Search for


TEXT SIZE

search for



CrossRef (0)
Dehydrocostus Lactone Suppresses the Expression of iNOS Induced by TLR Agonists
Biomed Sci Letters 2019;25:267-274
Published online September 30, 2019;  https://doi.org/10.15616/BSL.2019.25.3.267
© 2019 The Korean Society For Biomedical Laboratory Sciences.

Su Yeon Kim*, Sunghye Heo*, Seung Han Kim*, Minji Kwon*, Sin-Aye Park** and Hyung-Sun Youn†,**

Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Chungnam, Asan 31538, Korea
Correspondence to: Hyung-Sun Youn. Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Soonchunhyang-Ro 22, Shinchang-Myun, Asan-Si, Chungnam 31538, Korea.
Tel: +82-41-530-3086, Fax: +82-41-530-3085, e-mail: hyoun@sch.ac.kr
*Ungraduate student, **Professor.
Received July 4, 2019; Revised August 8, 2019; Accepted August 17, 2019.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
Toll-like receptors (TLRs) are one of the families of pattern recognition receptors (PRR) to recognize pathogen-associated molecular patterns (PAMPs). PAMPs stimulate TLRs to initiate specific immunoactivity. The activation of TLRs signaling leads to the expression of pro-inflammatory gene products such as cytokines and inducible nitric oxide synthase (iNOS). To evaluate the therapeutic potential of dehydrocostus lactone (DHL), which is a natural sesquiterpene lactone derived from various medicinal plants, iNOS expression induced by LPS (TLR4 agonist), MALP-2 (TLR2 and TLR6 agonist), or Poly[I:C] (TLR3 agonist) were examined. DHL suppressed the iNOS expression induced by LPS, MALP-2, or Poly[I:C]. DHL also inhibited nitrite production induced by LPS, MALP-2, or Poly[I:C]. These results suggest that DHL can modulate TLRs signaling pathways resulting in anti-inflammatory effect.
Keywords : Dehydrocostus lactone; Inducible nitric oxide synthase; TLR; Inflammation; LPS
꽌 濡

留뚯꽦 뿼利(chronic inflammation) 諛뺥뀒由ъ븘굹 諛붿씠윭뒪 媛먯뿼怨 媛숈 쇅遺 옄洹뱀뿉 諛섏쓳븯뿬 쑀룄릺뒗 蹂묐━깮由ы븰(pathophysiology)쟻씤 쁽긽쑝濡, inducible nitric oxide synthase (iNOS)媛 뿼利 쑀諛쒖뿉 以묒슂븳 湲곕뒫쓣 븯뒗 寃껋쑝濡 蹂닿퀬릺뼱 엳떎(Murakami and Ohigashi, 2007). 궛솕吏덉냼(NO)뒗 湲곗껜 긽깭쓽 媛꾨떒븳 臾닿린 遺꾩옄濡, 꽭룷 궡뿉꽌 쟾떖옄쓽 湲곕뒫쓣 媛吏怨 엳떎. NO뒗 꽑泥쒖꽦 硫댁뿭泥닿퀎쓽 쑀룄瑜 쐞빐꽌 以묒슂븳 뿭븷쓣 븳떎(Lowenstein and Padalko, 2004). 솢꽦솕맂 떇꽭룷뒗 NO瑜 룷븿븳 떎뼇븳 遺꾩옄뱾쓣 諛⑹텧븿쑝濡쒖뜥 蹂묒썝泥 蹂듭젣瑜 뼲젣븳떎. NO쓽 빀꽦 븘誘몃끂궛 L-arginine쓣 L-citrulline쑝濡 蹂솚븯뿬, nitric oxide synthase(NOS)濡 븣젮吏 슚냼뿉 쓽빐 留ㅺ컻맂떎. NOS뒗 neuronal NOS (nNOS), endothelial NOS (eNOS), 洹몃━怨 硫댁뿭諛섏쓳뿉 愿뿬븯뒗 inducible NOS (iNOS)쓽 꽭 媛吏 룞쐞슚냼瑜 媛吏怨 엳떎(Knowles, 1996). nNOS eNOS뒗 씪젙븯寃 諛쒗쁽릺뒗 援ъ꽦(constitutive) 슚냼씠硫, 씠뒗 議곗쟻쑝濡 iNOS뒗 嫄닿컯븳 긽깭뿉꽌뒗 諛쒗쁽릺吏 븡怨, 삤엳젮 硫댁뿭諛섏쓳씠굹 誘몄깮臾 옄洹뱀뿉 쓽븳 꽭룷 옄洹뱀뿉 뵲瑜 뿼利앹쑀룄 議곌굔뿉꽌 諛쒗쁽븳떎(Knowles, 1996).

