Search for


TEXT SIZE

search for



CrossRef (0)
Preparation of Tuna Skin Byproduct Film Containing Pinus thunbergii Cone Extract
Biomed Sci Letters 2020;26:360-367
Published online December 31, 2020;  https://doi.org/10.15616/BSL.2020.26.4.360
© 2020 The Korean Society For Biomedical Laboratory Sciences.

Jing-Gi Bak1,2,*, Jin Kim3,,** and Seung-Ho Ohk4,,**

1Moneykey Co., Ltd. Gwangju 62399, Korea
2Department of Biomedical Engineering, Chonnam National University, Gwangju 61186, Korea
3Dental Healthcare & Clinical Trial Center, College of Dentistry, Chosun University, Gwangju 61452, Korea
4Department of Oral Microbiology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
Correspondence to: Jin Kim. Dental Healthcare & Clinical Trial Center, College of Dentistry, Chosun University, Gwangju 61452, Korea.
Tel: +82-62-230-6883, Fax: +82-62-608-5407, e-mail: cream4251@chosun.ac.kr
Seung-Ho Ohk. Department of Oral Microbiology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.
Tel: +82-62-530-4852, Fax: +82-62-530-4855, e-mail: shohk@chonnam.ac.kr
*Ungraduate student, **Professor.
To whom all correspondence should be addressed.
Received December 1, 2020; Revised December 17, 2020; Accepted December 18, 2020.
 Abstract
Tuna skin byproduct extract (TSB) was used as a biocompatibility film base material, and its composite film with gellan gum (GG) was prepared. In addition, Pinus thunbergii cone extract (PTCE) was incorporated into the film to provide anti-oxidant and anti-bacteria activities. The tensile strength (TS) of the TSB/GG composite films increased with increasing GG content, whereas elongation at break (E) decreased. TSB/GG film at a ratio of 0.5:0.5 (w/w) showed the most desirable TS and E values. Based on scavenging free radical potentials and disc diffusion method results against growth of bacteria, antioxidant and anti-bacteria activities of films increased with increasing PTCE concentration. Accordingly, this study showed that TSB/GG could be used as a film material while the TSB/GG composite film containing PTCE can be utilized as functional packaging.
Keywords : Fish byproduct, Bio degradable films, Pinus thunbergii cone extract
꽌 濡

솚寃쎌뿉 븳 愿떖씠 留롮븘吏硫댁꽌 泥쒖뿰옄썝쓣 솢슜븯뒗 냼옱 媛쒕컻怨 떎깮솢뿉꽌 踰꾨젮吏뒗 뵆씪뒪떛 냼옱쓽 룓湲곕Ъ 벑쓽 臾몄젣젏쓣 빐寃고븯湲 쐞빐 뵆씪뒪떛 룷옣옱瑜 泥댄븷 닔 엳뒗 냼옱뿉 븳 뿰援ш 留롮븘吏怨 엳떎. 떇뭹 媛怨 遺궛臾 諛 룓湲곕Ъ쓣 솢슜븳 깮遺꾪빐꽦 븘由 냼옱 媛쒕컻濡 룓湲곕Ъ쓽 泥섎━ 鍮꾩슜 젅媛 諛 洹 솢슜 諛⑹븞뿉 븳 愿떖씠 利앷릺怨 엳뒗 異붿꽭씠떎(Yang et al., 2015; Yang and Song, 2016).

떎뼇븳 옄썝뿉꽌 뼸뼱吏뒗 遺궛臾 以묒뿉 빐뼇뿉꽌 솢슜릺뒗 遺궛臾쇱 쑀슚 꽦遺꾩쓣 異붿텧븯嫄곕굹 룞떇臾쇱쓽 鍮꾨즺, 媛異 궗猷뚮줈 씪遺 궗슜릺怨 엳쑝굹 솢슜룄뒗 留ㅼ슦 誘몃퉬븯뿬, 솢슜 諛⑹븞 利앷瑜 쐞빐꽌뒗 뜑 留롮 뿰援ш 븘슂븯떎.

삉븳, 깮遺꾪빐꽦 븘由꾩뿉 궗슜릺뒗 泥쒖뿰 냼옱쓽 遺遺꾩 뵆씪뒪떛 냼옱쓽 븘由꾨낫떎 궙 臾쇱꽦쓣 媛吏怨 엳뼱 씠瑜 蹂댁셿븯湲 쐞빐 떎뼇븳 泥쒖뿰怨좊텇옄瑜 샎빀븯뿬 븘由꾩쓣 젣議고븯뒗뜲, 洹 以묒뿉꽌룄 궎넗궛(chitosan), 븳泥(agar), 젮씪떞(gelatin), 젮寃(gellan gum) 벑쓽 냼옱媛 쎇뼱궃 븘由꾪삎꽦뒫젰쓣 媛뽰텛怨 엳떎怨 蹂닿퀬릺뿀떎(Vanin et al., 2005).

빐뼇遺궛臾 以 李몄튂遺궛臾(Tuna skin byproduct)쓽 寃쎌슦 李몄튂 넻議곕┝ 媛怨 以 猿띿쭏씠굹 堉 벑怨 媛숈 遺궛臾쇱씠 떎웾 諛쒖깮븳떎. 媛怨 以 諛쒖깮븯뒗 遺궛臾쇱뿉 뼇 쟾泥 썝猷뚯쓽 3遺꾩쓽 1 젙룄瑜 李⑥븯怨 씪遺留뚯씠 떇뭹썝猷뚮줈 옱 씠슜릺뼱 遺遺꾩씠 궗猷뚮줈 씠슜릺嫄곕굹 룓湲곕Ъ濡 踰꾨젮吏怨 엳떎. 遺궛臾쇱쓽 쉶遺꾩쓣 젣쇅븯怨좊뒗 遺遺 議곗諛(crude fat)怨 떒諛깆쭏뿉 냽븯뒗 젮씪떞(gelatin), 肄쒕씪寃(collagen)씠 뭾遺븯寃 援ъ꽦릺뼱 엳湲곗뿉 移쒗솚寃쎌쟻씤 깮遺꾪빐꽦 븘由 삉뒗 룷옣옱 냼옱濡쒖쓽 솢슜씠 媛뒫븯떎(Kim, 2005; Lee et al., 2010; Kim et al., 2019).

