Search for


TEXT SIZE

search for



CrossRef (0)
Anti-Oxidative and Anti-Neuroinflammatory Effect of Ethanol Extracts from Walnuts’s (Juglans regia L.) Shell
Biomed Sci Letters 2018;24:365-371
Published online December 31, 2018;  https://doi.org/10.15616/BSL.2018.24.4.365
© 2018 The Korean Society For Biomedical Laboratory Sciences.

Hyun Kang†,*

Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
Correspondence to: Hyun Kang. Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si, Chungnam 31116, Korea. Tel: +82-41-550-3015, Fax: +82-41-559-7934, e-mail: hkang@dankook.ac.kr
Received November 11, 2018; Revised December 1, 2018; Accepted December 5, 2018.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract

In this study, antioxidant and anti-neuroinflammatory of ethanol extracts from walnuts’s (Juglans regia L.) shell were investigated in vitro. Radical-scavenging activities of the walnuts’s shell ethanol extracts (WSE) were examined by using ABTS radicals and α,α-diphenyl-β-picrylhydrazyl (DPPH) radicals assay. In the ABTS and DPPH radical scavenging activity, RC50 of WSE were measured as 15.74 and 40.13 μg/mL, respectively. Also, to evaluate the anti-neuroinflammatory effects of WSE in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. The production of proinflammatory cytokines NO were examined by LPS in BV-2 cell. BV-2 cells activated with LPS were treated with various doses (10, 25, 50, 100 μg/mL) of WSE. Supernatants were analyzed for the production of NO using Griess reagent. WSE up to 10 μg/mL still required to inhibit NO induced by LPS. These results showed that walnuts’s (Juglans regia L.) shell can be used as an easily accessible source of natural anti-neuroinflammatory and natural antioxidants.

Keywords : Walnuts, Anti-inflammatory activity, ABTS, Microglial cells, NO
꽌 濡

샇몢(Walunt; Juglans regia L.)뒗 媛옒굹臾닿낵 샇몢굹臾(Juglans sinensis) 냽뿉 냽븯뒗 굺뿽援먮ぉ 삉뒗 냼援먮ぉ쓽 뿴留ㅻ줈 쑀읇 諛 븘硫붾━移 瑜숈뿉 嫄몄퀜 以묎뎅 諛 븘떆븘뿉 꼸由 遺꾪룷븯怨 엳떎(Seo et al., 2001). 二쇰줈 떇슜쑝濡 궗슜릺怨 엳뒗 샇몢쓽 뿴留ㅼ뿉뒗 遺덊룷솕 吏諛⑹궛 삤硫붽-3씤 븣뙆-由щ젋궛(ALA)씠 二쇰맂 꽦遺꾩씠硫 鍮꾪誘 B1, B2 벑쓽 꽦遺꾩씠 뭾遺븯뿬 떇뭹肉먮쭔 븘땲씪 솕옣뭹 썝猷뚮줈 솢슜릺怨 엳떎(Grosso et al., 2014). 뿴留ㅻ퓧留 븘땲씪 샇몢쓽 猿띿쭏怨 옂 벑쓽 遺궛臾쇱 솕옣뭹씠굹 쓽빟뭹 遺꾩빞뿉꽌 궗슜릺뼱졇 솕떎(Stampar et al., 2006). 듅엳, 샇몢쓽 猿띿쭏 긽泥 移섏쑀 벑뿉 궗슜릺뼱졇 솕쑝硫, 留롮 뼇쓽 뤃由ы럹 솕빀臾쇱쓣 븿쑀븯怨 엳뼱 빆궛솕젰씠 슦닔븯굹(Maqsood and Benjakul, 2010) 빐留덈떎 留롮 뼇씠 깮궛릺뼱졇 踰꾨젮吏怨 엳떎(Akbari et al., 2012).

