Search for


TEXT SIZE

search for



CrossRef (0)
Evaluation of Antioxidant Activity and Cytotoxicity in Mixture Extract of Artemisia asiatica Nakai and Moringa oleifera Lam
Biomed Sci Letters 2020;26:296-301
Published online December 31, 2020;  https://doi.org/10.15616/BSL.2020.26.4.296
© 2020 The Korean Society For Biomedical Laboratory Sciences.

Yoon-Ji Lee1,*, Jang-Oh Kim1,*, Chan-Hee Jeon1,*, Ji-Eun Lee1,*, Ji-Hye Shin1,* and Byung-In Min2,,**

1Department of Emergency and Disaster Management, Inje University, Gimhae-si 50834, Korea
2Department of Nuclear Applied Engineering, Inje University, Gimhae-si 50834, Korea
Correspondence to: Byung-In Min. Department of Nuclear Applied Engineering, Inje University, 197, Inje-ro, Gimhae-si, Gyeongsangnam-do 50834, Korea.
Tel: +82-55-320-3910, Fax: +82-55-337-1303, e-mail: rimbi@inje.ac.kr
*Graduate student, **Professor.
Received September 10, 2020; Revised December 18, 2020; Accepted December 18, 2020.
 Abstract
The purpose of this study was performed to evaluate antioxidant activity of the Artemisia asiatica Nakai and Moringa oleifera Lam mixture extract. Mixture extracts were manufactured by concentration and compared with a single extract (only the Artemisia asiatica Nakai mixture and only the Moringa oleifera Lam mixture). The experiments conducted Total polyphenol measurements, Total flavonoid measurements, DPPH radical scavenging activty, ABTS radical scavenging activty and LDH assay. The LDH assay assessment shows that all extracts are cells compared to controls. The toxicity was weak. Finally, The antioxidant capacity was rated higher than mixture extract of a single extract. Also, the optimized mixture was determined AM5 (Artemisia asiatica Nakai mixture: Moringa oleifera Lam mixture = 3:1). For extracts of AM5, Total phenol and flavonoid contents were 271.769짹18.087 mg/g and 45.384짹5.026 mg/g. and DPPH and ABTS scavenging activity were 70.8짹6.496% and 77.1짹9.634%. Therefore, it is expected that the value of the extract will increase as it increases its antioxidant activity if it is manufactured according to the appropriate ratio.
Keywords : Artemisia asiatica Nakai, Moringa oleifera Lam, Antioxidant activity, Free radical
꽌 濡

21꽭湲 궛뾽 湲곗닠씠 諛쒕떖븿뿉 뵲씪 겙 蹂솕瑜 珥덈옒븳 寃 以 븯굹媛 '떇뒿愿 蹂솕'씠떎. 쁽궗쉶뿉꽌 꽌援ъ떇 떇뒿愿쓣 닔슜븿쑝濡쒖뜥 쇅떇臾명솕 솗 諛 媛곸쥌 媛怨듭떇뭹, 利됱꽍떇뭹(fast food), 怨좎뭡濡쒕━ 떇뭹쓣 怨쇱엵 꽠痍⑦븯寃 릺뿀湲 븣臾몄씠떎(Kim et al., 2009). 뵲씪꽌 씠윭븳 떇뒿愿 蹂솕濡 씤빐 理쒓렐뿉뒗 鍮꾨쭔, 꽦씤蹂, 怨좏삁븬, 떦눊蹂묒쓣 湲곕컲쑝濡 븫 諛쒕퀝瑜좎씠 넂븘議뚮떎. 씠 吏덈퀝뱾 移섎즺蹂대떎뒗 삁諛⑹씠 슦꽑씠湲곗뿉 떇뒿愿쓣 媛쒖꽑븷 븘슂媛 엳떎. 뵲씪꽌 쁽옱 빆븫, 빆떦눊, 뿼利 諛 끂솕 삁諛⑹뿉 슚뒫씠 엳뒗 빆궛솕 떇뭹뱾쓽 뿰援ш 븘슂븳 떎젙씠떎.

洹 以 媛쒕컻맂 酉고떥븯씠뱶濡앹떆븘땲넄(Butylated Hydroxy Anisole, BHA), 뵒遺떥븯씠뱶濡앹떆넧猷⑥뿏(Di dibutyl hydroxy toluene, BHT) 벑쓽 빀꽦 빆궛솕젣뒗 씪젙웾쓽 蹂듭슜 씠긽 떆 룆꽦쓣 씪쑝궗 臾몄젣媛 엳떎怨 蹂닿퀬릺뿀떎(Branen, 1975). 씠뿉 諛섑빐 泥쒖뿰 빆궛솕 臾쇱쭏 옣湲곌컙 蹂듭슜 떆 遺옉슜씠 쟻쑝硫 빆궛솕 슚怨쇨 넂븘 뿬윭 媛吏 깮由 솢꽦쓣 옉슜븷 닔 엳떎怨 븣젮졇 엳떎. 씠뱾쓽 슚뒫씠 븣젮吏먯쑝濡쒖뜥 泥쒖뿰 빆궛솕 臾쇱쭏쓽 뿰援ш 媛곴킅諛쏄퀬 엳떎.

