Search for


TEXT SIZE

search for



CrossRef (0)
Protective Effect of Aster tataricus L. Extract on the Dermal Cytotoxicity Induced by Sodium Bromate, Oxidant of Hair Dye
Biomed Sci Letters 2019;25:348-356
Published online December 31, 2019;  https://doi.org/10.15616/BSL.2019.25.4.348
© 2019 The Korean Society For Biomedical Laboratory Sciences.

Jung-Hwa Chung1,*, Gyoung-Wan Lee2,* and Young-Mi Seo2,,*

1Sanbon Hospital, School of Medicine, Wonkwang University, Gyeonggi-do 15865, Korea
2Department of Nursing, College of Medicine, Wonkwang Health Science University, Iksan 54538, Korea
Correspondence to: Young-Mi Seo. Department of Nursing, College of Medicine, Wonkwang Health Science University, 514 Iksan-daero, Iksan 54538, Korea.
Tel: +82-63-840-1314, Fax: +82-63-840-1319, e-mail: dudn0408@naver.com
*Professor.
Received October 29, 2019; Revised December 10, 2019; Accepted December 19, 2019.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract

This study evaluated the dermal cytotoxicity of sodium bromate (NaBrO3) and the protective effect of Aster tataricus L. (AT) extract against NaBrO3-induced cytotoxicity in the cultured NIH3T3 fibroblasts. For this study, it was done the antioxidative effects such as electron donating (ED) activity and lipid peroxidation (LP) activity as well as cell viability. NaBrO3 significantly decreased cell viability in a dose-dependent manner and its XTT50 value was measured at a concentration of 54.4 μM in these cultures. The cytotoxicity of NaBrO3 was determined as highly-toxic by Borenfreund and Puerner's toxic criteria. The quercetin, antioxidant significantly increased cell viability against NaBrO3-induced cytotoxicity. Regarding the protective effect of Aster tataricus (AT) L. extract on NaBrO3-induced cytotoxicity, AT extract significantly increased the cell viability, the ED ability and the inhibitory ability of LP. From these findings, it suggested that the oxidative stress is involved in the cytotoxicity of NaBrO3, and AT extract effectively protected NaBrO3-induced cytotoxicity by antioxidative effects. Conclusively, the natural component like AT extract may be a putative therapeutic agent for the diminution or treatment of the cytotoxicity correlated with oxidative stress like hair dye component, NaBrO3.

Keywords : Antioxidative effect, Cytotoxicity, Natural component, Oxidative stress
꽌 濡

釉뚮\궛굹듃瑜(NaBrO3) 뿼紐⑥젣 援ъ꽦 以 怨쇱궛솕닔냼(H2O2) 븿猿 깋긽諛쒗쁽쓣 룄二쇰뒗 븘닔 궛솕젣濡 꼸由 궗슜릺怨 엳떎. 씠 以 NaBrO3뒗 H2O2뿉 鍮꾪빐 몢뵾냽源뚯 移⑦닾븯뿬 뵾遺룆꽦씠 썾뵮 媛뺥븯吏留 S-而(curl)삎꽦쑉怨 쑀吏젰씠 쎇뼱굹 넂 꽑샇룄瑜 媛吏怨 엳떎. 씠윭븳 씠쑀濡 씪긽깮솢뿉꽌 NaBrO3쓽 諛섎났쟻씤 젒珥됯낵 끂異쒕줈 씤븳 룆꽦臾몄젣媛 愿떖쓽 긽쑝濡 뼚 삤瑜닿쾶 릺뿀떎. 釉뚮\궛뿼쓽 룆꽦뿰援щ줈뒗 깮泥댁뿉꽌 떊옣쓣 鍮꾨’븳(Park et al., 2011; Ryu et al., 2011), 떆媛곴낵 泥媛(Sashiyama et al., 2002; Suzuki et al., 2018), 紐⑤컻(Lee and Chang, 2008; Eo et al., 2011) 諛 뵾遺(Kim et al., 2014) 벑씠 엳쑝굹 떆뿕愿 궡뿉꽌뒗 떇꽭룷뿉 븳 硫댁뿭뿰援щ 鍮꾨’븯뿬(Guo et al., 2001), 떊옣꽭룷뿉꽌 DNA 硫뷀떥솕(Kolli et al., 2019) 떒諛깆쭏諛쒗쁽 빐(Kolisetty et al., 2013) 媛숈 떎뼇븳 넀긽湲곗쟾쓣 珥덈옒븳떎怨 븣젮졇 엳떎. 洹 以, NaBrO3 븳 궛솕쟻 넀긽뿉 븳 뿰援щ줈뒗 硫댁뿭쓣 鍮꾨’븳(Guo et al., 2001), 紐⑤컻(Eo et al., 2011) 삉뒗 떊옣(Park et al., 2011)뿉 愿븳 紐뉖챺 뿰援ш 엳쑝굹 뵾遺꽭룷뿉 븳 뿰援щ뒗 留ㅼ슦 誘명씉븯떎. 洹쇰옒 NaBrO3 媛숈씠 以묎툑냽쓣 룷븿븳 紐뉖챺 솕빀臾쇱씠 遺뺢눼 떆 怨쇱궛솕닔냼(H2O2)瑜 鍮꾨’븯뿬 닔궛湲곕씪뵒移(-OH) 諛 뒋띁삦궗씠뱶씪뵒移(O2-) 媛숈 옄쑀씪뵒移(free radical)쓣 諛쒖깮븯硫댁꽌 궛솕쟻 넀긽쓣 씪쑝궓떎怨 젣떆맂 諛 엳떎(Leonard et al., 2000). 뵲씪꽌 蹂 뿰援ъ뿉꽌뒗 NaBrO3쓽 뵾遺룆꽦뿉 옄쑀씪뵒移쇱씠 愿뿬븯怨 엳뒗吏瑜 븣븘蹂닿린 쐞븯뿬 뵾遺꽭룷 씪醫낆씤 諛곗뼇 NIH3T3 꽟쑀븘꽭룷뿉 NaBrO3瑜 泥섎━븯뿬 옄쑀씪뵒移 젣嫄곗젣뿉 븳 쁺뼢쓣 遺꾩꽍븯떎.