DNA뿉 넀긽쓣 쑀諛쒗븷 닔 엳뒗 솢꽦궛냼醫(reactive oxygen species, ROS) 誘명넗肄섎뱶由ъ븘, 떇꽭룷 諛 꽭룷吏덉뿉꽌 젙긽쟻씤 泥대궡 궗怨쇱젙뿉꽌 깮꽦맂떎(Valko et al., 2007). ROS뿉뒗 superoxide radical anion (·O2-), hydroxyl radicals (·OH), singlet oxygen (1O2), hydrogen peroxide (H2O2)媛 엳怨, 씠뱾 媛슫뜲 hydroxyl radicals (·OH)쓽 넀긽諛섏쓳씠 媛옣 媛뺥븯寃 옉슜븯뒗 寃껋쑝濡 븣젮졇 엳떎(Liu and Ng, 2000). 깮泥댁뿉꽌뒗 씠윭븳 ROS瑜 諛⑹뼱븯뒗 superoxide dismutase, catalase, glutathion reductase 벑쓽 빆궛솕 슚냼뱾뿉 쓽빐 궛냼 긽빐뿉 븳 빐 諛⑹뼱媛 媛뒫븯吏留(Kim et al., 1999), 怨쇰룄븳 ROS쓽 깮꽦 꽭룷 넀긽, DNA 諛 二쇱슂븳 슚냼뿉 쁺뼢쓣 誘몄퀜 끂솕 씠쇅쓽 愿긽룞留μ쭏솚, 뿼利, 뇤議몄쨷, 븫벑쓽 떎뼇븳 留뚯꽦 諛 눜뻾꽦 吏덊솚쓽 諛쒕퀝 썝씤씠 맂떎(Kumar et al., 2010). 듅엳 以묒텛떊寃쎄퀎뒗 ROS瑜 젣嫄고븯뒗 빆궛솕 슚냼뱾씠 異⑸텇븯吏 븡븘(Rosen et al., 1993) 젣嫄곕릺吏 紐삵븳 ROS뱾 異뺤쟻릺뼱 궛솕쟻 뒪듃젅뒪瑜 씪쑝궎怨 씠뒗 떊寃쏀눜뻾꽦 吏덊솚쓽 以묒슂븳 씤옄濡 뇤 냽 꽭룷쓽 꽭룷留 遺덊룷솕吏諛⑹궛쓣 peroxidation 떆耳 Alzheimer’s disease(AD), Parkinson disease 媛숈 눜뻾꽦 뇤吏덊솚쓽 썝씤씠 맂떎(Reyonolds et al., 2007; Knott et al., 2008).

뵲씪꽌 솢꽦궛냼瑜 諛⑹뼱븯뒗 빆궛솕 臾쇱쭏씠 뿬윭 吏덈퀝 移섎즺쓽 媛뒫꽦 븣臾몄뿉 솢諛쒗엳 뿰援щ릺怨 엳쑝硫, 듅엳 泥쒖뿰뿉 議댁옱븯뒗 빆궛솕젣뿉 愿븳 뿰援ш 二쇰ぉ 諛쏄퀬 엳떎. 듅엳 媛곸쥌 떇臾쇱껜뿉 떎웾쑝濡 議댁옱븯뒗 泥쒖뿰臾쇱쭏 flavonoid 瑜섏 궛꽦 럹솕빀臾쇰뱾씠 빆궛솕꽦, 빆븣윭吏꽦, 빆븫꽦 벑 떎뼇븳 깮由ы솢꽦 湲곕뒫쓣 媛뽮퀬 엳뒗 寃껋쑝濡 諛앺졇 씠뿉 븳 寃깋씠 솢諛쒗엳 吏꾪뻾릺怨 엳떎(Ames and Saul, 1987).

뵲씪꽌 蹂 뿰援ъ뿉꽌뒗 샇몢쓽 遺궛臾쇱씤 샇몢猿띿쭏쓽 씠슜媛移섎 넂씠뒗 諛⑸쾿쑝濡 샇몢猿띿쭏 異붿텧臾(WSE)쓣 씠슜븯뿬 빆궛솕 슚怨쇰 媛吏뒗 뤃由ы럹 諛 뵆씪蹂대끂씠뱶 꽦遺 솗씤 諛 빆궛솕 슚怨쇱뿉 빐 븣븘蹂닿퀬 씠윭븳 슚怨쇰뱾씠 빆떊寃쎌뿼利 솢꽦뿉 쁺뼢쓣 誘몄튂뒗吏뿉 빐 궡렣蹂댁븯떎.

옱猷 諛 諛⑸쾿

뿉깂삱 異붿텧臾 젣議

蹂 떎뿕뿉꽌 궗슜븳 異⑹껌궓룄 泥쒖븞吏뿭뿉꽌 援щℓ븳 寃껋쑝濡 샇몢쓽 猿띿쭏 遺遺꾩쓣 遺꾨━븳 썑 遺꾩뇙湲곕줈 20 mesh 씠븯濡 議곕텇뇙븯뿬 떆猷 100 g뿉 빐 10諛곗쓽 70% 뿉깂삱쓣 꽔뼱 3씪 룞븞 異붿텧븳 썑, 異붿텧븸 뿬怨쇱(Whatman No.1 and 3, Maidstone, England)瑜 궗슜븯뿬 뿬怨쇳븯怨 쉶쟾 媛먯븬 냽異뺢린(N-1000S-WD, Eyela Co., Tokyo, Japan)濡 媛먯븬 냽異뺥븳 썑 룞寃곌굔議(FDU-1100, Eyela Co., Tokyo, Japan)븯뿬 빆궛솕 솢꽦怨 빆떊寃쎌뿼利 솢꽦 寃젙뿉 궗슜븯떎(Fig. 1). 씠 븣 WSE쓽 닔쑉 10.2%濡 굹궗떎.

Fig. 1.

Schematic diagram for preparation of ethanol extract from walnuts’s (Juglans regia L.) shell.



