Search for


TEXT SIZE

search for



CrossRef (0)
Effect of Extreme Long-Distance Running on Hepatic Metabolism and Renal Function in Middle-Aged Men
Biomed Sci Lett 2018;24:411-417
Published online December 31, 2018;  https://doi.org/10.15616/BSL.2018.24.4.411
© 2018 The Korean Society For Biomedical Laboratory Sciences.

Kyung-A Shin1,*, and Young-Joo Kim2,†,*

1Department of Clinical Laboratory Science, Shinsung University, Chungnam 31801, Korea,
2Department of Exercise Rehabilitaion Welfare, Sungshin University, Seoul 02844, Korea
Correspondence to: Young-Joo Kim. Department of Exercise Rehabilitaion Welfare Soojung Campus, Sungshin University, 2 Bomun-Ro 34Da-Gil, Seongbuk-Gu, Seoul 02844, Korea. Tel: +82-2-920-7942, Fax: +82-2-920-7942, e-mail: kyj87@sungshin.ac.kr
Received October 1, 2018; Revised November 12, 2018; Accepted November 13, 2018.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract

The aim of this study was to investigate the impact of participation in the 622 km hyper-ultra-marathon on hepatic metabolism and renal function in middle-aged men. Healthy middle-aged male amateur ultra-marathoners between the ages of 40 and 60. Blood was collected at the pre-race, immediately after 300 km, 622 km hyper-ultra marathon race, 72 hours (3 day) and 144 hours (6 day) after the race, AST (aspartate aminotransferase), ALT (alanine aminotransferase), ALP (alkaline phosphatase), γ-GTP (gamma glutamyl transferase), T-Bil (total bilirubin), D-Bil (direct bilirubin), T-protein (total protein), albumin, uric acid, BUN (blood urea nitrogen), creatinne were analyzed. ALP was significantly increased at 300 km, 622 km, day 3 and day 6 than the pre-race. γ-GTP, T-protein, albumin, uric acid, BUN and creatinine were not significantly different between the distances and the recovery period respectively. AST and ALT were significantly increased at 300 km, 622 km, day 3 and day 6 than the pre-race, respectively (P<0.05) at day 3 and day 6 they showed significant decrease from 300 km and 622 km, respectively (P<0.05). T-Bil and D-Bil increased significantly at 300 km and 622 km, respectively (P<.05) and significantly decreased at day 3 (P<0.05) compared to the pre-race, at day 3 and day 6 they were decreased significantly than 300 km and 622 km, respectively (P<0.05). In conclusion, no disturbance of renal function was observed according to the distances and between the recovery period of 622 km hyper-ultra marathon race, but reversible hepatocyte function could be degraded and some hemolysis of blood vessels was induced.

Keywords : Ultra-marathon, Hepatic metabolism, Renal function
꽌濡

슱듃씪 留덈씪넠 怨좊 洹몃━뒪뿉꽌 쑀옒맂 42.195 km(26 miles)쓽 쟾넻쟻씤 留덈씪넠蹂대떎 뜑 癒 嫄곕━瑜 떖由щ뒗 뒪룷痢좊줈뜥 理쒓렐 以묓솕릺怨 엳떎(Trappe et al., 2006). 슱듃씪 留덈씪넠怨 媛숈 洹밸떒쟻씤 뒪룷痢좊뒗 嫄닿컯뿉 遺젙쟻 쁺뼢쓣 誘몄퀜 쉶媛 걹궃 썑 蹂묒썝뿉 엯썝븯嫄곕굹 궗留앺븷 닔 엳떎怨 蹂닿퀬맂떎(Ayus et al., 2000). Mathews 벑(2012) 2000뀈遺꽣 2009뀈源뚯 誘멸뎅뿉꽌 媛쒖턀맂 留덈씪넠 寃쎄린뿉꽌 28紐낆쓽 궗留앹옄媛 諛쒖깮븯떎怨 蹂닿퀬븯怨 엳떎. 뵲씪꽌 留덈씪넠 蹂대떎 뜑 癒 嫄곕━瑜 떖由щ뒗 슱듃씪 留덈씪넠 寃쎄린떆 삉뒗 쉶蹂듦린 룞븞 二쇱옄뱾쓽 깮由ъ쟻 蹂솕뿉 븳 以묒슂꽦씠 媛뺤“릺怨 엳떎.

怨쇰룄븳 슫룞 떊泥댁쟻 넀긽, 젙떊쟻 뒪듃젅뒪 諛 궛솕쟻 뒪듃젅뒪, 솢꽦궛냼(Reactive oxygen species, ROS) 깮꽦쓣 珥덈옒븳떎(Leaf et al., 1999; Pedersen and Hoffman-Goetz, 2000; Brancaccio et al., 2007; Agawa et al., 2008; Hattori et al., 2009; Marumoto et al., 2010). 떎젣濡 옣嫄곕━ 떖由ш린뒗 굹듃瑜⑦삁利, 怨④꺽洹 뙆愿, 삁옣웾 蹂솕, 泥좊텇寃고븤, 鍮덊삁, 媛꾩넀긽 벑쓽 깮由ы븰쟻 蹂솕瑜 쑀諛쒗븳떎(Moses, 1990; Smith et al., 2004; Pettersson et al., 2008; Shin et al., 2016). 듅엳 媛 슚냼씤 LDH (lactate dehydrogenase), AST (aspartate aminotransferase), ALT (alanine aminotransferase), 珥 鍮뚮━猷⑤퉰(total bilirubin, T-Bil) 諛 ALP (alkaline phosphatase)뒗 옣嫄곕━ 떖由ш린뿉꽌 긽듅븯硫, 긽듅 젙룄뒗 슫룞웾(workload)뿉 鍮꾨븳떎(Shin et al., 2016). 삉븳 떊옣湲곕뒫 BUN (blood urea nitrogen)怨 겕젅븘떚땶 빆紐⑹쑝濡 룊媛븷 닔 엳뒗뜲 留덈씪넠 媛숈 媛뺣젹븳 슫룞뿉꽌 젙긽踰붿쐞 씠긽 긽듅븯뒗 寃껋쑝濡 븣젮졇 엳쑝硫(McCullough et al., 2011), 쁽옱源뚯 留덈씪넠遺꽣 308 km 援넗슒떒 슱듃씪 留덈씪넠뿉꽌 씠 媛숈 吏몴뱾쓽 蹂솕媛 議곗궗릺뿀떎(Kim et al., 2012; Shin et al., 2016).