理쒓렐, 媛곸쥌 떇臾쇱꽦遺(phytochemicals) 以묒뿉뒗 빆궛솕瑜 鍮꾨’븳 빆뿼, 빆洹 벑뿉 쑀슚븳 깮由ы솢꽦臾쇱쭏씠 떎웾 븿쑀릺뼱 엳떎怨 蹂닿퀬릺硫댁꽌 씠뱾 꽦遺꾩뿉 븳 移섎즺쟻 뿰援ш 씠猷⑥뼱吏怨 엳떎(Lee and Seo, 2018). 듅엳, 떇臾 以 媛쒕몄랬(Aster tataricus L., AT)뒗 援솕怨(compositae)뿉 냽븯뒗 뿬윭빐궡씠濡 슦由щ굹씪 궛吏뿉 꼸由 꽌떇븯怨 엳떎. AT뿉뒗 뵆씪蹂대끂씠뱶怨꾪넻(flavonoids)쓽 荑쇱꽭떞(quercetin), 罹꾪럹濡(Kaempferol), 씠냼뵆씪蹂대끂씠뱶怨꾪넻(isof lavonoids)쓽 븘뒪뀒瑜댁궗룷땶(astersaponin), 봽濡쒖궗룷寃뚮땶(prosapogenin)쓣 鍮꾨’븯뿬 럹솕빀臾쇱씤 럹猷⑤┃궛(Ferulic acid)怨 洹 諛뽰뿉 뒪뀒濡(sterols), 듃由ы꽣렂(triterpenes) 벑怨 媛숈 떎뼇븳 꽦遺꾨뱾쓣 븿쑀븯怨 엳떎怨 븣젮졇 엳뼱, 빆洹좎쓣 鍮꾨’븯뿬 빆궛솕, 빆뿼뿉 愿젴맂 吏덊솚뿉 궗슜릺뼱 솕떎(Yang et al., 2015). 씠뱾 꽦遺 以, quercetin씠굹 kaempferol, astersaponin, prosapogenin怨 媛숈 뵆씪蹂대끂씠뱶瑜(flavonoids)뒗 媛뺣젰븳 빆궛솕뒫쓣 媛吏怨 엳떎怨 븣젮졇 엳떎(Ng et al., 2003). 吏湲덇퉴吏 AT뿉 븳 뿰援щ뒗 빆뿼쓣 鍮꾨’븳 빆궛솕 痢〓㈃뿉꽌 떎닔 릺뼱 엳쑝硫, 빆궛솕蹂대떎뒗 빆뿼遺遺꾩뿉꽌 뜑 留롮 遺꾩꽍씠 씠猷⑥뼱졇 엳떎(Ngabire et al., 2018). 쁽옱, AT쓽 빆궛솕뿉 븳 뿰援щ 궡렣蹂대㈃, 떦눊伊먮 씠슜븳 superoxide dismutase (SOD), gluthathion (GSH)쓽 솢꽦쓣(Du et al., 2014), 鍮꾨쭔伊먮 씠슜븳 catalase (CAT)쓽 솢꽦쓣(Yao et al., 2017), 媛꾩쭏伊먮 씠슜븳 LP (lipid peroxidation), SOD, CAT쓽 솢꽦뿉 븳 議곗궗媛 엳떎(Hu et al., 2017). 삉븳, 諛곗뼇꽭룷瑜 씠슜븳 뿰援щ줈뒗 MG63 꽭룷뿉꽌 SOD쓽 솢꽦쓣(Choi et al., 2009), 媛꾩꽭룷(L-O2)뿉꽌 GSH 솢꽦쓣(Wang et al., 2014), Raw.264.7 꽭룷뿉꽌 DPPH-radical 냼嫄곕뒫뿉 븳 議곗궗媛 엳떎(Ngabire et al., 2018). 씠뿉 鍮꾪븯뿬 뵾遺꽭룷뿉꽌쓽 빆궛솕 遺꾩꽍 蹂닿린 뼱졄떎. 뵲씪꽌, 蹂 뿰援ъ뿉꽌뒗 NaBrO3쓽 뵾遺룆꽦쓣 꽭룷닔以뿉꽌 븣븘蹂닿린 쐞븯뿬 뵾遺꽟쑀븘꽭룷쓽 븯굹씤 諛곗뼇 NIH3T3 꽟쑀븘꽭룷瑜 옱猷뚮줈 NaBrO3쓽 룆꽦쓣 옄쑀씪뵒移쇱뿉 쓽븳 궛솕쟻 넀긽 痢〓㈃뿉꽌 議곗궗븯쑝硫, 씠쓽 룆꽦怨 愿젴븯뿬 AT 異붿텧臾쇱쓽 빆궛솕 쁺뼢쓣 쟾옄怨듭뿬뒫(EDA)怨 吏吏덇낵궛솕(LP) 뼲젣뒫쓣 넻븯뿬 븣븘 蹂댁븯떎.

옱猷 諛 諛⑸쾿

빟젣 젣議

蹂 떎뿕뿉 궗슜븳 떆빟쑝濡 NaBrO3, 1,1-diphenyl-2-picrylhydrazyl (DPPH), methyl alcohol, linoleic acid, phosphate phosphate saline (PBS), isopropanol, quercetin, hydrogen peroxide (H2O2), trypsin, ammonium thiocyanate, aluminum nitrate, ethyl alcohol 諛 XTT (2,3-bis-[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-caboxanilide, disodium salt)뒗 Sigma궗(St Luios. MO, USA)뿉꽌 援ъ엯븯떎. 삉븳, NaBrO3쓽 젣議곕뒗 XTT50 媛믪쓣 援ы븯湲 쐞븯뿬 깭븘냼삁泥(fetal bovine serum, FBS, Gibco, USA)씠 뾾뒗 理쒖냼븘닔諛곗(minimum essential medium, MEM, Gibco, USA)瑜 궗슜븯뿬 30, 50, 70, 100 μM쓽 媛 옣븸쓣 留뚮뱾뼱 궗슜븯떎. XTT뒗 PBS瑜 씠슜븯뿬 50 μg/mL쓽 옣븸쓣 留뚮뱺 썑 깋븫냼뿉 蹂닿븳 떎쓬 븘슂븳 뼇쓣 吏곸젒 諛곗뼇븸뿉 泥④ 삉뒗 씗꽍븯뿬 궗슜븯떎.

AT 梨꾩랬 諛 異붿텧

쟾遺 빞궛뿉꽌 遊꾧낵 媛쓣뿉 嫄몄퀜 AT 쟾珥덈 梨꾩랬븯뿬 븰遺꽕 깮紐낆옄썝怨쇳븰뿰援ъ냼뿉꽌 룞젙 솗씤 썑 궗슜븯떎. 梨꾩랬븳 쟾珥덈뒗 옒 뵽 썑 뻼蹂뺤뿉꽌 留먮젮 씪젙 湲몄씠濡 옒씪 깋븫냼뿉 蹂닿븯뿬 떆猷뚮줈 궗슜븯떎. 蹂닿 以묒씤 떆猷 73.9 g쓣 옒寃 뙆뇙븳 떎쓬 떆猷뚯 빟 250 mL쓽 利앸쪟닔瑜 1,000 mL쓽 솚뵆씪뒪겕뿉 븿猿 꽔怨 3떆媛 룞븞 媛뿴븯떎. 쐞쓽 怨쇱젙쓣 4쉶 諛섎났 異붿텧븯뿬 뿬怨쇳븳 떎쓬 574 × g뿉꽌 30遺 룞븞 썝移⑥떆耳곕떎. 썝移 썑 吏꾧났냽異뺢린뿉꽌 媛먯븬냽異뺤떆궓 떎쓬 3.7 g쓽 떆猷뚮 뼸뿀쑝硫, 씠 븣 닔쑉 5.0%濡 굹궗떎.

꽭룷 諛곗뼇 諛 깮議댁쑉(cell viability) 遺꾩꽍

NIH3T3 꽟쑀븘꽭룷二(ATCC, CRL 1658)쓽 諛곗뼇 Jung et al. (2014)쓽 諛⑸쾿뿉 뵲씪 trypsin쑝濡 遺李⑸맂 꽭룷瑜 諛곗뼇 슜湲곕줈遺꽣 뼹뼱 깉떎. 뼥뼱吏 꽭룷뱾 썝移 썑 10% FBS媛 븿쑀맂 MEM 諛곗뼇븸뿉 꽔뼱 옒 꽎 븳 떎쓬 1 × 105 cells/well씠 릺룄濡 궛젙, 꽭룷瑜 96-well 諛곗뼇 슜湲곗뿉 諛곕텇븯떎. 諛곕텇맂 꽭룷뱾 36℃, 5% CO2濡 議곗젅맂 빆삩湲 궡뿉꽌 72떆媛 룞븞 諛곗뼇븯떎. 꽭룷깮議댁쑉 遺꾩꽍 Mosmann (1983)쓽 諛⑸쾿뿉 뵲씪, 냽룄蹂꾨줈 꽭룷뿉 빟젣瑜 泥섎━븯뿬 씪젙 떆媛 룞븞 諛곗뼇븳 떎쓬 떎뿕 떦씪 젣議고븳 XTT (50 μg/mL)瑜 well 떦 10 μL 뵫 꽔뼱 36℃濡 議곗젅맂 빆삩湲곗뿉꽌 4떆媛 룞븞 諛곗뼇븯떎. 諛곗뼇씠 셿猷뚮맂 썑 isopropanol쓣 꽔뼱 떎삩뿉꽌 젙移섑븳 떎쓬 ELISA reader (Spectra max 250, Molecular Devices, Sunnyvale, USA)濡 450 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯뿬 議곌뎔怨 鍮꾧탳 議곗궗븯떎. XTT50 媛믪쓽 궛異쒖 쉶洹吏곸꽑떇뿉 쓽븯뿬 궛異쒗븯떎.

NaBrO3쓽 룆꽦 諛 泥섎━

諛곗뼇 以묒씤 NIH3T3 꽟쑀븘꽭룷뿉 NaBrO3媛 25~55 μM 냽룄濡 媛곴컖 룷븿맂 諛곗뼇븸뿉꽌 꽭룷瑜 48떆媛 룞븞 諛곗뼇븳 썑 꽭룷깮議댁쑉쓣 議곌뎔怨 鍮꾧탳 議곗궗븯떎. 삉븳, 꽭룷룆꽦쓽 XTT50 媛믪쓣 痢≪젙븳 썑 씠瑜 蹂 떎뿕遺꾩꽍뿉 궗슜븯떎.