샇몢猿띿쭏 異붿텧臾(WSE)쓽 뤃由ы럹 諛 뵆씪蹂대끂씠뱶 븿웾 痢≪젙

珥 뤃由ы럹 븿웾 Folin-Denis (1912) 諛⑸쾿쓣 蹂삎븯뿬 痢≪젙븯떎. WSE 떆猷뚮 利앸쪟닔 1 mL뿉 끃씠怨 냽룄蹂꾨줈 씗꽍 썑, 씗꽍븳 깦뵆쓣 96 well-plate뿉 60 μL뵫 遺꾩<븯떎. 利앸쪟닔 1:1 씗꽍븳 Folin 떆빟쓣 룞웾 泥④븯怨 3遺꾧컙 諛섏쓳떆궓 썑 10% sodium carbonate (Na2CO3)쓣 룞웾 꽔怨 1떆媛 룞븞 諛섏쓳떆耳 700 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. Gallic acid (Sigma Chemical Co., St. Louis, Mo. USA)瑜 씠슜븳 몴以怨≪꽑 떆猷 痢≪젙 諛⑸쾿怨 룞씪븯寃 痢≪젙븯뿬 옉꽦븯떎.

珥 뵆씪蹂대끂씠뱶 븿웾 Nieva Moreno 벑(Nieva et al., 2000)쓽 諛⑸쾿뿉 쓽빐 痢≪젙븯떎. WSE瑜 80% ethanol쓣 씠슜븯뿬 냽룄蹂꾨줈 씗꽍 썑, 씗꽍븳 떆猷 100 μL 80% ethanol 860 μL쓣 泥④븯뿬 샎빀 썑 10% aluminium nitrate 1 M potassium acetate 20 μL쓣 媛븯뿬 떎삩뿉 40遺 諛⑹튂븳 뮘 96 well-plate뿉 200 μL뵫 遺꾩<븯뿬 415 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. Quercetin (Sigma Chemical Co.)쓣 몴以臾쇱쭏濡 몴以 寃웾 怨≪꽑쓣 옉꽦븯뿬 뵆씪蹂대끂씠뱶 븿웾쓣 援ы븯떎.

DPPH radical 냼嫄 솢꽦

WSE쓽 쑀由 씪뵒移 냼嫄 솢꽦 븞젙븳 씪뵒移쇱씤 DPPH (Sigma Chemical Co.)뿉 븳 솚썝젰쓣 痢≪젙븳 寃껋쑝濡 99% 硫뷀깂삱뿉 媛 떆猷뚮 끃뿬 96 well-plate뿉 냽룄蹂꾨줈 씗꽍븳 떆猷 160 μL 硫뷀깂삱뿉 끃씤 0.15 mM DPPH 슜븸 40 μL瑜 媛븯뿬 떎삩뿉 30遺 諛⑹튂븳 썑 517 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. WSE쓽 씪뵒移 냼嫄 솢꽦 異붿텧臾쇱쓣 泥④븯吏 븡 議곌뎄쓽 씉愿묐룄瑜 1/2濡 솚썝떆궎뒗뜲 븘슂븳 떆猷뚯쓽 냽룄씤 RC50 媛믪쑝濡 굹궡뿀떎. 씠븣 positive control濡 泥쒖뿰 빆궛솕젣씤 ascorbic acid (Vit.C., Chemical Co.)瑜 궗슜븯떎.

ABTS radical 냼嫄 솢꽦

ABTS radical쓣 씠슜븳 빆궛솕젰 痢≪젙 ABTS+· cation decolorization assay 諛⑸쾿(Re et al., 1999)쓣 蹂삎븯뿬 떆뻾븯떎. 14 mM 냽룄쓽 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS, Sigma Chemical Co.) 5 mM 냽룄쓽 potassium persulfate瑜 理쒖쥌냽룄濡 샎빀븯뿬 떎삩긽깭뿉 븫떎뿉꽌 24떆媛 룞븞 諛섏쓳떆耳 뙆옉/끃깋쓽 ABTS radical쓣 삎꽦떆궓 썑 732 nm뿉꽌 씉愿묐룄 媛믪씠 0.70 (±0.02)씠 릺寃 phosphate buffer saline (PBS, pH 7.4)濡 씗꽍븯떎. 씗꽍맂 슜븸 180 μL뿉 WSE 20 μL瑜 媛븯뿬 1遺 룞븞 諛⑹튂븳 썑 732 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎.

꽭룷二 諛곗뼇

떎뿕뿉 궗슜븳 떊寃쎄탳꽭룷씤 BV-2 꽭룷뒗 誘멸뎅 븯踰꾨뱶 쓽怨쇰븰뿉꽌 遺꾩뼇 諛쏆븘 궗슜븯떎. BV-2 꽭룷 諛곗뼇뿉 궗슜맂 RPMI1640 諛곗(Gibco BRL, NY, USA)뿉 10% fetal bovine serum (FBS; Gibco BRL), 1% antibiotic-antimycotic(Gibco BRL)쓣 泥④븳 諛곗瑜 씠슜븯뿬 5% CO2, incubator뿉꽌 2~3씪뿉 1쉶뵫 怨꾨 諛곗뼇븯떎.