洹뱀떖븳 옣嫄곕━ 떖由ш린뒗 吏냽쟻쑝濡 깮泥 뿉꼫吏瑜 냼鍮꾪븯硫 洹뱁븳뿉 씠瑜대뒗 슫룞쑝濡 쟻젅븳 쁺뼇怨듦툒怨 쑕떇쓣 넻빐 깮由ы븰쟻 븞젙꽦쓣 쉶蹂듯븳 썑 寃쎄린瑜 븯뿬빞, 넀긽쓣 삁諛⑺븷 肉먮쭔 븘땲씪 쟻젅븳 湲곕줉쓣 쑀吏븷 닔 엳떎(Warburton et al., 2002). 洹몃윭굹 臾대컯 6씪쓣 떖젮꽌 150떆媛꾨궡뿉 셿二쇳빐빞 븯뒗 622 km 슱듃씪 留덈씪넠 씤媛 븳怨꾩뿉 룄쟾븯뒗 洹뱀튂쓽 寃쎄린씠떎. 씠 쉶瑜 넻븳 뿰援щ뒗 쁽옱源뚯 씠猷⑥뼱吏吏 븡怨 엳쑝硫 떎뼇븳 깮由ы븰쟻 蹂솕뿉 빐 議곗궗븷 븘슂媛 엳떎. 뵲씪꽌 622 km 슱듃씪 留덈씪넠씠 깮솕븰쟻 吏몴 以 媛꾨궗 떊옣湲곕뒫뿉 誘몄튂뒗 쁺뼢怨 쉶蹂듦린 諛섏쓳쓣 議곗궗븯湲 쐞빐 622 km 슱듃씪 留덈씪넠 寃쎄린쟾, 300 km 吏젏, 醫낅즺吏곹썑, 쉶蹂듦린 룞븞(3씪, 6씪)쓽 媛꾨궗 떊옣湲곕뒫 吏몴 蹂솕瑜 룊媛븯怨좎옄 븯떎.

옱猷 諛 諛⑸쾿

뿰援 긽옄 諛 젅李

622 km 슱듃씪 留덈씪넠 李멸옄寃⑹ 븳諛섎룄 슒떒쉶 308 km瑜 셿二쇳븳 옄, 젣二쇱씪二 쉶쓽 200 km瑜 셿二쇳븳 옄, 622 km 슱듃씪 留덈씪넠쓣 以묐룄 룷湲고븯쑝굹 200 km 씠긽쓣 젣븳떆媛 궡뿉 二쇳뙆븳 옄, 308 km 슱듃씪 留덈씪넠쓣 以묐룄 룷湲고븯쑝굹 200 km 씠긽쓣 젣븳떆媛 궡뿉 二쇳뙆븳 옄, 쉶씪 湲곗쑝濡 理쒓렐 2뀈 궡 븳 슱듃씪 留덈씪넠뿰留뱀뿉꽌 怨듭씤븳 쉶뿉 200 km 씠긽 셿二쇳븳 옄 씠뼱빞 븳떎. 622 km 슱듃씪 留덈씪넠 二쇱옄뱾 50 km 떒쐞瑜 젣븳떆媛꾨궡뿉 넻怨쇳븯뿬빞 븯硫, 넻怨쇳븳 二쇱옄뒗 쉶 議곗쭅쐞썝, 媛議 諛 吏씤씠 以鍮꾪븳 뀗듃, 쓬떇, 留덉궗吏 벑쓣 젣怨듬컺쓣 닔 엳떎. 洹몃윭굹 李⑤웾 깙듅 遺젙뻾쐞濡 媛꾩<븯떎. 쉶 1媛쒖썡 쟾 븳 슱듃씪 留덈씪넠뿰留 쉶옣뿉寃 떎뿕諛⑸쾿 諛 젅李⑥뿉 빐 꽕紐낆쓣 븳 썑 쉶 솃럹씠吏뿉꽌 씤꽣꽬긽쑝濡 吏썝옄瑜 紐⑥쭛븯떎. 李멸 쓽뼢쓣 諛앺엺 옄뱾쓣 꽑蹂꾪븯뿬 媛쒖씤 硫붿씪濡 뿰援 紐⑹쟻怨 젅李⑥뿉 빐 꽕紐낇븯쑝硫, 뿰援щ룞쓽꽌瑜 諛쏆 썑 媛쒖씤쟻 떊긽(뿰졊, 떊옣, 泥댁쨷, 슫룞뒿愿, 媛쒖씤蹂묐젰)뿉 븳 꽕臾몄瑜 諛쏄퀬 뿰援ъ뿉 李몄뿬븯떎. 蹂 뿰援 긽옄뒗 (Table 1)뿉 굹궃 諛붿 媛숈씠 뿰援ъ뿉 옄諛쒖쟻쑝濡 吏썝븳 40꽭 씠긽 60꽭 씠븯쓽 以묐뀈 궓꽦쑝濡 꽑젙븯떎. 뿰援 긽옄뿉꽌 젣쇅릺뒗 湲곗 622 km 슱듃씪 留덈씪넠 셿二쇱뿉 떎뙣븳 옄, 寃쎄린 洹쒖젙떆媛 궡뿉 셿二쇳븯吏 紐삵븳 옄, 븞젙떆 삁븬씠 140/90 mmHg 씠긽씤 옄, 삊떖利앹씠굹 떖洹쇨꼍깋利, 떖옣닔닠쓽 怨쇨굅젰씠 엳뒗 떖삁愿怨 吏덊솚옄, 떦눊, 떊옣吏덊솚, 媛꾩쭏솚옄, 怨좏삁븬쑝濡 빟臾 蹂듭슜 以묒씤 옄뒗 젣쇅븯떎(Fig. 1). 622 km 슱듃씪 留덈씪넠 삤쟾 6떆뿉 떆옉릺뿀쑝硫, 異쒕컻吏뒗 쟾궓빐궓 븙걹湲곕뀗깙뿉꽌 룄李⑹뒗 媛뺤썝怨좎꽦 異쒖엯援愿由ъ냼떎. 理쒖 삩룄뒗 23°C怨 理쒓퀬 삩룄뒗 32°C씠怨 긽뒿룄뒗 50~70%떎.

