Search for


TEXT SIZE

search for



CrossRef (0)
Optimization of Conditions for High Concentration of Eleutheroside E and Chlorgenic Acid Components of Acanthopanax koreanum Stem Extract
Biomed Sci Letters 2020;26:319-326
Published online December 31, 2020;  https://doi.org/10.15616/BSL.2020.26.4.319
© 2020 The Korean Society For Biomedical Laboratory Sciences.

Sung Gi Kim1,짠,*, Byung Wook Yang2,짠,*, Jae Bum Lee1,*, Sa Hyun Kim3,,** and Sung Kwon Ko1,,**

1Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon 27136, Korea
2Leaders in Industry-university Cooperation+ (LINC+), Semyung University, Jecheon 27136, Korea
3Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea
Correspondence to: Sung Kwon Ko. Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon 27136, Korea.
Tel: +82-43-649-1433, Fax: +82-43-649-1759, e-mail: skko@semyung.ac.kr
Sa-Hyun Kim. Department of Clinical Laboratory Science, Semyung University, Jaecheon 27136, Korea.
Tel: +82-43-649-1624, Fax: +82-50-4411-9604, e-mail: science4us@semyung.ac.kr
*Graduate student, **Professor.
These two authors contributed equally to this work.
Received October 30, 2020; Revised December 11, 2020; Accepted December 15, 2020.
 Abstract
This study was conducted to develop a new functional material by optimizing the conditions for high concentrations of chlorogenic acid and eleutheroside E in Acanthopanax koreanum stem. The total phenolic compound content was the highest in the 20 hours sonication Acanthopanax koreanum stem extract (UAK-20). In addition, eleutheroside E, a typical functional ingredient of Cortex Acanthopanacis, in the 20 hours treated Acanthopanax koreanum stem extract showed the highest content at 1.646%. However, another functional ingredient, chlorogenic acid, showed the highest content of 2.625% in 1 hour treated Acanthopanax koreanum stem extract. Therefore, it is considered that the optimal conditions for high concentrations of total phenolic compound and eleutheroside E are 20 hours sonication Acanthopanax koreanum stem extract.
Keywords : Sonication, Acanthopanax koreanum, Stem, Phenolic compound, Eleutheroside E, Chlorogenic acid
꽌 濡

깮빟 삤媛뵾(雅붷뒥슢)뒗 몢由낅굹臾닿낵(삤媛덊뵾굹臾닿낵, Araliaceae) 삤媛덊뵾냽(Acanthopanax, Eleutherococcus) 떇臾쇰줈 룞뼇 理쒓퀬쓽 븳쓽븰꽌씤 떊냽蹂몄큹寃쎌뿉 泥섏쓬쑝濡 湲곗옱릺뿀쑝硫, 슦由щ굹씪뿉꽌뒗 씪諛섏삤媛덊뵾굹臾(Acanthopanax sessiliflorus) 삉뒗 룞냽떇臾(몢由낅굹臾닿낵 Araliaceae)쓽 肉뚮━ 諛 以꾧린 猿띿쭏쓣 빟쟾깮빟쑝濡 궗슜븯怨 엳떎. 삉븳 以묎뎅빟쟾뿉꽌뒗 꽭二쇱삤媛덊뵾굹臾(榮경윶雅붷뒥슢, Acanthopanax gracilistylus), 媛떆삤媛덊뵾굹臾(Acanthopanax senticosus)媛 닔濡앸릺뼱 엳떎. 肉뚮━ 以꾧린 猿띿쭏쓣 떇쓽빟쑝濡 궗슜븯怨 엳쑝硫(Yook, 2001), 븳援뿉꽌 옄깮븯뒗 Acanthopanax 냽 떇臾쇱 15醫낆쑝濡 媛떆삤媛덊뵾굹臾(A. senticosus), 誘쇨떆삤媛덊뵾굹臾(A. senticosus for. inernis), 솗媛떆삤媛덊뵾굹臾(A. senticosus var. koreanus), 씪諛섏삤媛덊뵾굹臾(A. sessiliflorus), 以묐삤媛덊뵾굹臾(A. sessiliflorus for. chungbuensis), 吏由ъ궛삤媛덊뵾굹臾(A. chiisanense), 꽟삤媛덊뵾굹臾(A. koreanum), 媛쒖삤媛덊뵾굹臾(A. divaricatus), 쐺꽭삤媛덊뵾굹臾(A. divaricatus var. albeofructus). 궓遺삤媛덊뵾굹臾(A. divaricatus for. nambunensis), 닔떊삤媛덊뵾굹臾(A. divaricatus for. suchinmyunensis), 李몄삤媛덊뵾굹臾(A. pedunculus), 떦삤媛덊뵾굹臾(A. sieboldianus), 꽌슱삤媛덊뵾굹臾(A. seoulense), 꽭삤媛덊뵾굹臾(A. rufinerve) 벑씠 엳떎(Yook, 1997). 以묎뎅 쟾뿭뿉꽌 빟슜릺怨 엳뒗 삤媛뵾쓽 湲곗썝떇臾쇱 꽭二쇱삤媛덊뵾굹臾대 鍮꾨’븳 洹 룞냽떇臾쇱씤 媛떆삤媛덊뵾굹臾댁 꽭옂삤媛덊뵾굹臾(A. trifoliatus), 議곗뿽삤媛덊뵾굹臾(A. henryi), 삤닔쑀삤媛덊뵾굹臾(A. evodiafolius) 벑씠 엳떎.