Quercetin쓽 빆궛솕뒫 痢≪젙 諛 NaBrO3뿉 븳 쁺뼢

빆궛솕젣씤 quercetin쓽 빆궛솕뒫쓣 議곗궗븯湲 쐞븯뿬 솢꽦궛냼쓽 씪醫낆씤 25 μM H2O2瑜 諛곗뼇꽭룷瑜 泥섎━븯湲 2떆媛 쟾뿉 quercetin씠 15 μM怨 25 μM쓽 냽룄濡 媛곴컖 룷븿맂 諛곗뼇븸뿉꽌 꽭룷瑜 泥섎━븳 썑 꽭룷깮議댁쑉쓣 議곌뎔怨 鍮꾧탳 議곗궗븯떎. 삉븳, NaBrO3뿉 븳 quercetin쓽 쁺뼢쓣 議곗궗븯湲 쐞븯뿬 XTT50 냽룄쓽 NaBrO3瑜 諛곗뼇꽭룷뿉 泥섎━븯湲 2떆媛 쟾뿉 quercetin씠 媛곴컖 15 μM怨 25 μM濡 룷븿맂 諛곗뼇븸뿉꽌 꽭룷瑜 諛곗뼇븳 떎쓬 꽭룷깮議댁쑉뿉 쓽븯뿬 議곌뎔怨 鍮꾧탳 議곗궗븯떎.

AT 異붿텧臾쇱쓽 꽭룷룆꽦 痢≪젙 諛 異붿텧臾 泥섎━

AT 異붿텧臾쇱뿉 븳 룆꽦 議곗궗瑜 쐞븯뿬 異붿텧臾쇱씠 媛곴컖 80~140 μg/mL濡 媛곴컖 룷븿맂 諛곗뼇븸뿉꽌 48떆媛 룞븞 諛곗뼇븳 썑 議곌뎔怨 꽭룷깮議댁쑉쓣 鍮꾧탳 議곗궗븯떎. 씠 븣 異붿텧臾쇱쓽 理쒕뿀슜븳怨꾨냽룄瑜 痢≪젙 썑 븳怨꾨냽룄 諛붾줈 씠븯 냽룄씤 100 μg/mL 120 μg/mL瑜 遺꾩꽍뿉 궗슜븯떎. 삉븳, NaBrO3뿉 븳 AT 異붿텧臾쇱쓽 쁺뼢쓣 議곗궗븯湲 쐞븯뿬 諛곗뼇꽭룷뿉 XTT50 냽룄쓽 NaBrO3瑜 泥섎━븯湲 2떆媛 쟾뿉 100 μg/mL 120 μg/mL쓽 異붿텧臾쇱쓣 媛곴컖 諛곗뼇꽭룷뿉 泥섎━븳 떎쓬 씠쓽 쁺뼢쓣 꽭룷깮議댁쑉뿉 쓽븯뿬 議곌뎔怨 鍮꾧탳 議곗궗븯떎.

AT 異붿텧臾쇱쓽 꽦遺꾪븿웾 遺꾩꽍

A.O.A.C. (2005) 諛⑸쾿뿉 쓽븳 뤃由ы럹 遺꾩꽍쓣 쐞븯뿬 異붿텧떆猷 0.2 mL뿉 phenol reagent 0.2 mM瑜 泥④븯뿬 3遺 룞븞 젙移섑븯떎. 젙移 셿猷 썑 0.4 mL NaBrO3瑜 媛븯뿬 1떆媛 룞븞 諛섏쓳떆궓 떎쓬 ELISA reader濡 725 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 몴以떆빟쑝濡 tannic acid瑜 씠슜븯뿬 寃웾怨≪꽑쓣 옉꽦븯떎. 뵆씪蹂대끂씠뱶 遺꾩꽍 Nieva Moreno et al. (2000)쓽 諛⑸쾿뿉 쓽빐, 떆猷뚯슜븸 0.1 mL뿉 10% aluminum nitrate 1 M potassium acetate 샎빀臾 0.2 mL뿉 뿉깂삱 4.7 mL瑜 媛븯뿬 25℃뿉꽌 40遺 룞븞 諛섏쓳 썑 ELISA reader濡 415 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 몴以떆빟쑝濡쒕뒗 rutin쓣 씠슜븯뿬 寃웾怨≪꽑쓣 옉꽦븯떎.

쟾옄怨듭뿬(electron donating, ED) 솢꽦 痢≪젙

ED 솢꽦쓽 痢≪젙 Blois (1958)쓽 諛⑸쾿뿉 쓽빐, 硫뷀깂삱 떆猷뚯뿉 0.3 mM DPPH 硫뷀깂삱 슜븸 100 mL瑜 媛븯뿬 30遺 룞븞 젙移섑븯떎. 젙移 셿猷 썑 ELISA reader濡 517 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯怨, ED 솢꽦 議곌뎔뿉 븳 諛깅텇쑉濡 븯쑝硫 quercetin쓣 뼇꽦議곌뎔쑝濡 븯뿬 鍮꾧탳 議곗궗븯떎. 삉븳, 쟾옄怨듭뿬뒫(%)=100-[(떆猷뚯꺼媛援곗쓽 씉愿묐룄/臾댁꺼媛援곗쓽 씉愿묐룄) × 100]쑝濡 굹깉떎.

吏吏덇낵궛솕(lipid peroxidation, LP) 솢꽦 痢≪젙

LP 솢꽦 痢≪젙 Kikuzaki and Nakatani (1993)쓽 諛⑸쾿뿉 뵲씪, 떆猷 3.9 mL瑜 뿉깂삱怨 샎빀븯怨 뿉깂삱뿉 끃씤 2.52% linoleic acid 0.05 M PBS (pH 7.0) 슜븸 12.1 mL瑜 泥④븯뿬 40℃뿉꽌 24떆媛 룞븞 諛곗뼇븯떎. 諛곗뼇 썑 뿉깂삱怨 30% ammonium thiocyanate濡 泥섎━븳 떎쓬 0.02 M ferrous chloride 0.1 mL瑜 媛븯뿬 떎삩뿉꽌 3遺 룞븞 젙移섑븯떎. 젙移 셿猷 썑 ELISA reader濡 500 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 利앸쪟닔瑜 議곌뎔쑝濡 궗슜븯쑝硫, quercetin쓣 뼇꽦議곌뎔쑝濡 븯뿬 鍮꾧탳 議곗궗븯떎. LP 솢꽦 議곌뎔뿉 븳 諛깅텇쑉濡 븯떎. 삉븳, 吏吏덇낵궛솕 빐뒫(%)=100-[(떆猷뚯꺼媛援곗쓽 씉愿묐룄/臾댁꺼媛援곗쓽 씉愿묐룄) × 100]쑝濡 굹깉떎.

넻怨 泥섎━

떎뿕寃곌낵뒗 SPSS/WIN 18.0쓣 씠슜븯뿬 mean ± SD濡 몴떆븯떎. 떎뿕寃곌낵뿉 빐 one way ANOVA瑜 떆뻾븯怨 Tukey HSD쑝濡 궗썑遺꾩꽍쓣 븯怨, 쑀쓽닔以 P< 0.05뿉꽌 梨꾪깮븯떎.

寃 怨

NaBrO3쓽 꽭룷룆꽦 痢≪젙

NaBrO3쓽 룆꽦쓣 븣븘蹂닿린 쐞븯뿬 諛곗뼇 NIH3T3 꽟쑀븘꽭룷뿉 25~55 μM 냽룄濡 NaBrO3媛 媛곴컖 룷븿맂 諛곗뼇븸뿉꽌 꽭룷瑜 48떆媛 룞븞 泥섎━븳 寃곌낵, NaBrO3뒗 泥섎━븳 냽룄뿉 쓽議댁쟻쑝濡 꽭룷깮議댁쑉쓣 議곌뎔뿉 鍮꾪븯뿬 쑀쓽븯寃 媛먯냼븯硫 룆꽦쓣 굹깉떎(P<0.001). 議곌뎔뿉 鍮꾪빐 媛곴컖 70%, 60%, 50%쓽 꽭룷깮議댁쑉쓣 蹂댁뿬 XTT50 媛믪 55 μM쓽 泥섎━뿉꽌 굹궃 寃껋쓣 솗씤븯떎(Table 1). 꽭룷룆꽦뿉 븳 궗썑遺꾩꽍 寃곌낵 55 μM, 40 μM, 25 μM, 議곌뎔쓽 닚쑝濡 꽭룷룆꽦씠 넂 寃껋쑝濡 굹궗떎. NaBrO3쓽 룆꽦 Borenfreund Puerner (1985)쓽 룆꽦뙋젙뿉 뵲씪 怨좊룆꽦쑝濡 굹궗떎.

