Search for


TEXT SIZE

search for



CrossRef (0)
The Antioxidative Effect of Eclipta prostrata L. Extract on Cultured NIH3T3 Fibroblasts Injured by Manganese-Induced Cytotoxicity
Biomed Sci Letters 2018;24:357-364
Published online December 31, 2018;  https://doi.org/10.15616/BSL.2018.24.4.357
© 2018 The Korean Society For Biomedical Laboratory Sciences.

Sang-Hee Lee1,*, In-Ju Jung2,*, and Hyesook Jang3,†,*

1Sanbon Hospital, School of Medicine, Wonkwang University, Gunpo 15865, Korea,
2Department of Cosmetology, Dongshin University, Naju 58245, Korea,
3Department of Nursing, Jeonju University, Jeonju-city 55069, Korea
Correspondence to: Hyesook Jang. Department of Nursing, Jeonju University, 303 Cheonjam-ro Wansan-gu, Jeonju-city 55069, Korea. Tel: +82-63-220-4698, Fax: +82-63-220-2054, e-mail: hyesookjang@gmail.com
Received November 7, 2018; Revised December 4, 2018; Accepted December 13, 2018.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract

Manganese (Mn) is used as main materials in various chemical processes of industry, but it suggested that Mn brings about its toxicant by fume or dust through respiratory system and skin barrier. Mn toxicant induces the loss of mental health and life quality by cerebrovascular and skin diseases. Nevertheless, it lefts much unknown on the mechanism and the effectively therapeutic methods about Mn toxicant. Therefore, this study was evaluated the cytotoxicity induced by manganese dioxide (MnO2) in cultured NIH3T3 fibroblasts, and also, the correlation between MnO2-induced cytotoxicity and oxidative stress was examined. While, the effect of Eclipta prostrata L. (EP) extract belong to Compositae was assessed against MnO2-induced cytotoxicity in the view of antioxidative effect for searching the natural resources mitigating or preventing the MnO2-induced cytotoxicity. In this study, MnO2-induced cytotoxicity was revealed as mid-toxic by Borenfreud and Puerner’s toxic criteria, and catalase (CAT), an antioxidant prevented MnO2-induced cytotoxicity by the remarkable increase of cell viability in these cultures. While, in the protective effect of EP extract on MnO2-induced cytotoxicity, EP extract effectively prevented the cytotoxicity induced by MnO2 via antioxidative effects such as xanthine oxidase (XO) inhibitory ability and DPPH-radical scavenging ability. From the above results, EP extract showed the effective prevention against MnO2-induced cytotoxicity correlated with oxidative stress by antioxidative effects. Conclusively, this study may be useful to research or development the alternatively therapeutic agent from natural resources like EP extract for the treatment of diseases resulted in oxidative stress.

Keywords : Toxicant, Manganese oxide, Alternative therapeutic agent, Antioxidative effect
꽌 濡