떇뭹 룷옣옱쓽 寃쎌슦 옣, 쑀넻 以 諛쒖깮븯뒗 誘몄깮臾쇱쓽 꽦옣씠굹 삤뿼, 떇뭹쓽 궛솕瑜 媛먯냼떆궎湲 쐞빐 빆洹 諛 빆궛솕 臾쇱쭏씠 룷븿맂 湲곕뒫꽦씠 媛誘몃맂 룷옣옱쓽 媛쒕컻씠 씠猷⑥뼱吏怨 엳떎. 遺遺꾩쓽 냼鍮꾩옄뒗 삤옒 쟾遺꽣 빀꽦솕븰냼옱쓽 떇뭹泥④臾쇱쓽 븞쟾꽦뿉 빐 씪諛섏쟻쑝濡 湲고뵾븯뒗 寃쏀뼢씠 以묓솕릺뼱 엳쑝硫댁꽌 옄뿰엳 泥쒖뿰臾 냼옱뿉 븳 슃援ш 利앷릺怨 엳떎. 냼鍮꾩옄쓽 슃援щ 異⑹”떆궗 닔 엳뒗 泥쒖뿰 蹂댁〈젣瑜 鍮꾨’븯뿬 깮由ы솢꽦 諛 뭹吏 媛뺥솕젣 媛숈 愿묐쾾쐞븳 遺꾩빞뿉꽌 떎젣 씠슜븷 닔 엳뒗 뿰援 옄猷뚭 븘슂븯떎. 泥쒖뿰臾 蹂댁〈젣濡 媛옣 留롮씠 궗슜릺怨 엳뒗 옄紐쎌쥌옄 異붿텧臾(grapefruit seed extract), 뤃由щ씪씠떊(polylysine) 諛 봽濡쒗뤃由ъ뒪(propolis)쓽 寃쎌슦 遺遺꾩씠 닔엯뿉 쓽議댄븯怨 엳쑝硫, 쁽 肄붾줈굹19 궗깭濡 씤빐 닔엯씠 遺덇뵾빐졇 媛寃 긽듅쑝濡 씤빐 泥쒖뿰 蹂댁〈젣쓽 닔湲됱 臾몄젣젏쓣 媛吏怨 엳떎. 援궡 옄깮븯뒗 냼굹臾댁쓽 뿴留(넄諛⑹슱)뿉꽌쓽 mono-, sesqui-, diterpenoids怨 솕빀臾쇱쓽 빆洹, 빆궛솕 벑쓽 솢꽦씠 蹂닿퀬릺硫댁꽌 냼굹臾댁쓽 옂, 猿띿쭏, 뿴留 벑쓽 polyphenol뿉 븳 뿰援щ뒗 諛붿씠삤궛뾽遺꾩빞뿉 떎뼇븯寃 솢슜릺怨 엳떎(Yuki et al., 2020). 뵲씪꽌 蹂 뿰援ъ뿉꽌뒗 諛붾떣媛 二쇰뿉 옄깮븯뒗 냼굹臾댁냽 醫낆뿉 냽븯뒗 怨곗넄(빐넚) 굹臾댁쓽 뿴留(Pinus thunbergii cone extract)瑜 梨꾩쭛븯뿬 異붿텧븳 꽦遺꾩쓣 룊媛븯怨 李몄튂遺궛臾 異붿텧臾 議곗꽦뿉 泥쒖뿰異붿텧臾쇱쓣 泥④븯뿬 蹂듯빀븘由꾩쓣 젣議고븯怨, 빆궛솕, 빆洹 뒫젰쓣 룊媛븯뿬 떇뭹 룷옣옱 냼옱濡쒖꽌쓽 媛쒕컻 媛뒫꽦쓣 솗씤븯떎.

옱猷 諛 諛⑸쾿

떆빟 諛 옱猷

李몄튂遺궛臾(Tuna skin byproduct, TSB) 愿묒< 뼇룞떆옣 냼옱 닔궛 뾽泥댁뿉꽌 젣怨듬컺븯떎. 젮寃(Gellan gum, GG) Sigma-Aldrich (St. Louis, MO, USA)뿉꽌 援ъ엯븯뿬 궗슜븯떎. 怨곗넄뿴留(Pinus thunbergii cone extract, PTCE)뒗 셿룄 紐낆궗떗由 洹쇱쿂쓽 굹臾댁뿉꽌 梨꾩쭛븯뿬 궗슜븯떎. 씠쇅뿉 紐⑤뱺 떆빟 젙젣 怨쇱젙 뾾씠 궗슜븯쑝硫, 3李 利앸쪟닔瑜 궗슜븯떎.

李몄튂遺궛臾 遺꾨쭚 젣議

李몄튂遺궛臾쇱쓽 猿띿쭏怨 堉덈 遺꾨━븯怨 쓲瑜대뒗 臾쇱뿉 꽭泥 썑, 60꼦뿉꽌 48떆媛 嫄댁“ 븳 썑 븯猷 젙룄 쓲瑜대뒗 臾쇱뿉 떞沅 遺덉닚臾쇱쓣 젣嫄고븯떎. 臾닿쾶瑜 옺 뮘, 10諛곕웾쓽 0.1 N 븘꽭듃궛(acetic acid)뿉 떞沅 8꼦 깋옣떎뿉 12떆媛 룞븞 떞媛 넃븯떎. 슜븸뿉 뙺쑄맂 TSB瑜 쓲瑜대뒗 臾쇰줈 12떆媛 룞븞 以묓솕떆耳곕떎. 以묓솕떆궓 TSB뿉 5諛곗쓽 臾쇱쓣 泥④븳 뮘 80꼦뿉꽌 4떆媛 以묓깢븯떎. 以묓깢 썑, 슜븸 궡뿉 룷븿맂 遺덉닚臾 젣嫄곕 쐞빐 嫄곕쫫留앹쓣 궗슜븯뿬 뿬怨쇰 吏꾪뻾븯떎. 留앹쑝濡 뿬怨쇳븳 슜븸쓣 떎떆 80꼦뿉꽌 媛뿴떆耳 理쒖쥌쟻쑝濡 넀吏덊븳 珥덇린 臾닿쾶濡 냽異뺤떆耳 룞寃곌굔議 썑 뼸 遺꾨쭚쓣 떎뿕뿉 궗슜븯떎.

