Search for


TEXT SIZE

search for



CrossRef (0)
Anti-bacterial Effect of Oenothera lamarckiana Aerial Part Extract
Biomed Sci Letters 2020;26:383-388
Published online December 31, 2020;  https://doi.org/10.15616/BSL.2020.26.4.383
© 2020 The Korean Society For Biomedical Laboratory Sciences.

Ji Yeong Yang1,2,짠,*, Pyoengjae Lee3,짠,** and Sa-Hyun Kim4,,**

1Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea
2Crop Foundation Division, National Institute of Crop Science, Jeonju 54875, Korea
3School of Industrial Bio-pharmaceutical Science, Semyung University, Jecheon 27136, Korea
4Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea
Correspondence to: Sa-Hyun Kim. Department of Clinical Laboratory Science, Semyung University, Jaecheon 27136, Korea.
Tel: +82-43-649-1624, Fax: +82-50-4411-9604, e-mail: science4us@semyung.ac.kr
*Graduate student, **Professor.
These authors contributed equally.
Received October 30, 2020; Revised December 11, 2020; Accepted December 12, 2020.
 Abstract
Ingestion of food contaminated with microorganism, if not always, could lead to severe health problem. Preservatives has been added to food to prevent food from being contaminated with microorganism. But, these have potential to threaten the health. Therefore, much effort has been taken to find the safe materials showing the anti-microbial activity. In this study, we investigated the anti-bacterial activity of Oenothera lamarckiana aerial part extract against eight bacteria strain. In paper disc assay, extract inhibited the growth of Staphylococcus aureus, Methicillin-resistant S. aureus, Bacillus cereus and Shigella dysenteriae at 200 關g/disc, but not against Escherichia coli, E. coli O157:H7, Salmonella Typhi and S. enteritidis. Minimum inhibitory concentration (MIC) against Staphylococcus aureus, Methicillin-resistant S. aureus, Bacillus cereus and Shigella dysenteriae is 250, 250, 500 and 500 關g/mL, respectively. Compared with reported MIC of other plant resources, O. lamarckiana aerial part extract showed the relatively high anti-bacterial activity. O. lamarckiana aerial part could be suitable for the preservative development. But, it still remains to be studied to evaluate safety and so on.
Keywords : Oenothera lamarckianal, Anti-bacterial activity, Staphylococcus aureus, Minimum inhibitory concentration
Body

떇以묐룆(food poisoning) 떇뭹쓣 留ㅺ컻濡 븯뿬 굹굹뒗 吏덊솚쑝濡 씤泥 쑀빐 誘몄깮臾 샊 솕븰臾쇱쭏 벑뿉 삤뿼맂 떊꽑떇뭹 샊 쑁媛怨듯뭹쓣 꽠痍⑦븿쑝濡쒖꽌 굹궃떎. 誘몄깮臾쇱뿉 쓽븳 떇以묐룆 겕寃 Staphylococcus aureus Bacillus cereus 벑쓽 諛뺥뀒由ъ븘瑜 몴濡 븯뒗 옣룆냼 湲곗쟾쓣 넻븳 鍮꾩뿼利앹꽦 꽕궗瑜 룞諛섑븯뒗 寃쎌슦 Salmonella 냽 諛뺥뀒由ъ븘瑜 몴濡 븯뒗 옣愿 移⑥뒿 샊 꽭룷룆냼 湲곗쟾쓣 넻븳 뿼利앹꽦 꽕궗瑜 룞諛섑븯뒗 寃쎌슦濡 굹닃 닔 엳떎. 씠윴 誘몄깮臾쇱뿉 쓽븳 떇뭹삤뿼쓣 留됯린 쐞빐 떊꽑떇뭹 샊 쑁媛怨듯뭹쓽 깮궛, 媛怨, 쑀넻 벑 냼鍮꾩옄뿉 룄떖븯湲 븯湲 쟾 怨쇱젙뿉 삤뿼슂씤 愿由ы븯怨 醫 뜑 젙援먰븳 誘몄깮臾 깘깋 湲곗닠쓣 媛쒕컻븯怨좎옄 끂젰븯怨 엳떎(Lim and Kim, 2017; Choi et al., 2019). 룞떆뿉 떇뭹쓣 옣湲곌컙 븞쟾븯寃 蹂댁〈븯怨좎옄 빆洹좏슚怨쇰 媛吏뒗 떇뭹 蹂댁〈젣瑜 궗슜븯뒗뜲 泥쒖뿰옄썝쓽 빆洹 솢꽦怨 빆洹좊Ъ吏덉쓣 깘깋븯怨 궛뾽쟻쑝濡 쓳슜븯뒗 諛⑸쾿뿉 븳 뿰援 삉븳 袁몄엳 吏꾪뻾릺뼱 삤怨 엳떎(Yang and Lee, 2013; Lee et al., 2015; Lee et al., 2017; Liu et al., 2017; Yu et al., 2019).