蹂 뿰援ъ뿉꽌 泥쒖뿰 臾쇱쭏 옱猷뚮줈 궗슜븳 븷뿽怨 紐⑤쭅媛 以 븷뿽(Artemisia asiatica Nakai) 솴빐뫁(Artemisia argyi Lev. et Vant.), 뫁(A. Princeps Pamp. var. orientlis Hara)쓽 옂쓣 留먮┛ 빟옱濡쒖꽌 빆洹, 빆븫 諛 빆궛솕 옉슜(Jeong et al., 2007), 빆洹 옉슜(Sung, 2009), 삁븬 媛뺥븯 옉슜(Kim et al., 1981) 벑뿉 슚뒫씠 엳떎. 븷뿽뿉뒗 Eupatilin怨 Jaceosidin쓽 flavonoid 꽦遺(Ryu et al., 2004)쓣 븿쑀븯怨 엳떎. 듅엳 Jaceosidin 꽭룷 옄硫 쑀룄 꽑깮쟻쑝濡 븫꽭룷 利앹떇쓣 뼲젣븯뒗 슚怨(Han et al., 2018)媛 엳떎怨 蹂닿퀬릺뿀떎. 紐⑤쭅媛(Moringa oleifera Lam)뒗 굺뿽 솢뿽援먮ぉ뿉 냽븯硫 紐⑤쭅媛쓽 옂쓣 뜑遺덉뼱, 苑, 遊됱슦由, 뵪븮 諛 뿴留 벑 빟臾쇰줈꽌 꽠痍(Anwar and Bhanger, 2003)瑜 븯怨 엳떎. 삉븳 紐⑤쭅媛뒗 빆떦눊, 븫꽭룷 궗硫, 빆醫낆뼇 諛 媛 넀긽 諛⑹뿉 슚뒫씠 엳떎(Anwar et al., 2007)怨 븣젮졇 엳떎. 洹 以 紐⑤쭅媛 옂 떎웾쓽 polyphenol 諛 flavonoid 꽦遺꾩씠 뱾뼱엳뼱 빆궛솕 슚뒫뿉 쎇뼱굹떎怨 븣젮졇 엳떎(Choi and Kim, 2015). 쁽옱源뚯 븷뿽 諛 紐⑤쭅媛 異붿텧臾쇱뿉 븳 슚뒫씠 븣젮吏硫댁꽌 빆궛솕 떇뭹쑝濡 쓳슜븯怨 엳떎.

씠泥섎읆 泥쒖뿰 臾쇱쭏留덈떎 polyphenol 諛 flavonoid瑜 援ъ꽦븯뒗 꽦遺꾩 떎瑜대떎. 쐞뿉 굹궃 諛붿 媛숈씠 븷뿽 Jaceosidin쓣 븿쑀븯怨 엳쑝굹 紐⑤쭅媛뒗 븿쑀븯怨 엳吏 븡떎. 洹몃윭誘濡 븷뿽怨 紐⑤쭅媛쓽 뼇쓣 떖由ы븯뿬 샎빀븳 썑 뿴닔異붿텧쓣 븯硫 異붿텧릺뒗 polyphenol 諛 flavonoid쓽 뼇 떎瑜 寃껋쑝濡 뙋떒맂떎. 利 polyphenol 諛 flavonoid瑜 援ъ꽦븯뒗 꽦遺꾩씠 떎瑜닿린 븣臾몄뿉 빆궛솕 뒫젰뿉 븳 留ㅼ빱땲利 삉븳 떎瑜닿쾶 옉슜븷 寃껋쑝濡 湲곕맂떎.

뵲씪꽌 蹂 뿰援щ뒗 븷뿽-紐⑤쭅媛 샎빀 異붿텧臾쇱쓣 씪젙 鍮꾩쑉뿉 뵲씪 젣議고븯뿬 떒씪 異붿텧臾쇨낵 샎빀 異붿텧臾쇱쓽 빆궛솕 슚怨쇰 鍮꾨’븯뿬 깮由 솢꽦 슚뒫쓣 룊媛븯怨 媛옣 슚怨쇱쟻씤 샎빀 鍮꾩쑉쓣 李얘퀬옄 븳떎.

옱猷 諛 諛⑸쾿

떎뿕옱猷

떎뿕뿉 궗슜맂 븷뿽(Artemisia asiatica Nakai) 븷뿽 100% 遺꾨쭚濡 (二)뿴由곗빟珥(Seoul, Korea)뿉꽌 援щℓ븯쑝硫 紐⑤쭅媛 옂(Moringa oleifera Lam) 遺꾨쭚 遺궛떆 援젣떆옣뿉꽌 援ъ엯븯뿬 궗슜븯떎.