怨곗넄뿴留 異붿텧臾 젣議

怨곗넄뿴留ㅻ뒗 利앸쪟닔濡 꽭泥숉븯뿬 뿴 嫄댁“湲곗뿉꽌 嫄댁“븯떎. 遺꾩뇙븳 뿴留ㅺ猷 30 g쓣 70% 뿉깂삱 300 mL뿉 移⑥떆耳 100꼦 뿴쓣 媛븯뿬 6 h 룞븞 異붿텧븯떎. 異붿텧씠 셿猷뚮맂 썑뿉뒗 쉶쟾 吏꾧났 냽異 異붿텧湲곕 씠슜븯뿬 뿉깂삱쓣 利앸컻떆耳 룞寃곌굔議 썑 遺꾨쭚삎깭쓽 PTCE瑜 젣議고븯떎.

怨곗넄뿴留 異붿텧臾 꽦遺 遺꾩꽍

꽦遺 遺꾩꽍쓣 쐞빐 GC-MS 옣鍮(GC-2010; Shimadzu Co., Japan)瑜 솢슜븯떎. 異붿텧臾쇱쓣 DMSO뿉 異⑸텇엳 슜빐떆궓 썑, 썝떖遺꾨━湲곕 씠슜븯뿬 遺쑀臾쇱쓣 젣嫄고븯怨 留덉씠겕濡 븘꽣濡 뿬怨쇳븯뿬 떆猷뚮 以鍮꾪븯떎. 而щ읆 BD-5 (60 mm횞0.25 mm횞0.25 mm), 씠룞 媛뒪(carrier gas)뒗 씠룞 鍮꾩쑉(flow rate) 1 mL/min, 二쇱엯援(injection) 삩룄뒗 250꼦, split ratio 10:1, 삩룄뒗 50~300꼦/3꼦 듅삩, injection volume 1 關L 議곌굔쑝濡 遺꾩꽍쓣 븯떎.

怨곗넄뿴留 異붿텧臾(PTEC) 븿쑀 蹂듯빀븘由 젣議

蹂듯빀븘由꾩쓣 젣議고븯湲 쐞빐 삁鍮꾩떎뿕쓣 넻빐 TSB 遺꾨쭚怨 GG瑜 쟾泥 2% 냽룄濡 怨좎젙븯怨 1:0, 0.7:0.3, 0.5:0.5 (w/w) 鍮꾩쑉濡 100 mL 利앸쪟닔뿉 泥④븯뿬 90遺꾧컙 100꼦뿉꽌 援먮컲븳 썑, 샇紐④쾶굹씠(IKA, Ultra-Turrax T25, Staufan, Germany)瑜 씠슜븯뿬 1,500 rpm뿉꽌 5遺꾧컙 homogenization 븯떎. 媛먯븬뿬怨(Whatman No. 4, Maidstone, UK)븳 PTEC瑜 떎뼇븳 냽룄(0.5, 1.0%)뿉 泥④븯뿬 30遺꾧컙 援먮컲븳 떎쓬, 湲고룷 젣嫄곕 쐞빐 珥덉쓬뙆 泥섎━湲(Ultrasonic bath, SD-350H, Seoul, Korea)瑜 씠슜븯뿬 60꼦뿉꽌 1떆媛 泥섎━븯쑝硫, 泥섎━ 썑 떎삩뿉꽌 떇엺 뮘 蹂듯빀슜븸(25 mL)쓣 럹듃由щ뵒돩(90 mm)뿉 洹좎씪븯寃 遺뼱 60꼦뿉꽌 18떆媛 嫄댁“븯뿬 嫄댁“맂 븘由꾪삎깭뿉 d-PBS瑜 泥섎━븯뿬 媛援먮맂 蹂듯빀븘由꾩쓣 젣議고븯떎.

븘由꾩쓽 臾쇱꽦 痢≪젙

븘由꾩쓽 臾쇱꽦쓣 痢≪젙븯湲 쐞빐 ASTM Standard Method D638M 諛⑸쾿뿉 뵲씪 씤옣媛뺣룄(tensile strength, TS) 떊옣瑜(elongation at break, E)쓣 룊媛븯떎. 븘由꾩 삩룄 25꼦, 긽뒿룄 50%뿉꽌 48떆媛 conditioning 븳 썑 Universal Testing Machine (TO-102D, TESTONE Co., Gyeonggi-do, Korea)쓣 궗슜븯뿬 痢≪젙븯떎.

븘由꾩쓽 빆궛솕 뒫젰 痢≪젙

븘由꾩쓽 빆궛솕 뒫젰 솗씤쓣 쐞빐 異붿텧臾쇱쓽 냽룄뿉 뵲씪 젣議고븳 蹂듯빀븘由꾩쓣 깮由ъ떇뿼닔뿉 슜異쒖떆耳곕떎. 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) 씪뵒移 냼嫄곕뒫쓣 痢≪젙븯떎(Ryu et al., 2017). DPPH 씪뵒移 냼嫄곕뒫 痢≪젙쓣 쐞빐 0.8 mM DPPH 슜븸쓣 硫뷀깂삱濡 젣議 썑, DPPH 슜븸 1 mL 蹂듯빀븘由 슜븸 2 mL瑜 샎빀븯뿬 븫떎뿉꽌 1떆媛 諛섏쓳떆궓 뮘 517 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. ABTS 씪뵒移 냼嫄곕뒫 痢≪젙 7 mM ABTS 슜븸쓣 젣議 썑 2.45 mM potassium persulfate쓽 샎빀슜븸(2:1. v/v)쓣 3李⑥닔濡 씗꽍븯뿬 734 nm뿉꽌 씉愿묐룄瑜 0.8 (짹0.01)濡 留욎텛뼱 궗슜븯떎. ABTS 샎빀슜븸(2.85 mL)怨 0.15 mL쓽 蹂듯빀븘由 슜븸쓣 샎빀븯뿬 븫떎뿉꽌 10遺꾧컙 諛섏쓳떆궓 뮘 痢≪젙븯떎.

