Search for


TEXT SIZE

search for



CrossRef (0)
Expression of Fas and TNFR1 in the Luteal Cell Types Isolated from the Ovarian Corpus Luteum
Biomed Sci Letters 2019;25:107-112
Published online March 31, 2019;  https://doi.org/10.15616/BSL.2019.25.1.107
© 2019 The Korean Society For Biomedical Laboratory Sciences.

Minseong Kim1,*, Sang-Hee Lee2,**, Seunghyung Lee1,*** and Gur-Yoo Kim1,†,***

College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea,
Discipline of ICT, School of Technology, Environments and Design, University of Tasmania, Hobart, Tas7001, Australia
Correspondence to: Gur Yoo Kim. College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea. Tel: +82-33-250-8647, Fax: +82-33-259-5574, e-mail: gykim@kangwon.ac.kr
Received November 14, 2018; Revised March 12, 2019; Accepted March 22, 2019.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract

The corpus luteum (CL) is composed to various cells, such as luteal steroidogenic cells (LSCs), luteal thecal steroidogenic cells (LTCs), luteal endothelial cells (LECs), fibroblast, immune cells and blood cells. The life span of CL is controlled by proliferation and apoptosis of luteal cells. Therefore, this study investigated apoptotic factors in luteal cells derived from bovine CL. The CL tissues were collected from bovine ovaries and luteal cells were isolated from middle phase CL. Then, LTCs and LECs were separated according to cellular morphology from LSCs. The expression of Bax, Bcl-2, Fas and tumor necrosis factor 1 receptor (TNF1R) mRNA and protein were analyzed using quantitative RT-PCR and western blot. Results show that, Bax and TNFR1 mRNA expression were significantly increased at late group than early and middle groups, otherwise Bcl-2 were significantly decreased at late group than early group (P<0.05). Fas mRNA expression were significantly decreased in middle group compared to early and late groups (P<0.05). In addition, Bax and Bcl-2 mRNA in LTCs was lower than LSCs, Fas mRNA was higher than LSCs. The Bcl-2 protein expression was lower at LTCs than LSCs, especially Fas protein in LTCs was significantly lower than LSCs and LECs (P<0.05). Otherwise, TNFR1 protein of LTCs were similar with LSCs but higher compared with LECs. In conclusion, we suggest that the results may help understanding of apoptosis ability in luteal cells according to cell type during CL regression of estrous cycle.

Keywords : Corpus luteum, Luteal steroidogenic cells, Luteal thecal steroidogenic cells, Apoptosis
Body

諛곕 썑 삎꽦릺뒗 솴泥댁쓽 二쇰맂 湲곕뒫 엫떊쓽 쑀吏 솗由쎌뿉 븘닔쟻씤 progesterone (P4)瑜 遺꾨퉬븯뒗 寃껋씠떎 (Tomac et al., 2011; Chouhan et al., 2014). 솴泥대뒗 삎꽦怨 눜뻾 몴쟻쑝濡 vascular endothelial growth factor (VEGF), tumor necrosis factor α (TNFα)뿉 쓽빐 議곗젅릺硫 씠윭븳 쁽긽 諛쒖젙二쇨린뿉 뵲씪 꽑蹂꾩쟻씤 꽦옣씤옄 샇瑜대が 옉슜 벑쓽 寃곌낵濡 씠猷⑥뼱吏꾨떎(Benyo and Pate, 1992; Tamanini and De Ambrogi, 2004). 씪諛섏쟻쑝濡 솴泥댁“吏곸 P4瑜 빀꽦븯뒗 luteal steroidogenic cells (LSCs)濡 援ъ꽦릺뼱 엳쑝硫 LSCs뒗 궃룷 궡 granulosa cells (GCs) theca cells (TCs)媛 諛곕 썑 luteinizing hormone (LH)뿉 쓽빐 솴泥댄솕 맂 꽭룷씤 large luteal cells (LLCs) small luteal cells (SLCs)濡 援щ텇맂떎 (Abulafia and Sherer, 2000). 씠쇅뿉 솴泥대 援ъ꽦븯뒗 꽭룷濡 삁愿쓣 삎꽦븯뒗 luteal endothelial cells (LECs) fibroblasts, immune cells 벑씠 엳쑝硫 씠뱾 꽭룷뒗 솴泥댁쓽 깮由ы븰쟻 옉슜쓣 쑀吏븯뒗뜲 씠슜맂떎(Schams and Berisha, 2004; Berisha et al., 2016).