븳諛⑹쓽븰뿉꽌 씤젙븯뒗 삤媛뵾쓽 슚怨쇰줈뒗 媛꾩옣怨 떊옣쓽 湲곕뒫쓣 젙긽솕븯怨, 뭾뒿쑝濡 씤븳 愿젅넻(窯ⓩ퓮뿺뿘), 궗吏쓽 洹쇰㎘(嶺뗨꼫)씠 븙湲곕㈃꽌 뮘由щ뒗 寃(썪궋떂뵣)쓣 떎뒪由ш퀬, 愿젅쓣 援щ由ш퀬 렣뒗 寃껋씠 뼱젮슫 利앹긽(럹鴉멧툖닶)쓣 移섎즺븳떎. 씠 媛숈씠 媛꾩옣怨 떊옣씠 뿀븯뿬 옒以꾧낵 堉덇 빟빐졇꽌 떎由щ 벐吏 紐삵븯뒗뜲, 뭾뒿쑝濡 뿀由ъ 臾대쫷씠 븘뵂뜲, 뙏떎由ш 媛뒛뼱 吏硫 븘뵂뜲, 媛곴린, 쓬쐞利, 뿬옄쓽 쓬遺냼뼇利, 뼱由곗씠쓽 嫄몄쓬嫄몄씠媛 뒭뼱吏뒗뜲 벖떎. 洹몃━怨 諛⑹궗꽑蹂묒쓽 삁諛⑹튂猷뚯 떊寃쏀넻, 愿젅뿼, 愿젅瑜섎㉧떚뒪 벑뿉 궗슜븳떎(Korean Association of Pharmacognosy Professors, 2004; Korean Association of Herbal Medicine Professors, 1994; Ko, 2016).

븳렪, Acanthopanax 냽 떇臾쇱쓽 깮由ы솢꽦뿉 愿븳 뿰援щ줈뒗 硫댁뿭 諛 빆븫옉슜, 꽦湲곕뒫 젙긽솕옉슜, 떦눊 媛쒖꽑옉슜, 媛 옣븷 媛쒖꽑옉슜, 吏꾩젙옉슜, 빆 뒪듃젅뒪옉슜 벑씠 蹂닿퀬릺뿀떎(Ahn et al., 2013). 삤媛뵾 꽦遺꾩뿉 愿븳 뿰援щ뒗 Ovodov媛 삤媛뵾쓽 洹쇳뵾 異붿텧臾쇱뿉꽌 eleutheroside A, B, B-1, C, D, E, G, I, K, M 벑쓽 꽦遺꾩쓣 遺꾨━븯뿬 蹂닿퀬(Ovodov et al., 1996; Ovodov and Frolova, 1971) 븳 씠썑, lignan, coumarin, diterpene, triterpene, phenolic compound 벑쓽 泥쒖뿰臾쇱쭏뱾씠 옂 삉뒗 뿴留ㅼ뿉 뭾遺븯寃 븿쑀릺뼱 二쇰ぉ諛쏄퀬 엳떎. 듅엳 꽟삤媛뵾뒗 뿰怨⑦뙆愿대낫샇(Lim et al., 2017), 꽭룷 끂솕媛먯냼(Park and Bae, 2016), 뿼利앸컲쓳뼲젣(Wei et al., 2015), 硫댁뿭諛섏쓳議곗젅(Jung et al., 2013) 벑쓽 슚怨쇰 굹궦떎.

삉븳, 삤媛뵾쓽 二쇱꽦遺꾩씤 eleutheroside E뒗 愿젅뿼 媛쒖꽑옉슜(He et al., 2014), 2삎 떦눊 媛쒖꽑옉슜(Ahn et al., 2013)쓣 굹궡뿀쑝硫, eleutheroside B (syringin)뒗 빆븫옉슜(Lall et al., 2015), 媛꾩옣 蹂댄샇옉슜(Gong et al., 2014), 빆뿼利앹옉슜(Song et al., 2010), 빆뵾濡쒖옉슜(Li et al., 2008), 빆떦눊옉슜(Niu et al., 2008), 吏꾪넻옉슜(Choi et al., 2004) 벑씠 蹂닿퀬릺뿀떎. 삉븳, 삤媛덊뵾굹臾댁냽 떇臾쇱쓽 뿴留ㅼ 옂쓽 럹꽦 떇臾쇳솕븰 꽦遺꾩뿉 븳 鍮꾧탳뿰援(An et al., 2017; An et al., 2017)媛 떆뻾릺뿀떎.

洹몃윭굹, 젣二쇰룄쓽 듅궛 떇臾쇰줈꽌 꽟삤媛덊뵾굹臾대뒗 꽦遺 諛 깮由ы솢꽦 뿰援щ뒗 씪遺 떆뻾릺뿀吏留, 湲곕뒫꽦 媛뺥솕 議곗꽦臾 媛쒕컻뿉 븳 뿰援щ뒗 泥닿퀎쟻쑝濡 씠猷⑥뼱吏吏 븡 젏뿉 李⑹븞븯뿬 蹂 뿰援щ뒗 꽟삤媛뵾 以꾧린쓽 珥덉쓬뙆 뿴쑖빀 泥섎━ 떆媛(100꼦)뿉 뵲瑜 럹꽦 꽦遺꾩쓽 븿웾쓣 鍮꾧탳遺꾩꽍 븿쑝濡쒖뜥 깮由ы솢꽦 꽦遺(eleutheroside B, chlorogenic acid, eleutheroside E, syringaresinol, sinapyl alcohol) 怨좊냽룄 븿쑀 議곗꽦臾쇨낵 쟾臾명솕맂 꽟삤媛뵾 湲곕뒫꽦 떇뭹쓽 媛쒕컻뿉 븘슂븳 湲곗큹 옄猷뚮 젣怨듯븯怨좎옄 븳떎.