넧(Toll) 쑀쟾옄뒗 泥섏쓬뿉 珥덊뙆由(Drosophila)뿉꽌 諛쒓껄릺뿀怨, 諛곕났꽦쓽(dorsoventral) 諛곗븘 諛쒕떖怨 꽑泥쒖꽦 硫댁뿭 湲곕뒫쓣 以묒옱븯湲 쐞븯뿬 諛쒓껄릺뿀떎(Anderson et al., 1985). 1997뀈 씤媛꾩뿉꽌 Toll씠 諛쒓껄릺뼱 珥덊뙆由 Toll怨 援щ퀎븯湲 쐞븯뿬 Toll-like receptor (TLR)씪 紐낅챸릺뿀떎(Medzhitov et al., 1997). TLR4媛 理쒖큹濡 諛쒓껄릺뿀쑝硫, 쁽옱 13媛쒖쓽 TLRs媛 씤媛꾧낵 留덉슦뒪뿉꽌 諛쒓껄릺뿀떎(Poltorak et al., 1998). TLR1-10 씤媛꾩뿉꽌 諛쒓껄릺뿀쑝硫, TLR1-9怨 TLR11-13 留덉슦뒪뿉꽌 諛쒓껄릺뿀떎. TLRs 옄洹뱀젣(agonist)뒗 듅蹂꾪븳 硫댁뿭諛섏쓳쓣 쑀룄븯湲 쐞븯뿬 TLRs瑜 옄洹뱁븯뒗 pathogen-associated molecular patterns (PAMPs)씠떎. 媛옣 留롮씠 뿰援щ맂 TLRs 옄洹뱀젣뒗 lipopolysaccharide (LPS; TLR4 agonist), lipopeptides(TLR1, TLR2, 洹몃━怨 TLR6 agonists), flagellin (TLR5 agonist), single stranded RNA (TLR7 and TLR8 agonist), double stranded (ds) RNA (TLR3 agonist), 洹몃━怨 DNA containing the CpG motif (TLR9 agonist)씠떎(Medzhitov, 2001).理쒓렐쓽 뿰援ъ뿉 쓽븯硫 뒪듃젅뒪瑜 諛쏄굅굹 二쎌 꽭룷뿉꽌 諛⑹텧릺뒗 heat shock proteins (HSP; TLR2 TLR4)怨 high mobility group box 1 (HMGB1; TLR2 TLR4) 삉븳 以묒슂븳 TLRs 옄洹뱀젣濡 븣젮議뚮떎(Asea et al., 2002; Kepp et al., 2011). TLRs 옄洹뱀젣媛 洹몃뱾쓽 닔슜泥댁뿉 寃고빀븯硫 몮 以 븯굹씤, myeloid differential factor 88 (MyD88)-삉뒗 TIR domain-containing adaptor inducing interferon-β (TRIF)瑜 쓽吏븳 떊샇쟾떖泥닿퀎瑜 쑀룄븳떎. MyD88瑜 쓽吏븳 떊샇쟾떖泥닿퀎뒗 NF-κB, mitogen-activated protein kinase (MAPK)굹 cytokines, chemokines, 洹몃━怨 cytosolic 슚냼쓽 쟾궗 솢꽦솕瑜 쑀룄븯뒗 諛섎㈃뿉 TRIF-dependent 떊샇쟾떖泥닿퀎뒗 뒭 NF-κB굹 interferon regulatory factor 3 (IRF3)쓽 솢꽦쓣 쑀룄븳떎(Kawai and Akira, 2010). 씠윭븳 쟾궗씤옄쓽 솢꽦솕뒗 iNOS 媛숈 뿼利 愿젴 쑀쟾옄쓽 諛쒗쁽쓣 利앷떆耳 뿬윭 吏덈퀝쓣 珥덈옒븯寃 맂떎(Akira and Takeda, 2004). 洹몃윭誘濡 TLRs쓽 떊샇쟾떖泥닿퀎 議곗젅 뿼利앸컲쓳씠굹 떎뼇븳 吏덈퀝뱾쓣 삁諛⑺븷 닔 엳뒗 寃껋씠떎.

Dehydrocostus lactone (DHL) (Fig. 1) Inula helenium L. and Saussurea lappa 媛숈 援솕怨 떇臾쇰줈遺꽣 異붿텧릺뒗 sesquiterpene lactone씠떎. 뿬윭 뿰援ъ뿉 쓽븯硫 DHL 빆뿼利(Cho et al., 2000), 빆愿댁뼇(Yoshikawa et al., 1993), 빆븫(Ko et al., 2004) 諛 硫댁뿭議곗젅(Pandey et al., 2007) 湲곕뒫쓣 룷븿븳 뿬윭 媛吏 빟由ы븰쟻 슚뒫쓣 媛吏怨 엳뒗 寃껋쑝濡 븣젮졇 엳떎. 븯吏留 씠윭븳 DHL쓽 빟由ы븰쟻 슚뒫뿉 븳 遺꾩옄쟻 옉슜湲곗쟾 븘吏곴퉴吏 셿쟾엳 諛앺졇 엳吏 븡떎. 洹몃윭誘濡 蹂 뿰援ъ뿉꽌뒗 DHL씠 TLRs쓽 떊샇쟾떖泥닿퀎瑜 議곗젅븿쑝濡쒖뜥 iNOS瑜 룷븿븳 뿼利앸컲쓳뿉 誘몄튂뒗 쁺뼢뿉 빐 븣븘蹂닿퀬옄 븳떎.

Fig. 1.

The structure of dehydrocostus lactone (DHL).


옱猷 諛 諛⑸쾿

옱猷

떎뿕뿉 궗슜븳 LPS (lipopolysaccharide; TLR4 agonist)뒗 List Biological Lab (San Jose, CA, USA)쑝濡쒕꽣, MALP-2 (macrophage-activating lipopeptide of 2 kDa; TLR2 6 agonist)뒗 Alexis Biochemical (San Diego, CA, USA)濡쒕꽣, Polyriboinosinic polyribocytidylic acid (poly[I:C]; TLR3 agonist)뒗 Amersham Biosciences (Piscataway, NJ, USA)濡쒕꽣 援ъ엯븯떎. iNOS 빆泥대뒗 BD Biosciences (San Jose, CA, USA)濡쒕꽣, β-actin 빆泥대뒗 Santa Cruz Biotechnology (Santa Cruz, CA, USA)濡쒕꽣 援ъ엯븯떎. Dehydrocostus lactone Selleckchem (Houston, TX, USA)쑝濡쒕꽣 援ъ엯븯떎. 洹 諛뽰쓽 떎瑜 떆빟뱾 듅蹂꾪븳 뼵湲됱씠 뾾뒗 븳 Sigma-Aldrich濡쒕꽣 援ъ엯븯떎.

