Search for


TEXT SIZE

search for



CrossRef (0)
Phytochemical Analysis and Wound Healing Potential of Ethanol Extract of Sea Mustard and Sea Mustard Sporophyll
Biomed Sci Letters 2019;25:313-320
Published online December 31, 2019;  https://doi.org/10.15616/BSL.2019.25.4.313
© 2019 The Korean Society For Biomedical Laboratory Sciences.

Jin Kim1,*, Chang-Moon Lee2,3,,* and Su-Gwan Kim1,,*

1Department of Oral and Maxillofacial Surgery, College of Dentistry, Chosun University & Institute of Dental Science, Chosun University, Gwangju 61452, Korea
2Department of Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
3Research Center of Healthcare Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
Correspondence to: Su-Gwan Kim. Department of Oral and Maxillofacial Surgery, College of Dentistry, Chosun University & Institute of Dental Science, Chosun University, Gwangju 61452, Korea.
Tel: +82-62-230-6883, Fax: +82-62-608-5407, e-mail: cream4251@chosun.ac.kr
Chang-Moon Lee. Department of Biomedical Engineering, Chonnam National University & Research Center of Healthcare Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea.
Tel: +82-61-659-7631, Fax: +82-61-659-7369, e-mail: cmlee@jnu.ac.kr
To whom correspondence should be addressed.
*Professor.
Received July 1, 2019; Revised November 30, 2019; Accepted December 5, 2019.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract

In this study, phytochemicals extracted from sea mustard (SM) and sea mustard sporophyll (SMS) in ethanol solution have been analyzed and wound healing potential of the phytochemicals was investigated. In the phytochemical screening studies, the extract of SM and SMS includes several phytochemical compounds such as phytol, ascorbic acid, sitgmasta, fucosterol and ergosta. Cytotoxicity studies of the extract of SM and SMS with mouse macrophage RAW 264.7 cells showed on toxicity up to a high concentration of 1.0 mg/mL. Furthermore, the SM and SMS extract significantly reduces the production of nitric oxide (NO) induced lipopolysaccharide on RAW 264.7 cells with a dose-dependent manner. In addition, the extract of SM and SMS has the effect of enhancing the cell migration and invasion of fibroblast. These results demonstrate that the extract of SM and SMS could help to heal wound by reducing NO production and increasing cell migration

Keywords : Sea mustard, Sea mustard sporophyll, Phytochemical, Tissue-regeneration
꽌 濡

理쒓렐 泥쒖뿰臾쇱냼옱濡쒕꽣 슚뒫씠 슦닔븳 臾쇱쭏쓣 李얠븘궡怨 깮由ы솢꽦 湲곕뒫쓣 씠슜븳 諛붿씠삤냼옱쓽 뿰援ш 솢諛쒗엳 吏꾪뻾릺怨 엳떎. 듅엳, 빐뼇깮臾쇱쓽 깮由ш린뒫씠굹 쑀슜 臾쇱쭏쓣 궛뾽뿉 씠슜븯젮뒗 끂젰씠 湲됱쬆븯硫댁꽌 빐뼇깮臾쇱 깮紐낃났븰쓽 二쇱슂 옄썝쑝濡 湲됰긽븯怨 엳떎(Guaratini et al., 2012). 빐뼇 떇臾쇱쓽 寃쎌슦, 슦由щ굹씪뒗 쟾넻쟻쑝濡 誘몄뿭, 떎떆留 諛 源 벑쓽 빐議곕쪟瑜 떇뭹쑝濡 씠슜빐 솕떎. 빐議곕쪟쓽 깮由ы솢꽦 꽦遺꾩쓣 솢슜븯뿬 빟뭹, 솕옣뭹, 떇뭹 벑쓽 臾쇱쭏쓣 媛쒕컻븯怨좎옄 留롮 뿰援ш 吏꾪뻾릺怨 엳떎(Gupta and Abu-Ghanna, 2011). 삉븳, 泥쒖뿰냼옱 湲곕컲 뿰援ш 떎뼇솕 릺硫댁꽌 李쎌긽移섎즺뿉 슚뒫쓣 媛吏뒗 泥쒖뿰臾쇱뿉 뿰援ш컻諛쒖씠 솢諛쒗빐吏怨 엳떎. 듅엳, 긽泥섏튂쑀 諛섏쓳 뿼利-利앹떇-옱삎꽦쓽 3떒怨 怨쇱젙쓣 嫄곗튇떎(Pasparakis et al., 2014). 뼱뒓 븳 怨쇱젙씠씪룄 吏뿰릺嫄곕굹 떆뻾릺吏 븡쑝硫 留뚯꽦쟻씤 긽泥섎줈 쟾솚뤌 移섎즺 쓨꽣 젣嫄곗뿉 鍮꾩슜怨 떆媛꾩씠 냼슂맂떎. 씠윴 씠쑀濡 긽泥섍 諛쒖깮븳 珥덇린뿉 뵾遺 몴뵾 議곗쭅 옱깮쓣 珥됱쭊떆궎뒗 議곗꽦 臾쇱쭏 뿰援ш 以묒슂븯떎(Rousselle et al., 2018).

떇臾쇱뿉꽌 깮由ы솢꽦쓣 媛吏뒗 異붿텧臾쇱쓽 꽦遺꾩 빆洹, 삁愿삎꽦, 뿼利앸컲쓳, 꽭룷솗궛, 삁愿깮꽦珥됱쭊 諛 議곗쭅 옱깮뿉 以묒슂븳 뿭븷뿉 愿뿬븯怨 엳떎(Surh et al., 2001).