異붿텧臾쇱쓽 젣議

븷뿽-紐⑤쭅媛遺꾨쭚쓽 떒씪 諛 샎빀 異붿텧臾쇱 Table 1怨 媛숈씠 샎빀븯뿬 궗슜븯떎. Choi쓽 샎빀 異붿텧臾 빆궛솕 룊媛 떎뿕諛⑸쾿쓣 쓳슜븯뿬 븷뿽遺꾨쭚怨 紐⑤쭅媛遺꾨쭚쓽 샎빀 異붿텧臾쇱 븷뿽:紐⑤쭅媛 鍮꾩쑉쓣 100:0遺꽣 0:100源뚯 25%뵫 利앷떆궎硫댁꽌 샎빀븯뿬 떎뿕뿉 궗슜븯떎(Choi et al., 2012). 븷뿽, 紐⑤쭅媛遺꾨쭚 떆猷뚯뿉 利앸쪟닔瑜 1:10 (w/v)쑝濡 泥④븯뿬 100꼦뿉꽌 3떆媛 룞븞 솚瑜섎깋媛곸쓣 2쉶 諛섎났븯뿬 異붿텧븯떎. 븷뿽-紐⑤쭅媛 떒씪 諛 샎빀 異붿텧臾쇱 Filter paper (Toyo roshi kaisha, Ltd, Japan)濡 뿬怨쇳븳 썑 媛먯븬 냽異뺥븳 떎쓬 Rotary Evaporator (R-100, BUCHI)瑜 씠슜븯뿬 嫄댁“븳 썑 궗슜븯떎.

Sample name and Ratio of Artemisia asiatica Nakaiand and Moringa oleifera Lam mixture

Sample name Mixture ratio (%)
(Artemisia asiatica Nakai: Moringa oleifera Lam)
AW 100:0
MW 0:100
AM1 50:50 (1:1)
AM2 33.3:66.7 (1:2)
AM3 66.7:33.3 (2:1)
AM4 25:75 (1:3)
AM5 75:25 (3:1)

AW: water extract of Artemisia asiatica Nakai, MW: water extract of Moringa oleifera Lam, AM1, 2, 3, 4, 5: Each hot water extract by mixture ratio



Total polyphenol 痢≪젙

븷뿽-紐⑤쭅媛 샎빀 異붿텧臾쇱쓽 珥 polyphenol 븿웾 Folin-Denis 諛⑸쾿 벑쓣 쓳슜븯뿬 遺꾩꽍븯떎(Hong et al., 2011). 씠 遺꾩꽍踰뺤 Folin-ciacalteu reagent媛 떆猷뚯쓽 polyphenol 꽦 솕빀臾쇱뿉 쓽빐 紐곕━釉뚮뜶쓣 泥깋쑝濡 蹂븯寃 븳떎. 씠 蹂솕웾 異붿텧臾쇱쓽 polyphenol 꽦 솕빀臾쇱뿉 쓽빐 솚썝웾쓣 굹궦떎. 媛 떆猷 異붿텧臾 200 關L뿉 2% Na2CO3 슜븸 4 mL瑜 媛븯뿬 3遺꾧컙 諛⑹튂븳 뮘 50% Folin-Ciocalteu reagent 200 關L瑜 泥④븯뿬 떎삩뿉꽌 30遺꾧컙 諛섏쓳떆耳곕떎. 諛섏쓳떆궓 떆猷뚮뒗 UV-Vis Spectrophotometer (Mega-V600, SINCO)쓣 궗슜븯뿬 700 nm뿉꽌 痢≪젙븯떎. 몴以 臾쇱쭏 gallic acid濡 븯뿬 씪젙 냽룄蹂(0.001, 0.01, 0.1, 1 mg/g)濡 議곗젣븳 썑 떆猷뚯 룞씪븳 諛⑸쾿쓣 嫄곗튇 뮘 寃웾꽑쓣 옉꽦븯떎. 몴以怨≪꽑 떇쓣 援ы븯뿬 떆猷뚯슜븸 씉愿묐룄瑜 떇뿉 엯븯뿬 珥 럹 븿웾쓣 援ы븯떎. 븷뿽-紐⑤쭅媛 떒씪 諛 샎빀 異붿텧臾쇱뿉 븿쑀맂 珥 럹 븿웾(GAE mg/g) 떆猷 1 g 떦 mg garlic acid 湲곗쑝濡 굹깉떎.