꽭룷 諛곗뼇

RAW264.7 꽭룷뱾(murine monocytic cells, ATCC TIB-71) Dulbecco’s modified Eagle’s medium (DMEM) (10% (v/v) FBS, 100 units/mL Penicillin, 100 μg/mL streptomycin)쓣 궗슜븯뿬 5% CO2/air, 37°C뿉꽌 諛곗뼇븯떎.

Plasmid

iNOS-luciferase plasmid뒗 Daniel Hwang (University of California, Davis, CA, USA)쑝濡쒕꽣 젣怨듬컺븯떎. Heat shock protein (HSP) 70-β-galactosidase plasmid뒗 R. Modlin (University of California, Los Angeles, CA, USA)쑝濡쒕꽣 젣怨듬컺븯떎. 쐞쓽 紐⑤뱺 DNA뒗 EndoFree Plasmid Maxi kit (Qiagen, Valencia, CA, USA)쓣 궗슜븯뿬 以鍮꾨릺뿀떎.

Cell viability test

3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTT) 궗슜븯뿬 꽭룷 깮議댁쑉쓣 痢≪젙븯떎(Kim et al., 2018b). RAW264.7 꽭룷瑜 96 well plate뿉 遺꾩<븯怨 4떆媛 룞븞 MTT 빟臾쇱쓣 泥섎━븳 썑, well plate뿉 CellTiter 96 AQueous One Solution Reagent (Promega, Madison, WI, USA)瑜 泥④븯쑝硫, 4떆媛 룞븞 諛곗뼇븯떎. 洹 썑 96 well plate reader瑜 궗슜븯뿬 490 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯뿬 꽭룷 깮議댁쑉쓣 痢≪젙븯떎.

Transfection怨 luciferase瑜 씠슜븳 쑀쟾옄 諛쒗쁽 遺꾩꽍(luciferase reporter gene assay)

iNOS 쑀쟾옄 諛쒗쁽 luciferase assay瑜 궗슜븯뿬 遺꾩꽍븯떎(Kim et al., 2018a). RAW264.7 꽭룷瑜 48 well plates뿉 洹좊벑 遺꾩<븯뿬 諛곗뼇븯떎, 븯猷 뮘뿉 50~60% 젙룄 꽭룷利앹떇쓣 蹂댁씪 븣, iNOS-luciferase plasmid HSP70-β-galactosidase plasmid뒗 Superfect transfection 떆빟(Qiagen, Valencia, CA, USA)쓣 궗슜븯뿬 꽭룷 븞쑝濡 transfection 떆耳곕떎. 10 삉뒗 20 μM DHL쓣 pretreat븳 썑 1떆媛 룞븞 諛곗뼇븯떎. 洹몃━怨 agonist瑜 泥섎━븳 썑 8떆媛 룞븞 諛곗뼇븯떎. Luciferase assay system (Promega, Madison, WI, USA)쓣 궗슜븯뿬 luciferase쓽 솢꽦쓣 luminometer (Berthold, Bad-Wildbad, Germany)濡 痢≪젙븯쑝硫, β-galactosidase쓽 솢꽦솕 젙룄瑜 솗씤븯뿬 몴以솕떆耳곕떎.

Western blotting

TLR agonist DHL쓣 泥섎━븳 꽭룷濡쒕꽣 異붿텧맂 떒諛깆쭏뱾 SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis)뿉꽌 겕湲곗뿉 뵲씪 遺꾨━릺뿀떎. 씠썑 遺꾨━맂 떒諛깆쭏뱾 immunoblotting 諛⑸쾿쓣 궗슜븯뿬 polyvinylidene difluoride membrane쑝濡 씠룞릺뿀떎(Youn et al., 2006a; Youn et al., 2006b). Membrane 0.1% Tween 20 5% 깉吏 嫄댁“맂 슦쑀瑜 룷븿븯怨 엳뒗 phosphate-buffered saline뿉꽌 blocking 릺뿀떎. Membrane뿉 1李 빆泥(iNOS 삉뒗 β-actin)瑜 遺숈씠怨 horseradish peroxidase媛 寃고빀맂 2李 빆泥대 遺숈씤 썑, iNtRON western blot detection system (Seongnam, Gyeonggi-do, Korea)쓣 궗슜븯뿬 떒諛깆쭏쓽 諛쒗쁽쓣 솗씤븯떎.

Nitrite assay

DHL쓽 iNOS뿉 븳 슚怨쇰 痢≪젙븯湲 쐞븯뿬 iNOS뿉 쓽빐꽌 留뚮뱾뼱吏뒗 nitrite (NO2)瑜 痢≪젙븯떎(Lim et al., 2008). NO뒗 留ㅼ슦 遺덉븞젙븳 臾쇱쭏濡 痢≪젙씠 돺吏 븡븘꽌 떊 NO쓽 궛솕 怨쇱젙뿉 쓽빐꽌 留뚮뱾뼱吏뒗 nitrite (NO2)瑜 떊 痢≪젙븯떎. 꽭룷 諛곗뼇 well plate쓽 긽痢듭븸뿉 遺꾩<湲곕 궗슜븯뿬 Griess reagent瑜 泥④븯쑝硫, plate reader瑜 궗슜븯뿬 570 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 몴以 臾쇱쭏濡 sodium nitrite瑜 궗슜븯떎.

뜲씠 遺꾩꽍

媛곴컖쓽 뜲씠 媛믪 꽌濡 떎瑜 꽭 媛쒖쓽 媛믪쓣 젙웾븯뿬 Student’s t-test濡 뼸뼱議뚯쑝硫, mean ± standard error mean (SEM)쑝濡 몴쁽릺뿀떎.