The cytotoxicity of sodium bromate (NaBrO3) on cultured NIH3T3 fibroblasts by XTT assay

Concentrations of NaBrO3(μM)XTT assay (450 nm)FPTukey HSD

Mean ± SD
Controla0.50±0.0562.96<.001a>b>c>d
25 μMb0.35±0.04
40 μMc0.30±0.04
55 μMd0.25±0.02

The data indicate the mean ± SD for triplicate experiments

Abbreviation: NaBrO3, Sodium bromate


Quercetin쓽 빆궛솕뒫 痢≪젙

Quercetin쓽 빆궛솕뒫쓣 議곗궗븯湲 쐞븯뿬 25 μM쓽 H2O2瑜 諛곗뼇꽭룷뿉 泥섎━븯湲 쟾뿉 quercetin씠 媛곴컖 15 μM怨 25 μM濡 룷븿맂 諛곗뼇븸뿉꽌 2떆媛 룞븞 쟾 泥섎━븯떎. 洹 寃곌낵, 25 μM쓽 H2O2留뚯쓣 泥섎━븳 寃쎌슦 議곌뎔뿉 鍮꾪븯뿬 꽭룷깮議댁쑉씠 43.5% (0.37±0.02)濡 굹궃 諛섎㈃, 15 μM怨 25 μM쓽 quercetin쓽 泥섎━뿉꽌뒗 媛곴컖 71.8% (0.61±0.02) 85.9% (0.73±0.03)濡 굹굹 씠뒗 H2O2留뚯쓣 泥섎━뿉 鍮꾪븯뿬 紐⑤몢 쑀쓽븳 꽭룷깮議댁쑉 利앷瑜 굹깉떎(P<0.001) (Table 2). Quercetin쓽 빆궛솕뒫쓽 궗썑遺꾩꽍 寃곌낵 議곌뎔, 25 μM quercetin, 15 μM quercetin, 25 μM H2O2 닚쑝濡 꽭룷깮議댁쑉씠 넂쓬쓣 븣 닔 엳뿀떎. H2O2뒗 룆꽦씠 媛뺥븳 옄쑀씪뵒移쇱쓽 씪醫낆쑝濡, 옄쑀씪뵒移 젣嫄곗젣씤 quercetin씠 H2O2쓽 궛솕쟻 넀긽쓣 쑀쓽븯寃 諛⑹뼱븿쑝濡쒖꽌 媛뺣젰븳 빆궛솕젣엫씠 利앸챸릺뿀떎(Chun et al., 2002).

The antioxidative ability of quercetin on the hydrogen peroxide (H2O2) in cultured NIH3T3 fibroblasts

Concentrations of querce (μM)XTT assay (450 nm)FPTukey HSD

Mean ± SD
Controla0.85±0.05351.02<.001a>d>c>b
Positive controlb0.37±0.02
15 μMc0.61±0.02
25 μMd0.73±0.03

The data indicate the mean ± SD for triplicate experiments

Abbreviation: Positive control: 25 μM H2O2; querce, Quercetin; H2O2, Hydrogen peroxide


NaBrO3쓽 룆꽦뿉 븳 quercetin쓽 쁺뼢

NaBrO3쓽 꽭룷룆꽦뿉 븳 빆궛솕젣씤 quercetin쓽 쁺뼢쓣 븣븘蹂닿린 쐞븯뿬 NaBrO3쓽 XTT50 냽룄瑜 諛곗뼇꽭룷뿉 泥섎━븯湲 쟾뿉 quercetin씠 媛곴컖 15 μM怨 25 μM濡 룷븿맂 諛곗뼇븸뿉꽌 2떆媛 룞븞 쟾 泥섎━븯떎. 洹 寃곌낵, XTT50 냽룄쓽 NaBrO3留뚯쓽 泥섎━뿉꽌뒗 꽭룷깮議댁쑉씠 議곌뎔뿉 鍮꾪븯뿬 39.7% (0.31±0.03)濡 굹궃 寃껋뿉 鍮꾪븯뿬 15 μM怨 25 μM quercetin쓽 泥섎━뿉꽌뒗 媛곴컖 83.3% (0.65±0.02) 89.7% (0.70±0.03)濡 굹궗떎(P<0.001) (Table 3). NaBrO3쓽 꽭룷룆꽦뿉 븳 빆궛솕젣씤 quercetin쓽 쁺뼢뿉 븳 궗썑遺꾩꽍 寃곌낵 議곌뎔, 25 μM quercetin怨 15 μM quercetin, NaBrO3 (XTT50) 닚쑝濡 꽭룷깮議댁쑉씠 넂 寃껋쓣 븣 닔 엳뿀떎. Qercetin씠 媛뺣젰븳 옄쑀씪뵒移 젣嫄곗젣엫씠 솗씤맂 諛(Chun et al., 2002), quercetin씠 쑀쓽븯寃 NaBrO3쓽 룆꽦쓣 諛⑹뼱븿쑝濡쒖꽌 NaBrO3쓽 룆꽦뿉 옄쑀씪뵒移쇱씠 愿뿬븯怨 엳쓬쓣 젣떆븯떎.

The effect of quercetin on the cytotoxicity induced by sodium bromate (NaBrO3) in cultured NIH3T3 fibroblasts

Concentrations of querce (μM)XTT assay (450 nm)FPTukey HSD

Mean ± SD
Controla0.78±0.10116.60<.001a>d, c>b
Positive controlb0.31±0.03
15 μMc0.65±0.02
25 μMd0.70±0.03

The data indicate the mean ± SD for triplicate experiments

Abbreviation: Positive control: 55 μM NaBrO3 (XTT50); querce, Quercetin; NaBrO3, Sodium bromate


AT 異붿텧臾쇱쓽 꽭룷룆꽦

AT 異붿텧臾쇱뿉 븳 룆꽦遺꾩꽍쓣 쐞븯뿬 AT 異붿텧臾쇱씠 媛곴컖 80~140 μg/mL濡 룷븿맂 諛곗뼇븸뿉꽌 諛곗뼇븳 寃곌낵 80 μg/mL 100 μg/mL 泥섎━뿉꽌뒗 꽭룷깮議댁쑉씠 議곌뎔씤 100% (0.67±0.03)뿉 鍮꾪븯뿬 98.5% (0.66±0.03) 95.5% (0.64±0.03)濡 媛곴컖 굹궗떎. 삉븳, 120 μg/mL 140 μg/mL뿉꽌뒗 異붿텧臾 泥섎━뿉꽌뒗 94.0% (0.63±0.01) 88.1% (0.59±0.05)濡 媛곴컖 굹궗떎(P<0.001) (Table 4) (Fig. 1). AT 異붿텧臾쇱뿉 븳 룆꽦遺꾩꽍 궗썑遺꾩꽍 寃곌낵 80 μg/mL, 100 μg/mL, 120 μg/mL 媛꾩뿉뒗 넻怨꾩쟻쑝濡 李⑥씠媛 뾾뿀쑝굹 120 μg/mL, 100 μg/mL, 80 μg/mL 닚쑝濡 꽭룷깮議댁쑉씠 넂븯떎. 삉븳 80 μg/mL뒗 議곌뎔怨 넻怨꾩쟻씤 李⑥씠媛 뾾뿀쑝硫, 120 μg/mL 140 μg/mL룄 넻怨꾩쟻씤 李⑥씠媛 뾾뿀떎. 洹몃윭굹 議곌뎔怨 140 μg/mL쓽 꽭룷깮議댁쑉씠 넻怨꾩쟻쑝濡 李⑥씠瑜 蹂댁뿬, 議곌뎔뿉 鍮꾪븯뿬 쑀쓽븳 꽭룷깮議댁쑉쓽 媛먯냼瑜 굹궡뒗 理쒕뿀슜븳怨꾨냽룄뒗 140 μg/mL 씠긽뿉꽌 굹굹뒗 寃껋쑝濡 솗씤맖뿉 뵲씪 蹂 떎뿕뿉꽌뒗 AT 옂 異붿텧臾쇱쓣 140 μg/mL 씠븯쓽 냽룄濡 궗슜븯떎. 理쒕뿀슜븳怨꾨냽룄뒗 떆猷 異붿텧臾쇱쓽 醫낅쪟 泥섎━븯뒗 꽭룷醫낆뿉 뵲씪 李⑥씠媛 굹굹뒗 寃쏀뼢씠 엳떎(Lee et al., 2018).