Oenothera 냽쓽 떖留욎씠苑껋 궓 쨌 遺 븘硫붾━移닿 썝궛吏濡 슦由щ굹씪뿉꽌뒗 쟾援쟻쑝濡 옄깮븯굹 듅엳 궓遺빐븞怨 젣二쇰룄뿉꽌 二쇰줈 李얠븘蹂 닔 엳떎怨 븣젮졇 엳떎. Oenothera 냽 떖留욎씠苑껋쓽 깮由ы솢꽦 슚뒫怨 愿젴븯뿬 빆궛솕, 빆뿼利, 빆븫 벑씠 蹂닿퀬맂 諛 엳뼱 궛뾽쟻쑝濡 씠슜媛移섍 넂떎怨 룊媛릺怨 엳쑝硫 듅엳 떖留욎씠苑껋쓽 뵪쓽 깮由ы솢꽦 뿰援щ뒗 留ㅼ슦 솢諛쒗븳 렪씠떎(Yoon et al., 2009; Almora-Pinedo et al., 2017; Timoszuk et al., 2018; Pajak et al., 2019). Oenothera 냽 떖留욎씠苑껋쓽 빆洹 옉슜怨 愿젴븯뿬 븷湲곕떖留욎씠苑(Oenothera laciniata) 쟾珥 80% 뿉깂삱 異붿텧臾쇨낵 遺꾪쉷臾쇱씠 빆洹좏슚怨쇰 蹂댁쑝硫(Kim et al., 2007) 떖留욎씠苑(Oenothera biennis) 70% 뿉깂삱 異붿텧臾쇱쓽 寃쎌슦 S. aureus, E. coli, S. Typhi뿉 빐꽌뒗 꽦옣뼲젣 슚怨쇰 蹂댁씠吏 븡븯쑝굹 Bacillus cereus뿉 빐꽌뒗 꽦옣뼲젣瑜 蹂댁떎(Kim and Lee, 2016). 湲댁옂떖留욎씠苑(Oenothera odorata) 肉뚮━ 75% 硫뷀깂삱 異붿텧臾쇨낵 遺꾪쉷臾 긽쑝濡 빆洹좏슚怨 떎뿕뻽쓣 븣뒗 겢濡쒕줈룷由 遺꾪쉷臾쇱씠 Streptococcus 냽뿉 빐 긽쟻쑝濡 넂 빆洹좊젰 蹂댁떎(Shin et al., 1994). 븯吏留 Oenothera 냽 떖留욎씠苑 以 겙떖留욎씠苑(Oenothera lamarckiana)씠 떇뭹遺뙣 諛 떇以묐룆 愿젴 洹좎뿉 븳 꽦옣뼲젣 슚怨쇨 蹂닿퀬맂 諛 뾾떎. 蹂 뿰援щ뒗 겙떖留욎씠苑 吏긽遺 異붿텧臾쇱쓣 긽쑝濡 빆洹좏슚怨쇨 엳뒗吏 떎뿕븯뿬 떇뭹怨 愿젴븯뿬 슚슜씠 엳뒗吏 湲곗큹쟻씤 옄猷뚮 젣떆븯怨좎옄 븳떎.