寃곌낵 諛 怨좎같

Dehydrocostus lactone쓽 꽭룷 룆꽦 슚怨

泥 踰덉㎏濡, RAW264.7 꽭룷뿉꽌 DHL쓽 룆꽦 슚怨쇰 룊媛븯湲 쐞빐 MTT assay瑜 궗슜븯뿬 꽭룷 깮議댁쑉쓣 痢≪젙븯떎. 꽭룷뱾 DHL 20 μM쓽 냽룄뿉꽌 100.0%, 50 μM 냽룄뿉꽌 92.1% 깮議댁쑉쓣 蹂댁떎(Fig. 2). 씠썑쓽 紐⑤뱺 떎뿕 DHL 20 μM 냽룄源뚯 궗슜븯떎.

Fig. 2.

Cells viability assay of dehydrocostus lactone. RAW264.7 cells were treated with DHL (10, 20, 50 μM) for 4 h. Twenty microliters of the CellTiter 96 AQueous One Solution Reagent was added directly to culture wells. The plate was incubated at 37°C for 4 h in a humidified 5% CO2 atmosphere. The absorbance was recorded at 490 nm with a 96-well plate reader. Veh, vehicle; DHL, dehydrocostus lactone.



Dehydrocostus lactone TLR agonists뿉 쓽빐 쑀룄맂 iNOS 諛쒗쁽쓣 뼲젣

떎쓬 떎뿕쑝濡 DHL씠 뿬윭 TLR agonists뿉 쓽빐꽌 쑀룄맂 iNOS뿉 뼱뼚븳 쁺뼢쓣 誘몄튂뒗吏 븣븘蹂댁븯떎. DHL LPS (TLR4 agonist), MALP-2 (TLR2 TLR6 agonist), 洹몃━怨 Poly[I:C] (TLR3 agonist)뿉 쓽빐 쑀룄맂 iNOS쓽 怨쇰컻쁽쓣 뼲젣븯뒗 寃껋쓣 iNOS-luciferase assay瑜 솢슜븯뿬 痢≪젙븯떎(Figs. 3A-C). 삉븳 DHL씠 LPS, MALP-2, 洹몃━怨 Poly[I:C]뿉 쓽빐 쑀룄맂 iNOS 떒諛깆쭏쓽 怨쇰컻쁽쓣 빐븯뒗 寃껋쓣 Western blotting 諛⑸쾿쓣 넻븯뿬 솗씤븯떎(Figs. 4A-C). 삉븳 DHL씠 iNOS쓽 깮꽦臾쇱씤 nitrite (NO2)쓽 깮꽦뿉 뼱뼚븳 쁺뼢쓣 誘몄튂뒗吏 솗씤빐 蹂댁븯떎. Nitrite (NO2)뒗 NO쓽 궛솕 怨쇱젙뿉 쓽빐꽌 留뚮뱾뼱吏뒗 NO쓽 깮由ы븰쟻씤 옣 濡 뿬寃⑥쭊떎. DHL LPS, MALP-2, 洹몃━怨 Poly[I:C]뿉 쓽빐꽌 쑀룄맂 nitrite (NO2)쓽 깮꽦쓣 뼲젣븯떎(Figs. 5A-C). 씠윭븳 寃곌낵뱾쓣 醫낇빀빐 蹂대㈃ DHL TLR 옄洹뱀젣뿉 쓽빐 쑀룄릺뒗 iNOS쓽 諛쒗쁽怨 洹 깮꽦臾쇱씤 nitrite (NO2)쓽 깮꽦쓣 議곗젅븯뿬 뿼利앸컲쓳쓣 議곗젅븷 닔 엳떎뒗 寃껋쓣 삁痢≫븷 닔 엳떎.

Fig. 3.

Dehydrocostus lactone inhibits iNOS expression induced by TLRs agonists. (A-C) RAW264.7 cells were transfected with Inos luciferase reporter plasmid and pretreated with 10 or 20 μM DHL for 1h and then treated with LPS (10 ng/mL) (A), MALP-2 (10 ng/mL) (B), or Poly[I:C] (10 μg/mL) (C) for an additional 8 h. Cell lysates were prepared and luciferase enzyme activities were determined. Values represent the mean ± SEM (n=3). #, Significantly different from LPS alone, P<0.01 (##) (A). *, Significantly different from MALP-2 alone, P<0.05 (*) (B). +, Significantly different from Poly[I:C] alone, P<0.01 (++) (C). Veh, vehicle; DHL, dehydrocostus lactone: RLA, relative luciferase activity.


Fig. 4.

Dehydrocostus lactone inhibits iNOS protein induced by TLRs agonists. (A-C) RAW264.7 cells were pretreated with 10 or 20 μM DHL for 1 h and then further stimulated with LPS (10 ng/mL) (A), MALP-2 (10 ng/mL) (B), or Poly[I:C] (10 μg/mL) (C) for an additional 8 h. Cell lysates were analyzed for iNOS and β-actin protein by immunoblots. Veh, vehicle; DHL, dehydrocostus lactone.


Fig. 5.

Dehydrocostus lactone inhibits nitrite production induced by TLRs agonists. (A-C) RAW 264.7 cells were pretreated with 10 or 20 μM DHL for 1 h and then treated with LPS (10 ng/mL) (A), MALP-2 (10 ng/ml) (B), or Poly[I:C] (10 μg/mL) (C) for an additional 20 h. The amounts of nitrite in supernatant were measured using Griess reagent. Values represent the mean ± SEM (n=3). #, Significantly different from LPS alone, P<0.01 (##) (A). *, Significantly different from MALP-2 alone, P<0.01 (**) (B). +, Significantly different from Poly[I:C] alone, P<0.01 (++) (C). Veh, vehicle; DHL, dehydrocostus lactone.