The cytotoxicity of Aster tataricus L. (AT) extract on cultured NIH3T3 fibroblasts by XTT assay

Concentrations of AT extract (μg/mL)XTT assay (450 nm)FPTukey HSD

Mean ± SD
Controla0.67±0.037.54<.001a>e
80 μg/mLb0.66±0.03
100 μg/mLc0.64±0.03
120 μg/mLd0.63±0.01
140 μg/mLe0.59±0.05

The data indicate the mean ± SD for triplicate experiments

Abbreviation: AT, Aster tataricus L.


Fig. 1. The cytotoxicity of Aster tataricus L. (AT) extract on cultured NIH3T3 fibroblasts.

Cultured cells were incubated with AT extract at concentrations of 80, 100, 120 and 140 μg/mL, respectively. The data indicate the mean ± SD for triplicate experiments. Significantly different from the control.


AT 異붿텧臾쇱쓽 꽦遺꾪븿웾 遺꾩꽍

AT 異붿텧臾쇱쓽 븿웾 議곗궗뿉 엳뼱꽌 뤃由ы럹쓽 븿웾 46.8 mg/g쑝濡 굹궗쑝硫, 뵆씪蹂대끂씠뱶 븿웾 23.9 mg/g쑝濡 媛곴컖 굹궗떎(Fig. 2). AT 鍮꾩듂븳 꽦遺꾧낵 븿웾쓣 븿쑀븯怨 엳뒗 븳젴珥덈굹 吏湲덉큹룄 빆궛솕뒫젰씠 쎇뼱궃 寃껋쑝濡 蹂닿퀬릺뿀떎(Lee and Seo, 2018).

Fig. 2. The component of Aster tataricus L. (AT) extract. Data are mean 짹 SD.

The data indicate the mean ± SD for triplicate experiments.


NaBrO3쓽 꽭룷룆꽦뿉 븳 AT 異붿텧臾쇱쓽 쁺뼢

AT 異붿텧臾쇱씠 NaBrO3쓽 꽭룷룆꽦뿉 誘몄튂뒗 쁺뼢쓣 議곗궗븯湲 쐞븯뿬 諛곗뼇꽭룷뿉 XTT50 냽룄쓽 NaBrO3瑜 泥섎━븯湲 쟾뿉 100 μg/mL 120 μg/mL쓽 AT 異붿텧臾쇱쓣 媛곴컖 泥섎━븳 寃곌낵, NaBrO3쓽 泥섎━뿉꽌뒗 꽭룷깮議댁쑉씠 議곌뎔뿉 鍮꾪븯뿬 41.6% (0.37±0.03)濡 굹궃뜲 鍮꾪븯뿬 100 μg/ mL 異붿텧臾 泥섎━뿉꽌뒗 52.8% (0.47±0.02)濡 굹궗떎. 삉븳 120 μg/mL 異붿텧臾 泥섎━뿉꽌뒗 69.7% (0.62±0.05)濡 굹굹 NaBrO3留뚯쓽 泥섎━뿉 鍮꾪븯뿬 쑀쓽븳 利앷瑜 蹂댁떎(P<0.001) (Table 5). AT 異붿텧臾쇱씠 NaBrO3쓽 꽭룷룆꽦뿉 誘몄튂뒗 쁺뼢뿉 븳 궗썑遺꾩꽍 寃곌낵 議곌뎔, 120 μg/mL AT 異붿텧臾, 100 μg/mL AT 異붿텧臾, NaBrO3 닚쑝濡 꽭룷깮議댁쑉씠 넂寃 굹궗떎.

The protective effect of Aster tataricus L.(AT) extract on the cytotoxicity induced by sodium bromate (NaBrO3) in cultured NIH3T3 fibroblaststs

Concentrations of AT extract (μg/mL)XTT assay (450 nm)FPTukey HSD

Mean ± SD
Controla0.89±0.09137.99<.001a>d>c>b
Positive controlb0.37±0.03
100 μg/mLc0.47±0.02
120 μg/mLd0.62±0.05

The data indicate the mean ± SD for triplicate experiments

Abbreviation: Positive control: 55 μM NaBrO3; AT, Aster tataricus L.; NaBrO3, Sodium bromate


씠뒗 AT 異붿텧臾쇱씠 蹂 뿰援ъ뿉꽌 뻾븳 옄쑀씪뵒移 냼嫄곕뒫씤 쟾옄怨듭뿬뒫(EDA)怨 궛솕쟻 넀긽뿉 쓽븳 留됱吏덇낵궛솕 諛섏쓳쓣 뼲젣븯뒗 吏吏덇낵궛솕(LP)뼲젣뒫怨 媛숈 빆궛솕뒫씠 엳쓬씠 솗씤맂 寃곌낵씠떎(Blois, 1958; Kikuzaki and Nakatani, 1993).

ED 솢꽦 痢≪젙

ED 솢꽦쓣 痢≪젙븯湲 쐞븯뿬 100 μg/mL 120 μg/mL 냽룄쓽 AT 異붿텧臾 떆猷뚮 泥섎━븯뿬 遺꾩꽍븳 寃곌낵 100 μg/mL 냽룄 泥섎━뿉꽌뒗 솢꽦씠 議곌뎔뿉 鍮꾪븯뿬 79.5%濡 굹궗쑝硫, 120 μg/mL쓽 泥섎━뿉꽌뒗 75.3%濡 굹궗떎(Table 6). 뵲씪꽌, 100 μg/mL 120 μg/mL 냽룄뿉꽌 쟾옄怨듭뿬뒫 媛곴컖 20.5% 24.7%濡 굹굹 씠뒗 議곌뎔뿉 鍮꾪븯뿬 紐⑤몢 쑀쓽븳 怨듭뿬뒫쓽 利앷瑜 굹깉떎. 듅엳, 120 μg/mL 냽룄뿉꽌뒗 뼇꽦議곌뎔씤 quercetin쓽 쟾옄怨듭뿬뒫씤 83.6% (P<0.001)쓽 25% 씠긽쑝濡 굹궗떎(Fig. 3). ED 솢꽦 궗썑遺꾩꽍 寃곌낵 quercetin, 120 μg/mL AT 異붿텧臾쇨낵 100 μg /mL AT 異붿텧臾, 議곌뎔 닚쑝濡 쟾옄怨듭뿬뒫씠 넂 寃껋쑝濡 굹궗떎. 쟾옄怨듭뿬뒫(EDA) 궛솕瑜 뼲젣븯湲 븣臾몄뿉 DPPH-씪뵒移 냼嫄곕뒫怨 媛숈 쓽誘몃줈, AT 異붿텧臾쇱쓽 EDA媛 議곌뎔뿉 鍮꾪븯뿬 쑀쓽븯寃 굹궓쑝濡쒖뜥 異붿텧臾쇱씠 옄쑀씪뵒移쇱쓣 젣嫄고븯뒗 넂 냼嫄곕뒫쓣 媛吏怨 엳쓬쓣 븣 닔 엳뿀떎(Blois, 1958).

The electron donating (ED) activity of Aster tataricus L. (AT) extract determined at a wavelength of 517 nm

Concentrations of AT extract (μg/mL)ED activity (517 nm)FPTukey HSD

Mean ± SD
Controla0.73±0.03837.06<.001a>c, d>b
Positive controlb0.12±0.01
100 μg/mLc0.58±0.02
120 μg/mLd0.55±0.03

The data indicate the mean ± SD for triplicate experiments

Abbreviation: Positive control: 25 μM quercetin (XTT50); AT, Aster tataricus L.; querce, Quercetin; ED, Electron donating


Fig. 3. The electron donating (ED) ability of Aster tataricus L.

(AT) extract determined at a wavelength of 517 nm. The data indicate the mean ± SD for triplicate experiments. Positive control: 25 μM quercetin (XTT50).