겙떖留욎씠苑(Oenothera lamarckiana)쓽 吏긽遺 異붿텧臾쇱 븳援떇臾쇱텛異쒕Ъ뻾뿉꽌 援щℓ븯뿬 궗슜븯떎. 異붿텧臾쇱 dimethyl sulfoxide (DMSO)뿉 끃씤 썑 遺꾩<븯뿬 -20룄뿉꽌 蹂닿븯떎. 떎뿕뿉 궗슜븳 bacteria뿉 븳 젙蹂대뒗 Table 1怨 媛숇떎. 떎뿕 洹좎<뒗 蹂댄넻븳泥쒕같吏(Becton-Dickinson, New Jergy, USA)뿉 怨꾨 諛곗뼇븯뿬 궗슜븯떎. 30꼦 샊 37꼦뿉꽌 18떆媛 諛곗뼇븳 꽭洹좎쓽 吏묐씫쓣 痍⑦븯뿬 硫멸퇏 깮由ъ떇뿼닔濡 삷寃 媛곴컖쓽 洹좎닔瑜 McFarland 긽룄 0.5 (1.5 횞 108/mL)뿉 留욎텛뼱 꽭洹 遺쑀븸쓣 以鍮꾪븯떎. Muller-Hinton 룊뙋諛곗(Becton-Dickinson) 몴硫댁뿉 硫멸퇏맂 硫대큺쓣 씠슜븯뿬 꽭洹 遺쑀븸쓣 3쉶 諛섎났븯뿬 룄留먰븯떎. DMSO뿉 끃씤 20 mg/mL怨 룞씪 슜留ㅻ줈 씗꽍븳 2 mg/mL 10 關L瑜 paper disc (6 mm)뿉 泥섎━븳 썑 嫄댁“븯뿬 슜留ㅻ 젣嫄고븯떎. 議곌뎔쑝濡 DMSO 10 關L瑜 paper disc뿉 泥섎━븯뿬 嫄댁“븳 寃껋쓣 궗슜븯떎. Paper disc瑜 諛뺥뀒由ъ븘瑜 룄留먰븳 룊뙋諛곗 쐞뿉 삱젮넃怨 諛李⑹떆耳곕떎. 37꼦뿉꽌 24떆媛 룞븞 諛곗뼇븳 썑 disc 二쇰뿉 깮꽦맂 깮쑁뼲젣솚(clear zone)쓽 吏由꾩쓣 痢≪젙븯떎. 諛곗뼇맂 꽭洹좎쓽 吏묐씫쓣 痍⑦븯뿬 媛곴컖쓽 洹좎닔瑜 理쒖쥌 1 횞 105/mL媛 릺룄濡 Muller-Hinton 븸泥대같吏(Becton-Dickinson, MA, USA)뿉 꽭洹 遺쑀븸쓣 以鍮꾪븯떎. 겙떖留욎씠苑 異붿텧臾쇱 理쒖냼 냽룄 0.13 mg/mL뿉꽌 理쒕 냽룄 2 mg/mL쓽 踰붿쐞 궡뿉꽌 Muller-Hinton 븸泥대같吏뿉 떒怨 씗꽍븯떎. 議곌뎔怨 媛 떎뿕援곗뿉 룞씪븳 理쒖쥌 슜留ㅼ쓽 뼇(%)씠 릺룄濡 DMSO瑜 泥④븯떎. 냽룄蹂 異붿텧臾쇨낵 꽭洹 遺쑀븸쓣 96 well plate뿉 媛곴컖 100 關L뵫 遺꾩<븳 썑 18떆媛 諛곗뼇븯떎. 理쒖냼뼲젣냽룄(MIC)뒗 600 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯뿬 洹 利앹떇쓽 뼲젣媛 씪뼱굹뒗 理쒖냼 냽룄濡 寃곗젙븯떎. 겙떖留욎씠苑 異붿텧臾쇱쓣 0.06, 0.13, 0.25, 0.5, 1, 2 mg/mL 냽룄媛 릺룄濡 Mueller Hinton 븸泥대같吏뿉 씗꽍븳 썑 2 횞 105/mL濡 씗꽍맂 꽭洹좎쓣 媛곴컖 100 關L뵫 96 well plate뿉 젒醫낇븯떎. 37꼦쓽 諛곗뼇湲곗뿉꽌 諛곗뼇븯硫댁꽌 諛곗뼇 吏곹썑遺꽣 18떆媛 썑源뚯 留 2떆媛꾨쭏떎 600 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 議곌뎔 닚닔븳 븸泥대같吏뿉 꽭洹좎쓣 젒醫낇븳 썑 떎뿕援곌낵 룞씪븳 諛⑸쾿쑝濡 諛곗뼇븯硫댁꽌 痢≪젙븯떎. 痢≪젙媛믪 룆由쎌쟻쑝濡 씠猷⑥뼱吏 3쉶쓽 떎뿕뿉꽌 뼸 媛믪쓣 mean 짹 SD濡 굹궡뿀떎. 떆猷뚮뱾 媛꾩쓽 넻怨꾨텇꽍 GraphPad Prism 6쓣 씠슜븯뿬 씪썝遺꾩궛遺꾩꽍怨 turkey's multiple comparisons濡 씠琉꾩죱떎(P < 0.05).