留앷컙怨 媛숈 以묎툑냽쓣 鍮꾨’븯뿬 냽빟씠굹 留ㅼ뿰怨 媛숈 쑀빐臾쇱쭏뱾씠 吏援ы솚寃쎌쓣 삤뿼떆耳 씤媛꾩쓽 嫄닿컯 臾쇰줎 궣쓽 吏덉쓣 뼥뼱쑉由щ뒗뜲 二쇰맂 뿭븷쓣 븯怨 엳떎(Pearce et al., 1989). 듅엳, 궛뾽怨듭젙쓽 옱猷뚮줈 留롮씠 궗슜릺怨 엳뒗 媛곸쥌 以묎툑냽瑜섏쓽 쓣씠굹 遺꾩쭊뱾 留ㅼ뿰怨 븿猿 湲곗삤뿼怨 吏援ъ삩궃솕瑜 珥덈옒븿쑝濡쒖뜥 씤媛꾩쓽 깮깭怨꾨 湲됱냽엳 뙆愿댄븯怨 엳떎(Jung et al., 2017b). 以묎툑냽 以 留앷컙 쉶諛깆깋쓽 愿묐Ъ吏덈줈 궛뾽遺臾몄뿉꽌 嫄댁쟾吏 젣議곕 鍮꾨’븯뿬 룄옄湲 젣議, 쟾湲곗슜젒 諛 씪 젣議 벑 뿬윭 젣議곗뾽 怨듭젙쓽 二쇱썝猷뚮줈 궗슜릺怨 엳떎(Cho, 1991). 씠媛숈 怨듭젙 怨쇱젙 以 留앷컙쓽 옉 엯옄굹 遺꾩쭊씠 뵾遺瑜 鍮꾨’븳 냼솕湲, 샇씉湲곕 넻븯뿬 씤泥댁뿉 끂異쒕릺硫 삁븸뿉꽌 씪遺뒗 젣嫄곕릺굹 씪遺뒗 媛꾩씠굹 뇤삁愿, 吏씪 諛 룓議곗쭅뿉 異뺤쟻맖쑝濡쒖뜥 以묐룆쓣 쑀諛쒗븯寃 맂떎(Pearce et al., 1989). 留앷컙솕빀臾 以 씠궛솕留앷컙(MnO2) 二쇰줈 嫄댁쟾吏 젣議곗뿉 궗슜릺怨 엳쑝硫, 썝꽍 遺꾩뇙 떆 씠쓽 遺꾩쭊씠굹 쓣뿉 쓽빐 씤泥 궡濡 룺濡쒕릺硫 以묐룆쓣 쑀諛쒗븳떎怨 븳떎. 듅엳, 뵾遺뿉 移⑦닾릺硫 겕濡ъ씠굹 닔泥섎읆 젒珥됱꽦 뵾遺뿼怨 媛숈 븣윭吏썝(allergen)쑝濡 옉슜븯뿬 뵾遺 옣踰쎌쓽 넀긽쓣 珥덈옒븳떎怨 븣젮졇 엳떎(Jung et al., 2014a). 洹몃윭굹 븘吏곴퉴吏 留앷컙 以묐룆뿉 븳 슚怨쇱쟻씤 移섎즺諛⑸쾿씠 솗由쎈릺뼱 엳吏 븡쓣 肉먮쭔 븘땲씪 씠쓽 룆꽦쁽긽뿉 븳 蹂묒씤湲곗쟾룄 옄꽭엳 諛앺吏吏 븡븯쑝硫(Cho, 1991), 꽭룷굹 遺꾩옄닔以뿉꽌 留앷컙쓽 뵾遺룆꽦룊媛굹 湲곗쟾뿉 븳 뿰援щ뒗 留롮 븡떎(Fulle et al., 2013). 理쒓렐, 留앷컙怨 媛숈 以묎툑냽瑜섏씤 닔씠굹 移대뱶裕, 겕濡ъ쓽 룆꽦씠 궛솕쟻 넀긽(oxidative stress)怨 愿젴씠 엳떎怨 젣떆릺硫댁꽌 씠쓽 룆꽦뿉 옄쑀씪뵒移(free radicals)씠 愿뿬븯怨 엳쓬씠 蹂닿퀬맂 諛 엳떎(Son et al., 2017). 뵲씪꽌, 씠뱾쓽 룆꽦 移섎즺瑜 빆궛솕 痢〓㈃뿉꽌 젒洹쇳븯젮뒗 떆룄媛 씠猷⑥뼱吏怨 엳떎. 洹쇰옒, 떇臾쇳솕븰꽦遺(phytochemicals) 以묒뿉뒗 빆궛솕瑜 鍮꾨’븳 빆븫, 빆뿼 諛 빆洹 벑뿉 슚뒫씠 넂 쑀슚臾쇱쭏뱾씠 떎웾 븿쑀릺뼱 엳뼱 媛곸쥌 吏덊솚 移섎즺뿉 쑀슚븳 슚怨쇰 굹궦떎怨 蹂닿퀬릺怨 엳떎(Jung et al., 2017a). 떇臾 以 븳젴珥(Eclipta prostrata L., EP)뒗 援솕怨(Compositae)뿉 냽븯뒗 븳빐궡씠濡 슦由щ굹씪 쟾援뿉 遺꾪룷븯怨 엳쑝硫, 二쇰줈 끉몢쟻씠굹 룄옉 벑 뒿吏굹 끉諛二쇰뿉 옄깮븯怨 엳떎(Chang, 2003). EP 쟾珥덈뒗 8~9썡뿉 媛쒗솕븷 븣 梨꾩랬븯뿬 源⑤걮씠 뵽 썑 뻼蹂뺤뿉 嫄댁“븯뿬 궗슜븳떎. EP뒗 깮빟紐낆쑝濡 뿰옄珥덈굹 닔븳젴씠씪怨좊룄 遺瑜대뒗뜲 留쏆 떖怨 떆硫, 꽦 李⑤떎. 씠쓽 꽦遺꾩쑝濡쒕뒗 뤃由ы럹瑜섏쓽 깂땶(tannin)쓣 鍮꾨’븳 뵆씪蹂대끂씠뱶 怨꾪넻쓽 궗룷땶(saponin), 洹몃━怨 썾뜽濡쒕씫넠(wedelolactone)씠굹 땲肄뷀떞(nicotine)怨 媛숈 떎뼇븳 꽦遺꾨뱾쓣 븿쑀븯怨 엳뼱(Kim and So, 1995), 삤옒쟾遺꽣 留뚯꽦 媛먯뿼쓣 鍮꾨’븯뿬 빐룆, 빆洹, 吏삁, 쓬遺뒿뼇(遺씤怨 吏덊솚)怨 媛숈 뿬윭 吏덊솚쓽 移섎즺뿉 궗슜릺뼱 솕떎. 듅엳, 씠쓽 꽦遺 以 럹솕빀臾쇱씤 뤃由ы럹瑜섏쓽 씪醫낆씤 tannin씠굹 뵆씪蹂대끂씠뱶 怨꾪넻쓽 saponin怨 媛숈 臾쇱쭏 빆궛솕굹 빆뿼뿉 쎇뼱궃 슚怨쇨 엳쓬 옒 븣젮졇 엳떎(Arditi et al., 2000). 洹몃읆뿉룄 遺덇뎄븯怨 븘吏곴퉴吏 EP瑜 鍮꾨’븳 罹먮え留덉씪怨 媛숈 援솕怨 떇臾 怨꾪넻쓽 빆궛솕 옉슜뿉 빐꽌뒗 냼닔쓽 뿰援 諛뽰뿉 씠猷⑥뼱졇 엳吏 븡쑝硫(Jin et al., 2011), 듅엳, 諛곗뼇 꽭룷瑜 씠슜븳 꽭룷닔以뿉꽌쓽 留앷컙룆꽦뿉 븳 EP 異붿텧臾쇱쓽 쁺뼢쓣 빆궛솕 痢〓㈃뿉꽌 議곗궗븳 뿰援щ뒗 留롮 븡떎(Kim and So, 1995).

蹂 뿰援щ뒗 留앷컙솕빀臾쇱쓽 씪醫낆씤 MnO2쓽 룆꽦쓣 뵾遺 넀긽 痢〓㈃뿉꽌 븣븘 蹂닿린 쐞븯뿬 뵾遺뿉 꼸由 遺꾪룷븯怨 엳뒗 꽟쑀紐⑥꽭룷(Kim and Jekal, 2016)씤 NIH3T3 꽟쑀紐⑥꽭룷二쇰 諛곗뼇븳 썑 꽭룷룆꽦쓣 젙웾쟻쑝濡 遺꾩꽍븿怨 룞떆뿉 씠궛솕留앷컙(MnO2)쓽 룆꽦怨 궛솕쟻 넀긽 媛꾩쓽 愿젴꽦쓣 議곗궗븯떎. 삉븳, MnO2쓽 꽭룷룆꽦뿉 븳 EP 異붿텧臾쇱쓽 쁺뼢쓣 愿묐룄鍮꾩깋遺꾩꽍踰(colorimetric assay)뿉 쓽빐 빆궛솕 痢〓㈃뿉꽌 遺꾩꽍븿쑝濡쒖뜥 궛솕쟻 넀긽怨 愿젴맂 룆꽦쓣 셿솕 궡吏뒗 뼲젣븷 닔 엳뒗 泥대Ъ吏덉쓽 냼옱瑜 泥쒖뿰異붿텧臾쇱쓣 넻빐 븣븘 蹂댁븯떎.

옱猷 諛 諛⑸쾿

떎뿕옱猷

蹂 떎뿕뿉 궗슜븳 NIH3T3 꽟쑀紐⑥꽭룷二쇰뒗 American Type Culture Collection (ATCC, Maryland, USA)뿉꽌 遺꾩뼇 諛쏆븘 궗슜븯떎.

떆빟 젣議

蹂 떎뿕뿉 궗슜븳 manganese dioxide (MnO2)瑜 鍮꾨’븳 trypsin, ethylalcohol, dimethylsulfoxide (DMSO), aluminum nitrate, xanthine, xanthine oxidase (XO), acetic acid, naphthylamine, catalase (CAT), phosphate buffered saline (PBS) 諛 2,3-bis-[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-caboxanilide disodium salt (XTT)뒗 Sigma궗(Sigma Chemical, Saint Louis, MO, USA)뿉꽌 援ъ엯븯떎.