洹좎< 諛곗뼇怨 븘由꾩쓽 빆洹 뒫젰 痢≪젙

Escherichia coli (E. coil, KCTC 1115), Staphylococcus aureus (S. aureus, ATCC 6538)쓣 Nutrient broth (Difco Laboratories, Detroit, USA)뿉 젒醫낇븯떎. 37꼦, 24떆媛 諛곗뼇븳 洹 븸쓣 븘由꾩쓽 빆洹 뒫젰 痢≪젙쓣 쐞븳 뵒뒪겕 솗궛踰뺤쓣 궗슜븯떎. 諛곗뼇맂 E. coil, S. aureus瑜 NB 븸泥대같吏뿉 107 CFU/mL濡 씗꽍븳 洹좎쓣 NB 怨좎껜諛곗뿉 100 關L 쟻븯떆耳 궡洹좊맂 glass spreader瑜 씠슜븯뿬 룄留먰븯떎. 硫멸퇏맂 paper disc (8 mm, Advantec, Tokyo, Japan)뿉 븘由꾪삎꽦슜븸쓣 50 關L뵫 젏쟻븳 뮘 洹좎씠 룄留먮맂 諛곗뿉 遺李⑹떆耳 37꼦뿉꽌 24떆媛 諛곗뼇 썑 깮꽦맂 inhibition zone쓽 吏由꾩쓣 痢≪젙븯떎.

넻怨꾩쿂由

紐⑤뱺 떎뿕 寃곌낵뒗 룊洹좉컪(mean)怨 몴以렪李(standard deviation, SD)濡 몴떆븯떎. 議곌뎔怨 떎뿕援 궗씠쓽 넻怨꾪븰쟻 쑀쓽꽦 寃젙 Student's t-test濡 鍮꾧탳븯쑝硫 P媛 0.05 씠븯씤 寃껊쭔 쑀쓽븳 寃껋쑝濡 븯떎.

寃 怨

李몄튂遺궛臾/젮寃(TSB/GG)議곗꽦 蹂듯빀븘由꾩쓽 臾쇱꽦

李몄튂遺궛臾쇱뿉 궛 泥섎━븯뿬 뼸 遺꾨쭚(TSB)怨 臾쇱꽦 솗蹂대 쐞빐 샎빀븳 GG쓽 蹂듯빀븘由꾩쓽 臾쇱꽦쓣 愿李고븯떎. 蹂듯빀븘由꾩뿉 몴硫댄삎긽 Fig. 1뿉 굹깉떎. 鍮꾩쑉뿉 뵲瑜 TSB/GG 븘由꾩쓽 씤옣媛뺣룄瑜 痢≪젙븯쓣 븣, TSB쓽 鍮꾩쑉씠 궙븘吏먯뿉 뵲씪 씤옣媛뺣룄 媛믪씠 利앷릺뒗 寃껋쓣 솗씤븯떎(Table 1). 씠뒗 蹂듯빀븘由 젣議 떆 泥④릺뒗 GG쓽 냽룄媛 넂븘吏먯뿉 뵲씪 븘由꾩쓽 臾쇱꽦씠 뼢긽릺뿀떎. 븯吏留, GG쓽 鍮꾩쑉씠 긽쟻쑝濡 넂븘吏硫 븘由꾩씠 삎꽦릺吏 븡怨 뵳뵳빐吏怨 源⑥湲 돩슫(brittle) 臾쇱꽦씠 릺뒗 寃껋쓣 솗씤븯떎. 蹂 뿰援 寃곌낵 쑀궗븯寃 Xanthan gum 븘由꾩뿉 GG쓣 泥④븯쓣 븣 洹 鍮꾩쑉씠 利앷븿뿉 뵲씪 TS媛 利앷븯怨 E媛 媛먯냼븯뒗 寃껋, 븘由 二쇱옱猷뚯씤 怨좊텇옄 臾쇱쭏怨 GG 媛꾩쓽 寃고빀 利앷뿉 쓽븳 臾쇱꽦 蹂솕濡 湲곗씤븳떎(Zhang et al., 2020). 삉븳, 븣濡쒖뿉 寃 議곗꽦뿉 GG瑜 泥④븿뿉 뵲씪 TS媛 利앷븯뒗 寃껋씠 솗씤릺뿀떎(Alvarado-Gonz찼lez et al., 2012). 씠윭븳 寃곌낵瑜 諛뷀깢쑝濡 TSB/GG 蹂듯빀븘由꾩쓽 씤옣媛뺣룄 諛 떊옣瑜좎 TSB:GG 鍮꾩쑉씠 0.5:0.5 (w/w)씪 븣媛 理쒖쟻 議곌굔씠뿀쑝硫, 씠븣 臾쇱꽦 TS媛 22.6 3짹1.41 MPa씠뿀怨 E뒗 34.63짹0.56%떎.

Physical properties of tuna skin byproduct/gellan gum (TSB/GG) composite films

TSB:GG ratio Tensile strength (MPa) Elongation at break (%)
1:0 1.31±0.07 53.83±1.21
0.7:0.3 15.3±0.69 20.4±0.8
0.5:0.5 22.63±1.41 34.63±0.56

1) Values are mean ± SD (n=5)



Fig. 1. Digital photoimages of tuna skin byproduct/gellan gum (TSB/GG) composite films containing of Pinus thunbergii cone extract (PTCE). (A); TSB/GG, (B); TSB/GG-PTCE (0.5%), (C); TSB/GG-PTCE (1%).