옱猷 諛 諛⑸쾿

떎뿕옱猷

蹂 뿰援ъ뿉 궗슜븳 꽟삤媛뵾(Acanthopanax koreanum)뒗 寃쏀씗븰援 빟븰븰 빟珥덉썝뿉꽌 옱諛곕릺怨 엳뒗 꽟삤媛뵾瑜 2018뀈 3썡 10씪뿉 梨꾩쭛븯쑝硫, 梨꾩랬븳 꽟삤媛뵾瑜 삩뭾嫄댁“湲(Dryer DS-501: 寃쎈룞굹鍮꾩뿏, 꽌슱, 븳誘쇨뎅)瑜 궗슜븯뿬 55꼦뿉꽌 72떆媛 룞븞 嫄댁“븯떎. 깮빟媛먮퀎 寃쏀씗븰援 빟븰븰 쑁李쎌닔 紐낆삁援먯닔媛 솗씤븯쑝硫, 젣뭹몴蹂몄 꽭紐낅븰援 湲곕뒫떇뭹냼옱媛쒕컻 뿰援ъ떎뿉 蹂닿븯怨 엳떎(Fig. 1).

Fig. 1. The photograph of Acanthopanax koreanum stem (scale: cm). The Acanthopanax koreanum used in this study was collected on March 10, 2018 from the medicinal herb garden of the College of Pharmacy, Kyung Hee University.

珥덉쓬뙆 뿴쑖빀 泥섎━ 꽟삤媛뵾 뿊뒪 議곗젣

꽟삤媛뵾瑜 꽭젅븯怨, 嫄댁“븳 떆猷 500 g怨 15 L쓽 利앸쪟닔瑜 珥덉쓬뙆 泥섎━湲(異쒕젰 1,200 W, 二쇳뙆닔 28 KHz: KODO, 솕꽦, 븳誘쇨뎅)뿉 꽔怨, 100꼦뿉꽌 1 (UAK-1), 2 (UAK-2), 3 (UAK-3), 4 (UAK-4), 5 (UAK-5), 6 (UAK-6), 7 (UAK-7), 8 (UAK-8), 9 (UAK-9), 10 (UAK-10), 11 (UAK-11), 12 (UAK-12), 13 (UAK-13), 14 (UAK-14) 15 (UAK-15), 16 (UAK-16), 17 (UAK-17), 18 (UAK-18), 19 (UAK-19), 20 (UAK-20), 21 (UAK-21), 22 (UAK-22), 23 (UAK-23), 24 (UAK-24), 36 (UAK-36), 48 (UAK-48), 60 (UAK-60) 洹몃━怨 72 (UAK-72) 떆媛꾩뵫 1쉶 異붿텧(300 mL)븯뿬 뿬怨 썑, 룞寃곌굔議 븯뿬 珥덉쓬뙆 뿴쑖빀 泥섎━ 꽟삤媛뵾 뿊뒪瑜 뼸뿀떎.

HPLC-꽦遺꾩쓽 遺꾩꽍

Zhao 벑쓽 諛⑸쾿(Zhao et al., 2014)뿉 뵲씪 몴以뭹怨 吏곸젒 鍮꾧탳븯뿬 꽦遺꾩쓽 븿웾 諛 議곗꽦쓣 媛 떆猷뚮떦 3쉶 諛섎났 떎뿕븯뿬 寃곌낵쓽 옱쁽꽦쓣 솗씤븯뿬 遺꾩꽍븯떎. 몴以뭹 ChromaDex (Los Angeles, CA, U.S.A.) ChemFaces (Wuhan, China)濡쒕꽣 援ъ엯븳 eleutheroside E, syringaresinol, eleutheroside B, chlorogenic acid, caffeic acid, protocatechuic acid, scopolin, isofraxidin, sinapyl alcohol, rutin, hyperoside瑜 궗슜븯떎.

궗슜븳 HPLC 옣移섎뒗 Waters 1525 binary HPLC system (Milford, MA, U.S.A.)씠硫, 移쇰읆 KNAUER Eurospher II 100-5 C18 (3횞250 mm: Knauer, Born, Germany)쓣 궗슜븯떎. 씠룞긽 acetonitrile (HPLC grade; Sigma-Aldrich, U.S.A.)怨 HPLC슜 利앸쪟닔(0.1% Trifluoroacetic acid, HPLC湲: B&J, U.S.A.)씠硫, 럹꽦 꽦遺꾩 acetonitrile쓽 鍮꾩쑉쓣 0% (0 min)뿉꽌 7% (10 min), 35% (60 min), 100% (65 min), 洹몃━怨 留덉留됱쑝濡 떎떆 0%濡 議곗젅븯怨, 쟾媛쒖삩룄뒗 떎삩, 쑀냽 遺꾨떦 0.9 mL, 겕濡쒕쭏넗洹몃옩 UV 뵒뀓꽣 (UV/Vis Waters 2487 Dual 貫 Absorbance Detector: Milford, MA, U.S.A.)瑜 씠슜븯뿬 220 nm뿉꽌 寃異쒗븯떎(Fig. 2).