LP 솢꽦 痢≪젙

AT 異붿텧臾쇱뿉 븳 LP 솢꽦 痢≪젙쓣 쐞븯뿬 100 μg/mL 120 μg/mL쓽 냽룄쓽 異붿텧臾 떆猷뚮 媛곴컖 遺꾩꽍븳 寃곌낵 100 μg/mL 異붿텧臾쇱쓽 泥섎━뿉꽌뒗 LP 솢꽦씠 74.6%濡 굹궗쑝硫, 120 μg/mL쓽 泥섎━뿉꽌뒗 62.7%濡 굹궗떎(Table 7). 뵲씪꽌, LP 빐뒫 100 μg/mL 120 μg/mL뿉꽌 媛곴컖 25.4% (P<0.01) 37.3%濡 씠뒗 議곌뎔뿉 鍮꾪븯뿬 쑀쓽븳 빐뒫쓣 굹깉쑝硫(P<0.001), 듅엳 異붿텧臾 120 μg/mL쓽 냽룄뿉꽌뒗 뼇꽦議곌뎔씤 quercetin 빐뒫씤 79.7% (P< 0.001)쓽 45% 씠긽씤 寃껋쑝濡 굹궗떎(Fig. 4). AT 異붿텧臾쇱뿉 븳 LP 솢꽦 궗썑遺꾩꽍 寃곌낵 quercetin, 120 μg/mL AT 異붿텧臾, 100 μg/mL AT 異붿텧臾, 議곌뎔 닚쑝濡 LP 빐뒫씠 넂 寃껋쑝濡 굹궗떎. 씠뒗 蹂 뿰援ъ뿉꽌 AT 異붿텧臾쇱쓽 넂 쟾怨듭뿬뒫怨 븿猿 빆궛솕뒫씠 엳쓬쓣 利앸챸빐 二쇨퀬 엳떎(Kikuzaki and Nakatani, 1993).

The lipid peroxidation (LP) activity of Aster tataricus L. (AT) extract determined at a wavelength of 500 nm

Concentrations of AT extract (μg/mL)LP activity (500 nm)FPTukey HSD

Mean ± SD
Controla0.59±0.011873.52<.001a>c>d>b
Positive controlb0.12±0.01
100c0.44±0.02
120d0.37±0.01

The data indicate the mean ± SD for triplicate experiments

Abbreviation: Positive control: 25 μM quercetin (XTT50); AT, Aster tataricus L.; querce, Quercetin; LP, Lipid peroxidation


Fig. 4. The inhibitory ability of lipid peroxidation (LP) of Aster tataricus L.

(AT) extract determined at a wavelength of 500 nm. The data indicate the mean ± SD for triplicate experiments. Positive control: 25 μM quercetin (XTT50).