怨곗넄異붿텧臾(PTCE)쓽 꽦遺 遺꾩꽍

70% 뿉깂삱 怨곗넄뿴留 異붿텧臾 遺꾩꽍 寃곌낵 50뿬媛쒖쓽 뵾겕瑜 솗씤븯떎(Fig. 2). 二쇱슂 꽦遺 쐞二쇱쓽 솕빀臾쇱쓣 굹뿴븯떎(Table 2). 빐넚異붿텧臾쇱쓽 二쇱슂 꽦遺꾩 kaura-type쓽 diterpen怨 솕빀臾쇱씠 23.73%씠硫, diterpen怨 솕빀臾쇱쓽 遺遺꾩 吏꾪넻옉슜, 吏꾩젙옉슜, 빆뿼利앹옉슜씠 蹂닿퀬릺怨 엳떎(Yen and Chen, 1995). 泥쒖뿰떇臾쇱쓽 resin뿉꽌 二쇰줈 寃異쒕릺뒗 phenanthrene carboxaldehyde 솕빀臾쇱 10.18%濡, 옡굹臾대궛臾쇱쓣 뿉깂삱濡 異붿텧븳 寃쎌슦 9.23%濡 鍮꾩듂븳 븿쑀웾씠 愿李곕릺뿀떎. 넄諛⑹슱쓽 寃쎌슦 遺遺꾩씠 diterpen怨 솕빀臾쇱씠 媛옣 留롮씠 븿쑀릺뼱 엳뿀떎. 듅엳, 넚吏꾩쓽 二쇱슂 꽦遺꾩씤 abietic acid쓽 븿쑀웾 12.66%濡 굹臾댁쓽 醫낅쪟뿉 뵲씪 븿쑀웾씠 떎瑜대ʼn 빆洹좎꽦 빆깮 臾쇱쭏濡 븣젮졇 엳떎(Kim et al., 2008; Yuki et al., 2020).

Chemical compositions of Pinus thunbergii cone extract (PTCE) by Gas chromatography-mass spectrometry (GC-MS) analysis

Peak Compound name Formular Real.Time (min) Area (%)
1 Kaura-5,16-dien-18(or 19)-ol C20H30O 36.82, 38.32, 38.13 23.73
2 Phenanthrene carboxaldehyde, C15H10O 35.12 10.18
3 Cholesteryl bromide C27H45Br 35.81 6.40
4 Abietic acid C20H30O2 37.7, 39.06 12.66
5 Androstan-17-one C21H34O2 37.01 4.01
6 Vitamin A C20H30O 35.88 3.28


Fig. 2. Gas chromatography-mass spectrometry (GC-MS) analysis of Pinus thunbergii cone extract (PTCE).

怨곗넄異붿텧臾(PTCE) 븿쑀 蹂듯빀븘由 臾쇱꽦

TSB/GG 蹂듯빀븘由꾩뿉 빆洹 諛 빆궛솕 뒫젰쓣 遺뿬븯湲 쐞빐 떎뼇븳 냽룄쓽 PTCE (0, 0.5, 1.0%)瑜 븘由꾪삎꽦슜븸(TSB/GG)뿉 泥④븯뿬 븘由꾩쓣 젣議고븯떎(Table 3). PTCE 냽룄媛 利앷븿뿉 뵲씪 PTCE瑜 泥④븯吏 븡 議곌뎔뿉 鍮꾪빐 TS媛 理쒕 11.68 MPa源뚯 媛먯냼븯怨 E媛 理쒕 22.17%源뚯 利앷븯떎. 씠윭븳 寃곌낵뒗 PTCE 泥④濡 븘由 궡 怨좊텇옄 臾쇱쭏씤 TSB/GG쓽 遺꾩옄 媛 寃고빀 媛먯냼뿉 쓽븳 寃껋씠씪怨 뙋떒맂떎.

Physical properties of tuna skin byproduct/gellan gum (TSB/GG) composite films containing various amounts of Pinus thunbergii cone extract (PTCE)

Pinus thunbergii cone extract (%) Tensile strength (MPa) Elongation at break (%)
0.5 20.8±1.14 40.8±0.91
1 16.34±0.77 50.13±1.59
1.5 10.95±0.5 56.8±1.21

1) Values are mean ± SD (n=5)



蹂 뿰援 寃곌낵 쑀궗븯寃 븳泥(agar) 議곗꽦 븘由꾩뿉 泥쒖뿰諛⑸젣 냼옱씤 옄紐쎌쥌옄 異붿텧臾쇱쓣 泥④븳 寃곌낵 異붿텧臾쇱쓽 냽룄媛 利앷븿뿉 뵲씪 TS媛 媛먯냼븯怨 E媛 利앷븯뒗뜲, 씠윭븳 寃곌낵뒗 븘由 궡 agar 媛숈 怨좊텇옄 臾쇱쭏 媛꾩쓽 寃고빀씠 媛먯냼븿뿉 뵲瑜 寃곌낵씪怨 蹂닿퀬븯떎(Kanmani and Rhim, 2014).

怨곗넄異붿텧臾(PTCE) 븿쑀 蹂듯빀븘由꾩쓽 빆궛솕 諛 빆洹 뒫젰

떎뼇븳 냽룄쓽 PTCE瑜 泥④븳 TSB/GG 蹂듯빀븘由꾩쓽 빆궛솕 뒫젰쓣 솗씤븯湲 쐞빐 DPPH, ABTS 씪뵒移 냼嫄곕뒫쓣 痢≪젙븯떎(Fig. 3, Table 4). 鍮꾧탳쟻 븞젙븳 free radical濡 DPPH ABTS뒗 빆궛솕 솢꽦 痢≪젙뿉 留롮씠 궗슜릺怨 엳뒗뜲, hydrophilic 삉뒗 lipophilic 臾쇱쭏 紐⑤몢 痢≪젙맂떎. DPPH뒗 쓬씠삩 씪뵒移쇱쓣 ABTS뒗 뼇씠삩 씪뵒移쇱쓣 깮꽦븯뒗 李⑥씠媛 엳떎. 씠 몢 媛吏 諛⑸쾿 湲곗쭏怨 諛섏쓳 臾쇱쭏쓽 寃고빀 젙룄媛 꽌濡 떖씪 씪뵒而 냼嫄곕뒫 寃곌낵媛 긽씠븷 닔룄 엳떎怨 븣젮졇 엳떎(Lee et al., 2012).

Antioxidant activities of tuna skin byproduct/gellan gum (TSB/GG) composite films containing various amounts of Pinus thunbergii cone extract (PTCE)

Pinus thunbergii cone extract (%) DPPH radical scavenging (%) ABTS radical scavenging (%)
0 5.18±1.52 9.4±1.12
0.5 71.1±1.04 39.06±0.86
1 92.07±1.32 73.35±3.67

1) Values are mean ± SD (n=5)



Fig. 3. Antioxidant activity of tuna skin byproduct/gellan gum (TSB/GG) composite films containing of Pinus thunbergii cone extract (PTCE). (A) DPPH radical, (B) ABTS radical assay.