Fig. 2. HPLC chromatograms of various ultrasonic thermal fusion treated extracts of A. koreanum stem. UAK-1: 1 hour ultrasonic thermal fusion treated extract, UAK-20: 20 hours ultrasonic thermal fusion treated extract.
寃곌낵 諛 怨좎같

꽟삤媛뵾 以꾧린쓽 珥덉쓬뙆 뿴쑖빀 泥섎━(100꼦) 떆媛꾩뿉 뵲瑜 럹꽦 꽦遺꾩쓽 븿웾蹂솕瑜 鍮꾧탳遺꾩꽍 븿쑝濡쒖꽌 깮由ы솢꽦 꽦遺 怨좊냽룄 븿쑀 議곗꽦臾쇨낵 쟾臾명솕맂 꽟삤媛뵾 湲곕뒫꽦 떇뭹 냼옱 媛쒕컻뿉 븘슂븳 湲곗큹 옄猷뚮 젣怨듯븯怨좎옄 蹂 뿰援щ 떎떆븯쑝硫, 꽟삤媛뵾 깮由ы솢꽦 꽦遺 怨좊냽룄 븿쑀 議곗꽦臾 깘깋쓣 쐞븳 꽦遺꾨텇꽍 以묐웾 %濡 븿웾쓣 援ы븯떎.

珥 럹꽦 꽦遺 븿웾뿉 엳뼱꽌뒗 Table 1뿉꽌 蹂대뒗 諛붿 媛숈씠 20떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-20)뿉꽌 6.661%濡 媛옣 븿웾씠 넂븯怨, 洹 떎쓬쑝濡 1떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-1, 6.356%) 洹몃━怨 4떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-4, 6.296%)쓽 닚꽌濡 븿웾씠 넂븯떎.

The phenolic compounds according to various ultrasonic thermal fusion treatment conditions of Acanthopanax koreanum stem
(%,w/w)

Phenolic compounds Retention time (min) Calibration curves1) R2 UAK-1 UAK-2 UAK-3 UAK-4 UAK-5 UAK-6 UAK-7
Protocatechuic acid 15.6 y = 1.8130x - 0.9382 0.9996 0.407±0.009 0.411±0.016 0.282±0.003 0.443±0.024 0.283±0.012 0.392±0.021 0.333±0.002
Eleutheroside B 22.3 y = 1.2143x - 0.8239 0.9927 0.788±0.046 0.754±0.017 0.732±0.001 0.740±0.027 0.741±0.027 0.689±0.003 0.624±0.018
Scopolin 23.2 y = 0.4992x - 0.0811 0.9965 0.179±0.005 0.185±0.003 0.151±0.001 0.297±0.004 0.246±0.001 0.314±0.003 0.297±0.006
Chlorogenic acid 23.8 y = 0.6093x - 0.3830 0.9979 2.625±0.139 2.116±0.119 1.872±0.007 1.942±0.041 1.579±0.038 1.725±0.008 1.263±0.005
Eleutheroside B1 25.0 y = 1.0370x - 0.7058 0.9942 0.328±0.080 0.468±0.067 0.498±0.004 0.666±0.013 0.590±0.019 0.754±0.001 0.560±0.011
Caffeic acid 26.0 y = 1.0766x - 0.6009 0.9937 0.237±0.054 0.274±0.088 0.188±0.006 0.267±0.032 0.325±0.005 0.237±0.038 0.238±0.011
Eleutheroside E 31.9 y = 0.2096x - 0.1589 0.9975 1.365±0.088 0.960±0.207 1.147±0.009 1.522±0.046 1.289±0.009 1.333±0.020 0.870±0.011
Sinapyl alcohol 31.0 y = 1.0216x - 0.4384 0.9997 0.081±0.002 0.064±0.001 0.106±0.002 0.103±0.000 0.094±0.001 0.070±0.001 0.082±0.001
Rutin 36.6 y = 0.5647x - 0.2888 0.9937 0.191±0.028 0.128±0.001 0.141±0.002 0.149±0.002 0.151±0.002 0.161±0.001 0.227±0.003
Hyperoside 37.4 y = 0.5531x - 0.2888 0.9981 0.167±0.036 0.079±0.002 0.149±0.000 0.093±0.001 0.117±0.002 0.126±0.003 0.208±0.001
Isofraxidin 35.5 y = 1.3999x - 0.8996 0.9950 0.154±0.012 0.128±0.007 0.120±0.000 0.166±0.020 0.137±0.006 0.163±0.003 0.165±0.001
Syringaresinol 50.7 y = 0.6778x - 0.3761 0.9992 - - - - - - -
Quercetin 53.6 y = 0.8872x - 0.8803 0.9939 - - - - - - -