怨 李

釉뚮\궛굹듃瑜(NaBrO3) 以묎툑냽쓣 룷븿븯怨 엳뒗 紐⑤컻뿼깋쓽 궛솕젣濡쒖꽌 룞씪븳 궛솕젣씤 怨쇱궛솕닔냼(H2O2) 媛숈씠 媛뺥븳 룆꽦쑝濡 씤빐 젒珥 떆 뵾遺꽭룷뿉 넀긽쓣 珥덈옒븿쑝濡쒖뜥 젒珥됱꽦 뵾遺뿼쓽 븣윭젨쑝濡쒕룄 븣젮졇 엳떎(Heidi et al., 2004). 씪긽깮솢 以묒뿉 옄二 끂異쒕맖뿉룄 遺덇뎄븯怨 깮泥댁뿉꽌쓽 뵾遺룆꽦뿉 븳 뿰援щ뒗 엳쑝굹(Kim et al., 2014), 꽭룷닔以뿉꽌 NaBrO3쓽 뵾遺룆꽦뿉 븳 젙웾쟻 遺꾩꽍 臾쇰줎, 룆꽦湲곗쟾뿉 븳 뿰援щ룄 뱶臾쇰떎(Santesson and Wickberg, 1913). 뵲씪꽌, 蹂 뿰援ъ뿉꽌뒗 NaBrO3뿉 븳 꽭룷룆꽦쓣 븣븘蹂닿린 쐞븯뿬 諛곗뼇 NIH3T3 꽟쑀븘꽭룷뿉 22~55 μM쓽 NaBrO3瑜 媛 냽룄瑜 泥섎━븳 寃곌낵 泥섎━냽룄뿉 鍮꾨븯뿬 꽭룷깮議댁쑉씠 쑀쓽븯寃 媛먯냼맖쑝濡쒖뜥 꽭룷룆꽦쓣 굹깉쑝硫, 씠 怨쇱젙 以묒뿉 XTT50 媛믪씠 54.4 μM濡 굹굹 Borenfreund and Puerner (1985)쓽 룆꽦뙋젙湲곗뿉 뵲씪 怨좊룆꽦(highly-toxic)씤 寃껋쑝濡 굹궗떎. 씠뱾뿉 쓽븯硫 寃젙솕븰빟젣쓽 以묒븰媛(XTT50)씠 100 μM 씠븯씠硫 怨좊룆꽦(highly-toxic)쑝濡 2,000 μM 씠긽씠硫 臾대룆꽦(non-toxic)쑝濡 뙋젙븯湲 븣臾몄씠떎. 씠媛숈 寃곌낵뒗 븘留덈룄 NaBrO3쓽 룆꽦뿉 궛솕쟻 넀긽怨 愿젴맂 닔궛湲(-OH)뿉 쓽빐 guanine씠 궛솕맂 寃곌낵 8-oxodG쓽 삎꽦怨 븿猿 옄쑀씪뵒移쇱쓣 깮꽦빐 꽭룷 궡 DNA뿉 넀긽쓣 二쇱뼱 꽭룷눜솕瑜 珥덈옒븯嫄곕굹(Kawanish and Murata, 2006), NaBrO3쓽 룆꽦씠 꽭룷 궡 enolase 1 (Eno 1)씠굹 triosephosphate isomerase 1 (Tpi1)怨 媛숈 glycolytic protein쓽 씠긽諛쒗쁽쓣 쑀룄븿쑝濡쒖뜥 꽭룷눜솕瑜 쑀룄빐 꽭룷깮議댁쑉쓽 媛먯냼瑜 굹깉쓣 媛뒫꽦쓣 諛곗젣븷 닔뒗 뾾떎(Ahlbom et al., 2009). 洹몃윭굹 NaBrO3쓽 옄쑀씪뵒移쇱뿉 쓽븳 궛솕쟻 넀긽 썝씤씠 뜑 겢 寃껋쑝濡 깮媛곷맂떎. 씠 媛숈 洹쇨굅쓽 븯굹濡, 궔씠굹 겕濡ш낵 媛숈 紐뉖챺 以묎툑냽솕빀臾쇰뱾씠 씠뱾쓽 諛섏쓳怨쇱젙 以묒뿉 옄쑀씪뵒移쇱쓣 諛쒖깮떆궡쑝濡쒖뜥 룆꽦怨 궛솕쟻 넀긽怨쇱쓽 愿젴꽦씠 젣떆맂 諛 엳떎(Leonard et al., 2000). 뵲씪꽌, 蹂 뿰援ъ뿉꽌뒗 NaBrO3쓽 룆꽦怨 옄쑀씪뵒移쇨컙 궛솕쟻 넀긽怨쇱쓽 뿰愿꽦쓣 븣븘蹂닿린 쐞븯뿬, 諛곗뼇꽭룷뿉 XTT50 냽룄쓽 NaBrO3瑜 泥섎━븯湲 쟾뿉 옄쑀씪뵒移 젣嫄곗젣씤 quercetin쓣 2떆媛 룞븞 泥섎━븳 寃곌낵 NaBrO3留뚯쓽 泥섎━뿉 鍮꾪븯뿬 quercetin쓽 泥섎━援곗뿉꽌 쑀쓽븳 꽭룷깮議댁쑉쓽 利앷瑜 굹깉떎. 씠 媛숈 쁽긽 NaBrO3뿉 쓽븳 옄쑀씪뵒移쇱쓣 quercetin씠 젣嫄고븿쑝濡쒖뜥 NaBrO3쓽 룆꽦쓣 諛⑹뼱븳 寃껋쑝濡, NaBrO3쓽 룆꽦씠 궛솕쟻 넀긽怨 愿젴씠 엳쓬쓣 利앸챸븯떎. 蹂 뿰援ш껐怨쇰뒗 珥덉궛궔씠굹 삉뒗 궪궛솕겕濡ш낵 媛숈 以묎툑냽솕빀臾쇱쓽 룆꽦씠 vitamin E 媛숈 빆궛솕젣뿉 쓽빐 諛⑹뼱맖쑝濡쒖뜥 씠뱾 룆꽦씠 궛솕쟻 넀긽怨 愿젴씠 엳떎뒗 뿰援 蹂닿퀬룄 씪留 긽넻븿쓣 븣 닔 엳뿀떎(Jung et al., 2014). 媛쒕몄랬(AT)쓽 빆뿼 슚怨쇱뿉 빐꽌뒗 interleukin (IL)-1, 6, 10, 18怨 媛숈 궗씠넗移댁씤쓣 鍮꾨’븯뿬 TNF-α굹 NF-κB, iNO 삉뒗 COX-2 媛숈 諛쒗쁽 벑뿉 愿븳 뿰援щ 蹂 닔 엳떎(Du et al., 2017). 삉븳 AT 異붿텧臾쇱쓽 빆궛솕 슚怨쇱뿉 빐꽌뒗 룞臾쇱“吏(Yao et al., 2010; Hu et al., 2017)怨 媛꾩꽭룷씠굹 鍮꾨쭔꽭룷, 떇꽭룷 벑뿉꽌 SOD, GSH, CAT 媛숈 슚냼遺꾩꽍 諛 DPPH-radical 냼嫄곕뒫뿉 븳 냼닔쓽 뿰援щ뱾쓣 蹂 닔 엳떎(Ngabire et al., 2018). 뵲씪꽌, AT 異붿텧臾쇱뿉 븳 뜑 留롮 빆궛솕 遺꾩꽍 븘슂꽦 臾쇰줎, 룞떆뿉 떎뼇븳 꽭룷醫낆뿉꽌쓽 遺꾩꽍뿰援ш 뜑슧 슂援щ맂떎. 蹂 뿰援ъ뿉꽌뒗 씠 媛숈 痍⑥쓽 씪솚쑝濡 뵾遺쓽 諛곗뼇 NIH3T3 꽟쑀븘꽭룷瑜 옱猷뚮줈 AT 異붿텧臾쇱쓽 빆궛솕뒫쓣 議곗궗븯떎. 癒쇱 NaBrO3쓽 궛솕쟻 넀긽룆꽦뿉 븳 AT 異붿텧臾쇱쓽 쁺뼢쓣 議곗궗븯湲 쐞븯뿬 諛곗뼇꽭룷뿉 XTT50 냽룄쓽 NaBrO3瑜 泥섎━븯湲 쟾뿉 異붿텧臾 100 μg/mL 120 μg/mL 냽룄瑜 媛곴컖 쟾 泥섎━븳 寃곌낵 NaBrO3留뚯쓽 泥섎━씤 41.6%뿉 鍮꾪븯뿬 媛곴컖 52.8% 69.7%濡 쑀쓽븳 꽭룷깮議댁쑉쓽 利앷瑜 蹂댁떎. 蹂 寃곌낵뒗 AT 異붿텧臾쇱씠 NaBrO3쓽 룆꽦쓣 諛⑹뼱븯쓬쓣 留먰빐 二쇨퀬 엳쑝硫, AT 媛숈씠 quercetin씠굹 flavonol, saponin怨 媛숈 쑀궗꽦遺꾩쓣 븿쑀븯怨 엳뒗 吏湲덉큹(Euphorbiae humifusae L.) 異붿텧臾쇱씠굹 븳젴珥(Eclipta prostrate L.)씠 珥덉궛궔씠굹 留앷컙쓽 궛솕쟻 넀긽諛⑹뼱뿉 븳 蹂닿퀬룄 씪移섑븿쓣 븣 닔 엳뿀떎(Lee and Seo, 2018; Lee et al., 2018). 蹂 뿰援ъ뿉꽌 AT 異붿텧臾쇱뿉 븳 븿웾 議곗궗뿉꽌 뤃由ы럹怨 뵆씪蹂대끂씠뱶쓽 븿웾씠 媛곴컖 46.8 mg/g怨 23.9 mg/g쑝濡 굹궗떎. 씠뒗 吏湲덉큹 異붿텧臾(51.2 mg/g, 26.5 mg/g), 븳젴珥 異붿텧臾(51.4 mg/g, 25.9 mg/g)怨 鍮꾧탳빐 蹂 븣 嫄곗쓽 鍮꾩듂븳 寃껋쑝濡 굹궗떎. 븳렪, NaBrO3쓽 궛솕쟻 넀긽룆꽦뿉 븯뿬 AT 異붿텧臾쇱 蹂댄샇슚怨쇰 蹂댁뒗뜲, 씠뒗 蹂 뿰援ъ뿉꽌 떆뻾븳 븿웾遺꾩꽍怨 媛숈씠 AT 異붿텧臾쇱뿉 빆궛솕뒫씠 媛뺥븳 뤃由ы럹怨 뵆씪蹂대끂씠뱶怨꾪넻쓽 saponin쓣 鍮꾨’븳 qucertin씠굹 kaempferol怨 媛숈 꽦遺꾩씠 떎웾 븿쑀릺뼱 엳뼱 씠뱾 꽦遺꾨뱾쓽 떒룆 삉뒗 긽샇옉슜뿉 湲곗씤븳 寃껋쑝濡 깮媛곷맂떎(Ng et al., 2003). 씠泥섎읆 AT 異붿텧臾쇨낵 쑀궗꽦遺꾩쓣 媛吏怨 엳뒗 異붿텧臾쇰뱾씠 옄쑀씪뵒移쇱뿉 븯뿬 쑀궗븳 蹂댄샇 슚怨쇰 蹂댁씠뒗 寃껋 遺꾩꽍諛⑸쾿쓽 李⑥씠굹 꽭룷醫낆뿉 뵲씪 떎냼 떎瑜 닔뒗 엳寃좎쑝굹 紐⑤뱺 끉臾몄뿉꽌쓽 蹂닿퀬泥섎읆 異붿텧臾쇱뿉 븿쑀맂 鍮꾩듂븳 꽦遺꾨뱾쓽 빟由ы솢꽦 寃곌낵 븣臾몄씤 寃껋쑝濡 媛꾩<맂떎. 뵲씪꽌 異붿텧臾쇱쓽 뼱뒓 듅젙꽦遺꾧낵 紐⑺몴꽭룷(target cell)쓽 닔슜泥댁 愿젴빐 寃젙빟臾쇱쓽 슚뒫李⑥씠뿉 븳 썑냽 뿰援ш 븘슂븷 寃껋쑝濡 깮媛곷맂떎. 븳렪, 蹂 뿰援ъ뿉꽌 AT 異붿텧臾쇱뿉 븳 빆궛솕뒫쓣 議곗궗븳 寃곌낵 AT 異붿텧臾쇱 넂 쟾옄怨듭뿬뒫(ED ability)怨 吏吏덇낵궛솕 빐뒫(inhibitory ability of LP)쓣 蹂댁엫쑝濡쒖꽌 빆궛솕뒫쓣 媛吏怨 엳쓬쓣 븣 닔 엳뿀떎. 蹂 寃곌낵뒗 珥덉궛궔씠굹 留앷컙룆꽦쓽 궛솕쟻 넀긽뿉 븳 吏湲덉큹 異붿텧臾쇨낵 븳젴珥 異붿텧臾쇱쓽 빆궛솕 遺꾩꽍 寃곌낵룄 씪移섑븯쑝硫(Lee and Seo, 2018; Lee et al., 2018), AT 異붿텧臾 꽦遺꾩씤 quercetin怨 kaempferol씠 LP 빐뒫쓣 굹깉떎뒗 蹂닿퀬룄 씪移섑븯떎(Ng et al., 2003). 쟾옄怨듭뿬뒫 옄쑀씪뵒移쇱뿉 쟾옄瑜 怨듭뿬븯뿬 궛솕瑜 뼲젣븯뒗 뒫젰 利, 옄쑀씪뵒移쇱쓣 젣嫄고븯뒗 뒫젰쓣 留먰븯뒗뜲 씠寃껋 DPPH-raedical 냼嫄곕뒫쓣 쓽誘명븳떎(Blois, 1958). LP 빐뒫 留됱吏덉쓣 二쇰줈 援ъ꽦븯怨 엳뒗 씤吏吏덉쓽 궛솕瑜 諛⑹뼱븯뒗 뒫젰쑝濡쒖꽌 꽭룷 궡遺瑜 떥怨 엳뒗 留됰낫샇씪뒗 以묒슂븳 뿭븷쓣 닔뻾븳떎, 留됱쓽 뙆愿대뒗 꽭룷쓽 꽭룷냼湲곌쓣 鍮꾨’븳 紐⑤뱺 궡遺湲곕뒫씠 젙吏맖쑝濡쒖뜥 꽭룷뒗 궗硫명븯寃 맂떎(Kikuzaki and Nakatani, 1993). 洹몃윭굹, 泥쒖뿰꽦遺꾩뿉 븳 빟由ы솢꽦씠굹 슚뒫뿉 븳 뜑슧 옄꽭븳 洹쒕챸쓣 쐞빐꽌뒗 빟由щ굹 깮솕븰쟻怨 媛숈 떎뼇븳 痢〓㈃뿉꽌 뿰援ш 泥닿퀎쟻쑝濡 씠猷⑥뼱졇빞 븷 寃껋쑝濡 깮媛곷맂떎.