꽭룷룆꽦 痢≪젙

LPS濡 옄洹밸맂 BV-2 꽭룷뿉꽌 LPS 諛 WSE뿉 븳 꽭룷룆꽦쓣 痢≪젙븯湲 쐞빐 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) 遺꾩꽍踰뺤쑝濡 痢≪젙븯떎. 꽭룷(1×105 cell/mL)瑜 96 well-plate뿉 100 μL뵫 遺꾩<븯뿬 12떆媛 씠긽 CO2 諛곗뼇湲곗뿉꽌 諛곗뼇븳 떎쓬, 깉 諛곗 100 μL WSE瑜 냽룄蹂꾨줈 泥섎━븯뿬 24떆媛 諛곗뼇븯떎. 24떆媛 썑뿉 2.5 mg/mL MTT瑜 10 μL뵫 泥④븳 썑 4떆媛꾨룞븞 諛곗뼇븯뿬 MTT媛 솚썝릺룄濡 븯떎. 洹 썑 諛곗뼇븸쓣 젣嫄고븯怨 dimethylsulfoxide (DMSO) 100 μL 泥④븯뿬 깮꽦맂 formazone 寃곗젙쓣 슜빐떆궓 썑, microplate reader瑜 씠슜븯뿬 540 nm뿉꽌 痢≪젙븯떎. 꽭룷룆꽦 議곌뎔怨 鍮꾧탳븯뿬 諛깅텇쑉(%)濡 굹궡뿀떎.

LPS濡 솢꽦솕맂 떊寃쎄탳꽭룷뿉꽌 NO 깮꽦빐 옉슜

BV-2 꽭룷濡쒕꽣 깮꽦릺뒗 솢꽦吏덉냼醫낆씤 nitric oxide(NO)쓽 뼇 Green 벑(1982)쓽 諛⑸쾿쓣 씠슜븯뿬 꽭룷 諛곗뼇븸 以 議댁옱븯뒗 NO2- 삎깭瑜 Griess Reagent 諛섏쓳떆耳 痢≪젙븯떎. BV-2 cell쓣 RPMI1640 諛곗瑜 씠슜븯뿬 5×105 cells쓣 96 well- plate뿉 遺꾩<븳 썑 WSE瑜 냽룄蹂꾨줈 泥섎━븯뿬 24떆媛 諛곗뼇븯쑝硫 Lipopolysaccharide (LPS) 100 ng/mL瑜 泥④븯뿬 떎떆 24떆媛 諛곗뼇떆耳곕떎. 꽭룷 諛곗뼇븸 100 μL Griess 떆빟(1% sulfanilamide, 0.1% naphthylethy-lendiaminein 25% phosphoric acid) 100 μL瑜 샎빀븯뿬 96 well-plates뿉꽌 10遺꾧컙 諛섏쓳떆궓 썑 microplate reader瑜 씠슜븯뿬 540 nm뿉꽌 痢≪젙븯떎. NO2-쓽 븿웾 痢≪젙쓣 쐞빐 NaNO2瑜 냽룄蹂꾨줈 議곗젣븯뿬 諛곗뼇븸怨 룞씪븳 諛⑸쾿쑝濡 痢≪젙븯뿬 궗슜븯떎.

넻怨꾪븰쟻 遺꾩꽍

議곌뎔怨 WSE 泥섎━援곗쓽 寃곌낵뿉 븳 넻怨꾩쿂由щ뒗 Student’s t-test濡 鍮꾧탳븯쑝硫, 넻怨꾩쿂由 썑 P媛믪씠 0.01 誘몃쭔씪 寃쎌슦 넻怨꾩쟻씤 쑀쓽꽦씠 엳떎怨 뙋젙븯떎.

寃 怨

珥 뤃由ы럹 諛 뵆씪蹂대끂씠뱶 븿웾 鍮꾧탳

蹂 떎뿕뿉꽌뒗 WSE뿉 議댁옱븯뒗 뤃由ы럹 諛 뵆씪蹂대끂씠뱶 븿웾쓣 媛곴컖 gallic acid, quercetin쓣 湲곗 臾쇱쭏濡 븯뿬 痢≪젙븯떎(Fig. 2). 洹 寃곌낵, WSE쓽 珥 뤃由ы럹 븿웾怨 뵆씪蹂대끂씠뱶 븿웾 媛곴컖 220.14±24.48, 10.76±0.19 μg/mg쑝濡 굹궗떎.

Fig. 2.

Total polyphenols and flavonoids contents of walnuts’s shell extract (WSE). Milligrams of total polyphenol content/g of samples based on gallic acid as standard. Milligrams of total flavonoid content/g of samples based on quercetin as standard. Each value is mean ± S.D. (n=3).