Total phenolic compound - - - 6.356 5.486 5.237 6.296 5.437 5.838 4.659
1) y: area units, x: concentration in standard solutions (ppm), *UAK-1: 1 hour ultrasonic thermal fusion treated extract of the Acanthopanax koreanum stem, UAK-2: 2 hours ultrasonic thermal fusion treated extract, UAK-3: 3 hours ultrasonic thermal fusion treated extract, UAK-4: 4 hours ultrasonic thermal fusion treated extract, UAK-5: 5 hours ultrasonic thermal fusion treated extract, UAK-6: 6 hours ultrasonic thermal fusion treated extract, UAK-7: 7 hours ultrasonic thermal fusion treated extract, Values represent the mean ± S.D. (n=3)
Phenolic compounds UAK-8 UAK-9 UAK-10 UAK-11 UAK-12 UAK-13 UAK-14 UAK-15 UAK-16 UAK-17 UAK-18
Protocatechuic acid 0.359±0.001 0.372±0.001 0.418±0.001 0.350±0.001 0.285±0.003 0.367±0.000 0.324±0.001 0.378±0.002 0.276±0.002 0.351±0.000 0.296±0.002
Eleutheroside B 0.586±0.002 0.646±0.007 0.624±0.001 0.688±0.006 0.737±0.001 0.578±0.001 0.449±0.002 0.705±0.007 0.605±0.001 0.545±0.004 0.627±0.003
Scopolin 0.248±0.003 0.274±0.001 0.252±0.001 0.212±0.002 0.211±0.002 0.209±0.005 0.252±0.002 0.241±0.001 0.265±0.001 0.180±0.001 0.429±0.002
Chlorogenic acid 0.889±0.003 1.256±0.010 1.344±0.012 0.978±0.006 0.907±0.005 0.931±0.006 0.413±0.005 1.099±0.005 1.150±0.000 0.626±0.002 0.883±0.009
Eleutheroside B1 0.477±0.002 0.755±0.011 0.608±0.004 0.708±0.009 0.494±0.011 0.579±0.015 0.406±0.006 0.652±0.003 0.745±0.000 0.420±0.004 0.659±0.003
Caffeic acid 0.266±0.006 0.269±0.003 0.197±0.001 0.183±0.000 0.322±0.003 0.236±0.001 0.146±0.001 0.399±0.003 0.221±0.000 0.228±0.001 0.166±0.002
Eleutheroside E 1.170±0.004 1.291±0.006 0.944±0.006 1.331±0.004 1.114±0.002 0.862±0.003 0.471±0.009 1.100±0.005 1.422±0.006 0.917±0.017 1.010±0.002
Sinapyl alcohol 0.102±0.001 0.104±0.001 0.115±0.001 0.138±0.001 0.230±0.002 0.175±0.000 0.147±0.001 0.182±0.001 0.091±0.000 0.158±0.001 0.156±0.002
Rutin 0.175±0.001 0.179±0.001 0.170±0.000 0.167±0.004 0.295±0.004 0.206±0.001 0.176±0.001 0.205±0.005 0.143±0.001 0.179±0.001 0.262±0.001
Hyperoside 0.151±0.000 0.145±0.001 0.164±0.001 0.124±0.002 0.244±0.002 0.197±0.009 0.152±0.002 0.212±0.004 0.082±0.000 0.172±0.000 0.220±0.011
Isofraxidin 0.140±0.001 0.136±0.002 0.128±0.000 0.148±0.000 0.107±0.000 0.098±0.000 0.086±0.001 0.175±0.001 0.066±0.001 0.163±0.001 0.128±0.001
Syringaresinol 0.077±0.000 0.081±0.000 0.091±0.001 0.068±0.001 0.097±0.000 0.066±0.000 0.060±0.001 0.067±0.000 0.102±0.00 0.103±0.000 0.092±0.002
Phenolic compounds UAK-8 UAK-9 UAK-10 UAK-11 UAK-12 UAK-13 UAK-14 UAK-15 UAK-16 UAK-17 UAK-18
Quercetin 0.032±0.000 0.029±0.000 0.017±0.000 0.015±0.000 0.015±0.000 0.028±0.000 0.029±0.000 0.012±0.000 0.014±0.000 0.016±0.000 0.030±0.000

Total phenolic compound 4.413 5.282 4.799 4.903 4.701 4.240 2.870 5.135 4.985 3.767 4.616