븳젴珥(EP) 異붿텧

EP뒗 8썡寃 쟾씪遺곷룄 빞궛遺洹쇱뿉꽌 梨꾩랬븳 썑 븰遺꽕 깮紐낆옄썝怨쇳븰뿰援ъ냼뿉꽌 솗씤 룞젙 썑 궗슜븯떎. 쟾珥덈뒗 源⑤걮씠 꽭泥숉븳 떎쓬 넻뭾씠 옒릺怨 꽌뒛븳 怨녹뿉꽌 留먮┛ 썑 씪젙븳 湲몄씠濡 옒씪 깋븫냼뿉 蹂닿븳 떎쓬 떆猷뚮줈 궗슜븯떎. 떆猷뚯텛異쒖쓣 쐞빐 떆猷 69.4 g쓣 뙆뇙븳 떎쓬 떆猷뚯쓽 3諛 젙룄쓽 利앸쪟닔 븿猿 1,000 mL쓽 솚뵆씪뒪겕뿉 꽔怨 2떆媛 룞븞 媛뿴븯떎. 씠 怨쇱젙쓣 3쉶 諛섎났븳 떎쓬 異붿텧븳 븸쓣 紐⑥븘 뿬怨쇳썑 3,000 rpm뿉꽌 30遺 룞븞 썝移⑥떆耳곕떎. 썝移 썑 吏꾧났냽異뺢린뿉꽌 냽異뺢컧븬븳 떎쓬 2.9 g쓽 떆猷뚮 뼸뿀쑝硫 씠 븣 닔쑉 4.2%濡 굹궗떎.

꽭룷 諛곗뼇

꽭룷 諛곗뼇 Kim and Jekal (2016)쓽 諛⑸쾿뿉 뵲씪 trypsin쑝濡 꽭룷瑜 諛곗뼇 슜湲곕줈遺꽣 깉遺李⑹떆耳곕떎. 遺꾨━맂 꽭룷瑜 1 × 105 cells/well쓽 諛룄濡 궛젙븯뿬 삁泥씠 泥④맂 諛곗뼇븸뿉 꽔뼱 96-well plate뿉 遺꾩<븯쑝硫 36°C, 5% CO2濡 議곗젅맂 젙삩湲 궡뿉꽌 72떆媛 룞븞 諛곗뼇 썑 떎뿕뿉 궗슜븯떎.

Catalase (CAT)쓽 빆궛솕뒫 痢≪젙

CAT쓽 빆궛솕뒫 議곗궗瑜 쐞븯뿬 궛냼옄쑀씪뵒移쇱씤 35 μM H2O2瑜 諛곗뼇 꽭룷뿉 泥섎━븯湲 쟾 CAT媛 35 μM怨 45 μM濡 媛곴컖 룷븿맂 諛곗뼇븸뿉꽌 2떆媛 룞븞 쟾 諛곗뼇븯떎. 諛곗뼇 셿猷 썑 꽭룷깮議댁쑉뿉 쓽븯뿬 H2O2쓽 泥섎━援곌낵 鍮꾧탳 議곗궗븯떎.

MnO2 泥섎━

MnO2媛 諛곗뼇 꽭룷뿉 誘몄튂뒗 쁺뼢쓣 議곗궗븯湲 쐞븯뿬 110~150 μM MnO2媛 媛곴컖 룷븿맂 諛곗뼇븸뿉꽌 꽭룷瑜 泥섎━븳 떎쓬 꽭룷깮議댁쑉쓣 議곌뎔怨 鍮꾧탳 議곗궗븯떎.

EP 異붿텧臾쇱쓽 꽭룷룆꽦

EP 異붿텧臾쇱뿉 븳 꽭룷룆꽦쓣 議곗궗븯湲 쐞븯뿬 EP 異붿텧臾쇱씠 50~130 μg/mL濡 媛곴컖 룷븿맂 諛곗뼇븸뿉꽌 꽭룷瑜 72떆媛 룞븞 諛곗뼇븯떎. 諛곗뼇씠 셿猷뚮맂 썑 꽭룷깮議댁쑉쓽 遺꾩꽍諛⑸쾿뿉 쓽븯뿬 議곌뎔怨 鍮꾧탳 議곗궗븯떎.

뤃由ы럹(polyphenol) 諛 뵆씪蹂대끂씠뱶(flavonoid) 솕빀臾 븿웾 遺꾩꽍

뤃由ы럹 遺꾩꽍 A.O.A.C. (2005) 諛⑸쾿뿉 쓽븯뿬, 異붿텧떆猷 0.2 mL뿉 phenol reagent 0.2 mM쓣 泥④븯뿬 3遺 룞븞 젙移섑븯떎. 젙移 셿猷 썑 0.4 mL sodium carbonate瑜 媛븯뿬 1떆媛 룞븞 諛섏쓳떆궓 떎쓬 ELISA reader濡 725 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 몴以떆빟쑝濡 tannic acid瑜 씠슜븯뿬 寃웾怨≪꽑쓣 옉꽦븯떎. 뵆씪蹂대끂씠뱶 遺꾩꽍 Nieva Moreno et al. (2000)쓽 諛⑸쾿뿉 뵲씪 떆猷뚯슜븸 0.1 mL뿉 10% aluminum nitrate 1 M potassium acetate 샎빀臾 0.2 mL뿉 뿉깂삱 4.7 mL瑜 媛븯뿬 25°C뿉꽌 40遺 룞븞 諛섏쓳 썑 ELISA reader濡 415 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 몴以떆빟쑝濡쒕뒗 quercetin쓣 씠슜븯뿬 寃웾怨≪꽑쓣 옉꽦븯떎.

MnO2뿉 븳 EP 異붿텧臾쇱쓽 쁺뼢

MnO2뿉 븳 EP 異붿텧臾쇱쓽 쁺뼢쓣 議곗궗븯湲 쐞븯뿬 諛곗뼇 꽭룷뿉 XTT50 냽룄쓽 MnO2瑜 泥섎━븯湲 쟾뿉 90 μg/mL 110 μg/mL 냽룄쓽 EP 異붿텧臾쇱씠 媛곴컖 뱾뼱 엳뒗 諛곗뼇븸뿉꽌 2떆媛 룞븞 諛곗뼇븯떎. 諛곗뼇 셿猷 썑 MnO2쓽 泥섎━援곌낵 꽭룷깮議댁쑉쓣 鍮꾧탳 議곗궗븯떎.

꽭룷깮議댁쑉(cell viability) 痢≪젙

Mosmann (1983)쓽 諛⑸쾿뿉 뵲씪 빟젣굹 異붿텧臾쇱쓣 泥섎━븳 꽭룷뿉 젣議고븳 XTT50 mg/mL瑜 諛곗뼇슜湲곕떦 10 μL뵫 꽔怨 4떆媛 룞븞 젙移섑븯떎. 젙移 셿猷 썑 DMSO瑜 꽔 떎쓬 ELISA reader濡 450 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯뿬 議곌뎔怨 鍮꾧탳 議곗궗븯떎.