Characteristics of demographics fitness in study participants (n=10)

   VariablesMean±SD
Age (years)52.7±4.8
Height (cm)171.6±4.6
Weight (kg)70.5±5.1
BMI (kg/m2)23.9±1.6
Marathon experience (month)94.5±23.1
Number of participated marathons51.12±54.22
Race completion time (min)8754.0±152.2

Values are presented as means ± standard deviations; BMI, body mass index


Fig. 1.

Flow chart of the study procedure.


삁븸梨꾪삁

떎뿕 긽옄뱾 슱듃씪 留덈씪넠 異쒕컻 쟾, 300 km, 622 km 醫낅즺吏곹썑, 寃쎄린 醫낅즺 썑 72떆媛(3 day), 144떆媛(6 day)뿉 二쇱쟾젙留(antecubital vein)뿉꽌 CLSI (Clinical and Laboratory Standards Institute) Guidelines 湲곗뿉 뵲씪 梨꾪삁쓣 떆뻾븯떎. 珥 떒諛깆쭏, 븣遺誘, AST, ALT, ALP, γ-GTP (gamma glutamyl transferase), 珥 鍮뚮━猷⑤퉰, 吏곸젒 鍮뚮━猷⑤퉰(direct bilirubin, D-Bil), BUN, 겕젅븘떚땶, 슂궛 SST tube (BD Vacutainer Serum Separator Tube, USA)뿉 梨꾪삁 썑 3,400 rpm뿉꽌 15遺꾧컙 썝떖遺꾨━ 썑 삁泥쓣 遺꾨━븯뿬 -70°C 깋룞怨좎뿉 蹂닿븯떎媛 痢≪젙븯떎. 뿤紐④濡쒕퉰怨 뿤留덊넗겕由ы듃뒗 梨꾪삁 썑 EDTA (ethylenediaminetetraacetic acid) tube뿉 떞븘 利됱떆 遺꾩꽍븯떎.

삁븸遺꾩꽍

깮솕븰寃궗뒗 梨꾪삁븳 삁븸쓽 삁泥뿉꽌 珥 떒諛깆쭏, 븣遺誘, AST, ALT, γ-GTP, ALP, 珥 鍮뚮━猷⑤퉰, 吏곸젒 鍮뚮━猷⑤퉰, BUN, 겕젅븘떚땶, 슂궛 Denka seiken 떆빟(Denka seiken Co., Ltd, Japan)쓣 궗슜븯뿬 Toshiba TBA-200FR NEO(Toshiba Medical Systems, Japan) 옣鍮꾨줈 痢≪젙븯떎. 媛곴컖쓽 寃궗踰뺤 珥 떒諛깆쭏 biuret踰, 븣遺誘쇱 bromcresol green踰, AST, ALT뒗 UV without P5P踰, ALP뒗 PNPP, EAE buffer踰, 珥 鍮뚮(猷⑤퉰怨 吏곸젒 鍮뚮━猷⑤퉰 Jendrassik-Grof踰, γ-GTP뒗 G-glutamyl-carboxy-nitroanilide (IFCC)踰, BUN Urease GLDH踰, 겕젅븘떚땶 Jaffe踰, 슂궛 Uricase-POD踰뺤쓽 썝由щ줈 痢≪젙븯떎. 삉븳 뿤紐④濡쒕퉰怨 뿤留덊넗겕由ы듃뒗 Beckman Coulter LH750 (Beckman Coulter, USA)쑝濡 遺꾩꽍븯떎. 삁옣웾 蹂솕(plasma volume change)뒗 뿤紐④濡쒕퉰怨 뿤留덊넗겕由ы듃移섎줈 궛異쒗븯쑝硫, 紐⑤뱺 삁븸寃궗뒗 삁옣웾 蹂솕쑉濡 怨꾩궛븯뿬 蹂댁젙븯떎(Dill and Costill, 1974).

옄猷뚯쿂由щ갑踰

긽옄쓽 媛쒖씤쟻씤 듅꽦怨 삁븸吏몴뱾 S-Link statistical package瑜 씠슜븯뿬 遺꾩꽍븯쑝硫, 紐⑤뱺 寃곌낵뒗 룊洹 ± 몴以렪李⑤줈 젣떆븯떎. 媛곴컖쓽 援ш컙怨 떆湲곌컙쓽 李⑥씠 寃利앹 鍮꾨え닔諛⑸쾿씤 씪썝諛곗튂 봽由щ뱶留(Friedman) 寃젙쓣 씠슜븯쑝硫, 궗썑 寃젙 쐧肄뺤뒯(Wilcoxon) 遺샇닚쐞 寃젙쓣 궗슜븯떎. 李⑥씠 寃젙쓽 쑀쓽닔以 P<0.05떎.