ABTS 諛 DPPH radical 냼嫄 솢꽦

WSE瑜 긽쑝濡 ABTS DPPH 씪뵒移 냼嫄 솢꽦쓣 븣븘蹂닿린 쐞빐 泥쒖뿰 빆궛솕젣濡 븣젮吏 Vit.C 鍮꾧탳븯뿬 議곗궗븯떎. WSE쓽 ABTS DPPH radical 냼嫄곕뒫 Table 1뿉 굹궡뿀怨, free radical쓣 50% 빐븯뒗 떆猷뚯쓽 냽룄瑜 RC50 媛믪쑝濡 굹궡뿀떎. WSE뒗 ABTS 씪뵒移 냼嫄 솢꽦씠 25, 50 μg/mL쓽 냽룄뿉꽌 媛곴컖 79.22±1.73, 90.76±1.20%쓽 빐솢꽦쓣 굹궡뿀쑝硫, RC50 媛믪 15.74±1.34 μg/mL濡 Vit.C쓽 빟 3諛 젙룄 넂 媛믪쓣 굹궡뿀떎. DPPH 씪뵒移 냼嫄 솢꽦 50, 100 μg/mL쓽 냽룄뿉꽌 媛곴컖 67.32±1.24, 89.34±2.87%쓽 빐솢꽦쓣 굹궡뿀쑝硫, RC50媛믪 ABTS 씪뵒移 냼嫄곕냽룄 蹂대떎뒗 떎냼 넂 40.13±2.47 μg/mL쓽 媛믪쓣 굹깉떎.

Scavenging effects of ascorbic acid and ethanol extracts from walnuts’s shell on 2,2’-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) radicals (ABTS+·) and α,α-diphenly-β-picrylhydrazyl radicals (DPPH·)

  Sample ABTS radical DPPH radical


Concentration (μg/mL) Scavenging effect (%) RC50 (μg/mL) Concentration (μg/mL) Scavenging effect (%) RC501)(μg/mL)
WSE 1 3.20±1.212) 15.74±1.34 5 2.34±1.21 40.13±2.47
5 21.41 ± 1.23 10 15.24±3.24
10 40.55±0.77 25 32.16±0.97
25 79.22± 1.73 50 67.32±1.24
50 90.76± 1.20 100 89.34±2.87

Vit.C 1 7.80±1.28 5.21±0.34 1 13.21±0.34 4.40±0.01
2.5 23.71±0.20 2.5 32.14±0.98
5 53.41±3.24 5 67.32±0.24
7.5 78.51±6.67 7.5 79.35±1.27
10 93.47±0.33 10 94.32±2.34

Concentration required for 50% reduction of free radical after starting the reaction

Each value is mean ± SD (n≥3)



꽭룷깮議댁쑉 痢≪젙

WSE媛 BV-2 꽭룷뿉 룆꽦쓣 굹궡吏 븡뒗 議곌굔뿉꽌 빆뿼利 슚怨쇰 議곗궗븯湲 쐞빐 以鍮꾨맂 WSE瑜 媛곴컖 떒룆 泥섎━븳 썑 LPS (100 ng/mL)瑜 泥섎━븯뿬 24떆媛 썑뿉 MTT assay瑜 씠슜븯뿬 깮議댁쑉쓣 痢≪젙븯떎. Fig. 3쓽 寃곌낵뿉꽌 븣 닔 엳벏씠 WSE瑜 10, 25, 50, 100 μg/mL 紐⑤몢 LPS瑜 룞떆뿉 泥섎━븯뿬룄 깮議댁쑉씠 90% 씠긽쑝濡쒖꽌 BV-2 꽭룷뿉 븳 룆꽦쓣 굹궡吏 븡븯湲곗뿉 씠瑜 빆뿼利 슚뒫 떎뿕 議곌굔쑝濡 꽑젙븯떎(Fig. 3).

Fig. 3.

Effect of walnuts’s shell extract (WSE) on cytotoxicity in BV-2 cells. WSE was treated with various concentrations in BV-2 cells for 24 h. Values are expressed as the mean ± SD (n=3) of determinations made in triplicate experiments.



LPS濡 쑀룄맂 BV-2 꽭룷쓽 NO 깮꽦 利앷뿉 誘몄튂뒗 샇몢猿띿쭏 異붿텧臾쇱쓽 쁺뼢

WSE쓽 빆뿼 슚怨쇰 솗씤븯湲 쐞븯뿬 LPS濡 옄洹뱁븯뿬 뿼利앸컲쓳쓣 쑀룄븳 BV-2 cell뿉 WSE瑜 10~100 μg/mL 냽룄蹂꾨줈 泥섎━븳 썑, NO쓽 깮꽦 냽룄瑜 솗씤븯떎. LPS瑜 떒룆 泥섎━븯쓣 븣, NO 븿웾씠 53.33 μM濡 利앷릺뒗 寃껋쓣 솗씤븯떎. 씠뿉 諛섑빐, WSE瑜 泥섎━븯쓣 븣 10, 25, 50, 100 μg/mL쓽 냽룄뿉꽌 媛곴컖 41.16, 37.72, 16.26, 3.16 μM 쓽 냽룄濡 NO媛 媛먯냼릺뒗 寃껋쓣 솗씤븷 닔 엳뿀떎. 듅엳, 100 μg/mL 냽룄뿉꽌뒗 議곌뎔쓽 NO 깮꽦웾(2.11 μM)怨 쑀궗븯寃 뼲젣맂 寃껋쓣 솗씤븯떎(Fig. 4).

Fig. 4.