Total flavonoid 痢≪젙

븷뿽-紐⑤쭅媛 샎빀 異붿텧臾쇱쓽 Total flavonoid 븿웾 Jia 諛⑸쾿 벑쓣 쓳슜븯뿬 遺꾩꽍븯떎(Jia et al., 1999). 媛 떆猷 異붿텧臾 50 關L뿉 利앸쪟닔 30 關L瑜 泥④븯뿬 떎삩 25꼦뿉꽌 5遺꾧컙 諛섏쓳떆耳곕떎. 洹 썑 5% NaNO2 슜븸 15 關L瑜 泥④븯뿬 5遺 썑 10% AlCl3 슜븸 30 關L瑜 꽎뼱 6遺꾧컙 긽삩뿉꽌 諛⑹튂븳 썑 1 N NaOH 슜븸 100 關L瑜 泥④븯떎. 諛섏쓳븸 ELISA reader (biotek, USA) 520 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 몴以 臾쇱쭏 Hesperidin쑝濡 븯뿬 씪젙 냽룄蹂(100, 200, 300, 400, 500 關g/mL)濡 議곗젣븳 썑 떆猷뚯 룞씪븳 諛⑸쾿쓣 嫄곗튇 뮘 寃웾꽑쓣 옉꽦븯떎. 몴以怨≪꽑 떇쓣 援ы븯뿬 떆猷뚯슜븸 씉愿묐룄瑜 떇뿉 엯븯뿬 珥 flavonoid 븿웾쓣 援ы븯떎. 븷뿽-紐⑤쭅媛 떒씪 諛 샎빀 異붿텧臾쇱뿉 븿쑀맂 珥 flavonoid 븿웾(HE mg/g) 떆猷 1 g 떦 mg hesperidin 湲곗쑝濡 굹깉떎.

빆궛솕 뒫젰 룊媛

DPPH radical 냼嫄곕뒫: 븷뿽-紐⑤쭅媛 샎빀異붿텧臾쇱쓽 빆궛솕 뒫젰 Soumaya, Kim 벑쓽 諛⑸쾿쓣 쓳슜븯뿬 遺꾩꽍븯떎(Soumaya et al., 2005; Kim et al., 2011). 씠 遺꾩꽍踰뺤 DPPH (2,2-Dipheny-1-picrylhydrazyl) 슜븸씠 빆궛솕 臾쇱쭏怨 諛섏쓳븯硫 쟾옄瑜 궡뼱二쇨퀬 radical씠 냼硫몃릺뼱 끂깋쑝濡 蹂븯뒗 썝由ъ씠떎(Hiroshi and Mitsuaki, 1999). 씠 蹂솕웾씠 異붿텧臾쇱씠 媛吏怨 엳뒗 솢꽦궛냼瑜 젣嫄고븯뒗 뒫젰쓣 굹궦떎(Jeong et al., 2004). 媛 異붿텧臾쇨낵 0.2 mM DPPH 슜븸怨 1:1 鍮꾩쑉濡 諛섏쓳떆궓 떎쓬 520 nm뿉꽌 씉愿묐룄瑜 痢≪젙븳떎. 떎쓬 怨꾩궛떇쓣 넻빐 DPPH radical 냼嫄곕뒫쓣 怨꾩궛븯떎.

DPPH Scavenging activity(%)=1Sample O. DControl O. D100

ABTS radical 냼嫄곕뒫: 븷뿽-紐⑤쭅媛 샎빀 異붿텧臾쇱쓽 빆궛솕 뒫젰 Lee 諛⑸쾿뿉 뵲씪 쓳슜븯뿬 遺꾩꽍븯떎(Lee and Moon, 2019). 씠 遺꾩꽍踰뺤 ABTS radical씠 怨쇳솴궛移쇰ⅷ(Potassium persulfate)怨쇱쓽 諛섏쓳뿉꽌 깮꽦맂 빆궛솕 臾쇱쭏뿉 쓽빐 ABTS free radical씠 젣嫄곕릺뼱 radical씠 泥濡앹깋쑝濡 蹂븳떎. 씠 蹂솕웾씠 빆궛솕젣뿉 쓽븳 솚썝젰쓣 굹궦떎. 븷뿽-紐⑤쭅媛 냽룄蹂 샎빀 異붿텧臾쇱뿉 2.45 mM 怨쇳솴솕移쇰ⅷ怨 7 nM ABTS 슜븸쓣 샎빀븯뿬 븫냼뿉꽌 24떆媛 諛⑹튂븯뿬 ABTS+쓣 깮꽦븯떎. 734 nm뿉꽌 痢≪젙븯뿬 씉愿묐룄 媛믪씠 0.70짹0.02媛 릺寃 Ethanol濡 씗꽍븯뿬 議곗젙븯떎. 異붿텧臾 諛 뼇꽦議곌뎔 0.1 mL ABTS 슜븸 0.9 mL瑜 샎빀븯뿬 6遺꾧컙 諛섏쓳떆궓 썑 UV-Vis Spectrophotometer (Mega-V600, SINCO) 734 nm뿉꽌 씉愿묐룄 痢≪젙븯떎. 떎쓬 怨꾩궛떇쓣 넻빐 ABTS radical 냼嫄곕뒫쓣 怨꾩궛븯떎.