寃곌낵

(Table 2)뿉 굹궃 寃곌낵뿉꽌 ALP뒗 pre-race (186.7±41.1)蹂대떎 300 km (214.9±51.6), 622 km (260.2±79.6), 3 day (236.1±78.2) 洹몃━怨 6 day (206.7±39.4)뿉꽌 媛곴컖 쑀쓽븳 利앷瑜 蹂댁떎. 洹몃윭굹 γ-GTP, 珥 떒諛깆쭏, 븣遺誘, 슂궛, BUN 洹몃━怨 겕젅븘떚땶 媛 援ш컙蹂꾧낵 떆媛꾨퀎뿉 쑀쓽븳 李⑥씠媛 뾾뿀떎. (Fig. 2)뿉 굹궃 寃곌낵뿉꽌 AST뒗 pre-race (24.2±3.5)蹂대떎 300 km (118.9±28.9), 622 km (128.0±34.4), 3 day (43.3±11.8) 洹몃━怨 6 day (37.4±5.5)뿉꽌 媛곴컖 쑀쓽븳 利앷瑜 蹂댁쑝硫(P<0.05), 3 day 6 day뒗 300 km 622 km 蹂대떎 媛곴컖 쑀쓽븯寃 媛먯냼븯떎(P<0.05). ALT뒗 pre-race (18.9±6.1)蹂대떎 300 km (50.7±11.3), 622 km (66.4±19.8), 3d ay (38.0±11.2) 洹몃━怨 6 day (32.7±7.8)뿉꽌 媛곴컖 쑀쓽븳 利앷瑜 蹂댁쑝硫(P<0.05), 3 day 6 day뒗 300 km 622 km 蹂대떎 媛곴컖 쑀쓽븯寃 媛먯냼븯떎(P<0.05). (Fig. 3)뿉 굹궃 寃곌낵뿉꽌 珥 鍮뚮━猷⑤퉰 pre-race (0.63±0.21)蹂대떎 300 km (1.68±0.7), 622 km (1.05±0.27)뿉꽌 媛곴컖 쑀쓽븳 利앷瑜 蹂댁怨(P<0.05) 3 day (0.29±0.09)뿉꽌 쑀쓽븳 媛먯냼媛 굹궗쑝硫(P<0.05), 3 day 6 day (0.43±0.04)뒗 300 km 622 km 蹂대떎 媛곴컖 쑀쓽븳 媛먯냼媛 굹궗떎(P<0.05). 吏곸젒 鍮뚮━猷⑤퉰 pre-race (0.17±0.04)蹂대떎 300 km (0.37±0.08), 622 km (0.28±0.04)뿉꽌 媛곴컖 쑀쓽븳 利앷瑜 蹂댁怨(P<0.05), 3 day (0.1±0.1)뿉꽌 쑀쓽븳 媛먯냼媛 굹궗쑝硫(P<0.05), 3 day 6 day (0.18±0.04)뒗 300 km 622 km蹂대떎 媛곴컖 쑀쓽븳 媛먯냼媛 굹궗떎(P<0.05).

Change of liver and kidney according to distance and recovery phase in 622 km

  FactorPre-race300 km622 km3 day6 day
ALP (IU/L)186.7±41.1214.9±51.6*260.2±79.6*236.1±78.2*206.7±39.4*
γ-GTP (IU/L)29.2±9.726.3±8.629.3±12.827.9±8.531.1±4.9
T-protein (g/dL)7.3±0.38.1±1.38.2±1.57.7±0.87.4±0.5
Albumin (g/dL)4.5±0.14.3±0.24.3±0.24.4±0.24.4±0.2
Uric acid (mg/dL)5.9±1.47.2±2.67.0±2.75.5±1.16.5±1.1
BUN (mg/dL)7.3±0.38.1±1.38.2±1.57.7±0.87.4±0.5
Creatinine (mg/dL)4.5±0.14.3±0.14.3±0.24.4±0.24.4±0.2

Values are presented as means ± standard deviations; ALP, alkaline phosphatase; γ-GTP, gamma glutamyl transferase; T-protein, total protein; BUN, blood urea nitrogen;

*significantly different from the pre-race at P<0.05.


Fig. 2.

Changes in AST and ALT according to distance and recovery period in 622 km Ultra Marathon. AST; aspartate aminotransferase, ALT; alanine aminotransferase. a; Significantly different from the pre-race in AST and ALT at P<0.05. b; Significantly different from the 300 km in AST and ALT at P<0.05. c; Significantly different from the 622 km in AST and ALT at P<0.05.


Fig. 3.

Changes in T-bilirubin and D-bilirubin according to distance and recovery period in 622 km ultra marathon. Tbilirubin; total bilirubin, D-bilirubin; direct bilirubin. a; Significantly different from the pre-race in T-bilirubin and D-bilirubin at P< 0.05. b; Significantly different from the 300 km in T-bilirubin and D-bilirubin at P<0.05. c; Significantly different from the 622 km in T-bilirubin and D-bilirubin at P<0.05.


怨좎같

씠 뿰援щ뒗 622 km 슱듃씪 留덈씪넠 寃쎄린 쟾썑 쉶蹂듦린媛꾨룞븞(3씪, 6씪) 媛꾨궗 諛 떊옣湲곕뒫쓽 蹂솕 622 km 슱듃씪 留덈씪넠 썑 깮由ъ쟻 쉶蹂듭쓣 쐞븳 쟻젅븳 쑕떇湲곌컙쓣 븣븘蹂닿퀬옄 븯떎. 洹 寃곌낵 622 km 슱듃씪 留덈씪넠 二쇱옄뱾뿉寃뚯꽌 媛꾩쓽 씪떆쟻씤 湲곕뒫븯媛 굹궗쑝굹, 떊옣湲곕뒫뿉뒗 蹂솕媛 뾾뿀떎. 삉븳 븯맂 媛꾧린뒫쓣 쉶蹂듯븯湲 쐞빐 理쒖냼 6씪 씠긽쓽 쉶蹂듦린瑜 嫄곗튂뒗 寃껋씠 븘슂븯寃좊떎.

