Search for


TEXT SIZE

search for



CrossRef (0)
Pristimerin Inhibits Inducible Nitric Oxide Synthase Expression Induced by TLR Agonists
Biomed Sci Letters 2019;25:60-65
Published online March 31, 2019;  https://doi.org/10.15616/BSL.2019.25.1.60
© 2019 The Korean Society For Biomedical Laboratory Sciences.

Su-Yeon Kim*, Sung-Hye Heo*, Sin-Aye Park** and Hyung-Sun Youn†,**

Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Chungnam, Asan 31538, Korea
Correspondence to: Hyung-Sun Youn. Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Soonchunhyang-Ro 22, Shinchang-Myun, Asan-Si, Chungnam 31538, Korea. Tel: +82-41-530-3086, Fax: +82-41-530-3085, e-mail: hyoun@sch.ac.kr
Received January 14, 2019; Accepted March 14, 2019.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract

Toll-like receptors (TLRs) are one of the families of pattern recognition receptors (PRR) operating in the innate immunity. TLRs have the ability to recognize relatively conserved microbial components, which are generally referred to as pathogenassociated molecular patterns (PAMPs). The activation of TLRs signaling leads to the activation of NF-κB and the expression of pro-inflammatory gene products such as cytokines and inducible nitric oxide synthase (iNOS). To evaluate the therapeutic potential of pristimerin, which is a naturally occurring triterpenoid compound from Celastraceae plants, iNOS expression induced by MALP-2 (TLR2 and TLR6 agonist), Poly[IC] (TLR3 agonist), or LPS (TLR4 agonist) were examined. Pristimerin suppressed the iNOS expression induced by MALP-2, Poly[IC], or LPS. These results suggest that pristimerin can modulate TLRs signaling pathways leading to decreased inflammatory gene expression.

Keywords : Pristimerin, Inducible nitric oxide synthase, TLR, Inflammation, LPS
꽌 濡

誘몄깮臾 媛먯뿼, 議곗쭅 넀긽 벑怨 媛숈 쇅遺 옄洹뱀뿉 諛섏쓳븯뿬 쑀룄릺뒗 留뚯꽦뿼利(chronic inflammation) 뿬윭 吏덊솚쓽 諛쒕퀝怨 愿怨 엳뒗 寃껋쑝濡 븣젮졇 엳떎(Ferrero-Miliani et al., 2007). 씠윭븳 뿼利앹 蹂묓깭깮由ы븰(pathophysiology)쟻씤 쁽긽쑝濡, inducible nitric oxide synthase (iNOS) 슚냼媛 뿼利 쑀諛쒖뿉 以묒슂븳 湲곕뒫쓣 븯뒗 寃껋쑝濡 蹂닿퀬릺뼱 엳떎(Murakami and Ohigashi, 2007). 궛솕吏덉냼(NO)뒗 湲곗껜 긽깭쓽 媛꾨떒븳 臾닿린 遺꾩옄濡, 꽭룷 궡뿉꽌 쟾떖옄쓽 湲곕뒫쓣 媛吏怨 엳떎. 룷쑀瑜섏쓽 寃쎌슦 NO뒗 NOS씪怨 遺덈━뒗 슚냼援곗뿉 쓽빐 빀꽦릺硫, NO 빀꽦 NOS1(neuronal 삉뒗 nNOS), NOS2(endothelial 삉뒗 eNOS), 洹몃━怨 NOS3(inducible 삉뒗 iNOS)쓽 꽭 媛吏 씠꽦吏덉껜 슚냼 以 븯굹뿉 쓽빐꽌 珥됰ℓ솕 맂떎(Knowles, 1996). iNOS뒗 븘誘몃끂궛 L-arginine뿉꽌 吏덉냼궛솕臾(NO)쓣 깮꽦븯뒗 뜲 以묒슂븳 꽭 媛吏 빑떖 슚냼 以 븯굹씠떎. iNOS뒗 떎뼇븳 깮由ы븰쟻 議곌굔(삁븬 議곗젅, 긽泥섏튂쑀, 샇뒪듃 諛⑹뼱 硫붿빱땲利 벑)怨 蹂묐━깮由ы븰(뿼利, 媛먯뿼, 떊媛냼꽦 吏덊솚, 媛꾧꼍솕利, 떦눊蹂 벑)뿉꽌 以묒슂븳 뿭븷쓣 떞떦븳떎(Lechner et al., 2005). iNOS뒗 nitric oxide (NO)瑜 깮꽦븯怨, 깮꽦맂 NO뒗 꽭룷 룆꽦 슚怨쇨 엳뼱 씠 愿젴맂 뿼利 諛 吏덈퀝쓣 쑀룄븯뒗 寃껋쑝濡 븣젮졇 엳떎(Vallance, 2003).