ABTS+Scavenging activity(%)=1Sample O. DControl O. D100

젚궛깉닔냼슚냼(Lactacte dehydrogenase, LDH) 룊媛

꽭룷룆꽦룊媛뒗 LDH assay瑜 떎떆븯떎. 젚궛깉닔냼슚냼뒗 븞젙븳 꽭룷뿉꽌뒗 遺遺 꽭룷留됱쓣 넻怨쇳븯吏 紐삵븯湲 븣臾몄뿉 꽭룷留 諛뽰쑝濡 諛⑹텧릺吏 紐삵븳떎. 븯吏留 넀긽맂 꽭룷뿉꽌 LDH뒗 꽭룷留 諛뽰쑝濡 諛⑹텧븯寃 맂떎(Fotakis and Timbrell, 2006). 뿬湲곗꽌 諛곗 궡 LDH 뼇쓣 痢≪젙븯뿬 꽭룷룆꽦(Cytotocity)쓣 븣븘蹂대뒗 떎뿕씠떎. 꽭룷뒗 諛곗븘떊옣 꽭룷 HEK 293T 꽭룷瑜 궗슜븯쑝硫 떎뿕 LDH analysis kit瑜 궗슜븯뿬 젣怨듬맂 봽濡쒗넗肄쒖쓣 뵲씪 떆뻾븯떎. 씉愿묐룄뒗 ELISA reader (biotek, USA) 490 nm뿉꽌 痢≪젙븯떎.

넻怨꾨텇꽍

紐⑤뱺 떎뿕 3쉶 諛섎났 닔뻾븯뿬 mean 짹 SD濡 굹궡뿀떎. 媛 異붿텧臾 媛꾩쓽 쑀쓽꽦 뿬遺瑜 뙋떒븯湲 쐞빐 넻怨꾨텇꽍 SPSS (IBM SPSS statistics ver. 26)瑜 씠슜븯뿬 씪썝諛곗튂遺꾩궛遺꾩꽍(ANOVA)怨 궗썑遺꾩꽍(Duncan's multiple range test)쓣 떎떆븯떎.

寃곌낵 諛 怨좎같

Total polyphenol

polyphenol씠 遺꾩옄 궡 떎닔쓽 럹(phenol) 옉슜湲곕 媛吏뒗 怨좊텇옄씠떎. polyphenol 솢꽦궛냼(reactive oxygen species, ROS)쓽 諛섏쓳쓣 넻빐 솢꽦궛냼瑜 븞젙 긽깭濡 蹂솕떆耳 빆궛솕젣濡 옉슜븯뿬 떇 쨌 빟뭹쑝濡 꼸由 쓳슜릺怨 엳떎(Brian and Kaudas, 2001). 뵲씪꽌 polyphenol 븿웾씠 넂쓣닔濡 빆궛솕 슚怨쇨 겢 寃껋쑝濡 궗猷뚮맂떎. 럹 븿웾 Table 2 媛숇떎. 珥 븷뿽-紐⑤쭅媛 떒씪 異붿텧臾 諛 샎빀 異붿텧臾쇱쓽 럹 븿웾쓣 벑웾媛믪쑝濡 굹궪 븣 媛곴컖쓽 븷뿽 諛 紐⑤쭅媛 떒씪 異붿텧臾쇱 189 mg/g 諛 160 mg/g씠硫 븷뿽-紐⑤쭅媛 鍮꾩쑉蹂 샎빀 異붿텧臾쇱 219~272 mg/g쑝濡 굹궗떎. 떒씪 異붿텧臾쇨낵 샎빀 異붿텧臾쇱쓽 븿웾쓣 蹂대㈃ 샎빀 異붿텧臾쇱쓽 럹 븿웾씠 떒씪 異붿텧臾쇰낫떎 뜑 넂 寃쏀뼢쓣 蹂댁떎. 삉븳 븷뿽-紐⑤쭅媛 샎빀 異붿텧臾쇱쓽 럹 븿웾쓣 鍮꾧탳븯쓣 븣 AM 5>AM 3>AM 1>AM 2>AM 4 닚쑝濡 160 mg/g AM5媛 럹 븿웾씠 媛옣 넂寃 굹궗떎. 씠뒗 븷뿽怨 紐⑤쭅媛쓽 polyphenol쓣 援ъ꽦븯怨 엳뒗 꽦遺꾩씠 떎瑜닿린 븣臾몄뿉 異붿텧맂 뼇씠 떎瑜 寃껋쑝濡 뙋떒맂떎. Kim 벑쓽 뿰援ъ뿉 쓽븯硫 궪諛깆큹 194.60 mg/g, 씡紐⑥큹 191.62 mg/g polyphenol 븿웾쓣 痢≪젙븯떎. 씠 寃곌낵 옄깮떇臾쇱뿉 鍮꾪븯뿬 븷뿽-紐⑤쭅媛 떒씪 諛 샎빀 異붿텧臾쇱쓽 polyphenol 븿웾씠 넂떎怨 룊媛븷 닔 엳떎(Kim et al., 2012).