ACKNOWLEDGEMENT

None.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

References
  1. Ahlbom GS, Delker DA, Roop BC, Winnick WM. Early alterations in protection and gene expression in rat kidney following bromate exposure. Food and Chemical Toxicology 2009. 47: 1154-1160.
    Pubmed CrossRef
  2. A.O.A.C.. Official method of analysis. 18th ed. 2005. pp 21-21. Association of of ficialanalytical chemists. Washington DC.
  3. Blois MS. Antioxidant determination by the use of a stable free radical. Nature 1958. 181: 1199-1200.
    CrossRef
  4. Borenfreund E, Puerner JA. A simple quantitative procedure using monolayer culture for cytotoxicity assay (HTD/NR-90). Journal of Tissue Culture Methods 1985. 9: 7-9.
    CrossRef
  5. Chun HJ, Choi WH, Baek SH, Woo WH. Effect of quercetin on melanogenesis in melanocyte cells. Korean Journal of Pharma-cognosy 2002. 33: 245-251.
  6. Choi DY, Choi EJ, Jin QL, Shin JE, Woo ER. Biochemical activity of flavonoids isolated from Aster tataricus. Korean Journal of Pharmacognosy 2009. 40: 123-127.
    CrossRef
  7. Du L, Mei HF, Yin X, Xing YQ. Delayed growth of glioma by a polysaccharide from Aster tataricus involve upregulation of Bax/Bcl-2 ratio, activation of caspase-3/8/9, and downregulation of the Akt. Tumor Bioliogy 2014. 35: 1819-1825.
    Pubmed CrossRef
  8. Eo SH, Kim HR, Kim KY. A comparative analysis of wave formation and preservation by treatment with sodium bromate and hydrogen peroxide as oxidant of permanent wave. Journal of Investigative Cosmetology 2011. 7: 449-457.
    CrossRef
  9. Guo TL, McCay JA, Karrow NA, Brown RD, White KL Jr. Immu-notoxicity of sodium bromate in female B6C3F1 mice: a 28-day drinking water study. Drug and Chemical Toxicology 2001. 24: 129-149.
    Pubmed CrossRef
  10. Heidi S, Suresh CR, Ksaus EA, Jeanne DJ, Torkil M. Hair dye contact allergy: quantitative exposure assessment of selectied products and clinical cases. Contact Dermatitis 2004. 50: 344-348.
    Pubmed CrossRef
  11. Hu BL, Hou WC, Li XP, Ma LJ, Bai XX, Liu Q, Liu BH. Aster tataricus attenuates the neuronal cell damaged and restores the cognitive fuctions in epileptic rat. Biochemical Research 2017. 28: 187-195.
  12. Jung JY, Oh SK, Park SH, Yoon MY, Yu YW, Rim YS et al. Antioxidative effect of Ajuga multiflora BUNGE extract on chromium trioxide, dermatitis inducer in cultured NIH3T3 fibroblasts. Journal of Investigative Cosmetology 2014. 10: 21-26. https://doi.org/10.15810/jic.2014.10.1.003.
    CrossRef
  13. Kawanish S, Murata M. Mechanism of DNA damage induced by bromate differ from general type of oxidative stress. Toxicology 2006. 221: 172-178.
    Pubmed CrossRef
  14. Kim M, Lee SB, Kim KY. Using behaviors of permanent wave neutralizers, skin disorder and it's treatment in hairdressers. Journal of Korean Society of Cosmetology 2014. 20: 528-536.
  15. Kikuzaki H, Nakatani N. Antioxidant effects of some ginger constituents. Journal of Food Science 1993. 58: 1407-1410. https://doi.org/10.1111/j.1365-2621.1993.tb06194.x
    CrossRef
  16. Kolisetty N, Bull RJ, Muralidhara S, Cumming BS. Association of bromated proteins and changes in protein expression in rat kidney with subcarcinogenic doses of bromate. Toxicology and Applied pharmacology 2013. 272: 391-398.
    Pubmed CrossRef
  17. Kolli RT, Glenn TC, Brown BT, Kaura SP. Bromate-induced changes in p21 DNA methylation and histon acetylation in renal cells. Toxicological Sciences 2019. 168: 460-473.
    Pubmed CrossRef
  18. Lee SH, Seo YM. Alleviating effects ofEuphorbiae humifusae L. extract on the neurotoxicity induced by lead. Korean Journal of Clinical Laboratory Science 2018. 50: 501-510. https://doi.org/10.15324/kjcls.2018.50.4.501
    CrossRef
  19. Lee GY, Chang BS. Stydies on the tensile strength of oxidative permanent dye hair. Korean Journal of Microscopy 2008. 38: 339-345.
  20. Lee SH, Jung IJ, Jang HS. The antioxidative effect of Eclipta prostrate L. extract on cultured NIH3T3 fibroblasts induced by manganese-induced cytotoxicity. Biochemical Science Science Letters 2018. 24: 1-8.
    CrossRef
  21. Leonard S, Wang S, Zhang L, Castranova V, Vallyathan V, Shi X. Role of molecular oxygen in the generation of hydroxyl and superoxide anion radicals during enzymatic Cr (VI)-induced carcinogenesis. Journal of Environmental Pathology, Toxicology 2000. 19: 49-60.
    Pubmed
  22. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods 1983. 65: 55-63.
    Pubmed CrossRef
  23. Ng TB, Liu F, Lu Y, Cheng CHK, Wang Z. Antioxidant activity of compounds from medicinal herb Aster tataricus. Comparative Biochemistry & Phsiology 2003. 136: 109-115.
    Pubmed CrossRef
  24. Ngabire D, Seong YA, Patil MP, Niyonizigiye I, Seo YB, Kim GD. Anti-inflammatory effects of Aster incisus through the inhibition of NF-kB, MARK and Akt pathways in LPS-stimulated Raw 264.7 macrophages. Mediators of Inflammation 2018. 18: 26-36.
    Pubmed KoreaMed CrossRef
  25. Nieva Moreno MI, Isla MI, Sampietro AR, Vattuone MA. Comparison of the three radical-scavenging activity of propolis from several regions of Argentina. Journal of Ethmopharmacology 2000. 71: 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
    Pubmed CrossRef
  26. Park SH, Kim KH, Kim JG, Song JE, Oh WG, Kim JH, Lee KY. A case of severe acute renal failure due to sodium bromate intoxication. Korean Journal of Nephrology 2011. 30: 84-86.
  27. Ryu DM, Jang SM, Park JW. Acute kidney injury due to sodium bromate intoxication: a report of two cases. Korean Journal of Internal Medicine 2011. 26: 453-465.
    Pubmed KoreaMed CrossRef
  28. Santesson CC, Wickberg. The action of sodium bromate. Skandinav Arch Physiology 1913. 30: 337-374.
    CrossRef
  29. Sashiyama H, Irie Y, Ohtake Y, Okuta K. Acute renal failure and hearing loss due to sodium bromate poisoning: a case report and review of the literature. Clinical Literature 2002. 58: 455-457.
    Pubmed CrossRef
  30. Suzuki J, Takanashi Y, Koyama A, Katori Y. Journal of Laryngology and Otology 2018. 132: 1039-1041.
    Pubmed CrossRef
  31. Wang L, Li MD, Cao PP, Zhang CF, Huang F, Zhang M. Astin B, a cyclic pentapeptide from Aster tataricus induces apoptosis and autophagy in human hepatic L-02 cells. Chemicobiological Interactions 2014. 223: 1-9.
    Pubmed CrossRef
  32. Yang H, Shi H, Zhang Q, Liu Y, Wan C, Zhang L. Stimultaneous determination of five components in Aster tataricus bt ultraperformance liquid chromatography-Tandem mass spectrometry. Journal of Chromatographic Science 2015. 54: 500-506.
    Pubmed KoreaMed CrossRef
  33. Yao X, Dong X, Zhang HS, Wang Y, Liu XS. Preventive effect of Aster tataricus on oxidative stress and biomarker of renal function in rat fed with high fat diet and sucrose diet. Bio-medical Research 2017. 28: 1647-1653.