Xanthine oxidase (XO) 빐뒫 痢≪젙

XO 빐솢꽦(XO inhibitory activity)쓽 痢≪젙 Stirpe and Corte (1969)쓽 諛⑸쾿뿉 뵲씪 냽룄蹂 씗꽍異붿텧臾 0.1 mL 0.1 M potassium phosphate buffer (pH 7.5)뿉 2 mM xanthine 湲곗쭏븸 0.2 mL瑜 泥④븯怨 뿬湲곗뿉 XO (0.2 U/mL) 0.1 mL瑜 媛븳 썑 25°C뿉꽌 15遺 룞븞 諛섏쓳떆耳곕떎. 諛섏쓳 셿猷 썑 1 N HCl 1 mL瑜 媛븯뿬 諛섏쓳쓣 젙吏떆궓 떎쓬 ELISA reader濡 292 nm뿉꽌 깮꽦맂 uric acid瑜 痢≪젙븯떎. XO 빐뒫(XO inhibitory ability) 떆猷뚯꺼媛援곌낵 臾댁꺼媛援곗쓽 씉愿묐룄 媛먯냼쑉쓣 떆猷뚯꺼媛援곗뿉 쓽븳 諛깅텇쑉濡 몴떆븯떎. 삉븳, CAT쓽 솢꽦쓣 뼇꽦議곌뎔쑝濡 븯뿬 鍮꾧탳 議곗궗븯떎. XO 빐뒫(%) = 100-[(떆猷뚯꺼媛援곗쓽 씉愿묐룄/臾댁꺼媛援곗쓽 씉愿묐룄) × 100].

DPPH-radical 냼嫄곕뒫 痢≪젙

DPPH-radical 냼嫄고솢꽦(DPPH-radical scavenging activity, DPPH-RSA) Blois (1958)쓽 諛⑸쾿뿉 뵲씪 硫뷀깂삱뿉 끃씤 떆猷뚯뿉 0.3 mM DPPH 硫뷀깂삱슜븸 100 μL瑜 꽔怨 떎삩뿉꽌 30遺 룞븞 諛섏쓳떆耳곕떎. 諛섏쓳 셿猷 썑 ELISA reader濡 517 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. DPPH-radical 냼嫄곕뒫(DPPH-radical scavenging ability) 떆猷뚯꺼媛援곌낵 臾댁꺼援곌컙쓽 李⑥씠瑜 떆猷뚮Т泥④뎔뿉 쓽븳 諛깅텇쑉濡 굹깉쑝硫 CAT쓽 솢꽦쓣 뼇꽦議곌뎔쑝濡 븯뿬 鍮꾧탳 議곗궗븯떎. DPPHradical 냼嫄곕뒫(%) = 100-[(떆猷뚯꺼媛援곗쓽 씉愿묐룄/臾댁꺼媛援곗쓽 씉愿묐룄) × 100].

넻怨 泥섎━

떎뿕 寃곌낵뒗 SPSS/WIN 18.0쓣 씠슜븯뿬 援곌컙쓽 李⑥씠瑜 鍮꾧탳븯湲 쐞븯뿬 ANOVA瑜 떆뻾븯怨 궗썑 遺꾩꽍 Tukey’s HSD濡 븯떎. 紐⑤뱺 넻怨꾩쓽 쑀쓽닔以 P-value媛 0.05 誘몃쭔쓽 寃쎌슦瑜 쑀쓽븳 寃껋쑝濡 梨꾪깮븯떎.

寃 怨

MnO2쓽 룆꽦 痢≪젙

MnO2쓽 룆꽦 痢≪젙쓣 쐞븯뿬 MnO2媛 110~150 μM濡 냽룄濡 媛곴컖 룷븿맂 諛곗뼇븸뿉꽌 꽭룷瑜 泥섎━븳 寃곌낵 泥섎━ 냽룄뿉 鍮꾨븯뿬 꽭룷깮議댁쑉씠 쑀쓽븯寃 媛먯냼븯쑝硫, 씠 怨쇱젙뿉꽌 XTT50 媛믪 140.0 μM濡 굹궗떎(P<0.001) (Table 1). MnO2쓽 꽭룷깮議댁쑉뿉 븳 궗썑遺꾩꽍 寃곌낵 議곌뎔, MnO2 110 μM, 130 μM, 150 μM 닚쑝濡 꽭룷깮議댁쑉씠 넂쓬쓣 븣 닔 엳뿀떎.

The manganese dioxide (MnO2)-induced cytotoxicity in cultured NIH3T3 fibroblasts

Concentrations of MnO2 (μM) XTT assay (450 nm) F P Tukey HSD

Mean ± SD
Controla 0.26±0.03 82.65 <.001 a>b>c>d
110b 0.18±0.02
130c 0.15±0.02
150d 0.11±0.02

Cultured NIH3T3 fibroblasts were incubated with media containing concentrations of 110, 130 and 150 μM MnO2, respectively. The data indicate the mean ± SD for triplicate experiments. Significantly different from the control



CAT쓽 빆궛솕뒫 痢≪젙

CAT쓽 빆궛솕뒫쓣 議곗궗븯湲 쐞븯뿬, 옄쑀씪뵒移쇱쓽 씪醫낆씤 H2O2瑜 諛곗뼇 꽭룷뿉 泥섎━븯湲 쟾뿉 빆궛솕젣씤 CAT 35 μM怨 45 μM쓣 媛곴컖 꽭룷뿉 2떆媛 룞븞 쟾 泥섎━븳 寃곌낵, 35 μM H2O2留뚯쓽 泥섎━뿉꽌뒗 꽭룷깮議댁쑉씠 議곌뎔뿉 鍮꾪븯뿬 51.6% (0.16±0.01)濡 굹궗떎(P<0.001). 諛섎㈃, 35 μM CAT쓽 泥섎━뿉꽌뒗 83.9% (0.26±0.02), 45 μM CAT 泥섎━뿉꽌뒗 93.5% (0.29±0.02)濡 굹궗떎(P<0.001) (Table 2). CAT쓽 빆궛솕뒫뿉 븳 궗썑遺꾩꽍 寃곌낵 議곌뎔, CAT 45 μM, CAT 35 μM, H2O2 35 μM 닚쑝濡 꽭룷깮議댁쑉씠 넂쓬쓣 븣 닔 엳뿀쑝硫, CAT 45 μM 議곌뎔怨 CAT 35 μM 媛곴컖뿉 넻怨꾩쟻씤 李⑥씠媛 뾾뿀떎.