Toll-like receptors (TLRs)뒗 蹂묒썝泥 씤떇 닔슜泥대줈꽌 꽭洹, 諛붿씠윭뒪, 吏꾧퇏 諛 湲곗깮異⑷낵 媛숈 蹂묒썝洹좎쓽 移⑥엯뿉 쓽븳 뿼利앸컲쓳뿉꽌 以묒슂븳 뿭븷쓣 븳떎(Kawai and Akira, 2010). 룷쑀瑜 꽭룷뿉꽌 理쒖냼 13媛쒖쓽 TLRs媛 諛쒓껄릺뿀쑝硫, 씠寃껋 諛뺥뀒由ъ븘, 諛붿씠윭뒪 벑쓣 룷븿븳 떎뼇븳 pathogenassociated molecular patterns (PAMPs)쓣 씤떇븳떎(Kawai and Akira, 2010; Youn, 2012). TLRs媛 옄洹뱀쓣 씤떇븯硫 룞醫낆씠 빀泥대 삎꽦븯뿬 뼱뙌꽣 遺꾩옄(adaptor molecule)씤 myeloid differential factor 88 (MyD88) 삉뒗 TIR domain-containing adaptor inducing interferon-β (TRIF)瑜 쑀룄븯怨, 留덉묠궡 쟾궗씤옄 NF-κB굹 interferon regulatory factor 3 (IRF3)쓽 솢꽦쓣 利앷떆궓떎(Kawai and Akira, 2010). 씠윭븳 쟾궗씤옄쓽 솢꽦솕뒗 cytokine, iNOS 媛숈 뿼利 愿젴 쑀쟾옄쓽 諛쒗쁽쓣 利앷떆궎怨 寃곌뎅 뿬윭 吏덈퀝쓣 珥덈옒븯寃 맂떎(Akira and Takeda, 2004). 삉븳 TLRs 떊샇쟾떖 떆뒪뀥쓽 鍮꾩젙긽쟻씤 옉슜 留롮 留뚯꽦뿼利 吏덊솚怨 愿젴씠 엳뒗 寃껋쑝濡 븣젮졇 엳떎. 洹몃윭誘濡 TLRs쓽 떊샇쟾떖 떆뒪뀥쓣 슚怨쇱쟻쑝濡 議곗젅븳떎硫 뿬윭 蹂묒썝洹좊뱾濡쒕꽣 쑀룄릺뒗 뿼利앸컲쓳씠굹 洹몄뿉 뵲瑜 떎뼇븳 吏덈퀝뱾쓣 삁諛⑺븷 닔 엳쓣 寃껋씠씪 湲곕맂떎.

Pristimerin (Fig. 1A) 誘몄뿭痍 굹臾(Goldenrod), 깭궛紐(Magnolia grandiflora) 벑뿉꽌 異붿텧릺뒗 泥쒖뿰臾쇱쭏濡쒖꽌, triterpenoid 援ъ“瑜 媛吏怨 엳떎. Pristimerin 빆궛솕, 빆슦슱利, 빆諛뺥뀒由ъ븘, 빆뿼, 洹몃━怨 빆븫옉슜쓣 룷븿븳 뿬윭 媛吏 빟由ы븰쟻 슚뒫쓣 媛吏怨 엳뒗 寃껋쑝濡 븣젮졇 엳떎(Costa et al., 2008; Tong et al., 2014). 븯吏留 씠윭븳 pristimerin쓽 빟由ы븰쟻 슚뒫뿉 븳 遺꾩옄쟻 옉슜湲곗쟾 븘吏곴퉴吏 셿쟾엳 諛앺졇 엳吏 븡떎. 洹몃윭誘濡 蹂 뿰援ъ뿉꽌뒗 pristimerin씠 TLRs 떊샇쟾떖 떆뒪뀥쓣 議곗젅븿쑝濡쒖뜥 iNOS瑜 룷븿븳 뿼利앸컲쓳뿉 誘몄튂뒗 쁺뼢뿉 빐 븣븘蹂닿퀬옄 븳떎.