*UAK-8: 8 hours ultrasonic thermal fusion treated extract, UAK-9: 9 hours ultrasonic thermal fusion treated extract, UAK-10: 10 hours ultrasonic thermal fusion treated extract, UAK-11: 11 hours ultrasonic thermal fusion treated extract, UAK-12: 12 hours ultrasonic thermal fusion treated extract, UAK-13: 13 hours ultrasonic thermal fusion treated extract, UAK-14: 14 hours ultrasonic thermal fusion treated extract, UAK-15: 15 hours ultrasonic thermal fusion treated extract, UAK-16: 16 hours ultrasonic thermal fusion treated extract, UAK-17: 17 hours ultrasonic thermal fusion treated extract, UAK-18: 18 hours ultrasonic thermal fusion treated extract. Values represent the mean ± S.D. (n=3)
Phenolic compounds UAK-19 UAK-20 UAK-21 UAK-22 UAK-23 UAK-24 UAK-36 UAK-48 UAK-60 UAK-72
Protocatechuic acid 0.434±0.000 0.513±0.003 0.300±0.001 0.303±0.002 0.365±0.001 0.358±0.003 0.216±0.003 0.235±0.002 0.261±0.001 0.345±0.002
Eleutheroside B 0.470±0.004 0.888±0.005 0.537±0.001 0.626±0.002 0.590±0.001 0.656±0.002 0.418±0.005 0.407±0.002 0.460±0.002 0.296±0.002
Scopolin 0.292±0.004 0.380±0.004 0.266±0.003 0.236±0.001 0.310±0.004 0.323±0.000 0.310±0.001 0.296±0.002 0.109±0.003 -
Chlorogenic acid 0.852±0.005 1.220±0.008 0.872±0.003 1.025±0.004 1.039±0.001 1.102±0.003 0.686±0.003 0.708±0.001 0.516±0.015 0.642±0.005
Eleutheroside B1 0.573±0.005 0.862±0.010 0.605±0.001 0.667±0.002 0.661±0.008 0.753±0.025 0.545±0.003 0.419±0.007 0.385±0.001 0.481±0.006
Caffeic acid 0.154±0.003 0.492±0.009 0.276±0.002 0.146±0.006 0.128±0.012 0.133±0.003 0.342±0.004 0.098±0.000 0.185±0.004 0.302±0.000
Eleutheroside E 1.105±0.002 1.646±0.015 0.882±0.005 1.235±0.002 1.212±0.005 1.289±0.008 0.832±0.016 0.965±0.001 1.101±0.021 1.227±0.054
Sinapyl alcohol 0.165±0.001 0.166±0.003 0.165±0.000 0.137±0.001 0.123±0.001 0.110±0.002 0.065±0.002 0.065±0.001 0.054±0.002 0.039±0.001
Rutin 0.158±0.001 0.275±0.001 0.161±0.001 0.193±0.004 0.199±0.001 0.270±0.003 0.262±0.002 0.185±0.006 0.180±0.002 0.215±0.000
Hyperoside 0.119±0.000 0.196±0.001 0.119±0.002 0.139±0.001 0.157±0.001 0.175±0.003 0.202±0.002 0.123±0.002 0.135±0.001 0.160±0.001
Isofraxidin 0.122±0.000 0.218±0.001 0.107±0.001 0.120±0.001 0.121±0.001 0.086±0.001 0.114±0.002 0.099±0.000 0.104±0.005 0.096±0.001
Syringaresinol 0.085±0.000 0.115±0.000 0.083±0.000 0.132±0.000 0.090±0.001 0.105±0.001 0.101±0.000 0.152±0.001 0.143±0.000 0.092±0.000
Quercetin 0.030±0.000 0.020±0.001 0.030±0.000 0.021±0.000 0.029±0.000 0.030±0.000 0.022±0.000 0.035±0.001 0.038±0.001 0.025±0.000

Total phenolic compound 4.324 6.661 4.171 4.688 4.747 5.082 3.788 3.476 3.356 3.644

*UAK-19: 19 hours ultrasonic thermal fusion treated extract, UAK-20: 20 hours ultrasonic thermal fusion treated extract, UAK-21: 21 hours ultrasonic thermal fusion treated extract, UAK-22: 22 hours ultrasonic thermal fusion treated extract, UAK-23: 23 hours ultrasonic thermal fusion treated extract, UAK-24: 24 hours ultrasonic thermal fusion treated extract, UAK-36: 36 hours ultrasonic thermal fusion treated extract, UAK-48: 48 hours ultrasonic thermal fusion treated extract, UAK-60: 60 hours ultrasonic thermal fusion treated extract, UAK-72: 72 hours ultrasonic thermal fusion treated extract. Values represent the mean ± S.D. (n=3)



삤媛뵾냽 떇臾쇱쓽 몴쟻씤 二쇱꽦遺꾩씠硫, 愿젅뿼 媛쒖꽑옉슜(He et al., 2014), 2삎 떦눊 媛쒖꽑옉슜(Ahn et al., 2013)쓣 굹궡뒗 eleutheroside E뒗 20떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-20)뿉꽌 1.646%濡 媛옣 븿웾씠 넂寃 굹궗怨, 洹 떎쓬쑝濡 4떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-4, 1.522%) 洹몃━怨 16떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-16, 1.422%)쓽 닚꽌濡 븿웾씠 넂븯떎.

삉븳, 빆븫옉슜(Lall et al., 2015), 媛꾩옣 蹂댄샇옉슜(Gong et al., 2014), 빆뿼利앹옉슜(Song et al., 2010), 빆뵾濡쒖옉슜(Li et al., 2008), 빆떦눊옉슜(Niu et al., 2008), 吏꾪넻옉슜(Choi et al., 2004) 벑씠 蹂닿퀬맂 eleutheroside B (syringin)뒗 1떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-1)뿉꽌 0.788%濡 媛옣 븿웾씠 넂寃 굹궗怨, 洹 떎쓬쑝濡 2떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-2, 0.754%) 洹몃━怨 5떆媛 珥덉쓬뙆 뿴쑖빀泥섎━(UAK-5, 0.741%)쓽 닚꽌濡 븿웾씠 넂븯떎.

븳렪, chlorogenic acid뒗 1떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-1)뿉꽌 2.625%濡 媛옣 븿웾씠 넂寃 굹궗怨, 洹 떎쓬쑝濡 2떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-2, 2.116%) 洹몃━怨 4떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-4, 1.942%)쓽 닚꽌濡 븿웾씠 넂븯떎.

떖洹 꽭룷 넀긽 諛 궗留 삁諛⑹옉슜(Cho et al., 2015), 삁愿 솗옣옉슜(Chung et al., 2012), 諛깊삁蹂 븫꽭룷 利앹떇뼲젣(Park et al., 2008), H. pylori 슫룞꽦 뼲젣(Miyazawa et al., 2006), 뵾遺李⑹깋 諛 끂솕諛⑹(Kim et al., 2017) 벑씠 蹂닿퀬맂 鍮꾨떦泥 꽦遺꾩씤 syringaresinol 8떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-8)뿉꽌遺꽣 寃異쒕릺湲 떆옉빐꽌 48떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-48)뿉꽌 0.152%濡 媛옣 븿웾씠 넂寃 굹궗怨, 洹 떎쓬쑝濡 60떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-60, 0.143%) 洹몃━怨 22떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-22, 0.132%)쓽 닚꽌濡 븿웾씠 넂븯떎.