媛곴컖쓽 씪뵒移 냼嫄곕뒫 寃곌낵瑜 넻빐 빆궛솕뒫씠 솗씤릺뿀떎. 씠윭븳 寃곌낵뒗 怨곗넄뿴留 異붿텧臾 궡 떎뼇븳 polyphenol뿉 쓽븳 寃껋쑝濡 뙋떒맂떎. 삉븳 PTCE 泥④웾씠 利앷븿뿉 뵲씪 씪뵒移 냼嫄곕뒫씠 鍮꾨븯寃 利앷븯뒗뜲, 듅엳, DPPH 씪뵒而 냼嫄곕뒫뿉꽌뒗 0.5%쓽 냽룄뿉꽌 IC50 (inhibitory concentrations 50)뿉 媛源뚯슫 媛믪씠 愿李곕릺뿀쑝硫 씠윭븳 寃곌낵뒗 넄諛⑹슱 異붿텧臾쇱쓽 냽룄蹂 DPPH 씪뵒移 냼嫄곕뒫 寃곌낵 쑀궗븯떎(Lee et al., 2016).

삉븳, 뵒뒪겕 솗궛踰뺤쓣 넻빐 E. coli, S. aureus쓽 깮쑁 뼲젣뒫쓣 痢≪젙븯떎(Fig. 4). E. coli, S. aureus뒗 愿묐쾾쐞븳 깮쑁 삩룄뿉꽌 꽦옣븯硫, 떇뭹뿉 愿뿬븯뒗 誘몄깮臾쇰줈 빆洹 뒫젰 痢≪젙 긽 洹좎쑝濡 꽑젙븯떎.

Fig. 4. Antimicrobial activity of tuna skin byproduct/gellan gum (TSB/GG) composite films containing various amounts of Pinus thunbergii cone extract (PTCE) against Escherichia coli and Staphylococcus aureus by disc diffusion test. (A) The inhibition zone of PETC against Escherichia coli and Staphylococcus aureus. (B) Average diameter (mm) of the inhibition zones. Data are expressed as mean ± standard error of the mean.

PTCE 냽룄媛 0, 0.5, 1.0%濡 利앷븿뿉 뵲씪 깮쑁빐솚(inhibition zone)씠 냽룄 쓽議댁쟻쑝濡 利앷븯뿬 E. coli, S. aureus쓽 깮쑁쓣 솗뿰엳 빐븯뒗 寃껋쓣 솗씤븷 닔 엳뿀떎. 듅엳, TSB/GG 蹂듯빀븘由꾩 넂 삩룄(100꼦 씠긽)뿉꽌 끃쓣 닔 엳뒗 듅꽦씠 엳뼱 떇뭹 룷옣옱濡 솢슜 媛뒫븳 냼옱굹 깋옣 삩룄뿉꽌 쑀넻릺뒗 媛怨듭떇뭹쓽 옣꽦 利앸瑜 쐞븳 湲곕뒫꽦 룷옣 냼옱 諛 빟臾쇱쓽 떞泥대줈 솢슜 媛뒫븳 肄뷀똿젣삎쑝濡 솢슜씠 媛뒫븷 寃껋쑝濡 뙋떒맂떎.

怨 李

솚寃쎌삤뿼씠굹 룓湲곕Ъ뿉 븳 臾몄젣젏쓣 빐寃고븯湲 쐞빐 뵆씪뒪떛 룷옣옱瑜 泥댄븷 닔 엳뒗 냼옱뿉 븳 뿰援ш 留롮븘吏怨 엳떎. 빐뼇遺궛臾쇰줈遺꽣 빐뼇떒諛깆쭏 벑 쑀슚 꽦遺 異붿텧 諛 鍮꾨즺, 媛異 궗猷뚮줈 씪遺 궗슜릺怨 엳떎. 遺궛臾쇱쓽 솢슜 諛⑹븞 利앷瑜 쐞빐꽌 留롮 뿰援ш 븘슂븯떎. 泥쒖뿰怨좊텇옄뿉 냽븯뒗 삦닔닔떒諛깆쭏(corn zein), 쟾遺(starch), polylacticacid 벑 냼옱濡 젣議곕맂 룷옣옱뒗 빀꽦怨좊텇옄 議곗꽦쓽 룷옣옱蹂대떎 臾쇱꽦씠 궙쑝硫 듅엳, 닔遺꾩뿉 痍⑥빟븯硫, 媛뺣룄媛 빟븳 臾몄젣젏씠 蹂닿퀬릺怨 엳떎(You et al., 2014). 듅엳, 떇뭹 룷옣옱濡 솢슜븯湲 쐞빐 젮엺寃쓣 쟻슜븯뿬 臾쇱꽦쓣 솗蹂댄븳 븘由꾩쓣 젣議고븯떎. 삉븳, 泥쒖뿰怨좊텇옄 議곗꽦쓽 븘由꾩뿉 泥쒖뿰異붿텧臾 꽦遺꾩쓽 빆궛솕 諛 빆洹좎옉슜쓣 媛吏뒗 Pinus thunbergii cone extract 꽦遺꾩쓣 泥④븯뿬 湲곕뒫꽦 븘由꾩쓣 젣議고븯떎.

李몄튂遺궛臾쇱뿉꽌 異붿텧릺뒗 빐뼇떒諛깆쭏怨 젮寃쓽 理쒖쟻鍮꾨 꽑젙븯뿬 젣議고븳 蹂듯빀븘由꾩뿉 怨곗넄뿴留 異붿텧臾쇱쓣 븿쑀떆耳 빆궛솕 諛 빆洹좎꽦쓣 泥④븯떎. 怨곗넄뿴留ㅼ쓽 꽦遺꾩쑝濡 二쇱슂 꽦遺꾩 kaura-type쓽 diterpen怨 솕빀臾쇱씠 23.73%씠硫, diterpen怨 솕빀臾쇱쓽 遺遺꾩 吏꾪넻옉슜, 吏꾩젙옉슜, 빆뿼利앹옉슜씠 蹂닿퀬릺怨 엳떎(Yen and Chen, 1995). 泥쒖뿰떇臾쇱쓽 resin뿉꽌 二쇰줈 寃異쒕릺뒗 phenanthrene carboxaldehyde 솕빀臾쇱 10.18%, 넚吏꾩쓽 二쇱슂 꽦遺꾩씤 abietic acid쓽 븿쑀웾 12.66%濡 빆궛솕 諛 빆洹좎옉슜뿉 愿뿬븯뒗 솕빀臾쇱씠 솗씤릺뿀떎.