Fig. 1.

(A) The structure of pristimerin. (B) RAW264.7 cells were treated with pristimerin (0.1, 0.5. 1.0 μM) for 4 h. Twenty microliters of the CellTiter 96 AQueous One Solution Reagent was added directly to culture wells. The plate was incubated at 37꼦 for 4 h in a humidified 5% CO2 atmosphere. The absorbance was recorded at 490 nm with a 96-well plate reader. Veh, vehicle; Pris, pristimerin.


옱猷 諛 諛⑸쾿

옱猷

떎뿕뿉 궗슜븳 MALP-2 (macrophage-activating lipopeptide of 2 kDa), LPS (lipopolysaccharide), Polyriboinosinic polyribocytidylic acid (poly[I:C])뒗 Alexis Biochemical (San Diego, CA, USA), List Biological Lab (San Jose, CA, USA), Amersham Biosciences (Piscataway, NJ, USA)濡쒕꽣 媛곴컖 援ъ엯븯떎. iNOS β-actin 빆泥대뒗 BD Biosciences (San Jose, CA, USA) Santa Cruz Biotechnology (Santa Cruz, CA, USA)濡쒕꽣 媛곴컖 援ъ엯븯떎. Pristimerin怨 洹 諛뽰쓽 떎瑜 떆빟뱾 Sigma-Aldrich濡쒕꽣 援ъ엯븯떎.

꽭룷 諛곗뼇

RAW264.7 꽭룷뱾(murine monocytic cells, ATCC TIB-71) 10% (v/v) FBS, 100 units/mL Penicillin, 100 μg/mL streptomycin씠 룷븿맂 Dulbecco’s modified Eagle’s medium (DMEM)쓣 궗슜븯뿬, 5% CO2/air, 37꼦뿉꽌 諛곗뼇븯떎.

Plasmid

iNOS-luciferase plasmid뒗 Daniel Hwang (University of California, Davis, CA, USA)쑝濡쒕꽣 젣怨듬컺븯쑝硫, Heat shock protein (HSP) 70-β-galactosidase plasmid뒗 R. Modlin (University of California, Los Angeles, CA, USA)쑝濡쒕꽣 젣怨듬컺븯떎. 쐞쓽 紐⑤뱺 DNA뒗 EndoFree Plasmid Maxi kit (Qiagen, Valencia, CA, USA)쓣 궗슜븯뿬 以鍮꾨릺뿀떎.

Cell viability test

꽭룷 깮議댁쑉 3-(4,5-dimethylthiazol-2-yl)-5(3 carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTT) 궗슜븯뿬 痢≪젙릺뿀떎. 꽭룷瑜 96 well plate뿉 遺꾩<븯怨 씪젙 떆媛 빟臾쇱쓣 泥섎━븳 썑, well plate뿉 CellTiter 96 AQueous One Solution Reagent (Promega, Madison, WI, USA)瑜 泥④븯쑝硫, 4떆媛 룞븞 諛곗뼇븯떎. 洹 썑 96 well plate reader瑜 궗슜븯뿬 490 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎.

Transfection怨 luciferase瑜 씠슜븳 쑀쟾옄諛쒗쁽 遺꾩꽍 (luciferase reporter gene assay)

INOS 쑀쟾옄쓽 諛쒗쁽 transfection 諛⑸쾿쓣 궗슜븯뿬 遺꾩꽍븯떎(Youn et al., 2005; Youn et al., 2006c). RAW264.7 꽭룷瑜 well plates뿉 洹좊벑 遺꾩<븯怨, overnight 썑 50~60% 젙룄쓽 利앹떇쓣 蹂댁씪 븣, iNOS-luciferase plasmid HSP70-β-galactosidase plasmid뒗 Superfect transfection 떆빟(Qiagen, Valencia, CA, USA)쓣 궗슜븯뿬 꽭룷 븞쑝濡 transfection 떆耳곕떎. Luciferase assay system (Promega, Madison, WI, USA)쓣 궗슜븯뿬 luciferase쓽 솢꽦쓣 痢≪젙븯쑝硫, β-galactosidase쓽 솢꽦솕 젙룄瑜 솗씤븯뿬 몴以솕떆耳곕떎.