The antioxidative ability of catalase (CAT) on the hydrogen peroxide (H2O2) in cultured NIH3T3 fibroblasts

Concentrations of CAT (μM) XTT assay (450 nm) F P Tukey HSD

Mean ± SD
Controla 0.31±0.05 60.10 <0.001 a>c>b
35 H2O2b 0.16±0.01
35c 0.26±0.02
45d 0.29±0.02

Cultured NIH3T3 fibroblasts were preincubated with CAT at concentrations of 35 and 45 μM, respectively. The data indicate the mean ± SD for triplicate experiments. Significantly different from the H2O-treated group



MnO2쓽 꽭룷룆꽦뿉 븳 CAT쓽 쁺뼢

MnO2쓽 꽭룷룆꽦뿉 븳 빆궛솕젣씤 CAT쓽 쁺뼢쓣 븣븘蹂닿린 쐞븯뿬 XTT50 냽룄쓽 MnO2瑜 諛곗뼇 꽭룷뿉 泥섎━븯湲 쟾 CAT媛 35 μM怨 45 μM濡 媛곴컖 룷븿맂 諛곗뼇븸뿉꽌 꽭룷瑜 2떆媛 룞븞 쟾 泥섎━븳 寃곌낵, XTT50 냽룄씤 MnO2留뚯쓽 泥섎━뿉꽌뒗 꽭룷깮議댁쑉씠 46.2% (0.12±0.01)濡 굹궃 諛섎㈃, 35 μM CAT 泥섎━뿉꽌 73.1% (0.19±0.02), 45 μM CAT 泥섎━뿉꽌 80.8% (0.21±0.02)濡 굹굹 넻怨꾩쟻쑝濡 紐⑤몢 쑀쓽븳 李⑥씠瑜 蹂댁떎(P<0.001) (Table 3). MnO2쓽 꽭룷룆꽦怨 빆궛솕젣쓽 쁺뼢뿉 뵲瑜 궗썑寃젙 寃곌낵 議곌뎔, 45 μM CAT 35 μM CAT, XTT50 (MnO2) 닚쑝濡 꽭룷깮議댁쑉씠 넂쓬쓣 븣 닔 엳뿀떎.

The effect of catalase (CAT) on the manganese dioxide (MnO2)-induced cytotoxicity in cultured NIH3T3 fibroblasts

Concentrations of CAT (μM) XTT assay (450 nm) F P Tukey HSD

Mean ± SD
Controla 0.26±0.02 92.51 <0.001 a>d,c>b
XTT50 (MnO2)b 0.12±0.01
35c 0.19±0.02
45d 0.21±0.02

Cultured NIH3T3 fibroblasts were preincubated with CAT at concentrations of 35 and 45 μM, respectively. The data indicate the mean ± SD for triplicate experiments. Significantly different from the MnO2-treated group



븳젴珥(EP) 異붿텧臾쇱쓽 꽭룷룆꽦

EP쓽 꽭룷룆꽦쓣 븣븘蹂닿린 쐞븯뿬 異붿텧臾쇱씠 50~130 μg/mL濡 媛곴컖 룷븿맂 諛곗뼇븸뿉꽌 꽭룷瑜 諛곗뼇븯떎. 洹 寃곌낵 50 μg/mL怨 70 μg/mL쓽 泥섎━뿉꽌뒗 꽭룷깮議댁쑉씠 議곌뎔(0.30±0.03)뿉 鍮꾪븯뿬 97.0% (0.29±0.02) 97.0% (0.29±0.02)濡 紐⑤몢 媛숆쾶 굹궗떎. 삉븳, 90 μg/mL, 110 μg/mL, 130 μg/mL 泥섎━뿉꽌뒗 93.0% (0.28±0.01), 90.0% (0.27±0.02), 83.0% (0.25±0.02)濡 媛곴컖 굹궗떎(Table 4) (Fig. 1).

The cytotoxicity of Eclipta prostrata L. Extract

Concentrations of EP extract (μg/mL) XTT assay (450 nm) F P Tukey HSD

Mean ± SD
Controla 0.30±0.03 3.60 =0.008 a>f
50b 0.29±0.02
70c 0.29±0.02
90d 0.28±0.01
110e 0.27±0.02
130f 0.25±0.02

Cultured NIH3T3 fibroblasts were incubated with EP extract at concentrations of 50, 70, 90, 110 and 130 μg/mL, respectively. The data indicate the mean ± SD for triplicate experiments. Significantly different from the control


Fig. 1.

The cytotoxicity of Eclipta prostrata L. (EP) extract by XTT assay. The data indicate the mean ± SD for triplicate experiments.



뵲씪꽌, 理쒕뿀슜븳怨꾨냽룄媛 110 μg/mL 씠긽뿉꽌 굹궓쑝濡쒖뜥 蹂 떎뿕뿉꽌뒗 110 μg/mL 씠븯 냽룄瑜 궗슜븯떎. 븳렪, 50~110 μg/mL 泥섎━ 궗씠뿉꽌뒗 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠瑜 蹂댁씠吏 븡븯쑝굹, 130 μg/mL 泥섎━뿉꽌뒗 쑀쓽븳 李⑥씠瑜 굹깉떎(P<0.001). EP쓽 꽭룷룆꽦뿉 뵲瑜 궗썑寃젙 寃곌낵 議곌뎔뿉 鍮꾪빐 EP 130 μg/mL뒗 꽭룷깮議댁쑉씠 궙븯쑝굹, 떎瑜 냽룄뱾뿉꽌뒗 議곌뎔怨 넻怨꾩쟻씤 쑀쓽꽦씠 뾾뒗 寃껋쑝濡 굹궗떎.

뤃由ы럹 諛 뵆씪蹂대끂씠뱶 솕빀臾 븿웾 遺꾩꽍

EP 異붿텧臾쇱뿉 븳 꽦遺 븿웾 遺꾩꽍 寃곌낵 뤃由ы럹쓽 珥 븿웾 51.4 mg/g쑝濡 굹궗쑝硫, 뵆씪蹂대끂씠뱶 珥 븿웾 25.9 mg/g쑝濡 媛곴컖 굹궗떎(Fig. 2).

Fig. 2.

Total polyphenol and flavonoid of EP extract. The data Zindicate the mean ± SD for triplicate experiments.



MnO2쓽 꽭룷룆꽦뿉 븳 EP 異붿텧臾쇱쓽 쁺뼢

MnO2쓽 꽭룷룆꽦뿉 EP 異붿텧臾쇱씠 誘몄튂뒗 쁺뼢쓣 議곗궗븯湲 쐞븯뿬 XTT50 媛믪쓽 MnO2瑜 諛곗뼇 꽭룷뿉 泥섎━븯湲 쟾뿉 90 μg/mL 110 μg/mL쓽 EP 異붿텧臾쇱씠 룷븿맂 諛곗뼇븸뿉꽌 꽭룷瑜 媛곴컖 2떆媛 룞븞 쟾 諛곗뼇븳 寃곌낵, MnO2留뚯쓽 泥섎━뿉꽌뒗 꽭룷깮議댁쑉 議곌뎔씤 100% (0.37±0.03)뿉 鍮꾪븯뿬 40.5% (0.15±0.02)濡 留ㅼ슦 媛먯냼븳 寃껋쑝濡 굹궗떎. 諛섎㈃, 90 μg/mL EP 異붿텧臾 泥섎━뿉 엳뼱꽌 꽭룷깮議댁쑉 62.2% (0.23±0.02)濡, 110 μg/mL 異붿텧臾쇱쓽 泥섎━뿉꽌뒗 75.7% (0.28±0.02)濡 굹궗떎(P<0.001) (Table 5). EP 異붿텧臾쇱씠 MnO2쓽 꽭룷룆꽦뿉 誘몄튂뒗 쁺뼢뿉 븳 궗썑寃젙 寃곌낵 議곌뎔, EP 異붿텧臾 110 μg/mL, EP 異붿텧臾 90 μg/mL, XTT50 (MnO2) 닚쑝濡 꽭룷깮議댁쑉씠 넂 寃껋쓣 븣 닔 엳뿀떎(Table 5).