泥쒖뿰 빆洹 臾쇱쭏쓣 룷븿븳 媛떇꽦 븘由꾩 援ш컯궡 빆洹좎옉슜쓣 쐞븳 媛떇꽦 븘由꾩쑝濡 媛쒕컻릺뿀떎(Kim et al., 2009). 湲곗〈쓽 泥쒖뿰怨좊텇옄 議곗꽦 룷옣옱쓽 寃쎌슦 猷곕줈슦利, 궎떞, 쟾遺 벑 泥쒖뿰뿉꽌 돺寃 援ы븷 닔 엳뒗 떎뼇븳 떎떦瑜(polysaccharides)瑜 二쇰줈 留먰븯硫, 뼇紐, 寃ъ궗 벑쓽 룞臾쇱꽦 떒諛깆쭏씠굹 poly-hydroxyalkanoates 벑쓽 뤃由ъ뿉뒪뀒瑜닿퀎룄 꽦遺꾩씠 궗슜맂떎(Scaffaro et al., 2019). 臾쇱꽦쓣 蹂댁셿븯湲 쐞븳 뿰援ш 吏꾪뻾릺怨 엳떎(Gonz찼lez and Alvarez Igarzabal, 2013; Kurek et al., 2014). 移대씪湲대궃 븘由꾩쓽 寃쎌슦 0.1% 移쇰ⅷ뿼씠 泥④릺뿀쓣 븣 씤옣媛뺣룄媛 45 MPa쑝硫, 媛냼젣 移쇰ⅷ뿼쓽 泥④뿉 뵲瑜 븘由꾩쓽 湲곌퀎쟻 臾쇱꽦씠 뼢긽맂 寃껋쓣 솗씤븯떎(Park et al., 1995).

蹂 뿰援ъ뿉꽌 媛쒕컻븳 빐뼇遺궛臾 異붿텧臾(TSB)怨 젮寃(GG)쓽 鍮꾩쑉씠 1:1 (w/w)씪 븣 TS뒗 22.63짹1.41 MPa濡 뿰떎瑜좎 34.63짹0.56%떎. TSB쓽 鍮꾩쑉씠 궙븘吏먯뿉 뵲씪 씤옣媛뺣룄 媛믪씠 利앷릺뒗 寃껋쓣 솗씤븯떎. 씠뒗 蹂듯빀븘由 젣議 떆 泥④릺뒗 GG쓽 냽룄媛 넂븘吏먯뿉 뵲씪 븘由꾩쓽 臾쇱꽦씠 뼢긽릺뿀떎. 삦닔닔 쟾遺꾩쓣 젣議고븯뒗 怨듭젙쓽 遺궛臾쇰줈 삦뵾(corn fiber)뿉 媛냼젣 媛援먯젣 ferulic acid, tannic acid, cinnamaldehyde瑜 泥④븯뿬 臾쇱꽦쓣 솗蹂댄븯怨, 泥쒖뿰 臾쇱쭏 끃李⑥텛異쒕Ъ쓣 泥④븯뿬 빆궛솕뒫, 빆洹좎꽦쓣 利앷떆耳 떇뭹 룷옣옱濡 솢슜븯떎. 삦뵾 議곗꽦쓽 븘由꾩뿉 끃李⑥텛異쒕Ъ쓽 븿쑀웾씠 利앷맖뿉 뵲씪 TS媛 궙븘吏뒗 뿰援 寃곌낵뒗 蹂 뿰援ъ 鍮꾩듂븳 寃쏀뼢쓣 굹깉떎. 삦뵾떒諛깆쭏怨 寃고빀븯吏 븡 끃李⑥텛異쒕Ъ쓽 뤃由ы럹 닔궛湲 媛 寃고빀뿉 쓽븳 寃껋씠씪怨 뙋떒븯쑝硫(Bandyopadhyay et al., 2012), starch-chitosan film뿉 媛援먯젣濡 ferulic acid瑜 泥④ 떆 75 mg源뚯 TS媛 利앷븯떎媛 100 mg 泥④븳 寃쎌슦 TS媛 媛먯냼븯뒗 寃곌낵瑜 媛議뚮떎怨 蹂닿퀬븳 諛 엳떎(Mathew and Abraham, 2008). 泥쒖뿰異붿텧臾 Pinus thunbergii cone extract쓣 븿쑀떆궓 븘由꾩쓽 빆궛솕뒫 異붿텧臾쇱씠 0.5% 泥④뻽쓣븣 IC50뿉 媛源뚯슫 媛믪씠 솗씤릺뿀떎. 듅엳, 1%媛 泥④릺뿀쓣 븣 90%媛 꽆뒗 빆궛솕젰쓣 솗씤븯떎. 삉븳, E. coli S. aureus 빆洹좊젰 냽룄쓽議댁쟻쑝濡 뼢긽맂 寃껋쓣 솗씤븯떎. 끃李⑥텛異쒕Ъ씠 븿쑀맂 삦뵾떒諛깆쭏 議곗꽦 븘由꾩뿉꽌룄 씠 쑀궗븳 寃곌낵瑜 솗씤븯쑝硫, 끃李⑥텛異쒕Ъ쓽 븿쑀웾씠 1.0%瑜 泥④븯쓣 븣, 빆궛솕 諛 빆洹좊젰씠 뜑 슚怨쇱쟻씤 寃껋쓣 솗씤븯떎(Yang et al., 2015). 뵲씪꽌, 蹂 뿰援 寃곌낵 빆궛솕, 빆洹좊젰 솢꽦씠 泥④맂 李몄튂遺궛臾 議곗꽦쓽 蹂듯빀븘由꾩 떎뼇븳 궛뾽援곗뿉 솢슜 媛뒫븷 寃껋쑝濡 뙋떒릺硫, 솚寃쎈낫샇 깮遺꾪빐媛 媛뒫븳 냼옱濡 솢슜 媛移섍 넂쓣 寃껋쑝濡 湲곕맂떎.