誘몄뿭(Undaria pinnatifida sporophyll) 媛덉“ 빐議곕쪟濡쒖꽌 臾닿린吏, 鍮꾪誘 諛 꽟쑀吏 꽦遺, 젏吏덉꽦 떎떦瑜, 븘씠삤뵖쓣 븿쑀븯怨 엳떎. 빟由ъ쟻 슚뒫쑝濡 빆븫슚怨쇨 엳뒗 fucoidan怨 꽭룷留됱쓽 援ъ꽦 꽦遺꾩쑝濡 떎웾 議댁옱븯뒗 alginic acid 벑뿉 궛꽦 떎떦瑜섍 엳떎. Fucoidan, alginic acid뒗 媛덉“瑜섏쓽 떎떦瑜섎줈 臾쎌 궛씠굹 뿼湲 샊 뿴닔濡 異붿텧릺硫 씠뱾 닔슜꽦 떎떦瑜섎뱾 떇씠 꽟쑀냼濡 젙옣옉슜, 肄쒕젅뒪뀒濡ㅼ쓽 닔移섎 궙異붾뒗 벑쓽 슚怨쇰퓧留 븘땲씪 留뚯꽦쟻씤 긽泥섏 愿젴븯뿬 빆 삁븸쓳怨, 빆洹, 빆諛붿씠윭뒪 솢꽦 벑룄 蹂닿퀬릺뿀떎(Torres et al., 2014).

씠윭븳 빟由ъ쟻 슚뒫쓣 솢슜븯뿬 移섏쑀怨쇱젙씠 留ㅼ슦 蹂듭옟븯怨 젙援먰븳 遺꾪솕怨쇱젙쓣 媛吏뒗 긽泥섏튂쑀 냼옱濡 솢슜 媛뒫꽦쓣 愿李고븯떎.

誘몄뿭쓽 씪遺遺꾩씠硫 alginic acid 븿웾씠 넂 寃껋쑝濡 븣젮吏 誘몄뿭洹뒗 씪遺 떇슜쑝濡쒕뒗 궗슜븯怨 엳쑝굹 떇뭹媛쒕컻뭹뿉꽌 냼쇅릺怨 뿰援ш 誘몃퉬븳 젏쓣 李⑹븞븯뿬 蹂 뿰援щ 떆룄븯寃 릺뿀떎. 湲곗〈쓽 뿰援ъ뿉꽌뒗 誘몄뿭怨 誘몄뿭洹 媛곴컖쓽 냼옱瑜 異붿텧븯뿬 썑肄붿씠떒(Fucoidan) 꽦遺꾩쓽 빆洹, 빆뿼, 뿼利 愿젴 cytokine 痢≪젙쓣 吏꾪뻾븳 뿰援ъ 誘몃갚 諛 蹂댁뒿怨 愿젴븳 슚뒫 뿰援ш 遺遺꾩씠떎(Song et al., 2015; Lee et al., 2018)

蹂 뿰援ъ뿉꽌뒗 媛덉“瑜섏뿉 냽븯뒗 誘몄뿭怨 誘몄뿭洹 빐議곕쪟瑜 뿉깂삱 70%濡 異붿텧븯뿬 GC-MS濡 꽦遺꾩쓣 鍮꾧탳븯怨, 깮由ы솢꽦 꽦遺꾩쓽 븿웾쓣 솗씤븯쑝硫, 긽泥섏튂쑀뿉 愿뿬븯뒗 냼옱濡 솢슜 媛뒫꽦쓣 룊媛븯떎.

옱猷 諛 諛⑸쾿

떆빟

蹂 떎뿕뿉 궗슜븳 誘몄뿭(SM, sea mustard)怨 誘몄뿭洹(SMS, sea mustard sporophyll) 遺꾨쭚 뼱뾽쉶궗踰뺤씤 (二)뵪뒪뿉꽌 젣怨듬컺븯떎. 異붿텧臾쇱쓽 빆궛솕뒫 諛 빆뿼利 痢≪젙 떎뿕뿉 궗슜맂 1-1-diphenyl-2-picryl-hydrazyl (DPPH), tannic acid, gallic acid, Folin-ciocalteu phenol reagent 諛 Griess reagent 벑 Sigma Chemical Co. (St. Louis, MO, USA)뿉꽌 援ъ엯븯떎. 꽭룷룆꽦 痢≪젙뿉 궗슜맂 떇꽭룷쓽 씪醫낆씤 RAW 264.7怨 꽟쑀븘꽭룷 NIH 3T3뒗 Korean Cell Line Bank (KCLB)뿉꽌 援ъ엯븯뿬 떎뿕뿉 씠슜븯떎. Dulbecco's Modified Eagle Medium (DMEM), Fetal Bovine Serum (FBS), penicillin-streptomycin 벑쓽 꽭룷諛곗뼇 愿젴 떆빟 Invitrogen (GibcoTM, Carlsbad, CA, USA) 궗뿉꽌 援ъ엯븯떎.

異붿텧 諛⑸쾿

遺꾩뇙븳 SM怨 SMS 遺꾨쭚쓽 20 g뿉 3諛곗쓽 70% 뿉깂삱뿉 移⑥떆耳 probe sonication쓣 3떆媛 泥섎━븯怨 whatman filter paper濡 뿬怨쇳븳 떎쓬 異붿텧븸쓣 뼸怨, 媛먯븬냽異뺢린뿉꽌 뿉깂삱쓣 利앸컻떆耳곕떎.

異붿텧臾쇱쓽 깮由ы솢꽦 젙웾

빆궛솕 슚怨쇰 痢≪젙븯湲 쐞븳 쟾옄怨듭뿬뒫쓣 痢≪젙븯떎. 媛 떆猷 슜븸 1 mg/mL 냽룄쓽 슜븸 2 mL뿉 0.2 mM쓽 DPPH 1 mL 꽔怨 援먮컲 썑 30遺꾧컙 븫떎뿉꽌 諛⑹튂븳 썑 517 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 쟾옄怨듭뿬뒫 떆猷 슜븸쓽 泥④援곌낵 臾댁꺼媛援곗쓽 씉愿묐룄 媛먯냼쑉濡 굹궡뿀떎. 珥 뤃由ы럹 븿웾 1 mg/mL濡 怨좎젙 냽룄濡 젣議고븯뿬 씗꽍븳 떆猷 슜븸 3 mL뿉 Folin-Ciocalteu phenol reagent 떆빟 1 mL瑜 媛븯怨, 룷솕슜븸 Na2CO3 1 mL瑜 媛븯뿬 샎빀븳 썑 1떆媛 떎삩뿉꽌 諛⑹튂븯怨, 700 nm뿉꽌 씉愿묐룄瑜 痢≪젙븳 썑, 몴以 臾쇱쭏씤 tannic acid gallic acid濡 誘몃━ 옉꽦븳 몴以怨≪꽑쓽 씉愿묐룄 媛믪쓣 鍮꾧탳븯뿬 뤃由ы럹 븿웾쓣 궛異쒗븯떎. 異붿텧臾쇱쓽 誘몄깮臾 깮쑁吏뒫 쑀臾대 솗씤븯湲 쐞븯뿬 Staphylococcusaureus (SA), Staphylococcus epidermidis (SE)瑜 궗슜븯뿬 깮쑁吏솚쓣 솗씤븯떎.