Effect of walnuts’s shell extract (WSE) on NO production in BV-2 cells. WSE was treated with various concentrations in BV-2 cells for 24 h. The culture supernatants were used to measure NO production. Data represent the mean ± SEM of three independent experiments (n=3). **P<0.01, ***P<0.001 when="" compared="" the="" groups="" treated="" with="" lps="" 100="" ng="" ml="" alone="" p="">


怨 李

怨쇰떎븳 솢꽦궛냼쓽 깮꽦쑝濡 씤븳 泥대궡 궛솕 빆궛솕쓽 遺덇퇏삎 DNA, 吏吏 諛 떒諛깆쭏 벑쓽 깮泥 援ъ꽦슂냼뿉 궛솕쟻 넀긽쑝濡 씪쑝耳 꽭룷 궗硫몄쓣 珥덈옒븯怨, 씠뒗 끂솕 愿젴맂 떊寃쏀눜뻾꽦 吏덊솚쓽 以묒슂븳 썝씤씠떎(Knott et al., 2008). 몴쟻씤 떊寃쏀눜뻾꽦 吏덊솚씤 븣痢좏븯씠癒 吏덊솚 뇤 궡 怨쇰떎븳 amyloid beta protein (Aβ)쓽 쓳吏묒쑝濡 씤븳 궛솕쟻 넀긽씠 썝씤씠 릺뼱 떊寃쎌꽭룷쓽 궗硫몄쓣 씪쑝궎硫, 씠뒗 씤吏뒫젰怨 湲곗뼲젰 븯瑜 珥덈옒븳떎(Reyonolds et al., 2007). 씠윭븳 떊寃쏀눜뻾꽦 吏덊솚쓣 삁諛⑺븯怨 移섎즺븯湲 쐞빐꽌 遺옉슜씠 뾾怨 븞쟾븳 떇臾쇨낵 떇臾 쑀옒쓽 솢꽦臾쇱쭏쓣 씠슜븳 뿰援ш 솢諛쒗엳 씠猷⑥뼱吏怨 엳떎.

泥쒖뿰떇臾쇰쪟뿉 븿쑀맂 빆궛솕 臾쇱쭏 뤃由ы럹 솕빀臾쇱씠 媛옣 留롮 鍮꾩쑉쓣 李⑥븯怨 엳떎. 씠윭븳 뤃由ы럹 솕빀臾쇱 궛솕쟻 뒪듃젅뒪굹 룆꽦씠 媛뺥븳 臾쇱쭏쓽 룆꽦쓣 븯빐 빆궛솕 솢꽦 諛 씪뵒移 냼嫄 솢꽦쓣 媛吏뒗 寃껋쑝濡 븣젮졇 엳떎(Lee and Park, 2005). 샇몢猿띿쭏 異붿텧臾쇱쓽 뤃由ы럹怨 뵆씪蹂대끂씠뱶 븿웾쓣 솗씤븳 寃곌낵 220.14±24.48, 10.76±0.19 μg/mg쓽 슦닔븳 븿웾쓣 굹깉떎(Fig. 1). Jeong 벑(2008)쓽 뿰援ъ뿉 뵲瑜대㈃ 泥쒖뿰臾쇱뿉 떎웾쑝濡 議댁옱븯뒗 뤃由ы럹꽦 솕빀臾쇱 媛뺣젰븳 빆궛솕 뒫젰쓣 媛뽮퀬 엳뼱 ABTS DPPH 씪뵒移 냼嫄 솢꽦 벑쓽 以묒슂븳 뿭븷쓣 븯뒗 썝씤 臾쇱쭏濡 蹂닿퀬릺怨 엳떎.