Immunoblotting

꽭룷濡쒕꽣 異붿텧맂 떒諛깆쭏뱾 SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis)뿉꽌 겕湲곗뿉 뵲씪 遺꾨━릺뿀쑝硫, 씠썑 polyvinylidene difluoride membrane쑝濡 씠룞릺뿀떎(Youn et al., 2006a; Youn et al., 2006b). Membrane 0.1% Tween 20 5% 깉吏 嫄댁“맂 슦쑀瑜 룷븿븯怨 엳뒗 phosphate-buffered saline뿉꽌 blocking쓣 븯쑝硫, 痢≪젙븯怨좎옄 븯뒗 떒諛깆쭏쓽 1李 빆泥대 遺숈씠怨 horseradish peroxidase媛 寃고빀맂 2李 빆泥대 遺숈씤 썑, iNtRON western blot detection system (Seongnam, Gyeonggi-do, Korea)쓣 궗슜븯뿬 떒諛깆쭏쓽 諛쒗쁽쓣 솗씤븯떎.

Nitrite Assay

RAW264.7 꽭룷濡쒕꽣 nitrite 異붿텧臾쇱쓣 꽑뻾뿰援 諛⑸쾿뿉 뵲씪꽌 以鍮꾪븯떎(Lim et al., 2008). 꽭룷 諛곗뼇 well plate쓽 긽痢듭븸뿉 遺꾩<湲곕 궗슜븯뿬 Griess reagent瑜 泥④븯쑝硫, plate reader瑜 궗슜븯뿬 570 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 몴以슜븸쑝濡쒕뒗 sodium nitrite瑜 궗슜븯떎.

뜲씠 遺꾩꽍

媛곴컖쓽 뜲씠 媛믪 꽌濡 떎瑜 꽭 媛쒖쓽 媛믪쓣 젙웾븯뿬 뼸뼱議뚯쑝硫, mean ± standard error mean (SEM)쑝濡 몴쁽릺뿀떎.

寃곌낵 諛 怨좎같

Pristimerin쓽 꽭룷 룆꽦 슚怨

癒쇱 pristimerin씠 RAW264.7 꽭룷뿉 誘몄튂뒗 룆꽦 슚怨쇰 룊媛븯湲 쐞빐 MTT assay瑜 궗슜븯뿬 꽭룷 깮議댁쑉쓣 痢≪젙븯떎. Pristimerin 0.5 μM쓽 냽룄뿉꽌 96.0%, 1.0 μM 냽룄뿉꽌 90.0% 꽭룷 깮議댁쑉쓣 蹂댁뿬二쇱뿀떎(Fig. 1B). 뵲씪꽌 씠썑쓽 紐⑤뱺 떎뿕 prisitimerin쓣 0.5 μM 냽룄源뚯 궗슜븯뿬 닔뻾븯떎.

Pristimerin TLR agonists뿉 쓽빐 쑀룄맂 iNOS 諛쒗쁽쓣 뼲젣븳떎

떎쓬쑝濡 pristimerin씠 iNOS쓽 깮꽦뿉 誘몄튂뒗 쁺뼢뿉 븯뿬 븣븘蹂댁븯떎. 癒쇱 iNOS-luciferase assay뿉 쓽븯硫 pristimerin MALP-2 (TLR2 TLR6 agonist), Poly[I:C] (TLR3 agonist), 洹몃━怨 LPS (TLR4 agonist)뿉 쓽빐 쑀룄맂 iNOS쓽 怨쇰컻쁽쓣 뼲젣븯떎(Figs. 2A-C). 삉븳 Pristimerin씠 MALP-2, Poly[I:C], 洹몃━怨 LPS뿉 쓽빐 쑀룄맂 iNOS 떒諛깆쭏쓽 怨쇰컻쁽쓣 빐븯뒗 寃껋쓣 Western blotting 諛⑸쾿쓣 넻븯뿬 솗씤븯떎(Figs. 3A-C). 肉먮쭔 븘땲씪 pristimerin MALP-2, Poly[I:C], 洹몃━怨 LPS뿉 쓽빐꽌 쑀룄맂 iNOS쓽 깮꽦臾쇱씤 nitrite쓽 깮꽦쓣 뼲젣븯떎(Figs. 4A-C). 씠윭븳 寃곌낵뱾쓣 넻빐 pristimerin씠 TLR agonists뿉 쓽빐 利앷븯뒗 iNOS쓽 諛쒗쁽쓣 議곗젅븷 닔 엳쓬쓣 솗씤븷 닔 엳뿀떎.