List of bacteria used for anti-bacterial effect of O. lamarckiana

Gram staining Strain Media Temp.
Positive Staphylococcus aureus ATCC 25923 Nutrient agar 37℃
MRSA1) ATCC 43300 Nutrient agar 37℃
Bacillus cereus ATCC 13061 Nutrient agar 30℃

Negative Shigella dysenteriae ATCC 13313 Nutrient agar 37℃
Escherichia coli ATCC 25922 Nutrient agar 37℃
Escherichia coli O157:H7 ATCC 35150 Nutrient agar 37℃
Salmonella Typhi ATCC 19430 Nutrient agar 37℃
Salmonella enteritidis ATCC 13076 Nutrient agar 37℃

1) Methicillin-resistant Staphylococcus aureus



Paper disc assay뿉꽌 O. biennis 쟾珥 嫄댁“臾쇱쓽 70% 뿉깂삱 異붿텧臾쇱씠 B. cereus뿉 빐꽌뒗 빆洹좏슚怨쇰 蹂댁쑝굹 S. aureus, E. coliS. Typhimurium뿉 빐꽌뒗 빆洹좏슚怨쇰 씠吏 븡 寃껋쑝濡 蹂닿퀬맂 諛 엳쑝硫(Kim and Lee, 2016) O. laciniata 쟾珥덉쓽 80% 뿉깂삱 異붿텧臾 諛 遺꾪쉷臾쇱쓽 寃쎌슦 뿉떥븘꽭뀒씠듃 遺꾪쉷臾쇱씠 B. cereus, L. monocytogenes, S. aureus, E. coli, S. enteritidis, S. Typhimurium뿉 빐 媛옣 媛뺣젰븳 빆洹좊젰쓣 蹂댁떎(Kim et al., 2007). 蹂 뿰援ъ뿉꽌 O. lamarckiana 吏긽遺쓽 硫뷀깂삱 異붿텧臾쇱 20 關g/disc뿉꽌 떎뿕 긽씠 맂 諛뺥뀒由ъ븘뿉 빐 clear zone쓣 蹂댁씠吏 븡븯吏留 200 關g/disc뿉꽌 S. aureus, MRSA, B. cereus S. dysenteriae뿉 빐 媛곴컖 12, 12, 8, 15 mm쓽 clear zone쓣 蹂댁떎(Table 2, Fig. 1). Oenothera 냽 떖留욎씠苑껋쓽 醫, 遺쐞, 異붿텧 슜留 벑쓽 議곌굔뿉 뵲씪 빆洹좎쓽 뼇긽씠 떎瑜닿쾶 굹궇 닔 엳쓬쓣 蹂댁뿬以떎. 醫 뜑 醫낇빀쟻쑝濡 醫낅퀎, 遺쐞蹂, 異붿텧諛⑸쾿蹂꾨줈 鍮꾧탳븯뿬 떎뿕씠 씠琉꾩졇빞 븷 寃껋쑝濡 깮媛곹븳떎.

Clear zone (mm) of treatment with O. lamarckiana against bacteria

Gram staining Strain Concentration (μg/disc)

20 200
Positive Staphylococcus aureus -1) 12
MRSA2) - 12
Bacillus cereus - 8

Negative Shigella dysenteriae - 15
Escherichia coli - -
Escherichia coli O157:H7 - -
Salmonella Typhi - -
Salmonella enteritidis - -

1) No clear zone

2) Methicillin-resistant Staphylococcus aureus



Fig. 1. Anti-bacterial effect of O. lamarckiana against S. aureus (A), MRSA (B) and B. cereus (C) and S. dysenteriae (D), E. coli (E), E. coli 0157 (F), S. Typhi (G), S. enteritidis (H). Vehicle: Disc which was added with DMSO, 200: 200 μg/disc, 20: 20 μg/disc.

