빆궛솕, 빆뿼, 빆鍮꾨쭔쓽 떎뼇븳 깮由ы솢꽦쓣 寃젙븯떎. 留롮 뿰援ъ옄뱾濡쒕꽣 泥쒖뿰 냼옱쓽 옄썝 솢슜꽦 諛 씠슜꽦 벑쓣 뿰援ы븯뒗 二쇰맂 씠쑀뒗, 떇臾쇱뿉 꼸由 遺꾪룷릺뼱 엳뒗 럹꽦 臾쇱쭏 븣臾몄씠씪 븷 닔 엳떎(Nakatani, 1990). 럹꽦 臾쇱쭏 phenolic hydroxyl 洹몃9 븣臾몄뿉 떒諛깆쭏 삉뒗 슚냼 떒諛깆쭏, 湲고 嫄곕遺꾩옄뱾怨 寃고빀븯뿬 빆궛솕, 빆뿼, 빆븫, 빆鍮꾨쭔 벑쓽 떎뼇븳 깮由ы솢꽦쓣 굹궦떎(Lee et al., 2005). 쑀洹쇳뵾 뿉깂삱 異붿텧臾쇱쓽 珥 럹 븿웾怨 뵆씪蹂대끂씠뱶 븿웾쓣 痢≪젙븳 寃곌낵, 媛곴컖 184.68, 9.25 mg/g쓽 냽룄濡 븿쑀븯怨 엳쓬쓣 솗씤븯떎(Fig. 1). 씠뒗 Kim 벑(Kim et al., 2015)씠 蹂닿퀬븳 異붿텧議곌굔蹂 珥 럹 븿웾씠 215.7~363.5 mg/g쓽 蹂댁씤 寃곌낵蹂대떎뒗 궙 븿웾쓣 굹깉吏留, Jeong怨 Kim (Jeong and Kim, 2012) 諛 Kim 벑(Kim et al., 2012)씠 蹂닿퀬븳 쑀洹쇳뵾 70% 뿉깂삱 異붿텧臾쇱쓽 珥 럹 븿웾(媛곴컖 17.9, 7.1 mg/g)蹂대떎 넂寃 굹궗떎. 씠뒗 쑀洹쇳뵾쓽 異붿텧諛⑸쾿 諛 옄깮솚寃쎌뿉 珥 럹 븿웾쓽 蹂솕뿉 겙 쁺뼢쓣 諛쏅뒗 寃껋쑝濡 삁긽맂떎.

쑀洹쇳뵾 異붿텧臾쇱쓽 빆궛솕 솢꽦 DPPH radical 냼嫄곕뒫쑝濡 룊媛븯떎. Fig. 2뿉꽌 蹂대벏씠 쑀洹쇳뵾 異붿텧臾쇱 50 μg /mL쓽 냽룄뿉꽌 82.15%쓽 넂 냼嫄곕뒫쓣 蹂댁떎. Jung 벑(Jung et al., 2008) 쑀洹쇳뵾瑜 70% 硫뷀깂삱濡 異붿텧븯쓣 븣 flavonoid 꽦遺꾩씤 (-)-catechin 꽦遺꾩씠 넂 DPPH radical 냼嫄곕뒫쓣 蹂댁씤떎怨 蹂닿퀬븯쑝硫, Bong怨 Park (Bong and Park, 2010) 쑀洹쇳뵾뿉꽌 異붿텧븳 럹 꽦遺꾩씠 ROS 깮꽦怨 愿젴맂 궛솕 슚냼 빐 슚怨쇰 蹂댁씤떎怨 蹂닿퀬븯떎. 뵲씪꽌 쑀洹쇳뵾쓽 빆궛솕 솢꽦 럹 諛 뵆씪蹂대끂씠뱶 꽦遺 븣臾몄씤 寃껋쑝濡 삁긽맂떎.