NOS뒗 nNOS, eNOS, iNOS 벑 꽭媛쒖쓽 씠꽦吏덉껜濡 援ъ꽦릺뼱 엳떎(Lind et al., 2017). nNOS뒗 以묒텛떊寃쎄퀎 留먯큹떊寃쎄퀎 紐⑤몢쓽 떊寃쎌“吏곸뿉꽌 NO瑜 깮꽦븳떎(Lind et al., 2017). nNOS뒗 삉븳 꽭룷 쓽궗냼넻뿉꽌 뿭븷쓣 닔뻾븯硫 뵆씪利덈쭏 留됯낵 뿰愿릺뼱 엳떎. 吏덉냼궛솕臾 3 (NOS3)씠씪怨좊룄 븯뒗 endothelial NOS (eNOS)뒗 삁愿뿉 NO瑜 諛쒖깮떆궎硫 삁愿 湲곕뒫쓣 議곗젅븯뒗 뜲 愿뿬븳떎. 삁愿 궡뵾뿉꽌 eNOS뿉 쓽빐 깮꽦맂 NO뒗 삁愿 깋議(vascular tone), 꽭룷 利앹떇(cellular proliferation), 諛깊삁援 遺李(leukocyte adhesion), 諛 삁냼뙋 쓳吏(platelet aggregation)쓣 議곗젅븯뒗뜲 以묒슂븳 뿭븷쓣 븳떎(Forstermann and Munzel, 2006). 洹몃윭誘濡 eNOS뒗 嫄닿컯븳 떖삁愿쓣 쑀吏븯湲 쐞븯뿬 븘닔쟻씤 슂냼씠떎(Lind et al., 2017).

援ъ꽦 NOS씤 nNOS 諛 eNOS 떎瑜닿쾶, iNOS뒗 떎뼇븳 깮由ы븰쟻 議곌굔(삁븬 議곗젅, 긽泥 移섏쑀, 샇뒪듃 諛⑹뼱 硫붿빱땲利 벑)怨 蹂묐━깮由ы븰(뿼利, 媛먯뿼, 떊媛냼꽦 吏덊솚, 媛꾧꼍솕利, 떦눊蹂 벑)뿉꽌 以묒슂븳 뿭븷쓣 떞떦븳떎(Lechner et al., 2005). iNOS뒗 nitric oxide (NO)瑜 깮꽦븯怨, 깮꽦맂 NO뒗 꽭룷 룆꽦 슚怨쇨 엳뼱 씠 愿젴맂 뿼利 諛 吏덈퀝쓣 쑀룄븯뒗 寃껋쑝濡 븣젮졇 엳떎(Vallance, 2003) iNOS뒗 NF-κB 寃쎈줈瑜 넻븳 뿼利앹꽦 cytokines뿉 쓽빐 쑀룄릺뒗 寃껋쑝濡 븣젮졇 엳떎. Gochman et al. (2012) NF-κB媛 옣뿼뿉 愿뿬븯뒗 寃껋쓣 議곗궗븷 븣, 씤泥 옣뿼 議곗쭅뿉꽌 iNOS 諛쒗쁽씠 利앷븿쓣 엯利앺븯뿬 뿼利앹꽦 吏덊솚뿉 븳 湲곗뿬, 媛뒫븳 移섎즺踰뺤쑝濡쒖꽌 iNOS쓽 뼲젣瑜 젣븞븯떎(Gochman et al., 2012). iNOS 쑀쟾옄瑜 뾾븻 留덉슦뒪뿉꽌 룞留κ낵 以묒썝룞留(mesenteric arteries)뿉 븳 諛뺥뀒由ъ븘 lipopolysaccharide쓽 쁺뼢쓣 룊媛븷 븣, Chauhan et al. 벑 lipopolysaccharide뿉 쓽빐 쑀룄맂 궡뵾 湲곕뒫 옣븷(endothelial dysfunction)媛 iNOS 쑀룄뿉 쓽吏븳떎뒗 寃껋쓣 엯利앺븯떎(Chauhan et al., 2003). Mungrue et al. 뿰援ъ쭊 留덉슦뒪 紐⑤뜽쓽 떖洹쇱꽭룷뿉꽌 iNOS쓽 怨쇰컻쁽 꽌留μ꽦 遺젙留(bradyarrythmia), 떖洹쇰퀝(cardiomyopathy) 諛 媛묒옉뒪윴 떖옣궗留앷낵 愿젴씠 엳떎怨 젣븞븯떎(Mungrue et al., 2002). 뵲씪꽌, 씠윭븳 뿰援щ뱾뿉꽌 蹂댁뿬吏뒗 利앷굅뒗 뿼利 湲곌컙 룞븞 iNOS媛 吏덈퀝쓽 넀긽 슚怨쇱뿉 湲곗뿬븯誘濡, iNOS 뼲젣媛 吏덈퀝 삁諛⑹뿉 슚怨쇨 엳떎뒗 寃껋쓣 蹂댁뿬二쇰뒗 寃곌낵씠떎.

꽑泥쒖꽦 硫댁뿭泥닿퀎뒗 蹂묒썝洹좎뿉 븳 닕二쇱쓽 鍮좊Ⅸ 諛섏쓳씠떎. 떇꽭룷, 옄뿰궡씤꽭룷 벑 꽑泥쒖꽦 硫댁뿭泥닿퀎瑜 쑀룄븯뒗 꽭룷뱾 pattern recognition receptor (PRR)瑜 씠슜븯뿬 蹂묒썝洹좉낵 愿젴맂 PAMPs瑜 씤떇븳떎(Medzhitov, 2001). PRR 뿭븷쓣 븯뒗 몴쟻씤 닔슜泥닿 TLRs씠떎. TLRs뒗 씪諛섏쟻쑝濡 MyD88怨 TRIF뿉 쓽吏븳 몢媛쒖쓽 떊샇쟾떖泥닿퀎瑜 媛吏怨 엳떎(Fitzgerald et al., 2003; Hultmark, 1994). MyD88 TLR3瑜 젣쇅븳 紐⑤뱺 룷쑀룞臾쇱뿉꽌 諛쒓껄릺뒗 TLRs쓽 TIR (Toll/IL-1R) 룄硫붿씤뿉 遺숇뒗 利됯컖쟻씤 뼱뙌꽣(adaptor) 遺꾩옄씠硫, 쟾궗슂냼 NF-κB쓽 솢꽦솕瑜 쑀룄븳떎. MyD88 떊샇쟾떖泥닿퀎瑜 넻븳 NF-κB 솢꽦 cytokines 벑 뿼利 쑀룄 臾쇱쭏뱾쓽 諛쒗쁽쓣 利앷떆耳 떎뼇븳 吏덈퀝쓣 쑀諛쒗븯뒗 寃껋쑝濡 븣젮졇 엳떎(Takeda and Akira, 2005).