O. lamarckiana 吏긽遺쓽 硫뷀깂삱 異붿텧臾쇱 S. aureus MRSA뿉 빐 125 關g/mL뿉꽌뒗 꽦옣뼲젣媛 슌졇븯吏 븡븯쑝굹 250 關g/mL뿉꽌뒗 議곌뎔 鍮꾪븯뿬 50% 씠긽 꽦옣쓣 뼲젣븯뿬 MIC뒗 250 關g/mL濡 깮媛곷릺硫 S. auresu MRSA媛꾩쓽 겙 李⑥씠뒗 蹂댁씠吏 븡븯떎(Fig. 2 and 3). B. cereus S. dysenteriae뿉 빐꽌뒗 냽룄쓽議댁쟻쑝濡 꽦옣쓣 뼲젣븯뒗 뼇긽쓣 蹂댁떎(Fig. 2 and 3). S. aureus뿉 빐 깮빟옱 異붿텧臾 以 슦뒳쓽 MIC뒗 156.25 關g/mL, 紐⑸떒뵾 빆諛깆 625 關g/mL (Cai et al., 2002). 吏쑀뒗 2.5 mg/mL (Park et al., 2001), 諛쒗슚 媛뺥솴 0.5~1 mg/mL (Ra and Kim, 2016) 씠뼱꽌 O. lamarckiana 吏긽遺쓽 硫뷀깂삱 異붿텧臾쇱쓽 S. aureus MRSA뿉 븳 빆洹좊젰 鍮꾧탳쟻 쎇뼱궃 寃껋쑝濡 蹂댁씤떎. Kim et al. (2007) O. laciniata 쟾珥 뿉떥븘꽭뀒씠뱶 遺꾪쉷臾쇱쓽 S. aureus뿉 븳 MIC媛 10 關g/mL濡 蹂닿퀬븳 諛 엳뼱 O. lamarckiana 吏긽遺 異붿텧臾쇱쓽 遺꾪쉷臾쇱씠 醫 뜑 媛뺣젰븳 빆洹좏슚怨쇰 蹂댁씪 닔룄 엳뼱 씠뿉 븳 뿰援ш 븘슂븷 寃껋쑝濡 蹂댁씤떎.

Fig. 2. Determination of the MIC of O. lamarckiana extract against S. aureus (A), MRSA (B) and B. cereus (C) and S. dysenteriae (D) by broth dilution test. A final optical density of the bacterial suspension was measured at 600 nm wavelength by spectrophotometry. DATA are presented as mean ± SD of three independent experiments. Means with different letters indicate the statistical difference (P<0.05).

Fig. 3. Growth curves of S. aureus (A), MRSA (B), B. cereus (C) and S. dysenteriae (D). Cultred at different concentration of O. lamarckiana. Bacterial growth was analyzed at the indicated time points by measuring values of 600 nm wavelength by spectrophotometry.

誘몄깮臾쇱뿉 삤뿼맂 떇뭹쓽 꽠痍⑤뒗 떇以묐룆怨 媛숈 吏덈퀝쓽 썝씤씠 릺湲 븣臾몄뿉 떇뭹쓽 옣湲 蹂닿 諛 쑀넻쓣 쐞빐 誘몄깮臾쇱쓽 꽦옣쓣 뼲젣븯뒗 떇뭹蹂댁〈젣쓽 媛쒕컻 援誘쇰뱾쓽 븞쟾뿉 겕寃 湲곗뿬븷 닔 엳떎. 蹂 떎뿕뿉꽌 Oenothera 냽 떖留욎씠苑 以 겙떖留욎씠苑(Oenothera lamarckiana)쓽 吏긽遺 硫뷀깂삱 異붿텧臾쇱씠 떇뭹뿉 쓽븳 媛먯뿼吏덊솚怨 愿젴 엳뒗 諛뺥뀒由ъ븘 以 S. aureus, MRSA, B. cereus, S. dysenteriae뿉 빐 꽦옣빐슚怨쇨 엳쓬쓣 愿李고븯떎. 듅엳 S. aureus, MRSA뿉 빐꽌뒗 떎瑜 떇臾쇱쓽 珥 異붿텧臾쇱뿉 빐 긽쟻쑝濡 媛뺥븳 꽦옣뼲젣젰쓣 蹂댁떎. 뵲씪꽌 겙떖留욎씠苑 異붿텧臾쇱뿉 빆洹좊젰쓣 蹂댁씠뒗 꽦遺꾩씠 엳쓣 寃껋쑝濡 깮媛곷맂떎. 씠 떎뿕 겙떖留욎씠苑껋쓽 빆洹좊젰뿉 愿븳 湲곗큹떎뿕쑝濡 뼢썑 겙떖留욎씠苑껋뿉꽌 빆洹좏슚怨쇰 媛뽯뒗 떒씪臾쇱쭏 깘깋릺뼱 떇뭹쓽 蹂닿 諛 쑀넻뿉 솢슜븷 닔 엳쓣 寃껋쑝濡 湲곕븳떎.

ACKNOWLEDGEMENT

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Future Innovation Food Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (119023-3).