The protective effect of Eclipta prostrata L. (EP) extract on manganese dioxide (MnO2)-induced cytotoxicity in cultured NIH3T3 fibroblasts

Concentrations of EP extract (μg/mL) XTT assay (450 nm) F P Tukey HSD

Mean ± SD
Controla 0.37±0.03 114.08 <0.001 a>d>c>b
XTT50 (MnO2)b 0.15±0.02
90c 0.23±0.02
110d 0.28±0.02

Cultured NIH3T3 fibroblasts were preincubated with EP extract at concentrations of 90 μg/mL and 110 μg/mL, respectively. The data indicate the mean ± SD for triplicate experiments. Significantly different from the MnO2-treated group



Xanthine oxidase (XO) 빐뒫 痢≪젙

EP 異붿텧臾쇱뿉 븳 XO 빐솢꽦(XO inhibitory activity)쓽 痢≪젙 寃곌낵 EP 異붿텧臾 90 μg/mL 냽룄뿉꽌뒗 議곌뎔뿉 鍮꾪븯뿬 솢꽦씠 78.6% (0.22±0.02)濡 굹궗쑝硫, EP 異붿텧臾 110 μg/mL 냽룄뿉꽌뒗 71.4% (0.20±0.05), CAT 45 μM 泥섎━뿉꽌뒗 14.3% (0.04±0.01)濡 젏李 媛먯냼븳 寃껋쑝濡 굹궗떎(Table 6). 뵲씪꽌, EP 異붿텧臾 90 μg/mL 110 μg/mL쓽 XO 빐뒫(XO inhibitory ability) 媛곴컖 21.4% 28.6%濡, CAT 45 μM쓽 빐뒫 85.7%濡 議곌뎔뿉 鍮꾪븯뿬 넻怨꾩쟻쑝濡 쑀쓽븯떎(P<0.001). XO 빐뒫 궗썑寃젙 寃곌낵 CAT 45 μM, EP 異붿텧臾 110 μg/mL怨 90 μg/mL, 議곌뎔 닚쑝濡 넂 寃껋쑝濡 굹궗떎. 議곌뎔怨 CAT, 議곌뎔怨 EP 異붿텧臾 90 μg/mL, 議곌뎔怨 EP 異붿텧臾 110 μg/mL 媛곴컖 洹몃9媛 李⑥쓽媛 쑀쓽븯떎(P<0.001, P=0.002, P<0.001). CAT EP 異붿텧臾 90 μg/mL, CAT EP 異붿텧臾 110 μg/mL룄 媛곴컖 洹몃9媛꾩쓽 李⑥쓽媛 쑀쓽븯떎(P<0.001, P<0.001). EP 異붿텧臾 90 μg/mL怨 EP 異붿텧臾 110 μg/mL 쑀쓽븳 李⑥씠媛 뾾뿀떎(P =0.374).

The xanthine oxidase (XO) inhibitory activity of Eclipta prostrata L. (EP) extract

Concentrations of EP extract (μg/mL) XO inhibitory activity (292 nm) F P Tukey HSD

Mean ± SD
Controla 0.28±0.02 102.91 <0.001 b>d,c>a
45 μM CATb 0.04±0.01
90c 0.22±0.02
110d 0.20±0.05

The data indicate the mean ± SD for triplicate experiments. CAT was used as positive control. Significantly different from the control



DPPH-radical 냼嫄곕뒫 痢≪젙

EP 異붿텧臾 떆猷뚯뿉 븳 DPPH-radical 냼嫄고솢꽦(DPPHradical scavenging activity, DPPH-RSA)쓣 議곗궗븳 寃곌낵 90 μg/mL EP 異붿텧臾 泥섎━뿉꽌뒗 냼嫄고솢꽦씠 81.8% (0.27±0.01)濡 굹궗쑝硫, 110 μg/mL EP 異붿텧臾 泥섎━뿉꽌뒗 75.8%(0.25±0.03)濡 굹궗떎. 삉븳 CAT 45 μM 泥섎━뿉꽌뒗 12.1% (0.04±0.01)濡 굹궗떎(Table 7). 뵲씪꽌, EP 異붿텧臾 씪뵒移 냼嫄곕뒫(radical scavenging ability) 90 μg/mL 110 μg/mL, CAT 45 μM뿉꽌 媛곴컖 18.2% 24.2%, 87.9%濡 議곌뎔뿉 鍮꾪븯뿬 넻怨꾩쟻쑝濡 쑀쓽븯떎(P<0.001). DPPHradical 냼嫄곕뒫쓽 궗썑寃젙 寃곌낵 CAT 45 μM, EP 異붿텧臾 110 μg/mL 90 μg/mL, 議곌뎔 닚쑝濡 넂 寃껋쑝濡 굹궗떎. 議곌뎔怨 CAT, 議곌뎔怨 EP 異붿텧臾 90 μg/mL, 議곌뎔怨 EP 異붿텧臾 110 μg/mL 媛곴컖 洹몃9媛 李⑥씠媛 쑀쓽븯寃 굹궗떎(P<0.001, P=0.001, P<0.001). CAT EP 異붿텧臾 90 μg/mL, CAT EP 異붿텧臾 110 μg/mL룄 媛곴컖 洹몃9媛꾩뿉 쑀쓽븳 李⑥씠媛 엳뿀떎(P<0.001, P<0.001). EP 異붿텧臾 90 μg/mL怨 EP 異붿텧臾 110 μg/mL 쑀쓽븳 李⑥씠媛 뾾뿀떎(P=0.560).