ACKNOWLEDGEMENT

This study was financially supported by Chonnam National University (Grant number: (2018-3392).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

References
  1. Alvarado-Gonz찼lez JS, Chanona-P챕rez JJ, Welti-Chanes JS, Calder처n-Dom챠nguez G, Arzate-V찼zquez I, Pacheco-Alcal찼 SU, Garibay-Febles V, Guti챕rrez-L처pez GF. Optical, microstructural, functional and nanomechanical properties of Aloe vera gel/gellan gum edible films. Revista Mexicana de Ingenieria Quimica. 2012. 11: 193-202.
  2. Bandyopadhyay P, Ghosh AK, Ghosh C. Recent developments on polyphenol-protein interactions: effects on tea and coffee taste, antioxidant properties and the digestive system. Food Function. 2012. 3: 529-605.
    Pubmed CrossRef
  3. Gonz찼lez A, Alvarez Igarzabal CI. Soy protein-Poly (lactic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocolloids. 2013. 33: 289-296.
    CrossRef
  4. Kanmani P, Rhim JW. Antimicrobial and physicalmechanical properties of agar-based films incorporated with grapefruit seed extract. Carbohydrate Polymers. 2014. 102: 708-716.
    Pubmed CrossRef
  5. Kim CH, Lee SY, Pak JI. The Extraction of Essential Oil from By-product of pine nut cone and its antibacterial activity. Annals of Animal Resource Sciences. 2008. 19: 63-70.
  6. Kim J, Im TJ, Kim SG, Lee KY. Development of fish byproduct extract based absorbable soft tissue bioadhesive. Polymer (Korea). 2019. 43: 372-378.
    CrossRef
  7. Kim KM, Hwang KT, You SG, Lee US, Jung KH, Moon SK, Choi WS. Antimicrobial effect of edible pullulan film containing natural antimicrobial material on cariogenic bacteria. Journal of the Korean Society of Food Science and Nutrition. 2009. 38: 1466-1470.
    CrossRef
  8. Kim YJ. Influence of dietary sea urchin shell powder on physico-chemical properties of chicken meat. Korean Journal of Poultry Science. 2005. 32: 55-60.
  9. Kurek M, Galus S, Debeaufort F. Surface, mechanical and barrier properties of bio-based composite films based on chitosan and whey protein. Food Packaging and Shelf Life. 2014. 1: 56-67.
    CrossRef
  10. Lee AR, Roh SS, Lee ES, Min YH. Anti-oxidant and anti-melanogenic activity of the methanol extract of pine cone. Asian Journal of Beauty and Cosmetology. 2016. 14: 301-308.
    CrossRef
  11. Lee S, You Y, Kim K, Park J, Jeong C, Jhon DY, Jun W. Antioxidant activities of native Gwangyang Rubus coreanus Muq. Journal of the Korean Society of Food Science and Nutrition. 2012. 41: 327-332.
    CrossRef
  12. Lee SJ, Ha WH, Choi HJ, Cho SY, Choi JW. Hepatic detoxification and antioxidant activity in sea-urchin roe and ethanol extract of roe. Korean Journal of Fisheries and Aquatic Sciences. 2010. 43: 428-436.
    CrossRef
  13. Mathew S, Abraham TE. Characterisation of ferulic acid incorporated starch-chitosan blend films. Food Hydrocolloid. 2008. 22: 826-835.
    CrossRef
  14. Park JH, Rhim JW, Jung ST, Kang SG, Hwang KT, Park YK. Mechanical properties of carrageenan-based biopolymer films. Korea Society of Packaging Science &. Technology. 1995. 1: 38-50.
  15. Ryu MS, Yang HJ, Kim JW, Jeong SJ, Jeong SY, Eom JS, Jeong DY. Potential probiotics activity of Bacillus spp. from traditional soybean pastes and fermentation characteristics of Cheonggukjang. Korean Journal of Food Preservation. 2017. 24: 1168-1179.
    CrossRef
  16. Scaffaro R, Maio A, Sutera F, Gulino EF, Morreale M. Degradation and recycling of films based on biodegradable polymers: a short review. Polymers. 2019. 11: 651-671.
    Pubmed KoreaMed CrossRef
  17. Vanin FM, Sobral PJA, Menegalli FC, Carvalho RA, Habitante AMQB. Effects of plasticizers and their concentrations on thermal and functional properties of gelatin based films. Food Hydrocolloids. 2005. 19: 899-907.
    CrossRef
  18. Yang HJ, Song KB. Preparation of sea urchin skeleton film containing Robinia pseudoacacia flower extract. Journal of the Korean Society of Food Science and Nutrition. 2016. 45: 778-781.
    CrossRef
  19. Yang HJ, Lee JH, Lee JH, Song KB. Characterization of a corn fiber protein film containing green tea extract. Journal of Applied Biological Chemistry. 2015. 58: 145-151.
    CrossRef
  20. Yen GC, Chen HY. Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry. 1995. 43: 27-32.
    CrossRef
  21. You YS, Kim MK, Park MJ, Choi SW. Development of oxo-biodegradable bio-plastics film using agricultural by-product such as corn husk, soybean husk, rice husk and wheat husk. Clean Technology. 2014. 20: 205-211.
    CrossRef
  22. Yuki TI, Yamashiro K, Mineshiba F, Hirai K, Omori K, Yamamoto T, Takashiba S. Antimicrobial and antibiofilm effects of abietic acid on cariogenic Streptococcus mutans. Journal of Odontology. 2020. 108: 57-65.
    Pubmed CrossRef
  23. Zhang N, Li X, Ye J, Yang Y, Huang Y, Zhang X, Xiao M. Effect of gellan gum and xanthan gum synergistic interactions and plasticizers on physical properties of plant-based enteric polymer films. Polymers. 2020. 12: 121-127.
    Pubmed KoreaMed CrossRef