異붿텧臾쇱쓽 GCMS 룊媛

異붿텧臾쇱쓽 꽦遺 遺꾩꽍쓣 쐞븯뿬 gas chromatography/mass spectroscopy (GC-2010, Shimadzu Co., Kyoto, Japan) 湲곌린瑜 넻빐 愿李고븯떎. 異붿텧臾쇱쓣 뿉깂삱뿉 異⑸텇엳 援먮컲븳 썑, 썝떖遺꾨━湲곕 씠슜븯뿬 遺쑀臾쇱쓣 젣嫄고븯怨 留덉씠겕濡 븘꽣(0.45 μm)濡 뿬怨쇳븯뿬 以鍮꾪븯떎. 꽦遺 遺꾩꽍 떎쓬怨 媛숈 議곌굔쑝濡 吏꾪뻾븯떎. 而щ읆 BD-5 (60 mm×0.25 mm×0.25 mm), carrier gas濡쒕뒗 He (1 mL/min), injection 삩룄뒗 250℃, oven 삩룄뒗 5~300℃/3℃ 듅삩, injection volume 1 μL, injection mode뒗 split ratio 10:1 議곌굔뿉꽌 꽦遺 遺꾩꽍쓣 븯쑝硫, MSD (mass selective detector)뿉꽌 mass range 28~550, acqusition mode뒗 scan mode 議곌굔쑝濡 꽦遺꾨뱾쓣 젙웾븯떎.

꽭룷룆꽦 痢≪젙

룞寃곌굔議곕맂 遺꾨쭚 삎깭쓽 SM怨 SMS 異붿텧臾쇱쓣 DMEM 諛곗뼇諛곗뿉 씗꽍븯뿬 냽룄蹂꾨줈 泥섎━븯떎. 떆猷뚯쓽 룆꽦 룊媛뒗 MTT assay 諛⑸쾿쓣 솢슜븯뿬 NIH 3T3 꽭룷瑜 遺꾩<븯怨 꽭룷 깮議대쪧쓣 룊媛븯떎. 96 well plate뿉 媛 well 떦 꽭룷 5 × 104 cells/well瑜 遺꾩<븯怨 24떆媛 썑 떎뼇븳 냽룄濡 젣議고븳 異붿텧臾쇱쓣 븿쑀븳 諛곗뼇븸쑝濡 媛덉븘以 썑 24떆媛 룞븞 37℃, 5% CO2 議곌굔뿉꽌 諛곗뼇븯떎. Well 떦 20 μL쓽 MTT 슜븸쓣 泥④븯뿬 4떆媛 룞븞 諛섏쓳떆궓 썑, 諛곗뼇븸쓣 踰꾨━怨 DMSO 100 μL뵫 꽔뼱 formazan쓣 슜빐븳 썑, ELISA 痢≪젙湲(ELX 808, Bio tek Instruments, Vermont, USA)쓣 씠슜븯뿬 570 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎.

빆뿼利 룊媛

SM怨 SMS 異붿텧臾쇱쓽 빆뿼利앹꽦쓣 룊媛븯湲 쐞빐 RAW 264.7 꽭룷뿉 lipopolysaccharide (LPS)瑜 泥섎━븯뿬 諛쒖깮릺뒗 nitric oxide (NO)쓽 뼇쓣 痢≪젙븯떎. 96 well plate뿉 RAW 264.7 꽭룷媛 5 × 104 cells/well씠 릺룄濡 遺꾩<븳 썑 12떆媛 諛곗뼇븯떎. Well뿉 떎뼇븳 냽룄쓽 SM怨 SMS 異붿텧臾쇱쓣 泥섎━븯怨 LPS (1 μg/mL)瑜 泥④븯떎. 24떆媛 썑 꽭룷 諛곗뼇븸쓽 50 μL 媛숈 뼇쓽 Griess Reagent瑜 꽔뼱二쇨퀬 10遺꾧컙 諛섏쓳떆궓 썑 540 nm 뙆옣뿉꽌 씉愿묐룄瑜 痢≪젙븯怨 NaNO2쓽 몴以怨≪꽑쓣 씠슜븯뿬 젙웾븯떎.

꽭룷씠룞꽦 룊媛

異붿텧臾쇱씠 꽭룷쓽 씠룞꽦뿉 二쇰뒗 쁺뼢쓣 룊媛븯湲 쐞븯뿬 젒珥됱빐 긽깭쓽 떒痢듭꽭룷뿉 삎꽦맂 긽泥섏쁺뿭쑝濡 씠룞븯뒗 꽭룷瑜 愿李고븯떎(Wiegand et al., 2019). SM怨 SMS 異붿텧臾쇱뿉 쓽븳 꽭룷씠룞(Cell migration) 珥됱쭊 뿬遺瑜 룊媛븯湲 쐞빐 48 well plate뿉 5 × 104 cell/mL쓽 냽룄濡 NIH 3T3 꽟쑀븘꽭룷(fibroblast)瑜 遺꾩<븯뿬 꽭룷諛곗뼇湲(37℃, 5% CO2)뿉꽌 24떆媛 諛곗뼇븳 썑, 꽭룷떒痢듭뿉 200 pipet tip쑝濡 scratch瑜 媛빐 鍮 怨듦컙쓣 留뚮뱾怨, 삁泥쓣 룷븿븯吏 븡 諛곗瑜 泥섏튂븳 洹몃9怨 SM怨 SMS 異붿텧臾쇱쓣 泥섏튂븳 썑, 24떆媛 諛곗뼇븯떎. 떎뿕援곗쓽 꽭룷씠룞 젙룄瑜 쁽誘멸꼍쓣 씠슜빐 鍮 怨듦컙쓽 媛꾧꺽쓣 痢≪젙븯뿬 議곌뎔怨 鍮꾧탳븯떎.