Fig. 2.

(Pristimerin inhibits iNOS expression induced by TLRs agonists. (A-C) RAW264.7 cells were transfected with iNOS luciferase reporter plasmid and pretreated with 0.1 or 0.5 μM pristimerin for 1 h and then treated with MALP-2 (10 ng/mL) (A), Poly[I:C] (10 μg/mL) (B), or LPS (10 ng/mL) (C) for an additional 8 h. Cell lysates were prepared and luciferase enzyme activities were determined. Values represent the mean ± SEM (n=3). *, Significantly different from MALP-2 alone, P<0.05 (*), P<0.01 (**) (A). +, Significantly different from Poly[I:C] alone, P<0.05 (+) (B). #, Significantly different from LPS alone, P<0.01 (##) (C). Veh, vehicle; Pris, pristimerin.


Fig. 3.

Pristimerin inhibits iNOS protein induced by TLRs agonists. (A-C) RAW264.7 cells were pretreated with 0.1 or 0.5 μM pristimerin for 1 h and then further stimulated with MALP-2 (10 ng/mL) (A), Poly[I:C] (10 μg/mL) (B), or LPS (10 ng/mL) (C) for an additional 8 h. Cell lysates were analyzed for iNOS and β-actin protein by immunoblots. Veh, vehicle; Pris, pristimerin.


Fig. 4.

Pristimerin inhibits nitrite production induced by TLRs agonists. (A-C) RAW 264.7 cells were pretreated with 0.1 or 0.5 μM pristimerin for 1 h and then treated with MALP-2 (10 ng/mL) (A), Poly[I:C] (10 μg/mL) (B), or LPS (10 ng/mL) (C) for an additional 20 h. The amounts of nitrite in supernatant were measured using Griess reagent. Values represent the mean ± SEM (n=3). *, Significantly different from MALP-2 alone, P<0.05 (*), P<0.01 (**) (A). +, Significantly different from Poly[I:C] alone, P<0.05 (+), P<0.01 (++) (B). #, Significantly different from LPS alone, P<0.01 (##) (C). Veh, vehicle; Pris, pristimerin.


Celastracease 떇臾쇰줈遺꽣 異붿텧맂 pristimerin 뿬윭 媛吏 깮臾쇳븰쟻 슚뒫쓣 媛吏怨 엳뼱 삤옯룞븞 以묎뎅 쟾넻 移섎즺빟쑝濡 궗슜릺뼱 솕떎. 뿬윭 뿰援ъ뿉 쓽븯硫 pristimerin 뿼利, 옄媛硫댁뿭 諛 醫낆뼇怨 媛숈 뿬윭 吏덈퀝뿉 슚怨쇱쟻씤 寃껋쑝濡 븣젮졇 엳떎(Costa et al., 2008; Deeb et al., 2014; Tong et al., 2014). 삉븳 pristimerin NF-κB굹 洹멸쾬쓽 뿼利 떊샇쟾떖 떆뒪뀥쓣 뼲젣븯뒗 寃껋쑝濡 븣젮졇 엳떎(Deeb et al., 2014). 蹂 뿰援ъ뿉꽌뒗 prisitmerin씠 뿼利앸컻쁽뿉 以묒슂븳 뿭븷쓣 븯뒗 TLR 떊샇쟾떖 떆뒪뀥怨 洹멸쾬뿉 쓽빐 議곗젅릺뒗 몴쟻 떒諛깆쭏씤 iNOS쓽 諛쒗쁽쓣 뼲젣븯뒗 寃껋쓣 泥섏쓬쑝濡 솗씤븯떎. 씠윭븳 寃곌낵뒗 pristimerin씠 留뚯꽦뿼利 移섎즺瑜 쐞븳 빆뿼利앹젣濡쒖꽌 以묒슂븳 뿭븷쓣 븯뒗 寃껋쓣 蹂댁뿬二쇱뿀떎.