뿼利앸컲쓳쓽 吏몴濡 븣젮吏 NO뒗 깮泥 궡 뿼利앸컲쓳 떆 떇꽭룷뿉꽌 怨쇰웾 깮궛릺뼱 떎뼇븳 뿼利앸컲쓳쓣 珥덈옒븳떎怨 븣젮졇 엳떎(Kundu and Surh, 2008). 쑀洹쇳뵾 異붿텧臾쇱쓽 빆뿼利 솢꽦 슚怨쇰 痢≪젙븯湲 쐞빐 BV-2 cell뿉 LPS瑜 泥섎━븯뿬 씤쐞쟻쑝濡 뿼利앸컲쓳쓣 쑀룄떆궓 썑 쑀洹쇳뵾 異붿텧臾쇱쓣 泥섎━븯뿬 NO쓽 깮꽦 뼲젣 슚怨쇰 痢≪젙븳 寃곌낵, 쑀洹쇳뵾 異붿텧臾쇱쓽 泥섎━ 냽룄 쓽議댁쟻쑝濡 LPS뿉 쓽븳 NO쓽 깮꽦쓣 쑀쓽쟻쑝濡 뼲젣븯쑝硫(Fig. 4), 紐⑤뱺 냽룄뿉꽌 꽭룷 룆꽦쓣 굹궡吏 븡븯湲곗뿉(Fig. 3) NO 깮꽦 뼲젣媛 쑀洹쇳뵾 異붿텧臾쇱쓽 슚뒫뿉 쓽빐 뼲젣릺뿀쓬쓣 솗씤븷 닔 엳뿀떎.

쑀洹쇳뵾 異붿텧臾쇱쓽 빆鍮꾨쭔 슚怨쇰 솗씤븯怨좎옄 SD 怨꾩뿴쓽 씛伊먮 씠슜븯뿬 怨좎諛⑹떇씠濡 8二쇨컙 궗쑁븳 룞臾쇱쓽 泥댁쨷蹂솕瑜 Table 2뿉 굹궡뿀떎. 吏諛⑹떇씠瑜 꽠痍⑦븳 N援곗뿉 鍮꾪빐 怨좎諛⑹떇씠瑜 꽠痍⑦븳 H援곗뿉꽌 泥댁쨷 利앷쑉씠 쑀쓽쟻쑝濡 빟 43.14 g 利앷맂 寃껋쓣 솗씤븯떎. 씠뒗 4二쇰졊遺꽣 7二쇨컙쓽 怨좎諛⑹떇씠 꽠痍④ 泥댁諛 異뺤쟻쓣 利앷떆耳 泥댁쨷씠 利앷맂떎뒗 뿰援ш껐怨(Chio et al., 2000) 쑀궗븯떎. 떇씠 꽠痍⑤웾 吏諛⑹떇씠援(N)怨 鍮꾧탳븯뿬 怨좎諛⑹떇씠援(H, HG200, HU200, HU400)뿉꽌 떎냼 媛먯냼븯뒗 寃쏀뼢쓣 蹂댁떎. 씠뒗 怨좎諛⑹떇씠쓽 꽠痍⑤줈 씤븳 뿴웾 利앷쓽 洹좏삎쓣 留욎텛湲 쐞븳 쟻쓳쁽긽씠씪怨 궗猷뚮맂떎. 삉븳, H援곗쓽 떇씠슚쑉쓽 쑀쓽쟻 利앷뒗 怨좎諛 꽠痍⑤줈 씤븳 寃곌낵濡 蹂댁씤떎. 삉븳 떇씠슚쑉 鍮꾨쭔쓣 굹궡뒗 븯굹쓽 泥숇룄濡 떇씠슚쑉 닔移섍 옉쓣닔濡 鍮꾨쭔議곗젅 슚怨쇨 뜑 겕떎怨 蹂 닔 엳뒗뜲 H援곗뿉 鍮꾪빐 HG200, HU200, HU400援곗 쑀쓽쟻쑝濡 떇씠슚쑉씠 媛먯냼맂 寃껋쑝濡 蹂댁븘 쑀洹쇳뵾 異붿텧臾쇱씠 떇씠슚쑉쓣 媛먯냼떆耳 泥댁쨷쓣 媛먯냼떆궓 寃껋쑝濡 궗猷뚮맂떎.