넻怨꾩쿂由

紐⑤뱺 떎뿕 寃곌낵뒗 룊洹좉컪(mean)怨 몴以렪李(standard deviation, SD)濡 몴떆븯떎. 議곌뎔怨 떎뿕援 궗씠쓽 넻怨꾪븰쟻 쑀쓽꽦 寃젙 Student's t-test濡 鍮꾧탳븯쑝硫 P媛 0.05 씠븯씤 寃껊쭔 쑀쓽븳 寃껋쑝濡 븯떎.

寃 怨

異붿텧臾쇱쓽 깮由ы솢꽦 룊媛

빐議곕쪟 異붿텧臾쇱쓽 珥 럹怨 뵆씪蹂대끂씠뱶 븿웾쓣 遺꾩꽍븯쑝硫 異붿텧臾쇱쓽 빆洹 떎뿕쓣 吏꾪뻾븳 寃곌낵 媛믪 Table 1怨 媛숇떎. 異붿텧臾쇱쓽 깮由ы솢꽦쓣 굹궡뒗 솕빀臾 以 뤃由 럹瑜섏쓽 솕빀臾쇱쓽 遺遺꾩 hydroxyl group쓣 媛뽮퀬 엳쑝硫 씠 愿젴맂 빆궛솕 뿰援щ뒗 蹂닿퀬맂 諛붽 엳떎(Lee et al., 1997). 빐議곕쪟 異붿텧臾쇱쓽 珥 뤃由ы럹뿉 쓽븳 빆궛솕 솢꽦쓣 솗씤븯떎. SM怨 SMS쓽 珥 럹 븿웾 12.37, 23.56 mg/g쑝濡 굹궗쑝硫 뵆씪蹂대끂씠뱶 븿웾 1.2, 13.2 mg/g쑝濡 솗씤릺뿀떎. Kim 벑 떎떆留 諛 誘몄뿭 異붿텧臾쇱뿉꽌 뤃由ы럹 븿웾 3.91, 3.55 m/g쓽 븿웾씠 蹂닿퀬릺뿀떎(Kim et al., 2012). Ahn 벑쓽 뿰援ъ뿉꽌뒗 빐議곕쪟 異붿텧臾쇱쓽 꽦遺 遺꾩꽍 寃곌낵 珥 뤃由ы럹怨 뵆씪蹂대끂씠뱶쓽 珥앸떦 諛 솚썝떦 븿웾 빐議곕쪟 醫낅쪟뿉 뵲씪 李⑥씠媛 굹硫 媛덉“瑜섎뒗 뤃由ы럹怨 뵆씪蹂대끂씠뱶 븿웾씠 긽濡 넂쑝硫, 솉議곕쪟 끃議곕쪟뒗 긽쟻쑝濡 珥앸떦 븿웾씠 넂 寃곌낵媛 蹂닿퀬릺뿀떎(Ahn et al., 2010).

Total phenolic and flavonoid contents, antioxidant and antibacterial activities of extract

SampleTotal phenolic compound (mg/g)Flavonoid content (mg/g)Free radical scavenging (%)Diameter of inhibition zone (mm)

SA*SE#
SM12.37±0.8 1.2±0.353.96±3.48.4±0.129.2±0.2
SMS 23.56±0.2113.2±0.474.17±2.87.2±0.127.1±0.1

*SA: Staphylococcus aureus, #SE: Staphylococcus epidermidis

Paper disc 6 mm (0.6 cm)


DPPH radical 븞젙븳 free radical濡 떎瑜 썝옄 諛 遺꾩옄濡쒕꽣 쟾옄 샊 뼇꽦옄瑜 諛쏆븘뱾뿬 븞젙븳 遺꾩옄濡 蹂븯뒗 꽦吏덉씠 엳떎. 異붿텧臾쇱쓽 1 mg/mL 냽룄쓽 DPPH쓽 냼嫄 솢꽦 솢꽦뒫 SM 54%, SMS뿉꽌뒗 74%쓽 빆궛솕 솢꽦쓣 굹궡뿀떎.

異붿텧臾쇱쓽 빆洹 떎뿕 寃곌낵 SM怨 SMS 異붿텧臾쇱쓽 1% 냽룄뿉꽌 빆洹 빐뒫쓽 寃쎌슦 SM 異붿텧臾쇱씠 SE 洹좎<뿉꽌 媛옣 넂 깮쑁빐솚씠 愿李곕릺뿀떎. Lee 벑쓽 뿰援ъ뿉꽌 빐議곕쪟뿉꽌 異붿텧븳 썑肄붿씠떒 異붿텧臾쇱쓽 1%뿉꽌 1.52 cm쓽 빐솚씠 愿李곕릺뿀떎(Lee et al., 2018).

異붿텧臾쇱쓽 꽦遺 遺꾩꽍

빐뼇 떇臾쇰줈 꽑젙븳 SM怨 SMS 異붿텧臾쇱쓽 꽦遺 遺꾩꽍쓣 GC-MS瑜 씠슜븯뿬 痢≪젙븯떎(Fig. 1). 빐議곕쪟 異붿텧臾쇱 냽異뺥븯뿬 뼸 씪젙쓽 遺꾨쭚쓣 쑀湲곗슜留ㅼ뿉 슜빐떆耳 꽦遺꾩쓣 遺꾩꽍븯떎. 쑀슚 꽦遺꾨뱾 珥 14醫낆쑝濡 솗씤릺뿀떎(Table 2). 듅엳, 씫넠 援ъ“瑜 媛吏뒗 ascorbic acid 꽦遺꾩 SMS뿉꽌 SM蹂대떎 몢諛곌 꽆뒗 寃껋쓣 솗씤븯떎. 븯吏留 2媛쒖쓽 씠以 寃고빀쓣 媛吏뒗 遺덊룷솕吏諛⑹궛씤 octadecadienoic acid 利, linoleic acid쓽 寃쎌슦 SM怨 SMS뿉꽌 鍮꾩듂븿 븿웾쓣 媛吏 寃껋쓣 솗씤븯떎. 떇臾 삤씪(Vegetable oil)뿉꽌留 異붿텧릺뒗 Stigmasta-3,5-dien-7-one 솕빀臾쇱쓽 寃쎌슦 SM뿉꽌 3諛 뜑 넂 寃껋쓣 솗씤븯떎. 삉븳, 빆궛솕, 빆뿼利, 빆븫뿉 슚뒫씠 엯利앸맂 fucosterol, ergosta-5,7,22-trien-3beta-ol 꽦遺꾩쓽 寃쎌슦 SM뿉꽌 4諛곌 넂씠 븿쑀맂 寃껋쓣 愿李고븯떎. 쟾泥댁쟻쑝濡 吏諛⑹궛怨 빆궛솕 슚뒫쓣 媛吏 솕빀臾 꽦遺꾩쓣 솗씤븯떎(Stierle et al., 2006).