솴泥 궡 議댁옱븯뒗 꽭룷뒗 諛쒖젙二쇨린뿉 뵲씪 洹몃뱾쓽 삎깭 븰쟻 諛 깮由ы븰쟻 듅꽦씠 蹂솕맂떎(Lei et al., 1991). 씪諛섏쟻쑝濡 LLCs뒗 諛곕 썑 10씪源뚯 利앹떇씠 씪뼱궃 썑 硫덉텛寃 릺硫 씠썑 솴泥댁쓽 꽦옣씠 셿猷뚮릺硫 洹 湲곕뒫留뚯쓣 쑀吏븯寃 맂떎(Zheng et al., 1994; Yoshioka et al., 2013). 븯吏留 엫떊씠 솗由쎈릺吏 븡쑝硫 옄沅곸뿉꽌 遺꾨퉬릺뒗 prostaglandin F2 alpha (PGF2α)뿉 쓽븯뿬 솴泥댁“吏곸쓽 눜뻾씠 씪뼱굹뒗 luteolysis媛 諛쒖깮븯硫 議곗쭅쓽 삎깭 援ъ“媛 눜뻾븯뒗 援ъ“쟻 눜뻾(structural regression)怨 솴泥 궡뿉꽌 遺꾨퉬릺뒗 P4 빀꽦씠 以꾩뼱뱶뒗 湲곕뒫쟻 눜뻾(functional regression)씠 씪뼱궃떎(Devoto et al., 2009; Tomac et al., 2011). 떎젣濡 PGF2α뿉 쓽빐 VEGF 諛 fibroblast growth factor (FGF) 벑怨 媛숈 꽦옣씤옄쓽 媛먯냼뒗 솴泥댁쓽 援ъ“쟻 눜뻾쓣 쑀룄븳떎怨 蹂닿퀬릺뿀떎(Neuvians et al., 2004). 씠젃벏 솴泥 눜뻾쓣 쑀諛쒗븯뒗 PGF2α瑜 냼뿉 二쇱엯븯쓣 븣 12떆媛 썑 솴泥댁“吏 VEGF FGF, VEGF receptor쓽 mRNA protein쓽 諛쒗쁽씠 湲됯컧븯뒗 寃껋쓣 솗씤븯쑝硫, 솴泥대 援ъ꽦븯뒗 삁愿꽭룷쓽 tumor necrosis factor-α (TNF-α) 諛 interferon γ (IFN-γ) 媛숈 꽭룷궗硫멸낵 愿젴맂 cytokine쓣 利앷떆耳 luteolysis瑜 쑀룄븳떎뒗 蹂닿퀬媛 엳떎(Davis and Rueda, 2002). 뵲씪꽌 蹂 뿰援ъ뿉꽌뒗 냼 솴泥댁“吏곴낵 씠瑜 援ъ꽦븯뒗 솴泥댁꽭룷뿉꽌 apoptosis 愿젴맂 씤옄뱾쓣 遺꾩꽍븯湲 쐞빐 諛쒖젙二쇨린 蹂꾪솴泥댁“吏곴낵 씠濡쒕꽣 遺꾨━맂 steroidogenic 湲곕뒫怨 theca cell쓽 듅꽦쓣 吏땲怨 엳뒗 luteal thecal steroidogenic cell (LTCs), LSCs 諛 LECs瑜 씠슜븯뿬 apoptosis 愿젴 씤옄뱾쓣 遺꾩꽍븯떎.