Isofraxidin 15떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-15)뿉꽌 0.175%濡 媛옣 븿웾씠 넂寃 굹궗怨, 洹 떎쓬쑝濡 4떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-4, 0.166%) 洹몃━怨 7떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-7, 0.165%)쓽 닚꽌濡 븿웾씠 넂븯떎. Sinapyl alcohol 12떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-12)뿉꽌 0.230%濡 媛옣 븿웾씠 넂寃 굹궗쑝硫, 洹 떎쓬쑝濡 15떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-15, 0.182%) 洹몃━怨 13떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━(UAK-13, 0.175%)쓽 닚꽌濡 븿웾씠 넂븯떎. 삉븳, 뵆씪蹂대끂씠뱶怨 꽦遺꾩씤 rutin, hyperoside, quercetin怨 荑좊쭏由곌퀎 꽦遺꾩씤 scopolin, eleutheroside B1, isofracxidin 벑 珥덉쓬뙆 뿴쑖빀 泥섎━뿉 쓽빐꽌 꽦遺꾩쓽 蹂솕媛 愿李곕릺吏 븡븯떎.

씠 媛숈 寃곌낵濡쒕꽣, 럹땺봽濡쒗뙆끂씠뱶怨 깮由ы솢꽦 꽦遺꾩씤 eleutheroside B (syringin)怨 chlorogenic acid뒗 1떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━濡 媛옣 넂 냽룄쓽 異붿텧臾쇱쓣 뼸쓣 닔 엳뿀떎. 洹몃윭굹, 珥 럹꽦 꽦遺 븿웾怨 삤媛뵾냽 떇臾쇱쓽 몴쟻씤 由ш렇궃怨 깮由ы솢꽦 꽦遺꾩씤 eleutheroside E쓽 븿쑀냽룄媛 媛옣 넂寃 솗씤맂 20떆媛꾩씠 꽟삤媛뵾 以꾧린쓽 珥덉쓬뙆 뿴쑖빀 泥섎━ 理쒖쟻 議곌굔씠씪怨 궗猷뚮맂떎.

꽟삤媛뵾쓽 以꾧린瑜 珥덉쓬뙆 뿴쑖빀 泥섎━븳 寃곌낵, 珥 럹꽦 꽦遺 븿웾뿉 엳뼱꽌뒗 20떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━ 議곌굔(UAK-20)뿉꽌 6.661%濡 媛옣 넂븯떎. 삉븳, 삤媛뵾쓽 二쇱꽦遺꾩씠硫, 깮由ы솢꽦 꽦遺꾩씤 eleutheroside E룄 20떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━ 議곌굔(UAK-20)뿉꽌 1.646%濡 媛옣 넂븯떎. 뵲씪꽌, 꽟삤媛뵾쓽 珥덉쓬뙆 뿴쑖빀 理쒖쟻 泥섎━ 議곌굔 珥 럹꽦 꽦遺 븿웾怨 삤媛뵾냽 떇臾쇱쓽 몴쟻씤 깮由ы솢꽦 꽦遺꾩씤 eleutheroside E쓽 븿쑀냽룄媛 媛옣 넂寃 솗씤맂 20떆媛 珥덉쓬뙆 뿴쑖빀 泥섎━ 諛⑸쾿씠씪怨 궗猷뚮맂떎.

ACKNOWLEDGEMENT

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Future Innovation Food Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (119023-3).

CONFLICT OF INTEREST

The authors have declared no conflict of interest.