Chemical compound of the SM and SMS extract by GC-MS

PeakReal. timeLibraryArea (%)Effect

SMSMS
132.2Propionic acid 1.35 3.12Saturated fatty acid
238.36Tetradecanoic acid 5.88 5.68Saturated fatty acid
340.95Phytol 2.04-Anti-oxidant
445.04Ascorbic acid23.4845.96Anti-oxidant
545, 50, 58, 62, 65Cyclononasiloxane 6.83-Anti-bacteria
649.91Methyl eicosa-7,10,13-trienoate 2.42-Polyunsaturated fatty acid
750, 51, 65Octadecadienoic acid27.5231.04Polyunsaturated fatty acid
854.91Arachidonic acid 2.82 1.55Polyunsaturated fatty acid
955.06Eicosapentaenoic acid 1.62-Polyunsaturated fatty acid
1060.36Haxadecanoic acid 2.08 2.03Saturated fatty acid
1169.03Tetracosamethyl-cyclododecasiloxane 0.97-Anti-inflammatory
1276.14Stigmasterol 3.78 1.08Anti-oxidant,
Anti-inflammatory
1378.18Fucosterol14.60 3.44Anti-oxidant,
Anti-inflammatory
1481.92Ergosterol 4.61 0.66Anti-oxidant,
Anti-inflammatory

Fig. 1.

GCMS of SM and SMS extract.


異붿텧臾쇱쓽 꽭룷룆꽦 룊媛

異붿텧臾쇱쓣 100~10,000 ppm 냽룄濡 NIH 3T3뿉 異붿텧臾쇱쓣 泥섎━븳 寃곌낵 10,000 ppm (1%)쓽 怨좊냽룄뿉꽌룄 꽭룷깮옣뿉 쁺뼢쓣 二쇱 븡 寃껋쓣 솗씤븯떎(Fig. 2). 異붿텧 꽦遺꾩씠 泥대궡 븞젙꽦씠 넂 寃껋쑝濡 솗씤릺뿀쑝硫, 異붿텧臾쇱쓽 깮由ы솢꽦 쓽빟뭹, 솕옣뭹, 떇뭹 벑쓽 떎뼇븳 쓳슜씠 媛뒫븷 寃껋쑝濡 궗猷뚮맂떎.

Fig. 2.

Evaluation of cell viability by MTT assay on NIH 3T3 cell line treated with SM and SMS extract.


빆뿼利 룊媛

뿼利앸컲쓳쓽 몴吏 씤옄濡 궗슜릺뒗 Nitric oxide (NO)뒗 떇꽭룷 媛숈 硫댁뿭꽭룷뿉꽌 깮꽦릺뼱 媛곸쥌 蹂묐━ 諛 깮由ъ쟻 怨쇱젙뿉 엳뼱 以묒슂븳 뿭븷쓣 븯뒗 寃껋쑝濡 븣젮졇 엳떎(Moncada et al., 1991). 異붿텧臾쇱씠 NO쓽 깮꽦뿉 誘몄튂뒗 쁺뼢쓣 議곗궗븿쑝濡쒖꽌 뿼利 빐뒫쓣 룊媛븯떎. LPS濡 泥섎━맂 RAW 264.7 꽭룷濡쒕꽣 빐議곕쪟 異붿텧臾쇱씠 냽룄뿉 뵲씪 NO쓽 깮꽦쓣 냽룄 쓽議댁쟻쑝濡 빐릺뒗 寃껋쓣 愿李고븯떎. 젙긽꽭룷뿉꽌뒗 媛곴컖 4.2±0.8, 3.26±0.74 μg/mL쓽 NO媛 깮꽦릺뒗 諛섎㈃, LPS留 泥섎━븳 援곗뿉꽌뒗 43.6±2.57, 47.5±3.28 μg/mL쓽 NO媛 깮꽦릺뿀떎. 떎뿕援 SM怨 SMS 異붿텧븸쓣 泥섎━븳 10, 50, 100, 1,000 μg/mL쓽 냽룄뿉꽌 꽭룷濡쒕꽣 깮꽦릺뒗 NO쓽 뼇 SM뿉꽌뒗 34.7±5.2, 25.03±2.9, 12.96±1.62, 11.36±0.6 μg/mL떎. 삉븳, SMS쓽 寃쎌슦 32.9±1.48, 24.06±1.3, 17.46±1.67, 13.3±0.7 μg/mL濡 SM怨 SMS 異붿텧븸씠 怨좊냽룄뿉꽌 NO쓽 깮꽦웾씠 쁽엳 媛먯냼릺뒗 寃껋쓣 솗씤븷 닔 엳뿀떎(Fig. 3). Endotoxin씤 LPS瑜 泥섎━븯뿬 뿼利앹몴씤 NO쓽 깮꽦쓣 쑀룄븯怨 媛 異붿텧臾쇱쓣 泥섎━븯뿬 NO 깮꽦 빐슚怨쇰 솗씤븿쑝濡쒖뜥 빐議곕쪟쓽 異붿텧臾쇱씠 빆뿼利 슚怨쇰 蹂댁씠뒗 寃껋쓣 솗씤븷 닔 엳뿀떎(Kim and Lee, 2018).

Fig. 3.

Inhibition of LPS-induced NO production by SM and SMS extract.