븳렪, TLR3쓽 솢꽦 MyD88 떊뿉 뼱뙌꽣 遺꾩옄씤 TRIF瑜 쓽吏븳 떊샇쟾떖泥닿퀎瑜 넻븯뿬 쟾궗씤옄 IRF3쓽 솢꽦솕瑜 쑀룄븳떎(Fitzgerald et al., 2003). TLR4뒗 MyD88怨 TRIF瑜 쓽吏븳 뼇履 떊샇쟾떖泥닿퀎瑜 솢슜븳떎. 솢꽦솕맂 IRF3뒗 type I IFN 쑀쟾옄뱾쓽 諛쒗쁽쓣 쑀룄븳떎(Sato et al., 2003).

뵲씪꽌 蹂묒썝洹좊뱾씠 닕二 븞쑝濡 뱾뼱삤硫 TLRs媛 PAMPs쓣 씤떇븯뿬 MyD88 삉뒗 TRIF瑜 쓽吏븳 떊샇쟾떖泥닿퀎瑜 솢슜븯뿬 떊샇瑜 븘옒濡 쟾떖븯怨, 뿬윭 떒諛깆쭏뱾쓽 솢꽦솕瑜 넻빐 cytokines 벑 뿼利 쑀쟾옄 臾쇱쭏뱾쓽 諛쒗쁽쓣 利앷떆궎吏留, 닕二쇰뒗 썑泥쒖꽦 硫댁뿭諛섏쓳쓣 솢꽦솕떆耳 뿬윭 吏덈퀝쑝濡쒕꽣 닕二쇰 蹂댄샇븯뒗 寃껋쑝濡 븣젮졇 엳떎. 븯吏留 怨꾩냽맂 PAMPs쓽 옄洹뱀뿉 쓽빐 닕二쇱쓽 硫댁뿭떆뒪뀥뿉 怨쇰븯媛 嫄몃━寃 릺硫, 삤엳젮 뿼利 쑀룄 臾쇱쭏뱾뿉 쓽빐 媛곸쥌 吏덈퀝씠 諛쒖깮릺寃 맂떎. 洹몃윭誘濡, PAMPs뿉 쓽빐 쑀룄맂 TLRs쓽 떊샇쟾떖泥닿퀎쓽 솢꽦쓣 뼲젣븯뒗 寃껋 留뚯꽦 뿼利앷낵 媛숈 뿬윭 吏덈퀝쓣 삁諛⑺븯뒗 뜲 엳뼱 留ㅼ슦 以묒슂븯떎怨 븷 닔 엳떎(Takeda and Akira, 2005).

삤옖 뿭궗瑜 媛吏怨 엳뒗 쟾넻 븳쓽븰뿉 뵲瑜대㈃ 3,000뿬 醫낆쓽 떇臾쇱씠 븫 移섎즺뿉 슚怨쇱쟻쑝濡 븣젮졇 엳떎. 씠쟾쓽 뿰援ъ뿉 뵲瑜대㈃ DHL 빆뿼利(Cho et al., 2000), 빆슦슱젣(Yoshikawa et al., 1993), 硫댁뿭議곗젅(Pandey et al., 2007), 諛 빆븫(Ko et al., 2004) 슚怨쇰 媛吏怨 엳떎. 理쒓렐뿉뒗 諛깊삁蹂(Butturini et al., 2011), 룓븫(Hung et al., 2010), 쑀諛⑹븫(Pitchai et al., 2014), 媛꾩븫(Hsu et al., 2009), 궃냼븫(Sun et al., 2003), 쟾由쎌깦븫(Kim et al., 2012), 諛⑷킅븫(Rasul et al., 2013), 옣븫(Sun et al., 2015) 벑 떎뼇븳 醫낅쪟쓽 븫뿉 븳 DHL쓽 옞옱쟻씤 빆븫 솢룞쑝濡 씤빐 뿰援ъ썝뱾뿉寃 留ㅼ슦 넂 愿떖쓣 遺덈윭씪쑝耳곕떎. 洹몃윭굹 DHL쓽 젙솗븳 빆뿼利 · 빆븫 슚怨쇱 옉슜湲곗쟾씠 븘吏 꽕紐낅릺吏 븡븯쑝硫, DHL쓽 몴쟻 떒諛깆쭏씠 異⑸텇엳 洹쒕챸릺吏뒗 븡怨 엳떎.