씪諛섏쟻쑝濡 怨좎諛⑹떇씠 꽠痍 利앷뒗 媛꾩쓽 吏吏덈궗쓽 臾몄젣瑜 珥덈옒븯뿬 媛꾩쓽 肄쒕젅뒪뀒濡 븿웾 諛 媛 臾닿쾶媛 利앷릺뼱 吏꾨떎怨 蹂닿퀬릺怨 엳떎(Kim et al., 2011). 蹂 뿰援ъ뿉꽌룄 N援곗뿉 鍮꾪빐 H援곗뿉꽌 媛꾩쓽 臾닿쾶媛 쑀쓽쟻쑝濡 利앷맖쓣 솗씤븯떎(Table 3). 씠뿉 諛섑빐, 쑀洹쇳뵾 異붿텧臾쇱쓣 꽠痍⑦븳 HU200, HU400 援곗뿉꽌뒗 媛 臾닿쾶媛 쑀쓽쟻쑝濡 媛먯냼맖쓣 솗씤븯떎. 洹 쇅 떊옣怨 鍮꾩옣 援곕퀎 臾닿쾶 李⑥씠媛 뾾뿀吏留, 遺怨좏솚吏諛 諛 蹂듬吏諛⑹쓽 寃쎌슦 HU400援곗뿉꽌 H援곗뿉 鍮꾪빐 쑀쓽꽦 엳뒗 臾닿쾶 媛먯냼瑜 솗씤븯떎. 鍮꾨쭔 씪諛섏쟻쑝濡 泥댁諛⑹쓽 利앷媛 泥댁쨷쓽 利앷蹂대떎 嫄닿컯뿉 쐞뿕븳 슂냼濡 옉슜븳떎怨 븣젮졇 엳떎(Park et al., 2010). 븯吏留 蹂 뿰援ш껐怨쇰 洹쇨굅濡 쑀洹쇳뵾쓽 꽠痍⑤뒗 泥댁諛⑹쓽 利앷瑜 媛먯냼떆궗 닔 엳쓣 寃껋쑝濡 궗猷뚮맂떎.

삁以 吏吏덈궗 愿젴맂 깮솕븰吏몴씤 珥 肄쒕젅뒪뀒濡, 以묒꽦吏吏, HDL-肄쒕젅뒪뀒濡, LDL-肄쒕젅뒪뀒濡ㅼ쓣 遺꾩꽍븳 寃곌낵 吏몴뱾 以 以묒꽦吏吏 븿웾씠 H援곗뿉꽌 76.56±15.46 mg /dL濡 N援(57.31±17.05 mg/dL) 蹂대떎 삁以 以묒꽦吏吏 냽룄媛 넂븘議뚯留 쑀洹쇳뵾 異붿텧臾쇱쓣 닾빟븳 援곗뿉꽌 쑀쓽쟻쑝濡 媛먯냼맖쓣 솗씤븯떎(Fig. 5B). 씠뒗 Lee 벑(Lee et al., 2011)씠 蹂듬吏諛⑹씠 異뺤쟻맂 궗엺뱾뿉寃뚯꽌 삁以 以묒꽦吏吏덉쓽 븿웾씠 넂떎怨 蹂닿퀬븳 諛붿 媛숈씠 蹂 뿰援ъ뿉꽌룄 蹂듬吏諛⑹씠 媛옣 臾닿굅썱뜕 H援곗씠 삁泥 以 以묒꽦吏吏 븿웾씠 媛옣 넂븯怨, 쑀洹쇳뵾 異붿텧臾쇱쓣 꽠痍⑦븳 援곗쓽 寃쎌슦 蹂듬吏諛⑷낵 以묒꽦吏吏 븿웾씠 룞씪븳 寃쏀뼢쑝濡 媛먯냼맖쓣 솗씤븯떎.

蹂듬 諛 옣湲곗뿉 移⑥갑맂 吏諛⑹“吏곸뿉 빐 쑁븞쟻 愿李 寃곌낵, N援곗쓽 遺쐞蹂 吏諛 移⑥갑뿉 鍮꾪빐 H援곗쓽 吏諛 移⑥갑씠 利앷릺뿀쓬쓣 솗씤븷 닔 엳뿀쑝硫, HU200, HU400援곗뿉꽌뒗 吏諛 移⑥갑씠 쑁븞쟻쑝濡 媛먯냼릺뿀쓬쓣 솗씤븷 닔 엳뿀떎(Fig. 6). 媛 議곗쭅뿉꽌룄 H援곗뿉꽌 吏諛⑷뎄媛 媛옣 留롮씠 異뺤쟻릺뿀쑝硫, 吏諛⑷뎄쓽 겕湲곕룄 媛옣 겙 寃껋쑝濡 愿李곕릺뿀떎. 씠뿉 諛섑빐, 쑀洹쇳뵾 異붿텧臾 닾빟쓣 넻빐 吏諛⑷뎄媛 媛먯냼맖쓣 솗씤븯怨, 蹂듬吏諛⑹쓽 겕湲곕솕룄 媛 議곗쭅怨 쑀궗븳 寃쏀뼢쑝濡 媛먯냼릺뒗 寃껋쑝濡 굹궗떎. 怨좎諛 꽠痍⑤줈 씤빐 泥댁쨷, 삁以묒吏, 泥댁諛 移⑥갑 젙룄媛 쑀洹쇳뵾 異붿텧臾쇰줈 씤빐 寃쎄컧릺뒗 寃껋쓣 솗씤븯怨, 씠윭븳 寃곌낵뒗 異뷀썑 빆鍮꾨쭔 냼옱濡쒖쓽 媛쒕컻 媛뒫꽦쓣 蹂댁뿬二쇱뿀떎.