Total phenol and flavonoid contents of the water extracts from each hot water extract by mixture ratio

Sample name Total phenol contents (mg GAE/g)1) Total flavonoid contents (mg HE/g)1)
AW2) 189.308±5.9093)b) 34.099±2.134a)
MW2) 160.186±17.941a) 31.665±1.756a)
AM 12) 238.417±15.228cd) 40.737±3.999ab)
AM 22) 233.482±14.370c) 37.861±4.519ab)
AM 32) 259.661±10.306de) 41.401±3.407bc)
AM 42) 219.656±13.143c) 36.091±2.028bc)
AM 52) 271.769±18.078e) 45.384±5.026c)

F-value (P) 22.842*** (.000) 5.505** (.004)

1) GAE: Gallic acid equivalents, HE: Hesperidin equivalents

2) Abbreviations: See Table 1.

3) Results are represented as mean ± SD

4) *P<0.05, **P <0.01, ***P <0.001



Total flavonoid

flavonoid 踰ㅼ젨(C6H6) 怨좊━ 2媛쒖 3媛쒖쓽 깂냼(C3)媛 뿰寃곕맂 援ъ“瑜 媛뽯뒗 솕빀臾쇰줈꽌 떇臾쇱쓽 뿴留, 苑, 遊됱삤由, 以꾧린 諛 뿴留 벑뿉 留롮씠 븿쑀븯怨 엳떎(Vijaya et al., 1995). 삉븳 솢꽦궛냼瑜 냼嫄고븯뒗 뿭븷쓣 븿쑝濡쒖뜥 빆궛솕, 빆뿼利, 諛 빆븫 슚怨쇨 엳떎. 뵲씪꽌 flavonoid 븿웾씠 넂쓣닔濡 넂 빆궛솕젰씠 룊媛맆 寃껋씠떎. flavonoid 븿웾 Table 2 媛숇떎. 珥 븷뿽-紐⑤쭅媛 떒씪 異붿텧臾 諛 샎빀 異붿텧臾쇱쓽 flavonoid 븿웾쓣 벑웾媛믪쑝濡 굹궪 븣 媛곴컖쓽 븷뿽 諛 紐⑤쭅媛 떒씪 異붿텧臾쇱 34 mg/g 諛 32 mg/g씠硫 븷뿽-紐⑤쭅媛 鍮꾩쑉蹂 샎빀 異붿텧臾쇱 36~46 mg/g쑝濡 굹궗떎. 寃곌낵쟻쑝濡 떒씪 異붿텧臾쇨낵 샎빀 異붿텧臾쇱쓽 flavonoid 븿웾쓣 鍮꾧탳븯硫 샎빀 異붿텧臾쇱쓽 븿웾씠 넂떎. 삉븳 샎빀 異붿텧臾쇱쓽 flavonoid 븿웾쓣 鍮꾧탳븯쓣 븣 46 mg/g쑝濡 AM5媛 flavonoid 븿웾씠 媛옣 넂寃 굹궗떎. Kim 벑쓽 뿰援ъ뿉 뵲瑜대㈃ 떇臾 뿴닔 異붿텧臾쇱쓽 럹 諛 flavonoid 븿웾쓣 鍮꾧탳븯쓣 븣 遺遺 럹 븿웾씠 flavonoid 븿웾씠 뜑 넂떎怨 蹂닿퀬릺뿀떎(Kim et al., 2004). 삉븳 럹 븿웾怨 빆궛솕뒫 鍮꾨쟻쑝濡 굹굹 럹 諛 flavonoid 븿웾쓽 李⑥씠媛 겢닔濡 빆궛솕 뒫젰씠 넂떎怨 룊媛븯떎. 洹몃윭誘濡 蹂 떎뿕뿉꽌 궗슜맂 븷뿽-紐⑤쭅媛 異붿텧臾쇰룄 flavonoid븿웾뿉 鍮꾪븯뿬 럹 븿웾씠 뜑 넂寃 痢≪젙릺뼱 빆궛솕 뒫젰씠 슦닔븷 寃껋쑝濡 룊媛맂떎.