떎뿕뿉 궗슜븳 룞臾쇱떎뿕 媛뺤썝븰援 룞臾쇱떎뿕쑄由ъ쐞썝쉶쓽 듅씤(KTACUC-17-109)쓣 諛쏆븘 쑄由ъ쟻쑝濡 닔뻾븯쑝硫, 냼 솴泥대 닔吏묓븯湲 쐞븯뿬 씤洹 룄異뺤옣뿉꽌 룄異뺣맂 븳슦뿉꽌 궃냼瑜 4꼦, 0.85% 깮由ъ떇뿼닔 蹂닿 븯뿉 2떆媛 씠궡 떎뿕떎濡 슫諛섎릺뿀떎. 씠 썑 궃냼뒗 씠쟾쓽 嫄곗떆쟻씤 삎깭븰쟻씤 諛⑸쾿쑝濡 媛곴컖 珥덇린, 以묎린 諛 썑湲곕 援щ텇븯쑝硫 궃냼뿉꽌 솴泥대쭔쓣 遺꾨━븯뿬 떎뿕뿉 씠슜븯떎(Miyamoto et al., 2000; Kim et al., 2018). 솴泥댁꽭룷뒗 以묎린 솴泥대줈遺꽣 遺꾨━븯쑝硫 꽭룷 遺꾨━瑜 쐞븯뿬 꽭젅맂 솴泥댁“吏곸쓣 0.65 mg/mL collagenase A (Roche, Switzerland) 諛 50 U/mL DNase I (MGmed, Korea)媛 泥④맂 Dulbecco Modified Eagle Medium (DMEM; Sigma, USA)뿉꽌 30꼦뿉꽌 90遺꾧컙 援먮컲븳 썑 DMEM/Nutrient Mixture F-12 (D/F12; Sigma)뿉 10% Fetal bovine serum (FBS; Cellgro)媛 븿쑀맂 諛곗뼇븸쓣 泥④븳 뮘 븘꽣濡 嫄곕Ⅸ 쁽긽븸쓣 썝떖遺꾨━ (1,800 rpm, 10遺)븯뿬 긽痢듭븸쓣 젣嫄고븯떎. 씠 썑 꽭룷諛곗뼇븸(D/F12 + 10% FBS)쓣 泥④븳 썑 100 mm culture dish (NUNC, USA)뿉 遺꾩<븳 뮘 38.5꼦, 5% CO2뿉꽌 16~24떆媛 븣 遺李⑸맂 꽭룷留뚯쓣 LSCs (Fig. 1A)濡 뙋떒븯떎. 씠썑 利앹떇븯뒗 꽭룷쓽 morphology (Fig. 1B)瑜 湲곗쑝濡 LTCs (Fig. 1C) 諛 LECs (Fig. 1D)瑜 援щ퀎븳 썑 cylinder瑜 씠슜븯뿬 遺꾨━ 諛곗뼇 썑 떎뿕뿉 씠슜븯떎(Fig. 1).

Fig. 1.

Morphological characteristics of LSCs (A), growing LTCs (B, upper area) and LECs (B, lower area), isolated LTCs (C), and LECs (D), White scale bar, 200 μm.


솴泥댁“吏곴낵 꽭룷쓽 mRNA뒗 RNAiso Plus (Takara, Japan)瑜 씠슜븯뿬 異붿텧븳 썑 cDNA synthesis kit (Takara)瑜 씠슜븯뿬 cDNA瑜 빀꽦븯떎. 빀꽦맂 cDNA뒗 TNFR1 (5’ ACT GGT GCT TCC AGC TCT GT 3’ 諛 5’ CTC CAC CTG GAA CAT TTC GT 3’), Fas (5’ CAG GAG GGC CCA TAA ACT GTT TGC 3’ 諛 5’ ATG GGC TAG AAG TGG AAC AAA AC 3’), Bax (5’ TTT GCT TCA GGG TTT CAT C 3’ 諛 5’ CAG CTG CGA TCA TCC TCT 3’) 諛 Bcl-2 (5’ CTG CAC CTG ACG CCC TTC AC 3’ 諛 5’ GCG TCC CAG CCT CCG TTG T 3’) 븿猿 PCR premix kit (Bioneer, South Korea)瑜 씠슜븯뿬 PCR쓣 닔뻾븯쑝硫 궛臾쇱 1.5% agarose gel쓣 씠슜븯뿬 100 V뿉꽌 20遺 룞븞 쟾湲곗쁺룞 썑 UV뿉 끂異쒖떆耳 씠誘몄瑜 닔吏묓븳 썑 Image J software 봽濡쒓렇옩(NCBI, USA)쓣 씠슜븯뿬 諛쒗쁽뼇쓣 遺꾩꽍븯떎.