TLRs뒗 씪諛섏쟻쑝濡 MyD88怨 TRIF뿉 쓽吏븳 떊샇쟾떖 泥닿퀎瑜 媛吏怨 엳떎(Fitzgerald et al., 2003; Hultmark, 1994). MyD88 TLR3瑜 젣쇅븳 紐⑤뱺 룷쑀룞臾쇱뿉꽌 諛쒓껄릺뒗 TLRs쓽 TIR (Toll/IL-1R) 룄硫붿씤뿉 遺숇뒗 利됯컖쟻씤 뼱뙌꽣 (adaptor) 遺꾩옄씠硫, 씠寃껋 IL-1 receptor-associate kinase 4 (IRAK-4)瑜 쑀룄븳떎. IRAK-4뒗 IRAK-1쓣 씤궛솕 떆耳 TNF receptor-associated factor 6 (TRAF6)瑜 쑀룄븯怨, TRAF6뒗 inhibitor of kappa B kinase (IκB kinase, IKK)瑜 솢꽦솕 떆耳 NF-κB쓽 솢꽦솕瑜 쑀룄븳떎. 씠젃寃 TLRs瑜 떆옉쑝濡 IKK kinases瑜 넻빐 NF-κB 솢꽦솕瑜 쑀룄븯뒗 떊샇쟾떖 泥닿퀎瑜 ‘canonical pathway’씪怨 遺瑜몃떎(Takeda and Akira, 2005). 씠윭븳 떊샇쟾떖 泥닿퀎瑜 넻빐 cytokine, COX-2, iNOS 벑쓽 뿼利 쑀쟾옄 臾쇱쭏(inflammatory gene products)뱾쓽 諛쒗쁽씠 利앷릺뼱 떎뼇븳 吏덈퀝쓣 쑀諛쒗븯뒗 寃껋쑝濡 븣젮졇 엳떎(Takeda and Akira, 2005).

븳렪, 씠以묎떏 RNA (double stranded RNA, dsRNA)뿉 쓽븳 TLR3 솢꽦怨 LPS뿉 쓽븳 TLR4쓽 솢꽦 MyD88 떊뿉 뼱뙌꽣 遺꾩옄씤 TRIF瑜 넻븯뿬 쟾궗씤옄 IRF3쓽 솢꽦솕瑜 쑀룄븳떎(Fitzgerald et al., 2003). 씠 븣 TRIF뒗 kinase씤 TBK1怨 IKKε쓣 넻븯뿬 IRF3쓽 씤궛솕 솢꽦솕瑜 쑀룄븳떎. 솢꽦솕맂 IRF3뒗 IFN-stimulated response element (ISRE)굹 regulated on activation normal T-cell Expressed and secreted (RANTES)濡쒖뜥 븣젮吏 consensus DNA sequence뿉 寃고빀븯뿬 type I IFN 쑀쟾옄뱾쓽 諛쒗쁽쓣 쑀룄븳떎. 삉븳 TRIF쓽 C-留먮떒 遺遺꾩 receptor interacting protein 1 (RIP1)怨 諛섏쓳븯뿬 吏뿰맂 NF-κB쓽 솢꽦솕瑜 쑀룄븳떎 (Meylan et al., 2004). 뵲씪꽌, TRIF뒗 TBK1怨 RIP1쓣 넻빐 IRF3 NF-κB쓽 솢꽦솕瑜 쑀룄븯뒗 寃껋쑝濡 븣젮졇 엳떎 (Sato et al., 2003).