蹂 뿰援ъ뿉꽌뒗 DHL쓽 빆뿼利 슚뒫쓣 洹쒕챸븯湲 쐞븯뿬 TLRs 옄洹뱀젣씤 LPS, MALP-2, 洹몃━怨 Poly[I:C]뿉 쓽빐 쑀룄맂 iNOS쓽 諛쒗쁽뿉 誘몄튂뒗 쁺뼢뿉 빐 솗씤븯떎. DHL TLRs쓽 MyD88瑜 쓽吏븳 떊샇쟾떖泥닿퀎 옄洹뱀젣씤 MALP-2 (TLR2 and TLR6 agonist)뿉 쓽빐꽌 쑀룄맂 iNOS쓽 怨쇰컻쁽쓣 뼲젣븯떎. DHL TLRs쓽 TRIF瑜 쓽吏븳 떊샇쟾떖 옄洹뱀젣씤 Poly[I:C] (TLR3 agonist)뿉 쓽빐꽌 쑀룄맂 iNOS쓽 怨쇰컻쁽쓣 뼲젣븯떎. 삉븳 DHL TLRs쓽 MyD88怨 TRIF 뼇履 떊샇쟾떖泥닿퀎瑜 궗슜븯뒗 LPS (TLR4 agonist)뿉 쓽빐 쑀룄맂 iNOS쓽 怨쇰컻쁽쓣 뼲젣븯떎. 씠윭븳 寃곌낵뒗 DHL씠 TLRs쓽 MyD88怨 TRIF 뼇履 떊샇쟾떖泥닿퀎瑜 議곗젅븷 닔 엳떎뒗 寃껋쓣 蹂댁뿬二쇰뒗 寃곌낵씠떎. 뵲씪꽌 蹂 뿰援ъ쓽 寃곌낵뒗 DHL씠 TLRs쓽 떊샇쟾떖泥닿퀎瑜 議곗젅븯뿬 떎뼇븳 留뚯꽦吏덊솚 移섎즺 諛 移섎즺젣 媛쒕컻뿉 엳뼱꽌 以묒슂븳 뿭븷쓣 븷 寃껋쑝濡 湲곕맂떎.

ACKNOWLEDGEMENT

蹂 뿰援щ뒗 닚泥쒗뼢븰援 븰닠뿰援щ퉬쓽 씪遺 吏썝怨 2017뀈룄 븳援뿰援ъ옱떒쓽 吏썝쓣 諛쏆븘 닔뻾맂 湲곗큹뿰援ъ궗뾽(2017R1D1A1B03031534)쓽 吏썝쓣 諛쏆븘 닔뻾맂 뿰援 寃곌낵臾쇰줈 洹 吏썝뿉 媛먯궗뱶由쎈땲떎.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