븷뿽-紐⑤쭅媛 떒씪 諛 샎빀 異붿텧臾쇱쓽 빆궛솕 뒫젰

빆궛솕 슚怨쇰 궛솕瑜 뼲젣븯뒗 슚怨쇰 留먰븯硫 빆궛솕젰쓣 븿쑀븳 럹 솕빀臾 臾쇱쭏쓽 븿웾씠 넂쓣닔濡 솢꽦궛냼쓽 냼嫄 솢꽦씠 利앷븳떎(Shin, 1997). 뵲씪꽌 珥 럹 諛 flavonoid 븿웾쓽 蹂솕媛 솢꽦궛냼 냼嫄곕뒫뿉 쁺뼢쓣 誘몄튌 寃껋쑝濡 궗猷뚮맂떎. 븷뿽-紐⑤쭅媛 떒씪 諛 샎빀 異붿텧臾쇱쓽 DPPH radical 냼嫄곕뒫 寃곌낵뒗 Fig. 1怨 媛숇떎. DPPH radical 냼嫄곕뒫쑝濡 븷뿽 諛 紐⑤쭅媛 떒씪 異붿텧臾쇱 49.8% 諛 40.6%씠뿀쑝硫 몢 떆猷뚮 씪젙 鍮꾩쑉濡 샎빀븳 異붿텧臾쇱쓽 寃쎌슦뿉 DPPH radical 56.2~70.8%濡 굹궗떎. 삉븳 뼇꽦議곌뎔씤 Ascorbic acid쓽 냼嫄곕뒫 64.4% 鍮꾧탳븯뿬 AM3 諛 AM5 異붿텧臾쇱쓽 radical 냼嫄 뒫젰씠 뜑 넂寃 굹궗떎. Byun쓽 뿰援щ뒗 뭹醫낅퀎 怨좎텛쓽 빆궛솕 솢꽦쓣 鍮꾧탳븳 寃곌낵 媛옣 슦닔븳 DPPH radical 냼嫄 솢꽦쓣 媛吏 怨좎텛뒗 苑껉퀬異 異붿텧臾쇰줈 43.13%瑜 굹깉떎. 씠 寃곌낵 븷뿽-紐⑤쭅媛 샎빀 異붿텧臾쇱 苑껉퀬異붾낫떎 뜑 쎇뼱궃 빆궛솕 뒫젰쓣 媛吏 寃껋쓣 솗씤븷 닔 엳뿀떎(Byun et al., 2016).

Fig. 1. The DPPH radical scavenging activity of hot water extract by single and mixture ratio a-c) the same column are significantly different at *P<0.05 (Duncan's multiple range test).

븷뿽-紐⑤쭅媛 떒씪 諛 샎빀 異붿텧臾쇱쓽 ABTS radical 냼嫄곕뒫 寃곌낵뒗 Fig. 2 媛숇떎. ABTS radical 냼嫄곕뒫쑝濡 븷뿽 諛 紐⑤쭅媛 떒씪 異붿텧臾쇱 54.7% 諛 47.2%씠뿀쑝硫 몢 떆猷뚮 샎빀븳 異붿텧臾쇱쓽 寃쎌슦뿉 ABTS radical 59.3~77.1%濡 굹궗떎. 삉븳 뼇꽦議곌뎔 Ascorbic acid쓽 냼嫄곕뒫 58.6% 鍮꾧탳븯뿬 냼嫄곕뒫씠 59.3~77.1% 넂寃 痢≪젙릺뿀떎. 씠 寃곌낵뒗 떒씪 異붿텧臾쇰낫떎 샎빀 異붿텧臾쇱쓽 빆궛솕 뒫젰씠 뜑 넂寃 굹궃 뿰援 寃곌낵 鍮꾩듂븳 寃쏀뼢쓣 굹깉떎(Choi et al., 2012).

Fig. 2. The ABTS radical scavenging activity of hot water extract by single and mixture ratio a-d) in the same column are significantly different at **P<0.01 (Duncan's multiple range test).

LDH assay

LDH assay瑜 씠슜븯뿬 꽭룷깮議댁쑉쓣 룊媛븯떎. HEK-293T cell뿉 븷뿽-紐⑤쭅媛 떒씪 諛 샎빀 異붿텧臾쇱쓣 泥섎━븳 썑 꽭룷룆꽦쓣 Fig. 3뿉 굹깉떎. 議곌뎔 Medium (DMEM)쓣 궗슜븯떎. 議곌뎔怨 鍮꾧탳븯뿬 꽭룷룆꽦씠 議곌툑 利앷븯吏留 쑀쓽쟻씤 李⑥씠媛 굹굹吏 븡븯떎. 씠뒗 븷뿽-紐⑤쭅媛 떒씪 諛 샎빀 異붿텧臾쇱쓽 꽭룷룆꽦 쁺뼢씠 誘몃명븷 寃껋쑝濡 삁긽맂떎.

Fig. 3. Cytotoxicity of the extracts against HEK-293T cells in LDH assay.
ACKNOWLEDGEMENT

This work was supported by the 2019 Inje University research grant.

CONFLICT OF INTEREST

There is no conflict of interest for all authors.