怨좉컯룄 吏援щ젰 슫룞 깮泥 뿉꼫吏瑜 吏냽쟻쑝濡 냼鍮꾩떆耳 泥대궡 솚寃쎌씠 洹뱁븳뿉 씠瑜대뒗 슫룞씠떎. 뵲씪꽌 쟻젅븳 쁺뼇怨듦툒怨 쑕떇쓣 넻빐 泥대궡媛 빆긽꽦쓣 쉶蹂듯븳 썑 寃쎄린瑜 븯뿬빞 슫룞뿉 쓽븳 넀긽쓣 삁諛⑺븷 닔 엳쓣 肉먮쭔 븘땲씪 醫뗭 湲곕줉쓣 뼸쓣 닔 엳떎(Warburton et al., 2002). 留덈씪넠 洹쇨낏寃⑷퀎 넀긽肉먮쭔 븘땲씪 떖삁愿怨, 媛, 떊옣 벑뿉 씪떆쟻씤 鍮꾩쇅긽꽦 넀긽 諛 湲곕뒫븯瑜 굹궦떎(Nagel et al., 1990; Kuipers, 1994; Siegel et al., 2001; Kersting et al., 2005; McCullough et al., 2011). 옣嫄곕━ 떖由ш린뿉꽌 媛 슚냼씤 ALT, ALP, GLDH (glutamate dehydrogenase), γ-GTP뒗 利앷븯硫, 슱듃씪 留덈씪넠뿉 쓽븳 깮由ы븰쟻 諛섏쓳 꽑닔뱾쓽 썕젴닔以, 슫룞媛뺣룄 吏냽떆媛, 슫룞醫낅쪟 肉먮쭔 븘땲씪 寃쎄린 썑 쉶蹂듦린媛꾩뿉 뵲씪 떎뼇븳 寃곌낵瑜 蹂댁씤떎(Nagel et al., 1990; Brancaccio et al., 2006). 씠 뿰援ъ뿉꽌 AST뒗 寃쎄린 쟾蹂대떎 300 km 622 km뿉꽌 媛곴컖 4.9諛, 5.3諛 利앷븯쑝硫, 쉶蹂듦린 3씪뿉뒗 URL (upper reference limit)씠긽 利앷븯怨 6씪吏몄뿉 젙긽踰붿쐞濡 쉶蹂듬릺뿀떎. ALT뒗 寃쎄린 쟾蹂대떎 300 km 622 km 寃쎄린 醫낅즺떆젏뿉 媛곴컖 2.6諛, 3.5諛 利앷븯쑝굹, 쉶蹂듦린 3씪뿉 젙긽踰붿쐞濡 쉶蹂듬릺뿀떎. 洹몃윭굹 γ-GTP뒗 622 km 슱듃씪 留덈씪넠 援ш컙蹂, 쉶蹂듦린 룞븞뿉 李⑥씠媛 뾾뿀떎.

슱듃씪 留덈씪넠 寃쎄린 以 AST, ALT, γ-GTP쓽 솢꽦쓣 넻븳 媛꾩넀긽 쑀臾댁뿉 븳 룊媛뒗 씠寃ъ씠 留롫떎(Fallon et al., 1999). AST뒗 媛꾨퓧留 븘땲씪 洹쇱쑁꽭룷뿉룄 議댁옱븯硫, ALT γ-GTP뒗 媛꾩꽭룷 넀긽뿉 뜑 듅씠쟻씤 吏몴씠떎(Spiropoulos and Trakada, 2003; Skenderi et al., 2006). AST, ALT뒗 67 km (Rehrer et al., 1992), 200 km (Kim et al., 2007), 308 km (Shin et al., 2014) 슱듃씪 留덈씪넠뿉꽌 젏吏꾩쟻씤 利앷媛 蹂닿퀬릺뿀떎. 삉븳 Nagel 벑(1990) 20씪媛꾩쓽 1,000 km 슱듃씪 留덈씪넠 썑 媛 듅씠쟻 슚냼 媛꾪빀꽦 뒫젰쓣 룊媛븳 寃곌낵 媛꾩꽭룷 넀긽쓣 蹂닿퀬븯떎. 洹몃윭굹 씠윭븳 슚냼쓽 利앷뒗 媛꾩꽭룷 넀긽쓽 젙룄瑜 媛꾩젒쟻쑝濡 굹궡뒗 吏몴씠硫(Fallon et al., 1999), AST ALT쓽 利앷뒗 옣湲곌컙 슫룞뿉 쓽븳 媛꾩쓽 씪떆쟻씤 湲곕뒫븯瑜 쓽誘명븯뒗 寃껋쑝濡 깮媛곷맂떎(Shin et al., 2014).