The DPPH-radical scavenging activity (DPPH-RSA) of Eclipta prostrata L. (EP) extract

Concentrations of EP extract (μg/mL) DPPH-RSA (517 nm) F P Tukey HSD

Mean ± SD
Controla 0.33±0.04 166.40 <0.001 a>c,d>b
45 μM CATb 0.04±0.01
90c 0.27±0.01
110d 0.25±0.03

The data indicate the mean ± SD for triplicate experiments. CAT was used as positive control. Significantly different from the control


怨 李

留앷컙 以묎툑냽쓽 씪醫낆쑝濡 솚寃쎌삤뿼썝씠硫댁꽌룄 땲耳덉씠굹 移대뱶裕닿낵 媛숈씠 젒珥됱꽦 뵾遺뿼쓽 븣윭젨쑝濡 옉슜븯怨 엳떎(Jung et al., 2014a). 留앷컙궛솕臾 以 씠궛솕留앷컙(MnO2) 嫄댁쟾吏굹 쟾湲곗슜젒遊됱젣議곗 媛숈 씪긽깮솢怨 諛젒븳 愿젴씠 엳뒗 솕븰怨듭젙뿉 궗슜릺湲 븣臾몄뿉 씠쓽 以묐룆씠 궗쉶쟻 臾몄젣濡 뼚 삤瑜닿쾶 릺뿀떎(Pearce et al., 1989). 뵲씪꽌, 蹂 뿰援ъ뿉꽌뒗 MnO2쓽 꽭룷룆꽦쓣 諛곗뼇 NIH3T3 꽟쑀紐⑥꽭룷瑜 옱猷뚮줈 議곗궗븳 寃곌낵 MnO2뒗 泥섎━ 냽룄뿉 鍮꾨븯뿬 꽭룷깮議댁쑉쓣 쑀쓽븯寃 媛먯냼떆궡쑝濡쒖뜥 꽭룷룆꽦쓣 굹깉떎. 삉븳, XTT50 媛믪씠 140.0 μM濡 굹굹 씠뒗 Borenfreund and Puerner (1984)쓽 룆꽦뙋젙湲곗뿉 쓽븯뿬 以묎컙룆꽦(mid-cytotoxic)씤 寃껋쑝濡 굹궓쑝濡쒖뜥 MnO2媛 븣猷⑤몃뒆怨 鍮꾩듂븳 꽭룷룆꽦쓣 媛吏怨 엳쓬쓣 븣 닔 엳뿀떎(Jung et al., 2017b). 븳렪, 궔씠굹 닔 諛 겕濡ш낵 媛숈 紐뉖챺 以묎툑냽瑜섎뒗 遺뺢눼 떆 옄쑀씪뵒移쇱쓣 諛쒖깮븿쑝濡쒖뜥 씠뱾쓽 룆꽦씠 궛솕쟻 넀긽怨 愿젴씠 엳떎怨 젣떆맂 諛 엳떎(Jung et al., 2017a). 蹂 뿰援ъ뿉꽌뒗 MnO2쓽 꽭룷룆꽦씠 궛솕쟻 넀긽怨 愿젴씠 엳뒗媛瑜 븣븘蹂닿린 쐞븯뿬 빆궛솕젣쓽 씪醫낆씤 catalase (CAT)瑜 諛곗뼇 꽭룷뿉 쟾 泥섎━븳 썑 MnO2쓽 泥섎━援곌낵 꽭룷깮議댁쑉쓣 鍮꾧탳 議곗궗븯떎. 洹 寃곌낵 CAT쓽 泥섎━援곗씠 MnO2쓽 泥섎━援곗뿉 鍮꾪븯뿬 쑀쓽븳 꽭룷깮議댁쑉쓽 利앷瑜 蹂댁떎. 蹂 떎뿕 寃곌낵뒗 MnO2쓽 룆꽦쓣 빆궛솕젣씤 CAT媛 諛⑹뼱븳 寃껋쑝濡쒖꽌, 씠뒗 떎떆留먰빐 MnO2쓽 룆꽦씠 궛솕쟻 넀긽怨 愿젴씠 엳쓬쓣 젣떆븯怨좎엳떎. 씠 긽넻븳 뿰援ъ쓽 븯굹濡 Jung et al. (2014b)씠 빆궛솕젣씤 vitamin E媛 궔룆꽦쓣 諛⑹뼱뻽떎뒗 뿰援 蹂닿퀬媛 씠瑜 뮮諛쏆묠븯怨 엳떎. CAT굹 vitamin E뒗 紐⑤몢 옄쑀씪뵒移쇱쓣 젣嫄고븯뒗 빆궛솕젣濡쒖꽌, 듅엳 CAT뒗 씤泥 궡뿉꽌 superoxide dismutase (SOD) 븿猿 궗 怨쇱젙 以묒뿉 깮꽦릺뒗 옄쑀씪뵒移쇱쓣 젣嫄고빐 二쇰뒗 以묒슂븳 빆궛솕 슚냼씤 寃껋쓣 洹쇨굅濡 븷 븣 쐞 뿰援щ뱾 紐⑤몢 궔씠굹 留앷컙룆꽦씠 옄쑀 씪뵒移쇨낵 愿젴릺뼱 엳쓬쓣 떆궗븯怨 엳떎. 븳렪, MnO2쓽 꽭룷룆꽦뿉 븳 븳젴珥(Eclipta prostrata L., EP) 異붿텧臾쇱쓽 쁺뼢쓣 븣븘 蹂닿린 쐞븯뿬 XTT50 냽룄쓽 MnO2瑜 諛곗뼇 꽭룷뿉 泥섎━븯湲 쟾뿉 90 μg/mL 110 μg/mL쓽 EP 異붿텧臾쇱쓣 媛곴컖 諛곗뼇 꽭룷뿉 쟾 泥섎━븳 寃곌낵 紐⑤몢 MnO2留뚯쓽 泥섎━뿉 鍮꾪븯뿬 쑀쓽븳 꽭룷깮議댁쑉쓣 蹂댁떎. 씠뒗 EP 異붿텧臾쇱씠 MnO2쓽 룆꽦쓣 슚怨쇱쟻쑝濡 諛⑹뼱븯쓬쓣 留먰빐 二쇨퀬 엳떎. 씠媛숈 씠쑀濡쒕뒗 蹂 뿰援ъ쓽 꽦遺 븿웾 遺꾩꽍뿉꽌 媛숈씠 EP 異붿텧臾쇱냽뿉 븿쑀릺뼱 엳뒗 뤃由ы럹怨 뵆씪蹂대끂씠뱶 怨꾪넻씤 tannin씠굹 saponin怨 媛숈 媛뺣젰븳 빆궛솕 꽦遺꾩쓽 쁺뼢씤 寃껋쑝濡 깮媛곷맂떎(Kim and So, 1995). 뵲씪꽌, 蹂 뿰援ъ뿉꽌뒗 EP 異붿텧臾쇱뿉 븳 빆궛솕뒫쓣 議곗궗븯湲 쐞븯뿬 XO 빐뒫쓣 鍮꾨’븯뿬 DPPH-radical 냼嫄곕뒫쓣 遺꾩꽍븯떎. 癒쇱, XO 빐뒫쓽 遺꾩꽍뿉꽌, EP 異붿텧臾 90 μg/mL 110 μg/mL쓽 냽룄뿉꽌 紐⑤몢 議곌뎔뿉 鍮꾪븯뿬 21.4% 28.6%쓽 쑀쓽븳 빐뒫쓣 굹깉떎. XO뒗 鍮꾪듅씠쟻 슚냼濡쒖꽌 씠뒗 궛냼瑜 쟾옄닔슜泥대줈 씠룞븯뿬 xanthine씠굹 hypoxanthine (HX)쑝濡쒕꽣 uric acid瑜 빀꽦븯뒗뜲, 씠 怨쇱젙 以묒뿉 옄쑀씪뵒移쇱씠 깮꽦맂떎. 뵲씪꽌, XO 솢꽦 옄쑀씪뵒移쇨낵 諛젒븳 愿젴씠 엳떎(Hwang et al., 2011). 븳렪, DPPH-radical 냼嫄곕뒫쓽 遺꾩꽍뿉 엳뼱꽌 EP 異붿텧臾 90 μg/mL 110 μg/mL쓽 냽룄뿉꽌 紐⑤몢 議곌뎔뿉 鍮꾪븯뿬 18.2% 24.2%쓽 쑀쓽븳 씪뵒移 냼嫄곕뒫쓣 굹깉떎. 씪뵒移 냼嫄곕뒫 遺꾩꽍 옄쑀씪뵒移쇱뿉 쟾옄瑜 怨듭뿬븯뿬 궛솕瑜 뼲젣븯뒗 뒫젰쓣 遺꾩꽍븯뒗 寃껋쓣 쓽誘명븯怨 엳떎(Lim et al., 2007). 뵲씪꽌, EP 異붿텧臾쇱 蹂 떎뿕뿉꽌 XO 빐뒫怨 DPPHradical 냼嫄곕뒫怨 媛숈 빆궛솕뒫씠 엳쓬씠 利앸챸릺뿀떎. 씠媛숈 寃곌낵뒗 EP 異붿텧臾 냽뿉 븿쑀릺뼱 엳뒗 뤃由ы럹瑜섎굹 뵆씪蹂대끂씠뱶瑜섏쓽 빆궛솕 꽦遺꾩씠 떒룆 삉뒗 蹂듯빀쟻쑝濡 옉슜븳 寃곌낵씪 寃껋쑝濡 깮媛곷맂떎.