References
  1. Anwar F, Bhanger MI. Analytical characterization of Moringa oleifera seed oil grown in temperate region of Pakistan. Journal of Agricultural and Food Chemistry. Journal of Agricultural and Food Chemistry. 2003. 51: 6558-6563.
    Pubmed CrossRef
  2. Anwar F, Latif S, Ashraf MAshraf M et al. Moringa oleifera: a food plant with multiple medicinal uses. Phytother Res. 2007. 21: 17-25.
    Pubmed CrossRef
  3. Branen AL. Toxicology and biochemistry of butylated hydroxyanisol and butylated hydroxytoluene. Journal of the American Oil Chemists'. Society. 1975. 5: 59-63.
    Pubmed CrossRef
  4. Brian D, Kaudas S. The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed anise root extract. Journal of Food Biochemistry. 2001. 25: 361-377.
    CrossRef
  5. Byun EB, Park WY, Ahn DHAhn DH et al. Comparison Study of Three Carieties of Red Peppers in Terms of Total Total Flavonoid contents, and Antioxidant Activities. Journal of the Korean Society of Food Science and Nutrition. 2016. 45: 765-770.
    CrossRef
  6. Choi EJ, Kim EK. Antioxidation, physicochemical, and sensory characteristics of sulgidduck fortified with water extracts from Moringa oleifera Leaf. Korean J Food Cook Sci. 2015. 31: 335-343.
    CrossRef
  7. Choi YH, Kim SE, Huh JHuh J et al. Antibacterial and Antioxidative Activity of Roasted Coffee and Red Ginseng Mixture Extracts. The Korean Society of Food Science and Nutrition. 2012. 41: 320-326.
    CrossRef
  8. Fotakis G, Timbrell JA. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters. 2006. 160: 171-177.
    Pubmed CrossRef
  9. Han HY, Kim HJ, Jeong SH, Kim JYKim JY et al. The Flavonoid Jaceosidin from Artemisia princeps Induces Apoptotic Cell Death and Inhibits the Akt Pathway in Oral Cancer Cells. Hindawi Evidence-Based Complementary and Alternative Medicine Volume. 2018.
    Pubmed KoreaMed CrossRef
  10. Hiroshi KI, Mitsuaki T. l,l-Diphenyl-2-Picrylhydrazyl Radical (DPPH) Scavenging Ability of Sake during Storage. Journal of Bioscience and Bioengineering. 1999. 87: 328-332.
    CrossRef
  11. Hong JI, Kim HJ, Kim J. Factors Affecting Reactivity of Various Phenolic Compounds with the Folin-Ciocalteu Reagent. The Korean Society of Food Science and Nutrition. 2011. 40: 205-213.
    CrossRef
  12. Jeong MA, Lee KW, Yoon DY, Lee HJ. Jaceosidin, a pharmacologically active flavone derived from Artemisia argyi, inhibits phorbol-ester-induced upregulation of COX-2 and MMP-9 by blocking phosphorylation of ERK-1 and-2 in cultured human mammary epithelial cells. Annals of the New York Academy of Sciences. 2007. 1095: 458-466.
    Pubmed CrossRef
  13. Jeong SJ, Lee JH, Song HNSong HN et al. Screening for Antioxidant Activity of Plant Medicinal Extracts. The Korean Society for Applide Biological Chemistry. 2004. 47: 135-140.
  14. Jia Z, Tang M, Wu J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry. 1999. 64: 555-559.
    CrossRef
  15. Kim EJ, Choi JY, Yu MRYu MR et al. Total Polyphenols, Total Flavonoid Contents, and Antioxidant Activity of Korean Natural and Medicinal Plants. The Korean Society of Food Science and Technology. 2012. 44: 337-342.
    CrossRef
  16. Kim EY, Baik IH, Kim JHKim JH et al. Screening of the Antioxidant Activity of Some Medicinal Plants. The Korean Society of Food Science and Technology. 2004. 36: 333-338.
  17. Kim JD, Kim WK, Kim YT, Kim MJ. The difference for eating, activity, life pattern between obese and normal child who 5-6 grade in elementary school. Journal of Sport and Leisure Studies. 2009. 38: 855-865.
  18. Kim JE, Kim AR, Kim MJKim MJ et al. Antibacterial, Antioxidative and Antiaging Effects of Allium cepa Peel Extracts. Applied Chemistry for Engineering. 2011. 22: 178-184.
  19. Kim YH, Shin HK, Kim KS. The drop is blood pressure in the Artemisia asiatica Nakai). The Korean Journal of Physiology and Pharmacology. 1981. 15: 91-96.
  20. Lee HH, Moon YS. Assessment of the Important Factors Influencing Consistent and Accurate ABTS Assay. Journal of The Korean Society of Food Science and Nutrition. 2019. 48: 390-393.
    CrossRef
  21. Ryu SN, Kang SS, Kim JSKim JS et al. Quantitative analysis of Eupatilin and Jaceosidin in Artemisia herba. The Korean Society of Crop Science. 2004. 49: 452-456.
  22. Shin DH. Research Trends and Directions of Natural Antioxide. Korean Society of Food Science and Technology. 1997. 30: 14-21.
  23. Soumaya K, Ribai BA, In챔s BIn챔s B et al. Investigation of extracts from (Tunisian) Cyperus rotundus as antimutagens and radical scavengers. Environmental Toxicology and Pharmacology. 2005. 20: 478-484.
    Pubmed CrossRef
  24. Sung K. A study on the pharmacetical and chemical characteristics of natural artemisia extract. Journal of the Korean Applied Science and Technology. 2009. 26: 51-59.
  25. Vijaya K, Ananthan S, Nalini R. Antibacterial effect of theaflavin, polyphenon 60 (Camellia sinensis) and Euphorbia hirta on Shigella spp. - a cell culture study. Journal of Ethnopharmacology. 1995. 49: 115-118.
    Pubmed CrossRef