寃곕줎쟻쑝濡 쑀洹쇳뵾 뿉깂삱 異붿텧臾쇱 free radical 냼嫄곕뒫뿉 쓽븳 빆궛솕 솢꽦, NO 냼嫄곕뒫뿉 쓽븳 빆뿼利 솢꽦, 怨좎諛⑹떇씠濡 쑀룄맂 룞臾쇱떎뿕뿉꽌쓽 빆鍮꾨쭔 슚怨쇨 媛곴컖 솗씤씠 릺뼱 뼢썑 泥쒖뿰臾 쓽빟뭹 삉뒗 嫄닿컯湲곕뒫떇뭹 냼옱濡 媛쒕컻씠 媛뒫븷 寃껋쑝濡 궗猷뚮맂떎.

ACKNOWLEDGEMENT

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MOE) (No. NRF-2016R1A6A3A11935472 and NO. NRF-2018R1D1A3B07051270).

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

References
  1. Bong JG, Park Y. 2010. Antioxidant effect of hederagenin 3-O-b-D-glucopyranosyl(1-3)-a-L-rhamnopyranosyl(1-2)-a-L-arabino pyranoside (HDL) isolated from root bark of Ulmus davidiana. J Life Sci. 2010. 20: 281-291.
    CrossRef
  2. Bray GA. 2000. A concise review on the therapeutics of obesity. Nutrition. 2000. 16: 953-960.
    Pubmed CrossRef
  3. Chio MY, Dhoi EJ, Lee E, Park HJ. 2000. Effect of oenanthe javanica sap on plasma lipid composition in rats with high-eat diet. Korean J Plant Res. 2000. 13: 54-60.
  4. Folin O, Denis W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem. 1912. 12: 239-249.
  5. Friedewald WT, Levy RI, Fredrickson DS. 1972. Estimation of the concentration of low-density lipoprotein cholesterolin plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972. 18: 499-502.
    Pubmed
  6. Green LC, Wagner DA, Glogowski J. 1982. Analysis of nitrate, and [15N]nitrate in biological fluids. Anal Biochem. 1982. 126: 131-138.
    Pubmed CrossRef
  7. Hong ND, Roh YS, Kim NJ, Kim JS. 1990. A study on efficacy of Ulmi cortex. Korean J Pharma. 1990. 1: 217-222.
  8. Jahromi F, Ray AB, Chansouria JPN. 1993. Antihyperlipidemic effect of flavonoids from Pterocarpus marsupium. J Nat Prod. 1993. 56: 989-994.
    Pubmed CrossRef
  9. Jeong KY, Kim ML. 2012. Physiological activities of Ulmus pumila L. extracts. Korean J Food Preserv. 2012. 19: 104-109.
    CrossRef
  10. Ji HJ, Lee SI. 1988. Korea pharmacopoeia Herb medicine standard (Herb medicine). Korea Medi Indekseusa. 1988. 295.
  11. Jung MJ, Heo SI, Wang MH. 2008. Free radical scavenging and total phenolic contents from methanolic extracts of Ulmus davidiana. Food Chem. 2008. 108: 482-487.
    Pubmed CrossRef
  12. Kim AR, Hwang YG, Lee JJ, Jung HO, Lee MY. 2011. Effects of Eriobotrya japonica lin (loquat) leaf ethanol extract on cholesterol and antioxidative activity in rats fed a high -fat/high cholesterol diet. J Korean Soc Food Sci Nutr. 2011. 40: 673-681.
    CrossRef
  13. Kim JM, Cho ML, Seo KE, Kim YS, Jung TD, Kim YH, Kim DB, Shin GH, Oh JW, Lee JS, Lee JH, Kim JY, Lee DW, Lee OH. 2015. J Korean Soc Foood Sci Nutr. 2015. 44: 1172-1179.
    CrossRef
  14. Kim KB, Jo BS, Park HJ, Park KT, An BJ, Ahn DH, Kim MU, Chae JW, Cho YJ. 2012. Healthy functional food properties of phenolic compounds isolated from Ulmus pumila. Korean J Food Preserv. 2012. 19: 909-918.
    CrossRef
  15. Kopelman PG. 2000. Obesity as a medical problem. Nature. 2000. 404: 635-643.