꽭룷씠룞瑜 룊媛

꽟쑀븘꽭룷瑜 씠슜븯뿬 꽭룷씠룞꽦 떆뿕(Cell migration assay)쓣 넻빐 빐議곕쪟 異붿텧臾 0.1% 泥섎━븳 援곗뿉꽌 泥섎━븯吏 븡 援곕낫떎 鍮좊Ⅸ 씠룞怨 利앹떇씠 솗씤릺뼱 뼇떒媛꾩쓽 媛꾧꺽씠 醫곸븘議뚮떎. 빐議곕쪟 異붿텧臾쇱쓣 24떆媛꾩씠 썑遺꽣 媛꾧꺽씠 꽌꽌엳 醫곸븘吏뒗 寃껋쓣 솗씤릺뿀怨, 議곌뎔뿉 鍮꾪빐 媛꾧꺽씠 留롮씠 醫곸븘吏 뼇긽씠 솗씤릺뿀떎(Fig. 4). 씠 媛숈 寃곌낵濡 빐議곕쪟 異붿텧臾 꽦遺 궡뿉 Vitamin C 꽦遺꾩씠 빆궛솕 슚뒫쓣 媛뽮퀬 엳뼱, mitochondria integrity 쑀吏 諛 꽭룷넀긽 뼲젣뿉 룄쓣 以 닔 엳떎怨 異붿륫븷 닔 엳떎(Kim et al., 2012). 깮由ы솢꽦쓣 媛吏뒗 떇臾 異붿텧臾쇱쓽 빆궛솕 옉슜 솕긽쑝濡 씤븳 뵾遺긽泥섏쓽 議곗쭅 옱깮쓣 쐞빐 mitochondria integrity瑜 쑀吏븯뒗뜲 룄쓣 二쇨퀬 꽭룷넀긽쓣 뼲젣븯뒗 寃껋쑝濡 븣젮졇 엳떎(Zang et al., 2007).

Fig. 4.

Cell migration assay by SM and SMS extract (×4). Cell were treated with SM and SMS after wounding.


怨 李

泥쒖뿰臾 옄썝쓣 솢슜븳 깉濡쒖슫 쓽빟뭹냼옱 媛쒕컻 뿰援ш 솢諛쒗빐吏먯뿉 뵲씪 떇臾 옄썝쓣 씠슜븳 깮由ы솢꽦 슚뒫 룊媛 諛 湲곕뒫꽦 룊媛瑜 넻빐 깮솢뿉 떎뼇븳 솢슜쓣 떆룄븯怨 엳떎. 듅엳, 빐뼇 떇臾쇱냼옱 쑀옒 泥쒖뿰臾 꽦遺 벑 삤옖 湲곌컙 룞븞 떇슜 삉뒗 빟슜쑝濡 궗슜릺뼱 洹 븞쟾꽦 諛 빟슚꽦씠 엯利앸릺뼱 蹂닿퀬릺怨 엳떎(Noda et al., 1989).

떎뼇븳 泥쒖뿰 異붿텧臾쇱쓽 긽泥섏튂쑀젰 異붿텧臾쇱쓽 옄쑀씪뵒而ъ냼嫄 옉슜怨 깮由ы솢꽦 遺꾩옄(bio active molecules)媛 떒씪옉슜 샊 꽌濡 긽듅옉슜(synergy effect)뿉 쓽빐 鍮좊Ⅸ 긽泥섏튂쑀젰뿉 룄쓣 以떎(Okoli et al., 2007).

泥쒖뿰 떇臾 以 빐뼇 떇臾쇱뿉 룷븿릺뒗 빐議곕쪟 以 誘몄뿭怨 誘몄뿭洹瑜 뿉깂삱쓣 씠슜븯뿬 異붿텧븯떎. 異붿텧臾쇱쓽 깮由ы솢꽦 꽦遺꾩쓣 솗씤븯怨 빆궛솕뒫, 빆뿼利앸뒫, 꽭룷씠룞瑜 솗씤븯떎.

誘몄뿭怨 誘몄뿭洹뿉꽌 깮由ы솢꽦 솕빀臾쇰줈 phytol, ascorbic acid, sitgmasta, fucosterol, ergosta 꽦遺꾧낵 吏諛⑹궛 꽦遺꾩씠 솗씤릺뿀떎. 듅엳, 誘몄뿭洹 異붿텧臾쇱뿉꽌 ascorbic acid媛 45.96%媛 솗씤릺뿀떎. Ascorbic acid (vitamin C) 꽦遺꾩 몴쟻쑝濡 빆궛솕 臾쇱쭏濡 븣젮졇 엳쑝硫, 諛곗뼇맂 뵾遺븘꽭룷(human skin fibroblast)뿉꽌 type I삎 procollagen 빀꽦쓣 옄洹뱁븯湲 븣臾몄뿉 collagen 깮꽦쓣 議곗젅븯뒗 옉슜쓣 븳떎(Dumas et al., 1996; Chung, 1997).

씤泥 궡 궛솕쟻 뒪듃젅뒪 諛젒븳 愿怨꾧 엳뒗 옄쑀씪뵒移쇱 솚寃쎌삤뿼, 쓬二, 씉뿰, 솕븰빟뭹 벑怨 媛숈 쇅遺솚寃쎌뿉 쓽빐 깮꽦릺硫, 깮泥 궡 옄쑀씪뵒移쇨낵 諛섏쓳븯뿬 깮꽦릺뒗 솢꽦 궛냼醫(reactive oxygen species, ROS) 諛 궛솕吏덉냼(nitric oxide, NO)뒗 떒諛깆쭏 遺덊솢꽦솕 議곗쭅쓽 넀긽 諛 쑀쟾옄 蹂씠뱾쓣 쑀諛쒗븯뿬 끂솕, 눜뻾꽦吏덊솚, 궗以묓썑援, 븫怨 媛숈 吏덊솚쓽 二쇱슂 썝씤쑝濡 蹂닿퀬릺怨 엳떎(Alfadda and Sallam, 2012; Khurana et al., 2013). 옄쑀씪뵒移쇱쓽 젣嫄곗뿉 쁺뼢쓣 二쇰뒗 빆궛솕젣(antioxidant) 룊媛뒗 DPPH 씪뵒移쇱쓣 씠슜븯뿬 븞젙븳 삎깭쓽 솕빀臾쇰줈 쟾솚릺硫댁꽌 젙웾쟻쑝濡 깉깋릺뼱 吏꾪븳 蹂대씪깋뿉꽌 쁾 끂깋쑝濡 蹂븯뒗 썝由щ 씠슜븳 諛⑸쾿쑝濡 SM 異붿텧臾쇰낫떎 SMS (1 mg/mL)뿉꽌 74%濡 SM 異붿텧臾쇰낫떎 빟 1.4諛 넂 빆궛솕뒫씠 愿李곕릺뿀떎(Blois, 1958).