ACKNOWLEDGEMENT

씠 끉臾몄 2018뀈룄 썝愿묐븰援 궛蹂몃퀝썝쓽 뿰援ъ썝뿉 쓽빐 닔뻾맖.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

References
  1. A.O.A.C. Official method of analysis. Washington DC USA: Association of official analytical chemists; 2005 p. 21-21.
  2. Arditi T, Meredith T, and Floweman P. Renewed interest in soy isoflavones and saponin. Cereal Foods World 2000;45:414-417.
  3. Blois MS. Antioxidant determination by the use of a stable free radical. Nature 1958;26:1199-1200.
    CrossRef
  4. Borenfreund E, and Puerner JA. A simple quantitative procedure using monolayer culture for cytotoxicity assay (HTD/NR-90). Journal of Tissue Culture Methods 1984;9:7-9.
    CrossRef
  5. Chang JK. Wild flower for body health. Seoul: Nexusbook academic publishing; 2003 p. 150.
  6. Cho KS. Occupational health. Seoul: Sumunsa academic publishing; 1991 p. 315-319.
  7. Fulle S, Withers-Martinez C, Blackman MJ, Morris GM, and Finn PW. Molecular determinants of binding to the plasmodium subtilism -like protease 1. Journal of Chemistry and Inflammatory Model 2013;53:573-583.
    Pubmed KoreaMed CrossRef
  8. Hwang JD, Choi JS, Kim JB, and Lee YS. Antioxidant activities of bark extracts from Kalopanax pictus. Journal of Investigative Cosmetology 2011;7:329-337.
    CrossRef
  9. Jin EY, Han SH, and Seo YM. Effect of German chemomile extract on the cell adhesion activity and melanin synthesis in cultured human skin melanoma cells damaged by xanthine oxidase/hypoxanthine. Journal of Korean Society People Plants Environment 2011;14:215-220.
  10. Jung JY, Oh SK, Park SH, Yoon MY, Yu YW, Rim YS, and Jung IJ. Antioxidative effect of Ajuga multiflora BUNG extract on chromium trioxide, dermatitis induced in cultured NIH3T3 fibroblast. Journal of Investigative Cosmetology 2014a;10:21-26.
    CrossRef
  11. Jung JY, Oh YH, Park SH, Yoon MY, and Pyo AJ et al. Antioxidative and whitening effects of Houttuynia cordata extract on lead acetate of hair dye component. Journal of Investigative Cosmetology 2014b;10:99-105.
  12. Jung JY, Jang HS, and Seo YM. Protective effect of Ajuga multiflora BUNG extract on lead toxicity of environmental pollutant. Journal of Korean Society People Plants Environmen 2017a;20:341-350.
    CrossRef
  13. Jung IJ, Seo YM, and Jekal SJ. The protective effect of rosmarinic acid on the aluminum of dementia inducer. Korean Journal of Clinical Laboratory Society 2017b;49:8-14.
    CrossRef
  14. Kim JC, and So BK. Traditional drugs of the East. Seoul: Youngrim academic publishing; 1995 p. 339.
  15. Kim TY, and Jekal SJ. Antioxidative effect of Chelidonium majus extract on cultured NIH3T3 fibroblasts injured by cadmium chloride of toxicant. Korean Journal of Clinical Laboratory Society 2016;48:1-7.
    CrossRef
  16. Lim JA, Oh HJ, and Baek SH. Antiaging ability of methanol extract from Euonymus alatus. Journal of Cosmetology and Public Health 2007;3:41-45.
  17. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application of proliferation and cytotoxic assays. Journal of Immunological Methods 1983;65:55-63.
    CrossRef
  18. Nieva Moreno MI, Isla MI, Sampietro AR, and Vattuone MA. Comparison of the three radical-scavenging activity of propolis from several regions of Argentina. Journal of Ethmopharmacology 2000;71:109-114.
    CrossRef
  19. Pearce N, Checkoway H, and Dement JM. Design and conduct of occupational epidermology studies: III. Design aspects of casecontrol studies. American Journal of Industrial Medicine 1989;15:395-401.
    Pubmed CrossRef
  20. Son YW, Rim YS, and Seo YM. Protective effect of NMDA receptor antagonist on the neurotoxicity induced by lead as an environmental pollutant. Journal of Korean Society of Occupational and Environmental Hygiene 2017;27:193-200.
  21. Stirpe F, and Corte ED. The regulation of rat liver xanthine oxidase. Journal of Biology and Chemistry 1969;244:3855-3861.
    Pubmed