ALP뒗 媛, 堉, 냼솕愿뿉 넂 냽룄濡 議댁옱븯뒗 슚냼씠硫, 슫룞뿉 쓽븳 냼솕愿쓽 뿀삁꽦 넀긽, 堉덉쓽 뒪듃젅뒪瑜 諛섏쁺븯뒗 吏몴씠떎(Noakes, 1987; Fallon et al., 1999). 蹂 뿰援ъ뿉꽌 ALP뒗 622 km 슱듃씪 留덈씪넠 쟾蹂대떎 300 km, 622 km, 쉶蹂듦린 3씪, 6씪吏몄뿉룄 젙긽踰붿쐞 궡뿉꽌 넂寃 쑀吏릺뿀쑝硫, ALP瑜 넻빐 媛꾩넀긽쓣 솗씤븯湲 쐞빐꽌뒗 ALP isoenzymes 痢≪젙씠 븘슂븷 寃껋쑝濡 깮媛곷맂떎(Fallon et al., 1999). 媛꾩쓽 媛옣 以묒슂븳 湲곕뒫 떒諛깆쭏 빀꽦씠硫, 媛꾩꽭룷 넀긽뿉 쓽빐 삁옣 떒諛깆쭏 媛먯냼븳떎(Whicher and Spence, 1987). 媛꾩쓽 떒諛깆쭏 빀꽦 뒫젰쓣 룊媛븯뒗 몢 媛吏 떒諛깆쭏濡 肄쒕┛뿉뒪뀒씪븘젣(cholinesterase) 삁泥 븣遺誘쇱쓣 뱾닔 엳떎(Nagel et al., 1990). 옣嫄곕━ 留덈씪넠뿉꽌 肄쒕┛뿉뒪뀒씪븘젣 솢꽦怨 삁泥 븣遺誘 냽룄뒗 媛먯냼븯쑝硫, 씠뒗 媛꾩뿉꽌쓽 떒諛깆쭏 빀꽦뒫젰 媛먯냼 쑀궛냼 湲곕뒫븯瑜 굹궡뒗 寃곌낵씠떎(Nagel et al., 1990; Wu et al., 2004). 삉븳 24떆媛 슱듃씪 留덈씪넠 썑 珥 떒諛깆쭏 쉶蹂듦린 2씪吏몄뿉 媛먯냼븯硫, 쉶蹂듦린 9씪吏몄뿉룄 쉶蹂듬릺吏 븡븯떎(Wu et al., 2004). 씠윭븳 寃곌낵뱾 쉶 以 쓬떇臾 꽠痍④ 遺덇븯嫄곕굹 異⑸텇엳 씠猷⑥뼱吏吏 븡븯湲 븣臾몄쑝濡 삁긽맂떎. 蹂 뿰援ъ뿉꽌뒗 떖由щ뒗 以 50 km 援ш컙留덈떎 쓬떇怨 쓬猷뚭 異⑸텇엳 젣怨듬릺뿀湲 븣臾몄뿉 珥 떒諛깆쭏怨 븣遺誘쇱 622 km 슱듃씪 留덈씪넠뿉 쓽빐 蹂솕媛 뾾뒗 寃껋쑝濡 蹂댁씤떎. 뵲씪꽌 珥덉옣嫄곕━ 622 km 슱듃씪 留덈씪넠 寃쎄린 以 삁옣 슜웾룄 쟻젅엳 쑀吏릺뿀쓬쓣 븣 닔 엳뒗 寃곌낵씪 깮媛곷맂떎(Poortmans and Haralambie, 1979).

옣嫄곕━ 寃쎄린뿉꽌 삁泥 鍮뚮━猷⑤퉰 利앷뒗 “foot strike”뿉 쓽븳 삁愿 궡 슜삁怨 愿젴씠 엳쑝硫, 쟻삁援ъ쓽 洹쇱쑁 궡 뙆愿댁 諛깊삁援 솢꽦뿉 쓽븳 옄쑀 씪뵒移(free radicals) 諛⑹텧뿉 뵲瑜 吏吏덈쭑 怨쇱궛솕옉슜씠 썝씤씠떎(Robinson et al., 2006). 삉븳 슜삁 빀넗湲濡쒕퉰쓽 媛먯냼, LDH쓽 利앷, 쟻삁援щ쭑쓽 援ъ“쟻 蹂솕 愿젴씠 엳떎(Spitler et al., 1984; Fallon et al., 1999).

蹂 뿰援ъ뿉꽌 珥 鍮뚮━猷⑤퉰 300 km뿉꽌 URL 씠긽쓽 긽듅쓣 蹂댁씠떎 3씪吏몄뿉 寃쎄린 쟾 닔以쑝濡 쉶蹂듬릺뿀쑝硫, 吏곸젒 鍮뚮━猷⑤퉰 300 km 吏젏뿉꽌 理쒕移섎 蹂댁씠떎媛 쉶蹂듦린 3씪뿉 寃쎄린 쟾 닔以쑝濡 쉶蹂듬릺뿀떎. 슫룞뿉 쓽븳 삁泥 鍮뚮━猷⑤퉰 利앷뒗 쟻삁援 뙆愿댁 뿤紐④濡쒕퉰 눜솕뿉 쓽븳 寃껋쑝濡 씪떆쟻씤 삁愿 궡 슜삁 떞利숈뿉꽌 鍮뚮━猷⑤퉰 諛곗꽕 利앷瑜 쑀룄븳떎(Leslie et al., 1985; Deitrick, 1991). 諛섎㈃ 삁泥 鍮뚮━猷⑤퉰쓽 젙긽솕뒗 쟻삁援 옱삎꽦쓽 媛먯냼 븣臾몄씠硫(Wu et al., 2004), 蹂 뿰援ш껐怨쇱뿉꽌뒗 씪떆쟻씤 슜삁 쁽긽씠 쉶蹂듬릺뒗뜲 3씪쓽 떆媛꾩씠 슂援щ릺뿀떎. 洹몃윭굹 鍮뚮━猷⑤퉰쓽 痢≪젙留뚯쑝濡 삁愿 궡 슜삁쓣 뙋떒븯뒗 뜲뒗 뼱젮씠 엳쑝硫, 옄쑀 뿤紐④濡쒕퉰(free hemoglobin)쓽 쑀異쒖뿉 쓽븳 뿤紐④濡쒕퉰눊(hemoglobinuria)쓽 쑀臾, 빀넗湲濡쒕퉰쓽 媛먯냼媛 굹굹뒗吏 異붽쟻씤 솗씤씠 븘슂븯寃좊떎. 삉븳 씠쟾쓽 뿰援ъ뿉꽌 留덈씪넠 寃쎄린瑜 넻빐 떊옣湲곕뒫쓽 吏몴씤 삁泥 BUN씠 利앷븳떎怨 蹂닿퀬릺뿀吏留(Kratz et al., 2002; Reid et al., 2004) 蹂 뿰援ш껐怨 삁泥 BUN怨 겕젅븘떚땶 622 km 슱듃씪 留덈씪넠 援ш컙蹂, 쉶蹂듦린 룞븞뿉 쑀쓽븳 李⑥씠瑜 蹂댁씠怨 엳吏 븡쑝誘濡 떊옣湲곕뒫 븯뒗 諛쒖깮븯吏 븡 寃껋쑝濡 깮媛곷맂떎.