떎떆留덉뿉꽌 遺꾨퉬릺뒗 臾쇱쭏 以 솴궛湲곌 븿쑀맂 썑肄붿씠떒씠 異붿텧릺硫, 씠 異붿텧臾쇱쓽 빆洹 솢꽦씠 蹂닿퀬릺뿀떎(Lee et al., 2018). 삉븳, 媛덉“瑜 빐議곗뿉꽌 異붿텧릺뒗 떇臾쇱꽦 뒪뀒濡(Phytosterol)씤 stigmasterol, fucosterol, ergosterol 벑쓽 sterol 쑀룄泥닿 SMS 異붿텧臾쇰낫떎 SM 異붿텧臾쇱뿉꽌 뜑 留롮씠 븿쑀맂 寃껋쓣 솗씤븯떎. SM 異붿텧臾쇱뿉꽌 뜑 넂 빆洹좊젰씠 愿李곕릺뿀떎. 씠뒗 phytosterol꽦遺꾩씠 빆洹좏슚怨쇱뿉 옉슜븯뒗 뿰援ъ 媛숈 寃곌낵瑜 솗씤븯떎(Burčová et al., 2018).

怨좊냽룄씤 1%뿉꽌 異붿텧臾쇱쓽 꽭룷룆꽦 룊媛 寃곌낵 룆꽦씠 뾾뿀쑝硫, NO瑜 愿李고븳 寃곌낵 SM怨 SMS 異붿텧臾쇱뿉꽌 냽룄 쓽議댁쟻쑝濡 빆뿼利앹뿉 愿뿬븯뒗 寃껋쓣 솗씤븯떎. 듅엳, phytosterol쓽 sterol 쑀룄泥댁쓽 븿웾씠 뜑 留롮 SM 異붿텧臾쇱뿉꽌 뜑 넂 NO 빐뒫쓣 愿李고븯떎. Phytosterol 꽦遺꾩 떇슜 媛덉“瑜섏뿉 븿쑀맂 빆뿼利 꽦遺꾩쑝濡 꼸由 븣젮졇 엳쑝硫 蹂 뿰援ъ뿉꽌룄 phytosterol쓽 븿웾씠 뜑 넂 SM 異붿텧臾쇱뿉꽌 NO 빐뒫씠 넂 寃쏀뼢씠 愿李곕릺뿀떎(Jung et al., 2013).

꽭룷씠룞瑜좎쓣 痢≪젙븳 寃곌낵 SM怨 SMS뿉꽌 꽭룷씠룞怨 利앹떇쓣 솗씤븷 닔 엳뿀떎. 긽泥섏튂쑀뒫 蹂듭옟븳 깮臾쇳븰쟻 怨쇱젙씠誘濡 깮泥 궡뿉꽌 돺寃 뿰援ш 遺덇뒫븯떎. 洹몃윭굹 룞臾쇱꽭룷瑜 씠슜븳 in vitro assay 諛⑸쾿쓣 넻빐 議곗쭅 옱깮 諛 긽泥섏튂쑀뿉 븳 臾쇱쭏怨 臾쇱쭏뿉 븳 쁺뼢쓣 돺寃 愿李고븷 닔 엳떎. 꽭룷깮議 뒫젰, 利앹떇 諛 삎깭 肉먮쭔 븘땲씪 긽泥섏튂猷뚯쓽 泥댁쇅 룊媛諛⑸쾿쑝濡 룷愿꾩쟻쑝濡 젒洹쇳븯뒗 諛⑸쾿 以 븯굹씠떎(Wiegand et al., 2019). 꽭룷씠룞뒫 吏꾪뵾뿉꽌 吏냽쟻쑝濡 利앹떇븯뿬 몴뵾濡 씠룞븯뿬 媛곸쭏꽭룷濡 遺꾪솕븯湲 쐞븳 씪諛섏쟻씤 깮由ы솢꽦씠떎. 긽泥섎줈 씤븳 뵾遺 옱깮쓣 쐞빐꽌뒗 留ㅼ슦 以묒슂븳 꽭룷솢꽦 湲곕뒫 以묒뿉 븯굹씠떎(Kim et al., 2011; Kim, 2016).

뵲씪꽌, 蹂 뿰援 寃곌낵뒗 뿉깂삱뿉 移⑥떆耳 異붿텧븳 SM怨 SMS쓽 깮由ы솢꽦 寃곌낵뒗 떇뭹肉 븘땲씪 쓽빟뭹, 솕옣뭹 벑뿉 솢슜 媛뒫븷 寃껋쑝濡 뙋떒릺硫 꽭룷 옱깮 愿젴 냼옱濡 솢슜媛移섍 엳쓣寃껋쑝濡 湲곕맂떎.