CONFLICT OF INTEREST

The authors have declared no conflict of interest.

References
  1. Almora-Pinedo Y, Arroyo-Acevedo J, Herrera-Calderon O, Chumpitaz-Cerrate V, Hanari-Quispe R, Tinco-Jayo A, Franco-Quino C, Figueroa-Salvador L. Preventive effect of Oenothera rosea on N-methyl-N-nitrosourea-(NMU) induced gastric cancer in rats. Clin Exp Gastroenterol. 2017. 10: 327-332.
    Pubmed KoreaMed CrossRef
  2. Cai H, Choi SI, Lee YM, Heo TR. Antimicrobial Effects of Herbal Medicine Extracts on Staphylococcus aureus and Escherichia coli O157:H7. Korean J Biotechnol Bioeng. 2002. 17: 537-542.
  3. Choi J, Lee SI, Rackerby B, Moppert I, McGorrin R, Ha SD, Park SH. Potential Contamination Sources on Fresh Produce Associated with Food Safety. J Food Hyg Saf. 2019. 34: 1-12.
    CrossRef
  4. Kim JH, Lee SH. Antioxidative and antimicrobial activities of Oenothera biennis extracted by different methods. Korean J Food Preserv. 2016. 23: 233-238.
    CrossRef
  5. Kim JY, Lee JA, Pakr SY. Antibacterial Activities of Oenothera laciniata Extracts. J Korean Soc Food Sci Nutr. 2007. 36: 255-261.
    CrossRef
  6. Lee JW, Yoon JH, Park JW. Effects of Grapefruit Seed Extract for Antibacterial Activity on the Coated Packaging. Food Eng Prog. 2015. 19: 104-110.
    CrossRef
  7. Lee SM, Kim SI, Kang MS, Lee CY, Hwang DY, Lee HS, Kim DS. Evaluation of Antimicrobial Activity of Steamed and Fermented Asparagus cochinchinenesis. Food Eng Prog. 2017. 21: 143-149.
    CrossRef
  8. Lim MC, Kim YR. Sample Preparation and Nucleic Acid-Based Technologies for the Detection of Food Borne Pathogens. Food Eng Prog. 2017. 21: 191-200.
    CrossRef
  9. Liu Q, Meng X, Li Y, Zhao CN, Tang GY, Li HB. Antibacterial and Antifungal Activities of Spices. In J Mol Sci. 2017. 18: E1263.
    Pubmed KoreaMed CrossRef
  10. Pajak P, Socha R, Broniek J, Krolikowska K, Fortuna T. Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chem. 2019. 275: 69-76.
    Pubmed CrossRef
  11. Park CG, Bang KH, Lee SE, Cha MS, Sung JS, Park HW, Seong NS. Antibacterial activity from medicinal plant extracts on the Staphylococcus aureus. Korean J Medicinal Crop Sci. 2001. 9: 251-258.
  12. Ra HN, Kim HY. Antioxidant and Antimicrobial Activities of Curcuma aromatica Salisb. with and without Fermentation. Korean J Food Cook Sci. 2016. 32: 299-306.
    CrossRef
  13. Shin SJ, Kwon SK, Lee KH, Sung ND, Choi WY. Extraction and Characterization of Antibacterial Components from the Roots of Evening Primrose (Oetnothera odorata Jacquin). J Agri Sci. 1994. 21: 54-59.
  14. Timoszuk M, Bielawska K, Skrzydlewska E. Evening Primrose (Oenothera biennis) Biological Activity Dependent on Chemical Composition. Antioxidants (Basel). 2018. 7: 108.
    Pubmed KoreaMed CrossRef
  15. Yang HR, Lee HS. Antibacterial Activities of Extracts Derived from 13 Medicinal Plants against Food-Borne Bacteria. J Agri Life Sci. 2013. 44: 39-42.
  16. Yoon WJ, Ham YM, Yoo BS, Moon JY, Koh J, Hyun CG. Oenothera laciniata inhibits lipopolysaccharide induced production of nitric oxide, prostaglandin E2, and proinflammatory cytokines in RAW264.7 macrophages. J Biosci Bioeng. 2009. 107: 429-438.
    Pubmed CrossRef
  17. Yu JS, Yu NJ, Gim SW, Lee SJ, Kwon GT, Yuk HG. Antimicrobial effect of black raspberry (Rubus occidentalis, Bokbunja) extract against Escherichia coli and Staphylococcus auresu. Korean J Food Preserv. 2019. 26: 360-364.
    CrossRef