蹂 뿰援ъ쓽 젣븳젏 622 km 슱듃씪 留덈씪넠 썑 쉶蹂듦린 룞븞 긽옄쓽 깮솢쓣 룞씪븯寃 넻젣븯吏 紐삵븳 젏씠떎. 삉븳 븞젙떆 떖諛뺤닔 諛 삁븬, 泥댁삩, 닔硫댁떆媛, 쓬二쇰웾 媛꾧린뒫뿉 쁺뼢쓣 誘몄튌 닔 엳쓬뿉룄 遺덇뎄븯怨 蹂 뿰援ъ뿉꽌 諛곗젣릺뿀쑝硫, 뼢썑 씠윭븳 蹂씤뱾쓣 怨좊젮븳 뿰援ш 異붽쟻쑝濡 吏꾪뻾릺뼱빞 븯寃좊떎. 洹몃윭굹 理쒓렐 洹뱁븳 뒪룷痢좎뿉꽌쓽 긽빐 쐞뿕怨 떖媛곸꽦씠 넂 寃껋쑝濡 蹂닿퀬릺怨 엳쑝굹, 뿭븰쟻씤 뿰援ъ뿉 援븳릺뼱 엳뒗 떎젙씠떎(Caine, 2012). 洹몃윭誘濡 씠 뿰援щ뒗 슦由щ굹씪뿉꽌 떆뻾릺뒗 理쒖옣嫄곕━ 622 km 醫낅떒 留덈씪넠 썑 뵾濡 쉶蹂듭뿉 뵲瑜대뒗 깮由ъ쟻 蹂솕瑜 깮솕븰寃궗瑜 넻빐 媛앷솕떆耳곕떎뒗뜲 쓽誘멸 엳떎. 寃곕줎쟻쑝濡 622 km 슱듃씪 留덈씪넠 媛꾩꽭룷쓽 湲곕뒫븯 媛뒫꽦씠 엳쑝硫, 씪遺 삁愿 궡 슜삁쓣 쑀諛쒗븷 媛뒫꽦씠 엳떎.

ACKNOWLEDGEMENT

씠 끉臾몄 2017뀈룄 꽦떊뿬옄븰援 븰닠뿰援ъ“꽦鍮 吏썝뿉 쓽븯뿬 뿰援щ릺뿀쓬.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