ABTS 씪뵒移 냼嫄 솢꽦 떆猷뚯뿉 븿쑀맂 떎뼇븳 빆궛솕 臾쇱쭏뿉 쓽빐 젣嫄곕릺뼱 ABTS 씪뵒移 듅쑀쓽 泥濡앹깋씠 깉깋릺뼱 굹굹뒗 깋 蹂솕瑜 씠슜븳 痢≪젙踰뺤씠硫, 닔슜꽦 諛 吏슜꽦 솕빀臾쇱쓽 빆궛솕瑜 痢≪젙븯뒗 뜲 슚怨쇱쟻쑝濡 쟻슜븷 닔 엳뼱 꼸由 궗슜릺뒗 諛⑸쾿씠떎(Re et al., 1999). WSE쓽 50 μg/mL 냽룄뿉꽌 ABTS 씪뵒移 냼嫄 솢꽦 90.76±1.20%濡 굹궗쑝硫 냽룄媛 利앷븿뿉 뵲씪 씪뵒移 냼嫄 솢꽦씠 利앷븯뒗 냽룄 쓽議댁쟻 寃쏀뼢쓣 굹깉떎(Table 1). DPPH 씪뵒移쇱 鍮꾧탳쟻 븞젙븳 옄쑀 씪뵒移쇰줈꽌 씠瑜 씠슜븳 씪뵒移 냼嫄 솢꽦 떎뿕 뿬윭 媛吏 泥쒖뿰떇臾쇰쪟쓽 빆궛솕 臾쇱쭏쓽 슚뒫쓣 솗씤븯뒗 뜲 궗슜릺怨 엳떎. 씠瑜 씠슜븯뿬 WSE쓽 DPPH 씪뵒移 냼嫄 솢꽦쓣 痢≪젙븯떎(Table 1). WSE뒗 100 μg/mL 냽룄뿉꽌 89.34±2.87%濡 굹궗쑝硫 뼇꽦議곌뎔씤 Vit.C 鍮꾧탳븯쓣 븣뒗 쑀쓽쟻쑝濡 궙 냼嫄 솢꽦쓣 굹궡뿀吏留, ABTS 씪뵒移 냼嫄 솢꽦怨 留덉갔媛吏濡 냽룄媛 利앷븿뿉 뵲씪 씪뵒移 냼嫄 솢꽦씠 利앷븯뒗 냽룄 쓽議댁쟻 寃쏀뼢쓣 뿭떆 굹깉떎. Han(Han et al., 2015) 벑쓽 뿰援ъ뿉꽌 샇몢猿띿쭏 硫뷀깂삱 異붿텧臾쇱쓽 빆궛솕 슚怨쇰 寃利앺븳 寃곌낵, ABTS DPPH 씪뵒移쇱쓽 RC50 媛믪씠 媛곴컖 652.98, 112.21 μg/mL濡 蹂 뿰援ъ뿉꽌 궗슜맂 WSE쓽 씪뵒移 냼嫄곕뒫씠 쁽엳 넂寃 痢≪젙릺뒗 寃껋쓣 솗씤븯떎. 씠뒗 샇몢猿띿쭏쓽 異붿텧 諛⑸쾿, 궛吏 벑쓽 李⑥씠濡 깮媛곷맂떎. 뿬윭 뿰援ъ뿉꽌 뤃由ы럹꽦 솕빀臾쇱 씪뵒移 벑쓣 슚怨쇱쟻쑝濡 냼嫄고븷 닔 엳뒗 寃껋쑝濡 굹궗뒗뜲(Jeong et al., 2008), WSE 뿭떆 留롮 뤃由ы럹꽦 솕빀臾쇱쓣 븿쑀븯怨 엳뼱 씠긽怨 媛숈 뿰援 寃곌낵媛 굹궃 寃껋쑝濡 뙋떒맂떎.

뿼利앸컲쓳씠 쇅遺 옄洹뱀씠굹 떎뼇븳 쑀빐씤옄뿉 빆븯湲 쐞븳 씪젴쓽 깮泥대갑뼱 湲곗쟾씠떎. 洹몃윭굹, 怨쇰룄븳 뿼利앸컲쓳 꽭룷 넀긽 벑쓽 蹂묐━쟻 긽깭뿉 씠瑜닿쾶 븯湲 븣臾몄뿉 뿼利앸컲쓳쓣 쑀諛쒗븯뒗 떥씠넗移댁씤씠굹 뿼利 留ㅺ컻泥대뱾쓣 議곗젅븯뒗 寃껋씠 뿼利앹꽦 吏덊솚쓽 移섎즺踰뺤쑝濡 젣떆릺怨 엳떎(Zamora et al., 2000). WSE媛 BV-2 떊寃쎄탳꽭룷뿉꽌 빆뿼利 슚怨쇰 굹궡뒗吏 솗씤븯湲 쐞븯뿬 LPS濡 쑀諛쒕릺뒗 뿼利앷젴 씤옄쓽 뼲젣뿬遺瑜 寃넗븯떎. 癒쇱 MTT assay瑜 씠슜븯뿬 WSE쓽 BV-2 꽭룷쓽 룆꽦쓣 솗씤븯뿬 꽭룷 룆꽦쓣 굹궡吏 븡뒗 냽룄瑜 궛異쒗븯떎(Fig. 3). NO媛 吏냽쟻씠怨 怨쇰룄븯寃 깮꽦맆 寃쎌슦 빐떦 議곗쭅뿉꽌 뿼利앹꽦 넀긽쓣 쑀諛쒗븯硫, 씠 臾쇱쭏 iNOS뿉 쓽븯뿬 L-arginine쑝濡쒕꽣 깮꽦릺뒗 寃껋쑝濡 븣젮졇 엳떎(Hou et al., 1999). LPS瑜 BV-2 꽭룷뿉꽌쓽 뿼利 쑀룄臾쇱쭏濡 泥섎━븯뿬 쟾뿼利앸ℓ 媛쒖껜씤 NO 깮꽦웾쓣 nitrite assay濡 痢≪젙븯떎. WSE뒗 100 μg/mL쓽 냽룄뿉꽌 LPS瑜 泥섎━븯吏 븡 議곌뎔怨 쑀궗븳 媛먯냼 슚怨쇰 굹궡뿀떎(Fig. 4).