    Pubmed CrossRef
  16. Kundu JK, Surh YJ. 2008. Inflammation:gearing the journey to cancer. Mutat Res. 2008. 659: 15-30.
    Pubmed CrossRef
  17. Lee JJ, Park MR, Kim AR, Lee MY. 2011. Effects of ramie leaves on improvement of lipid metabolism and anti-obesity effect in rats fed a high fat/high cholesterol diet. Korean J Food Sci Technol. 2011. 43: 83-90.
    CrossRef
  18. Lee MK, Sung SH, Lee HS, Cho JH, Kim YC. 2001. Lignan and neolignan glycosides from Ulmus davidiana var. aponica. Arch Pharm Res. 2001. 24: 198-201.
    Pubmed CrossRef
  19. Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. 2005. Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Ullung island. Korean J Food Sci Technol. 2005. 37: 233-240.
  20. Mosmann T. 1983. Rapid colorimetric assay for the cellular growth and survival. J Immunol Methods. 1983. 65: 55-63.
    Pubmed CrossRef
  21. Nakatani N. 1990. Recent advances in the study on natural antioxidants. Nippon Shokuhin Kogyo Gakkaishi. 1990. 37: 569-576.
    CrossRef
  22. Nieva Moreno MI, Isla MI, Sampietro AR, Vattuone MA. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol. 2000. 71: 109-114.
    Pubmed CrossRef
  23. Ohara Y, Peterson TE, Harrison D. 1993. Hypercholesterolemia increase endothelial superoxide anion production. J Clin Inverst. 1993. 91: 2546-2551.
    Pubmed KoreaMed CrossRef
  24. Park PJ, Kim CW, Cho SY, Rha CY, Seo DB, Lee SJ. 2010. Aqueous spray-dried green tea extract regulates body weight and epididymal fat accumulation in mice. Korean J Food Sci Technol. 2010. 42: 103-108.
  25. Shin MK 1977. Clinical traditional hergalogy Younglimsa, Seoul Korea. 669-778.
  26. Takeshi T, Keisuke N, Takaaki I, Makoto Y, Tatsuji N. 2010. Involvement of adhesion molecule in in vitro plaque-like formation of macrophages stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide. J Periodontal Res. 2010. 45: 550-556.
    Pubmed CrossRef
  27. Tak PP, Firestein GS. 2001. NF-kappa B:a key role in inflammatory diseases. J Clin Investig. 2001. 107: 7-11.
    Pubmed KoreaMed CrossRef
  28. Talalay P, Benson AM. 1982. Elvation of quinone reductase activity by anticarcinogenic antioxidants. Adv Enzym Regul. 1982. 20: 287-300.
    Pubmed CrossRef
  29. Wefers H, Komai T, Talalay P, Sies H. 1984. Protection against reactive oxygen species by NAD(P)H quinone reductase induced by the dietary antioxidant butylated hydroxyl anisole (BHA). FEBS. 1984. 169: 63-66.
    CrossRef
  30. Yang Y, Hyun JW, Lim KH, Kim HJ, Woo ER, Park J. 1996. Antineoplastic effect of extracts from traditional medical plants and various plants (III). Korea J Pharma. 1996. 27: 105-110.
  31. Yuan HD, Shin EJ, Chung SH. 2008. Anti-diabetic effect and mechanism of Korean red ginseng in C57BL/KsJ db/db mice. J Ginseng Res. 2008. 32: 187.
    CrossRef