蹂묒썝洹좊뱾씠 닕二 븞쑝濡 뱾뼱삤硫 TLRs媛 씤떇븯뿬 떊샇瑜 쟾떖븯怨 뿰씠 뿬윭 떒諛깆쭏뱾쓽 솢꽦솕瑜 넻빐 cytokine 벑 뿼利 쑀쟾옄 臾쇱쭏뱾쓽 諛쒗쁽씠 利앷븳떎. 씠寃껋 뮘씠뼱 썑泥쒖꽦 硫댁뿭諛섏쓳쓣 쑀룄븯뿬 떎뼇븳 吏덈퀝쑝濡쒕꽣 닕二쇰 蹂댄샇븯뒗 寃껋쑝濡 븣젮졇 엳떎. 븯吏留 怨꾩냽맂 蹂묒썝洹좎쓽 옄洹뱀뿉 쓽빐 닕二쇱쓽 硫댁뿭떆뒪뀥뿉 怨쇰븯媛 嫄몃━硫 삤엳젮 뿼利 쑀쟾옄 臾쇱쭏뱾 뿼利앹쓣 쑀諛쒖떆耳 媛곸쥌 吏덈퀝쓣 씪쑝궎寃 맂떎. 洹몃윭誘濡, 蹂묒썝洹좊뱾뿉 쓽빐 쑀룄맂 TLRs쓽 떊샇쟾떖 떆뒪뀥쓽 솢꽦쓣 뼲젣븯뒗 寃껋 씠윭븳 떆뒪뀥뿉 쓽븳 留뚯꽦뿼利앷낵 媛숈 떎뼇븳 吏덈퀝쓣 삁諛⑺븯뒗 뜲 엳뼱 留ㅼ슦 以묒슂븯떎(Takeda and Akira, 2005).

슦由щ뒗 蹂 뿰援ъ뿉꽌 prisitmerin씠 TLRs 옄洹뱀젣씤 MALP-2, Poly[I:C], 洹몃━怨 LPS뿉 쓽빐 쑀룄맂 iNOS쓽 諛쒗쁽뿉 誘몄튂뒗 쁺뼢뿉 빐 솗씤븯떎. Prisitmerin TLRs쓽 MyD88 떊샇쟾떖 옄洹뱀젣씤 MALP-2 (TLR2 and TLR6 agonist) TLRs쓽 TRIF 떊샇쟾떖 옄洹뱀젣씤 Poly[I:C] (TLR3 agonist)뿉 쓽빐꽌 쑀룄맂 iNOS쓽 怨쇰컻쁽쓣 媛곴컖 뼲젣븯떎. 삉븳 prisitmerin TLRs쓽 MyD88怨 TRIF쓽 뼇履 떊샇쟾떖 옄洹뱀젣씤 LPS (TLR4 agonist)뿉 쓽빐 쑀룄맂 iNOS쓽 怨쇰컻쁽쓣 빐븯떎. 씠윭븳 寃곌낵뒗 prisitmerin씠 TLRs 떊샇쟾떖 떆뒪뀥쓣 議곗젅븯뿬 留뚯꽦뿼利앹뿉 쓽빐 쑀룄릺뒗 뿬윭 吏덈퀝뱾쓣 移섏쑀븷 닔 엳뒗 媛뒫꽦쓣 蹂댁뿬以떎. 뵲씪꽌 蹂 뿰援ъ쓽 寃곌낵뒗 떎뼇븳 留뚯꽦 吏덊솚쓽 옉슜湲곗쟾 洹쒕챸 諛 移섎즺젣 媛쒕컻뿉 엳뼱꽌 以묒슂븳 뿭븷쓣 븷 寃껋쑝濡 湲곕맂떎.

ACKNOWLEDGEMENT

蹂 뿰援щ뒗 닚泥쒗뼢븰援 븰닠뿰援щ퉬쓽 씪遺 吏썝怨 2017뀈룄 븳援뿰援ъ옱떒쓽 吏썝쓣 諛쏆븘 닔뻾맂 湲곗큹뿰援ъ궗뾽(2017R1D1A1B03031534)쓽 吏썝쓣 諛쏆븘 닔뻾맂 뿰援 寃곌낵臾쇰줈 洹 吏썝뿉 媛먯궗 뱶由쎈땲떎.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