뿰援 寃곌낵뿉꽌 蹂댁뿬以 WSE뒗 슦닔븳 빆궛솕 슚怨 諛 떊寃쎌꽭룷뿉 븳 빆뿼 슚怨쇰 媛吏怨 엳뒗 寃껋쓣 솗씤븯쑝硫 蹂 뿰援 寃곌낵瑜 諛뷀깢쑝濡 異붽쟻씤 湲곗쟾뿰援 諛 룞臾 떎뿕씠 吏꾪뻾맂떎硫 뿼利앷젴 吏덈퀝쓽 삁諛 諛 移섎즺뿉 슚뒫씠 엳뒗 湲곕뒫꽦 냼옱濡 쑀슜븷 寃껋엫쓣 젣떆븯怨 엳떎.

ACKNOWLEDGEMENT

None.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

References
  1. Akbari V, Jamei R, Heidari R, and Esfahlan AJ. Antiradica lactivity of different parts of Walnut (Juglans regia L.) fruit as a function of genotype. Food Chemistry 2012;135:2404-2410.
    Pubmed CrossRef
  2. Ames BN, and Saul RL. Oxidative DNA damage, cancer and aging. Oxygen and human disease. Annals of Internal Medicine 1987;107:536-539.
  3. Boje KM, and Arora PK. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Research 1992;587:250-256.
    CrossRef
  4. Folin O, and Denis W. On phosphotungstic-phosphomolybdic compounds as color reagents. The Journal of Biological Chemistry 1912;12:239-249.
  5. Green LC, Wagner DA, and Glogowski J. Analysis of nitrate, and [15N]nitrate in biological fluids. Analytical Biochemistry 1982;126:131-138.
    CrossRef
  6. Grosso G, Galvano F, Marventano S, Malaguarnera M, Bucolo C, Drago F, and Caraci F. Omega-3 Fatty Acids and Depression: Scientific Evidence and Biological Mechanisms. Oxidative Medicine and Cellular Longevity 2014. doi:10.1155/2014/ 313570
  7. Han KL, Kim MR, Jo BK, Kim MJ, Kang MJ, Park KH, Koo YE, Kim BS, Jung EG, and Han MD. Antimicrobial and antioxidative activities of the extracts from Walnut (Juglans regia L.) green Husk. Journal of Life Science 2015;25:433-440.
    CrossRef
  8. Hou YC, Janczuk A, and Wang PG. Current trends in the development of nitric oxide donors. Current Pharmaceutical Design 1999;5:417-441.
    Pubmed
  9. Jeong CH, Choi SG, and Heo HJ. Analysis of nutritional components and evaluation of functional activities of Sasaborealis leaf tea. Korean Journal of Food Science and Technology 2008;40:586-592.
  10. Kim TS, Kang SJ, and Park WC. Changes in antioxidants and antioxidants enzymes activities of soybean leaves subject to water stress. Journal of the Korean Society for Applied Biological Chemistry 1999;42:246-251.
  11. Knott AB, Perkins G, Schwarzendacher R, and Bossy-Wetzel E. Mitochondrial fragmentation in neurodegeneration. Nature Reviews Neuroscience 2008;9:505-518.
    Pubmed KoreaMed CrossRef
  12. Kumar R, Balaji S, Sripriya R, Nithya N, Uma TS, and Sehgal PK. In vitro evaluation of antioxidants of fruit extract of Momordica charantia L. on fibroblasts and erantinocytes. Journal of Agricultural and Food Chemistry 2010;58:1518-1522.
    Pubmed CrossRef
  13. Lee HS, and Park YW. Antioxidant activity and antibacterial activities from different parts of broccoli extracts under high temperature. Journal of the Korean Society of Food Science and Nutrition 2005;34:759-764.
    CrossRef
  14. Liu F, and Ng TB. Antioxidative and free radical scavenging activities of selected medicinal herbs. Life Sciences 2000;66:725-735.
    CrossRef
  15. Maqsood S, and Benjakul S. Comparative studies of four different phenolic compounds on in vitro antioxidative activity and the preventive effect on lipid oxidation of fish oil emulsion and fish mince. Food Chemistry 2010;119:123-132.
    CrossRef
  16. Nieva Moreno MI, Isla MI, Sampietro AR, and Vattuone MA. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. Journal of Ethnopharmacology 2000;71:109-114.
    CrossRef
  17. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, and Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 1999;26:1231-1237.
    CrossRef
  18. Reynolds A, Lauriea C, Mosleya LR, and Gendelmana EH. Oxidative stress and the pathogenesis of neurodegenerative disorders. International Review of Neurobiology 2007;82:297-325.
    CrossRef
  19. Rosen D, Siddique T, Patterson D, Figlewiez D, Sapp P, Hentai A, Donaldson D, Goto J, O Regan J, Deng H, Rahmani Z, and Krrizus A. Mutation in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature London 1993;362:59-62.
    Pubmed CrossRef
  20. Valko MD, Leibfritz J, Moncol MT, Cronin M, Mazur , and Telser J. Free radical and antioxidants in normal physiological function and human disease. The International Journal of Biochemistry &Cell Biology 2007;39:44-84.
    Pubmed CrossRef
  21. Zamora R, Vodovotz Y, and Billiar TR. Inducible nitric oxide synthase and inflammatory diseases. Molecular Medicine 2000;6:347-373.
    Pubmed KoreaMed CrossRef