References
  1. Akira S, Takeda K. 2004. Toll-like receptor signalling. Nat Rev Immunol. 2004. 4: 499-511.
    Pubmed CrossRef
  2. Anderson KV, Bokla L, Nusslein-Volhard C. 1985. Establishment of dorsal-ventral polarity in the Drosophila embryo:the induction of polarity by the Toll gene product. Cell. 1985. 42: 791-798.
    Pubmed CrossRef
  3. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK. 2002. Novel signal transduction pathway utilized by extracellular HSP70:role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem. 2002. 277: 15028-15034.
    Pubmed CrossRef
  4. Butturini E, Cavalieri E, de Prati AC, Darra E, Rigo A, Shoji K, Murayama N, Yamazaki H, Watanabe Y, Suzuki H, et al. 2011. Two naturally occurring terpenes, dehydrocostuslactone and costunolide, decrease intracellular GSH content and inhibit STAT3 activation. PLoS One. 2011. 6: e20174.
    Pubmed KoreaMed CrossRef
  5. Chauhan SD, Seggara G, Vo PA, Macallister RJ, Hobbs AJ, Ahluwalia A. 2003. Protection against lipopolysaccharide-induced endothelial dysfunction in resistance and conduit vasculature of iNOS knockout mice. FASEB J. 2003. 17: 773-775.
    Pubmed CrossRef
  6. Cho JY, Baik KU, Jung JH, Park MH. 2000. In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa. Eur J Pharmacol. 2000. 398: 399-407.
    Pubmed CrossRef
  7. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T. 2003. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol. 2003. 4: 491-496.
    Pubmed CrossRef
  8. Forstermann U, Munzel T. 2006. Endothelial nitric oxide synthase in vascular disease:from marvel to menace. Circulation. 2006. 113: 1708-1714.
    Pubmed CrossRef
  9. Gochman E, Mahajna J, Shenzer P, Dahan A, Blatt A, Elyakim R, Reznick AZ. 2012. The expression of iNOS and nitrotyrosine in colitis and colon cancer in humans. Acta Histochem. 2012. 114: 827-835.
    Pubmed CrossRef
  10. Hsu YL, Wu LY, Kuo PL. 2009. Dehydrocostuslactone, a medicinal plantderived sesquiterpene lactone, induces apoptosis coupled to endoplasmic reticulum stress in liver cancer cells. J Pharmacol Exp Ther. 2009. 329: 808-819.
    Pubmed CrossRef
  11. Hultmark D. 1994. Macrophage differentiation marker MyD88 is a member of the Toll/IL-1 receptor family. Biochem Biophys Res Commun. 1994. 199: 144-146.
    Pubmed CrossRef
  12. Hung JY, Hsu YL, Ni WC, Tsai YM, Yang CJ, Kuo PL, Huang MS. 2010. Oxidative and endoplasmic reticulum stress signaling are involved in dehydrocostuslactone-mediated apoptosis in human non-small cell lung cancer cells. Lung Cancer. 2010. 68: 355-365.
    Pubmed CrossRef
  13. Kawai T, Akira S. 2010. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors. Nat Immunol. 2010. 11: 373-384.
    Pubmed CrossRef
  14. Kepp O, Galluzzi L, Martins I, Schlemmer F, Adjemian S, Michaud M, Sukkurwala AQ, Menger L, Zitvogel L, Kroemer G. 2011. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev. 2011. 30: 61-69.
    Pubmed CrossRef
  15. Kim AY, Shim HJ, Kim SY, Heo S, Youn HS. 2018a. Differential regulation of MyD88- and TRIF-dependent signaling pathways of Toll-like receptors by cardamonin. Int Immunopharmacol. 2018a. 64: 1-9.
    Pubmed CrossRef
  16. Kim AY, Shim HJ, Shin HM, Lee YJ, Nam H, Kim SY, Youn HS. 2018b. Andrographolide suppresses TRIF-dependent signaling of toll-like receptors by targeting TBK1. Int Immunopharmacol. 2018b. 57: 172-180.
    Pubmed CrossRef
  17. Kim EJ, Hong JE, Lim SS, Kwon GT, Kim J, Kim JS, Lee KW, Park JH. 2012. The hexane extract of Saussurea lappa and its active principle, dehydrocostus lactone, inhibit prostate cancer cell migration. J Med Food. 2012. 15: 24-32.
    Pubmed CrossRef
  18. Knowles RG. 1996. Nitric oxide synthases. Biochem Soc Trans. 1996. 24: 875-878.
    Pubmed CrossRef
  19. Ko SG, Koh SH, Jun CY, Nam CG, Bae HS, Shin MK. 2004. Induction of apoptosis by Saussurea lappa and Pharbitis nil on AGS gastric cancer cells. Biol Pharm Bull. 2004. 27: 1604-1610.
    Pubmed CrossRef
  20. Lechner M, Lirk P, Rieder J. 2005. Inducible nitric oxide synthase (iNOS) in tumor biology:the two sides of the same coin. Semin Cancer Biol. 2005. 15: 277-289.
    Pubmed CrossRef
  21. Lim HJ, Lee HS, Ryu JH. 2008. Suppression of inducible nitric oxide synthase and cyclooxygenase-2 expression by tussilagone from Farfarae flos in BV-2 microglial cells. Arch Pharm Res. 2008. 31: 645-652.
    Pubmed CrossRef
  22. Lind M, Hayes A, Caprnda M, Petrovic D, Rodrigo L, Kruzliak P, Zulli A. 2017. Inducible nitric oxide synthase:Good or bad? Biomed Pharmacother. 2017. 93: 370-375.
    Pubmed CrossRef
  23. Lowenstein CJ, Padalko E. 2004. iNOS (NOS2) at a glance. J Cell Sci. 2004. 117: 2865-2867.
    Pubmed CrossRef
  24. Medzhitov R. 2001. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001. 1: 135-145.
    Pubmed CrossRef
  25. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997. 388: 394-397.
    Pubmed CrossRef
  26. Mungrue IN, Gros R, You X, Pirani A, Azad A, Csont T, Schulz R, Butany J, Stewart DJ, Husain M. 2002. Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J Clin Invest. 2002. 109: 735-743.
    Pubmed CrossRef
  27. Murakami A, Ohigashi H. 2007. Targeting NOX, INOS and COX-2 in inflammatory cells:chemoprevention using food phytochemicals. Int J Cancer. 2007. 121: 2357-2363.
    Pubmed CrossRef
  28. Pandey MM, Rastogi S, Rawat AK. 2007. Saussurea costus:botanical, chemical and pharmacological review of an ayurvedic medicinal plant. J Ethnopharmacol. 2007. 110: 379-390.
    Pubmed CrossRef
  29. Pitchai D, Roy A, Banu S. 2014. In vitro and in silico evaluation of NF-kappaB targeted costunolide action on estrogen receptor-negative breast cancer cells--a comparison with normal breast cells. Phytother Res. 2014. 28: 1499-1505.
    Pubmed CrossRef
  30. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, et al. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice:mutations in Tlr4 gene. Science. 1998. 282: 2085-2088.
    Pubmed CrossRef
  31. Rasul A, Bao R, Malhi M, Zhao B, Tsuji I, Li J, Li X. 2013. Induction of apoptosis by costunolide in bladder cancer cells is mediated through ROS generation and mitochondrial dysfunction. Molec ules. 2013. 18: 1418-1433.
    Pubmed KoreaMed CrossRef
  32. Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S. 2003. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol. 2003. 171: 4304-4310.
    Pubmed CrossRef
  33. Sun CM, Syu WJ, Don MJ, Lu JJ, Lee GH. 2003. Cytotoxic sesquiterpene lactones from the root of Saussurea lappa. J Nat Prod. 2003. 66: 1175-1180.
    Pubmed CrossRef
  34. Sun X, Kang H, Yao Y, Chen H, Sun L, An W, Jiang E, Wang S, Hu X. 2015. Dehydrocostus lactone suppressed the proliferation, migration, and invasion of colorectal carcinoma through the downregulation of eIF4E expression. Anticancer Drugs. 2015. 26: 641-648.
    Pubmed CrossRef
  35. Takeda K, Akira S. 2005. Toll-like receptors in innate immunity. Int Immunol. 2005. 17: 1-14.
    Pubmed CrossRef
  36. Vallance P. 2003. Nitric oxide:therapeutic opportunities. Fundam Clin Pharmacol. 2003. 17: 1-10.
    Pubmed CrossRef
  37. Yoshikawa M, Hatakeyama S, Inoue Y, Yamahara J. 1993. Saussureamines A, B, C, D, and E, new anti-ulcer principles from Chinese Saussureae Radix. Chem Pharm Bull (Tokyo). 1993. 41: 214-216.
    Pubmed CrossRef
  38. Youn HS, Lee JY, Saitoh SI, Miyake K, Hwang DH. 2006a. Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4. Biochem Biophys Res Commun. 2006a. 350: 866-871.
    Pubmed KoreaMed CrossRef
  39. Youn HS, Lee JY, Saitoh SI, Miyake K, Kang KW, Choi YJ, Hwang DH. 2006b. Suppression of MyD88- and TRIF-dependent signaling pathways of Toll-like receptor by ()-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochem Pharmacol. 2006b. 72: 850-859.
    Pubmed CrossRef