Acknowledgments
蹂 뿰援щ뒗 닚泥쒗뼢븰援 븰닠뿰援щ퉬쓽 씪遺 吏썝怨 2017뀈룄 븳援뿰援ъ옱떒쓽 吏썝쓣 諛쏆븘 닔뻾맂 湲곗큹뿰援ъ궗뾽(2017R1D1A1B03031534)쓽 吏썝쓣 諛쏆븘 닔뻾맂 뿰援 寃곌낵臾쇰줈 洹 吏썝뿉 媛먯궗 뱶由쎈땲떎.
References
  1. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004. 4: 499-511.
    Pubmed CrossRef
  2. Costa PM, Ferreira PM, Bolzani Vda S, Furlan M, de Freitas Formenton Macedo Dos Santos VA, Corsino J, de Moraes MO, Costa-Lotufo LV, Montenegro RC, Pessoa C. Antiproliferative activity of pristimerin isolated from Maytenus ilicifolia (Celastraceae) in human HL-60 cells. Toxicol In Vitro 2008. 22: 854-863.
    Pubmed CrossRef
  3. Deeb D, Gao X, Liu YB, Pindolia K, Gautam SC. Pristimerin, a quinonemethide triterpenoid, induces apoptosis in pancreatic cancer cells through the inhibition of pro-survival Akt/NFkappaB/mTOR signaling proteins and anti-apoptotic Bcl-2. Int J Oncol 2014. 44: 1707-1715.
    Pubmed KoreaMed CrossRef
  4. Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation:importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol 2007. 147: 227-235.
    Pubmed KoreaMed CrossRef
  5. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003. 4: 491-496.
    Pubmed CrossRef
  6. Hultmark D. Macrophage differentiation marker MyD88 is a member of the Toll/IL-1 receptor family. Biochem Biophys Res Commun 1994. 199: 144-146.
    Pubmed CrossRef
  7. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors. Nat Immunol 2010. 11: 373-384.
    Pubmed CrossRef
  8. Knowles RG. Nitric oxide synthases. Biochem Soc Trans 1996. 24: 875-878.
    Pubmed CrossRef
  9. Lechner M, Lirk P, Rieder J. Inducible nitric oxide synthase (iNOS) in tumor biology:the two sides of the same coin. Semin Cancer Biol 2005. 15: 277-289.
    Pubmed CrossRef
  10. Lim HJ, Lee HS, Ryu JH. Suppression of inducible nitric oxide synthase and cyclooxygenase-2 expression by tussilagone from Farfarae flos in BV-2 microglial cells. Arch Pharm Res 2008. 31: 645-652.
    Pubmed CrossRef
  11. Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M, Tschopp J. RIP1 is an essential mediator of Tolllike receptor 3-induced NF-kappa B activation. Nat Immunol 2004. 5: 503-507.
    Pubmed CrossRef
  12. Murakami A, Ohigashi H. Targeting NOX, INOS and COX-2 in inflammatory cells:chemoprevention using food phytochemicals. Int J Cancer 2007. 121: 2357-2363.
    Pubmed CrossRef
  13. Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 2003. 171: 4304-4310.
    Pubmed CrossRef
  14. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol 2005. 17: 1-14.
    Pubmed CrossRef
  15. Tong L, Nanjundaiah SM, Venkatesha SH, Astry B, Yu H, Moudgil KD. Pristimerin, a naturally occurring triterpenoid, protects against autoimmune arthritis by modulating the cellular and soluble immune mediators of inflammation and tissue damage. Clin Immunol 2014. 155: 220-230.
    Pubmed CrossRef
  16. Vallance P. Nitric oxide:therapeutic opportunities. Fundam Clin Pharmacol 2003. 17: 1-10.
    Pubmed CrossRef
  17. Youn HS. The Anti-Inflammatory Effects of Phytochemicals by the Modulation of Innate Immunity. J Exp Biomed Sci 2012. 18: 181-192.
  18. Youn HS, Lee JY, Fitzgerald KA, Young HA, Akira S, Hwang DH. Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol:molecular targets are TBK1 and RIP1 in TRIF complex. J Immunol 2005. 175: 3339-3346.
    Pubmed CrossRef
  19. Youn HS, Lee JY, Saitoh SI, Miyake K, Hwang DH. Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4. Biochem Biophys Res Commun 2006a. 350: 866-871.
    Pubmed KoreaMed CrossRef
  20. Youn HS, Lee JY, Saitoh SI, Miyake K, Kang KW, Choi YJ, Hwang DH. Suppression of MyD88- and TRIF-dependent signaling pathways of Toll-like receptor by (-)-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochem Pharmacol 2006b. 72: 850-859.
    Pubmed CrossRef
  21. Youn HS, Saitoh SI, Miyake K, Hwang DH. Inhibition of homodimerization of Toll-like receptor 4 by curcumin. Biochem Pharmacol 2006c. 72: 62-69.
    Pubmed CrossRef