References
  1. Ahn J, Um MY, Lee H, Jung CH, Heo SH, Ha TY. Eleutheroside E, an active component of Eleutherococcus senticosus, ameliorates insulin resistance in type 2 diabetic db/db mice. Evid Based Complement Alternat Med. 2013. 2013: 934183.
    Pubmed KoreaMed CrossRef
  2. An HJ, Nam YM, Yang BW, Park JD, Yook CS, Kim HC, Ko SK. The comparison of phytochemical components from the berry of Acanthopanax species. Kor J Pharmacogn. 2017. 48: 5-9.
  3. An HJ, Yook CS, Kim HC, Ko SK. Measurement of characteristic phytochemical levels in different Acanthopanax Species by HPLC. Yakhak Hoeji. 2017. 61: 90-95.
    CrossRef
  4. Cho S, Cho M, Kim J, Kaeberlein M, Lee SJ, Suh Y. Syringaresinol protects against hypoxia/reoxygenation-induced cardiomyocytes injury and death by destabilization of HIF-1慣 in a FOXO3-dependent mechanism. Oncotarget. 2015. 6: 43-55.
    Pubmed KoreaMed CrossRef
  5. Choi J, Shin KM, Park HJ, Jung HJ, Kim HJ, Lee YS, Rew JH, Lee KT. Anti-inflammatory and antinociceptive effects of sinapyl alcohol and its glucoside syringin. Planta Med. 2004. 70: 1027-1032.
    Pubmed CrossRef
  6. Chung BH, Kim S, Kim JD, Lee JJ, Baek YY, Jeoung D, Lee H, Choe J, Ha KS, Won MH, Kwon YG, Kim YM. Syringaresinol causes vasorelaxation by elevating nitric oxide production through the phosphorylation and dimerization of endothelial nitric oxide synthase. Exp Mol Med. 2012. 44: 191-201.
    Pubmed KoreaMed CrossRef
  7. Gong X, Zhang L, Jiang R, Wang CD, Yin XR, Wan JY. Hepatoprotective effects of syringin on fulminant hepatic failure induced by D-galactosamine and lipopolysaccharide in mice. J Appl Toxicol. 2014. 34: 265-271.
    Pubmed CrossRef
  8. He C, Chen X, Zhao C, Qie Y, Yan Z, Zhu X. Eleutheroside E ameliorates arthritis severity in collagen-induced arthritis mice model by suppressing inflammatory cytokine release. Inflammation. 2014. 5: 1533-1543.
    Pubmed CrossRef
  9. Jung MG, Do GM, Shin JH, Ham YM, Park SY, Kwon O. Acanthopanax koreanum Nakai modulates the immune response by inhibiting TLR 4-dependent cytokine production in rat model of endotoxic shock. Nutr Res Pract. 2013. 7: 460-465.
    Pubmed KoreaMed CrossRef
  10. Kim J, Cho SY, Kim SH, Cho D, Kim S, Park CW, Shimizu T, Cho JY, Seo DB, Shin SS. Effects of Korean ginseng berry on skin antipigmentation and antiaging via FoxO3a activation. J Ginseng Res. 2017. 41: 277-283.
    Pubmed KoreaMed CrossRef
  11. Korean Association of Herbal Medicine Professors. Herbal medicine. 1994. pp. 283-284. Seoul, Korea, Yeong Lim Press.
  12. Korean Association of Pharmacognosy Professors. Herbal medicine. 2004. pp. 305-308. Seoul, Korea, Korean Pharmaceutical Association.
  13. Ko SK. Oriental Medicine Pharmacognosy. 2016. pp. 128-129. Seoul, Korea, Jin Young Press.
  14. Lall N, Kishore N, Binneman B, Twilley D, Plessis-Stoman D, Boukes G, Hussein A. Cytotoxicity of syringin and 4-methoxycinnamyl alcohol isolated from Foeniculum vulgare on selected human cell lines. Nat Prod Res. 2015. 29: 1752-1756.
    Pubmed CrossRef
  15. Li C, Wang XY, Hu XW, Fang HT, Qiao SY. Determination of eleutheroside B in antifatigue fraction of Acanthopanax senticosus by HPLC. Zhongguo Zhong Yao Za Zhi. 2008. 33: 2800-2802.
    Pubmed
  16. Lim H, Min DS, Yun HE, Kim KT, Sun YN, Dat LD, Kim YH, Kim HP. Impressic acid from Acanthopanax koreanum, possesses matrix metalloproteinase-13 down-regulating capacity and protects cartilage destruction. J Ethnopharmacol. 2017. 209: 73-81.
    Pubmed CrossRef
  17. Miyazawa M, Utsunomiya H, Inada K, Yamada T, Okuno Y, Tanaka H, Tatematsu M. Inhibition of Helicobacter pylori motility by (+)-syringaresinol from unripe Japanese apricot. Biol Pharm Bull. 2006. 29: 172-173.
    Pubmed CrossRef
  18. Niu HS, Liu IM, Cheng JT, Lin CL, Hsu FL. Hypoglycemic effect of syringin from Eleutherococcus senticosus in streptozotocin-induced diabetic rats. Planta Med. 2008. 74: 109-113.
    Pubmed CrossRef
  19. Ovodov YS, Frolova GM, Nefedova MY, Elyakov GB. The glycosides of Eleutherococcus senticosus Max I. Isolation and some properties of eleutherosides B and E. Khim Prkrodn Soedin. 1996. 1: 3-7.
  20. Ovodov YS, Frolova GM. Triterpenoidal glycosides of Eleuterococcus sessiliflorus leaves II. Khim Prkrodn Soedin. 1971. 1: 618-622.
  21. Park BY, Oh SR, Ahn KS, Kwon OK, Lee HK. (-)-Syringaresinol inhibits proliferation of human promyelocytic HL-60 leukemia cells via G1 arrest and apoptosis. Int Immunopharmacol. 2008. 8: 967-973.
    Pubmed CrossRef
  22. Park MJ, Bae YS. Fermented Acanthopanax koreanum root extract reduces UVB- and H2O2-induced senescence in human skin fibroblast cells. J Microbiol Biotechnol. 2016. 26: 1224-1233.
    Pubmed CrossRef
  23. Song YY, Li Y, Zhang HQ. Therapeutic effect of syringin on adjuvant arthritis in rats and its mechanisms. Yao Xue Xue Bao. 2010. 45: 1006-1011.
    Pubmed
  24. Wei C, Tan CK, Xiaoping H, Junqiang J. Acanthoic acid inhibits LPS-induced inflammatory response in human gingival fibroblasts. Inflammation. 2015. 38: 896-901.
    Pubmed CrossRef
  25. Yook CS. Asia Saeng-Yak-Do-Gam. 1997. pp. 359-362. Seoul. Korea, Kyungwon media.
  26. Yook CS. Medicinal herbs of Acanthopanax in Asia. 2001. pp. 1-174. Seoul. Korea, Kyungwon Media.
  27. Zhao LS, An Q, Qin F, Xiong ZL. Simulataneous determination of six constituents in the fruit of Acanthopanax sessiliflorus (Rupr. et maxim.) seem. by HPLC-UV. Nat Prod Res. 2014. 7: 500-502.
    Pubmed CrossRef