References
  1. Agawa H, Yamada N, Enomoto Y, Suzuki H, Hosono A, Arakawa K, Ghadimi R, Miyata M, Maeda K, Shibata K, Tokudome M, Goto C, Tokudome Y, Hoshino H, Imaeda N, Marumoto M, Suzuki S, Kobayashi M, and Tokudome S. Changes of mental stress biomarkers in ultramarathon. Int J Sports Med 2008;29:867-871.
    Pubmed CrossRef
  2. Ayus JC, Varon J, and Arieff AI. Hyponatremia, cerebral edema, and noncardiogenic pulmonary edema in marathon runners. Ann Intern Med 2000;132:711-714.
    Pubmed CrossRef
  3. Brancaccio P, Limongelli FM, and Maffulli N. Monitoring of serum enzymes in sport. Br J Sports Med 2006;40:96-97.
    Pubmed KoreaMed CrossRef
  4. Brancaccio P, Maffulli N, and Limongelli FM. Creatine kinase monitoring in sport medicine. Br Med Bull 2007;81-82:209-230.
    Pubmed CrossRef
  5. Caine DJ. The epidemiology of injury in adventure and extreme sports. Med Sport Sci 2012;58:1-16.
    Pubmed CrossRef
  6. Deitrick RW. Intravascular haemolysis in the recreational runner. Br J Sports Med 1991;25:183-187.
    Pubmed KoreaMed CrossRef
  7. Dill DB, and Costill DL. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 1974;37:247-248.
    Pubmed CrossRef
  8. Fallon KE, Sivyer G, Sivyer K, and Dare A. The biochemistry of runners in a 1,600 km ultramarathon. Br J Sports Med 1999;33:264-269.
    Pubmed KoreaMed CrossRef
  9. Hattori N, Hayashi T, Nakachi K, Ichikawa H, Goto C, Tokudome Y, Kuriki K, Hoshino H, Shibata K, Yamada N, Tokudome M, Suzuki S, Nagaya T, Kobayashi M, and Tokudome S. Changes of ROS during a two-day ultra-marathon race. Int J Sports Med 2009;30:426-429.
    Pubmed CrossRef
  10. Kersting UG, Stubendorff JJ, Schmidt MC, and Br체ggemann GP. Changes in knee cartilage volume and serum COMP concentration after running exercise. Osteoarthritis Cartilage 2005;13:925-934.
    Pubmed CrossRef
  11. Kim HJ, Lee YH, and Kim CK. Biomarkers of muscle and cartilage damage and inflammation during a 200 km run. Eur J Appl Physiol 2007;99:443-447.
    Pubmed CrossRef
  12. Kim YJ, Lee YH, and Shin KA. Effects of amateur marathon races on general hematologic factors. Korean J Sport 2012;10:531-541.
  13. Kratz A, Lewandrowski KB, Siegel AJ, Chun KY, Flood JG, Van Cott EM, and Lee-Lewandrowski E. Effect of marathon running on hematologic and biochemical laboratory parameters, including cardiac markers. Am J Clin Pathol 2002;118:856-863.
    Pubmed CrossRef
  14. Kuipers H. Exercise-induced muscle damage. Int J Sports Med 1994;15:132-135.
    Pubmed CrossRef
  15. Leaf DA, Kleinman MT, Hamilton M, and Deitrick RW. The exerciseinduced oxidative stress paradox: the effects of physical exercise training. Am J Med Sci 1999;317:295-300.
    CrossRef
  16. Leslie BR, Sander NW, and Gerwin LE. Runner's hemolysis and pigment gallstones. N Engl J Med 1985;313:1230.
    Pubmed CrossRef
  17. Marumoto M, Suzuki S, Hosono A, Arakawa K, Shibata K, Fuku M, Goto C, Tokudome Y, Hoshino H, Imaeda N, Kobayashi M, Yodoi J, and Tokudome S. Changes in thioredoxin concentrations: an observation in an ultra-marathon race. Environ Health Prev Med 2010;15:129-134.
    Pubmed KoreaMed CrossRef
  18. Mathews SC, Narotsky DL, Bernholt DL, Vogt M, Hsieh YH, Pronovost PJ, and Pham JC. Mortality among marathon runners in the United States, 2000-2009. Am J Sports Med 2012;40:1495-1500.
    Pubmed CrossRef
  19. McCullough PA, Chinnaiyan KM, and Gallagher MJ et al. Changes in renal markers and acute kidney injury after marathon running. Nephrology (Carlton) 2011;16:194-199.
    Pubmed CrossRef
  20. Moses FM. The effect of exercise on the gastrointestinal tract. Sports Med 1990;9:159-172.
    Pubmed CrossRef
  21. Nagel D, Seiler D, Franz H, and Jung K. Ultra-long-distance running and the liver. Int J Sports Med 1990;11:441-445.
    Pubmed CrossRef
  22. Noakes TD. Effect of exercise on serum enzyme activities in humans. Sports Med 1987;4:245-267.
    Pubmed CrossRef
  23. Pedersen BK, and Hoffman-Goetz L. Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 2000;80:1055-1081.
    Pubmed CrossRef
  24. Pettersson J, Hindorf U, Persson P, Bengtsson T, Malmqvist U, Werkstr철m V, and Ekelund M. Muscular exercise can cause highly pathological liver function tests in healthy men. Br J Clin Pharmacol 2008;65:253-259.
    Pubmed KoreaMed CrossRef
  25. Poortmans JR, and Haralambie G. Biochemical changes in a 100 km run: proteins in serum and urine. Eur J Appl Physiol Occup Physiol 1979;40:245-254.
    CrossRef
  26. Rehrer NJ, Brouns F, Beckers EJ, Frey WO, Villiger B, Riddoch CJ, Menheere PP, and Saris WH. Physiological changes and gastrointestinal symptoms as a result of ultra-endurance running. Eur J Appl Physiol Occup Physiol 1992;64:1-8.
    Pubmed CrossRef
  27. Reid SA, Speedy DB, Thompson JM, Noakes TD, Mulligan G, Page T, Campbell RG, and Milne C. Study of hematological and biochemical parameters in runners completing a standard marathon. Clin J Sport Med 2004;14:344-353.
    Pubmed CrossRef
  28. Robinson Y, Cristancho E, and B철ning D. Intravascular hemolysis and mean red blood cell age in athletes. Med Sci Sports Exerc 2006;38:480-483.
    Pubmed CrossRef
  29. Siegel AJ, Lewandrowski EL, Chun KY, Sholar MB, Fischman AJ, and Lewandrowski KB. Changes in cardiac markers including B-natriuretic peptide in runners after the Boston marathon. Am J Cardiol 2001;88:920-923.
    CrossRef
  30. Shin K, Jee H, Lee Y, Kim TK, Kim HS, Park Y, and Kim Y. Effects of an extreme endurance ultra-marathon on musculoskeletal and hematologic functions. Gazzetta Medica Italiana Archivio per le Scienze Mediche 2014;173:283-289.
  31. Shin KA, Park KD, Ahn J, Park Y, and Kim YJ. Comparison of Changes in Biochemical Markers for Skeletal Muscles, Hepatic Metabolism, and Renal Function after Three Types of Long-distance Running: Observational Study. Medicine (Baltimore) 2016;95:e3657.
    Pubmed KoreaMed CrossRef
  32. Skenderi KP, Kavouras SA, Anastasiou CA, Yiannakouris N, and Matalas AL. Exertional Rhabdomyolysis during a 246-km continuous running race. Med Sci Sports Exerc 2006;38:1054-1057.
    Pubmed CrossRef
  33. Smith JE, Garbutt G, Lopes P, and Tunstall Pedoe D. Effects of prolonged strenuous exercise (marathon running) on biochemical and haematological markers used in the investigation of patients in the emergency department. Br J Sports Med 2004;38:292-294.
    Pubmed KoreaMed CrossRef
  34. Spiropoulos K, and Trakada G. Hematologic and biochemical laboratory parameters before and after a marathon race. Lung 2003;181:89-95.
    Pubmed CrossRef
  35. Spitler DL, Alexander WC, Hoffler GW, Doerr DF, and Buchanan P. Haptoglobin and serum enzymatic response to maximal exercise in relation to physical fitness. Med Sci Sports Exerc 1984;16:366-370.
    Pubmed CrossRef
  36. Trappe S, Harber M, Creer A, Gallagher P, Slivka D, Minchev K, and Whitsett D. Single muscle fiber adaptations with marathon training. J Appl Physiol (1985) 2006;101:721-727.
    Pubmed CrossRef
  37. Warburton DE, Welsh RC, Haykowsky MJ, Taylor DA, and Humen DP. Biochemical changes as a result of prolonged strenuous exercise. Br J Sports Med 2002;36:301-303.
    Pubmed KoreaMed CrossRef
  38. Whicher JT, and Spence CE. Serum protein zone electrophoresis--an outmoded test?. Ann Clin Biochem 1987;24:133-139.
    Pubmed CrossRef
  39. Wu HJ, Chen KT, Shee BW, Chang HC, Huang YJ, and Yang RS. Effects of 24 h ultra-marathon on biochemical and hematological parameters. World J Gastroenterol 2004;10:2711-2714.
    KoreaMed CrossRef