ACKNOWLEDGEMENT

This research was a part of the project titled 'Development of Bioabsorbable Membrane Comprising Marine Organism Derived Extract for Guided Bone Regeneration', funded by the Ministry of Oceans and Fisheries, Korea.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

References
  1. Ahn SM, Hong YK, Kwon GS, Sohn HY. Evaluation on in-vitro anticoagulation activity of 35 different seaweed extracts. Journal of Life Science 2010. 20: 1640-1647.
    CrossRef
  2. Alfadda AA, Sallam RM. Reactive oxygen species in health and disease. Journal of Biomedicine and Biotechnology 2012. 936486.
    Pubmed KoreaMed CrossRef
  3. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958. 181: 1199-1200.
    CrossRef
  4. Bur훾ov찼 Z, Kreps F, Greifov찼 M, Jablonsk첵 M, H찼z A, Schmidt 힋, 힋urina I. Antibacterial and antifungal activity of phytosterols and methyl dehydroabietate of Norway spruce bark extracts. Journal of Biotechnology 2018. 20: 18-24.
    Pubmed CrossRef
  5. Chung JH, Youn SH, Kwon OS, Cho KH, Youn JI, Eun HC. Regu-lations of collagen synthesis by ascorbic acid, transforming growth factor륿eta and interferon릆amma in human dermal fibroblasts cultured in three릁imensional collagen gel are photoaging and aging independent. Journal of Dermatological Science 1997. 15: 188-200.
    Pubmed CrossRef
  6. Dumas M, Chaudagne C, Bonte F, Meybeck A. Age릖elated response of human dermal fibroblasts to 1륾scorbic acid. study of type I and III collagen synthesis. Comptes Rendus de l'Acad챕mie des Sciences - Series III - Sciences de la Vie 1996. 319: 1127-1132.
    Pubmed
  7. Guaratini T, Lopes NP, Marinho-Soriano E, Colepicolo P, Pinto E. Antioxidant activity and chemical composition of the non polar fraction of Gracilaria domingensis (K체tzing) Sonder ex Dickie and Gracilaria birdiae. Brazilian Journal of Pharmacy 2012. 22: 724-729.
    CrossRef
  8. Gupta S, Abu-Ghanna N. Bioactive potential and possible health effects of edible brown seaweeds. Trends in Food Science&Technology 2011. 6: 315-326.
    CrossRef
  9. Jung HA, Jin SE, Ahn BR, Lee CM, Choi JS. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food and Chemical Toxicology 2013. 59: 199-206.
    Pubmed CrossRef
  10. Khurana S, Piche M, Hollingsworth A, Venkataraman K, Tai TC. Oxidative stress and cardiovascular health: Therapeutic poten-tial of polyphenols. Can. The Korean Journal of Physiology & Pharmacology 2013. 91: 198-212.
    Pubmed CrossRef
  11. Kim J, Lee CM. Anti-inflammatory effects and influence on fibroblast growth of astaxanthin-cyclodextrin nanoparticles. Journal of Chitin and Chitosan 2018. 23: 170-175.
    CrossRef
  12. Kim JW, Kwon YR, Youn KS. Quality characteristics and anti-oxidant properties in spray-dried and freeze-dried powder prepared with powdered seaweed extracts. Korean Society of Food Science and Technology 2012. 44: 716-721.
    CrossRef
  13. Kim JS, Bak EJ, Lee BC, Kim YS, Park JB, Choi IG. Neuregulin induces HaCaT keratinocyte migration via Rac1-mediated NADPH-oxidase activation. Journal of Cellular Physiology 2011. 226: 3014-3021.
    Pubmed CrossRef
  14. Kim JS. Effect of rudbeckia laciniata extract on physiological activity of HaCaT Cells. The Korean Journal of Food and Nutrition 2016. 29: 335-340.
    CrossRef
  15. Kim HS, Lee JH, Yeon CJ, Lee JS. The therapeutic effect of porcine placenta extract for improvement sequelae of burn. Journal of Korean Burn Society 2012. 15: 96-101.
  16. Lee AR, Roh SS, Kim HK. Anti-microbial activity and anti-inflammatory effects of fucoidan extracts. Asian Journal of Beauty and Cosmetology 2018. 16: 191-200.
    CrossRef
  17. Lee YC, Hwang KH, Han DH, Kim SD. Compositions of opuntia ficus-indica. The Journal of Food Science and Technology 1997. 29: 847-853.
  18. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathology, and pharmacology. Pharmacological Reviews 1991. 43: 109-142.
  19. Okoli CO, Akah PA, Nwafor SV, Anisiobi AI, Ibegbunam IN, Erojikwe O. Anti-inflammatory activity of hexane leafextract of Aspilia africana C.D. Adams. Journal of Ethnopharmacology 2007. 109: 219-225.
    Pubmed CrossRef
  20. Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. Nature Reviews Immunology 2014. 14: 289-301.
    Pubmed CrossRef
  21. Noda H, Amano H, Arashima K, Hashimoto S, Nisizawa K. Studies on the antitumour activity of marine algae. Bulletin of the Japanese Society of Scientific Fisheries 1989. 55: 1259-1264.
    CrossRef
  22. Song YS, Balcos MC, Yun HY, Baek KJ, Kwon NS, Kim MK, Kim DS. ERK activation by fucoidan leads to inhibition of melanogenesis in Mel-Ab cells. The Korean Journal of Physiology and Pharmacology 2015. 19: 29-34.
    Pubmed KoreaMed CrossRef
  23. Stierle AA, Stierle DB, Kelly K. Berkelic acid, a novel spiroketal with selective anticancer activity from an acid mine waste fungal extremophile. The Journal of Organic Chemistry 2006. 71: 5357-5360.
    Pubmed CrossRef
  24. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF觀B activation. Mutation Research 2001. 480: 243-268.
    Pubmed CrossRef
  25. Rousselle P, Braye F, Dayan G. Re-epithelialization of adult skin wounds: cellular mechanisms and therapeutic strategies. Advanced Drug Delivery Reviews 2018.
    Pubmed CrossRef
  26. Torres FAE, Passalacqua TG, Vel찼squez AMA, Souza RA, Colepicolo P, Graminha , MAS. New drugs with antiprotozoal activity from marine algae: a review. Brazilian Journal of Pharmacy 2014. 24: 265-276.
    CrossRef
  27. Wiegand C, Abel M, Hipler UC, Elsner P. Effect of non-adhering dressings on promotion of fibroblast proliferation and wound healing in vitro. Scientific Reports 2019. 9: 4320-4330.
    Pubmed KoreaMed CrossRef
  28. Zang Q, Maass DL, White J, Horton JW. Cardiac mitochondrialdamage and loss of ROS defense after burn injury: thebeneficial effect of antioxidnat therapy. Journal of Applied Physiology 2007. 102: 103-112.
    Pubmed KoreaMed CrossRef