솴泥댁꽭룷쓽 떒諛깆쭏 遺꾩꽍 湲곗〈 諛⑸쾿쓣 쓳슜븯뿬 遺꾩꽍븯떎(Han et al., 2017). 25 μg쓽 떒諛깆쭏쓣 acrylamide gel쓣 씠슜븯뿬 쟾湲곗쁺룞쓣 떎떆븳 썑 polyvinylidene difluoride (PVDF) membrane쑝濡 transfer瑜 떎떆븳 뮘 1떆媛 룞븞 blocking쓣 떎떆븯떎. 떎뿕뿉 궗슜맂 빆泥대뒗 Santa Cruz Biotechnology쓽 젣뭹쓣 씠슜븯쑝硫 1李 빆泥대뒗 mouse monoclonal anti-Bax (sc-23959), mouse monoclonal anti-Bcl-2 (sc-7382), mouse monoclonal anti-Fas (sc-74540), mouse monoclonal anti-TNFR1 (sc-8436) 諛 mouse monoclonal β-actin (sc-47778)쓣 1:500쑝濡 씗꽍븯뿬 4꼦뿉꽌 O/N 떆耳곗쑝硫 2李 빆泥대뒗 1:10,000쑝濡 씗꽍맂 goat-anti-mouse IgG-HRP (sc-2005)瑜 씠슜븯뿬 븫떎뿉꽌 1떆媛 룞븞 떎삩뿉꽌 諛섏쓳떆耳곕떎. 떒諛깆쭏 媛떆솕瑜 쐞븯뿬 ECL kit (Thermo Scientific, USA)瑜 궗슜븯쑝硫 EZ-capture II Chemidoc (ATTO, Japan)쓣 궗슜븯뿬 떆媛곹솕븳 썑 ImageJ瑜 씠슜븯뿬 諛쒗쁽뼇쓣 닔移섑솕 븯떎.

떎뿕뿉꽌 뼸뼱吏 寃곌낵뒗 넻怨 봽濡쒓렇옩(SPSS, USA)쓣 씠슜븯뿬 理쒖냼 쑀쓽李 寃젙(Least Significant Different test; LSD test)쓣 쟻슜븳 Duncan쓽 multiple range test뿉 쓽빐 쑀쓽李(P<0.05) 寃젙쓣 떎떆븯떎.

諛쒖젙二쇨린뿉 뵲瑜 솴泥댁“吏곸뿉꽌 꽭룷궗硫 愿젴 씤옄 諛쒗쁽 李⑥씠瑜 솗씤븯湲 쐞빐 諛쒖젙二쇨린 蹂 議곗쭅뿉꽌쓽 TNFR1, Fas, Bax 諛 Bcl-2 mRNA쓽 遺꾩꽍븳 寃곌낵瑜 Fig. 2뿉 굹궡뿀떎. Bax TNFR1 珥덇린(Early) 諛 以묎린(Middle)뿉 鍮꾪븯뿬 썑湲(Late)뿉꽌 쑀쓽쟻쑝濡 利앷븯쑝硫 Bcl-2뒗 珥덇린뿉 鍮꾪븯뿬 以묎린 諛 썑湲곗뿉꽌 쑀쓽쟻쑝濡 媛먯냼븯떎(P<0.05). 삉븳 Fas mRNA뒗 以묎린뿉꽌 쑀쓽쟻(P<0.05)쑝濡 媛먯냼븯쑝굹 珥덇린 諛 썑湲곗뿉꽌 쑀쓽쟻씤 李⑥씠媛 굹굹吏 븡븯떎(Fig. 2). 씪諛섏쟻쑝濡 솴泥대뒗 엫떊씠 꽦由쎈릺吏 븡쑝硫 옄沅곸뿉꽌 遺꾨퉬릺뒗 PGF2α뿉 쓽븯뿬 援ъ“쟻 諛 湲곕뒫쟻 눜뻾怨 븿猿 apoptosis媛 吏꾪뻾맂떎(Stocco et al., 2007). 솴泥닿 눜뻾븯뒗 luteolysis媛 씪뼱굹뒗 룞븞뿉뒗 apoptosis 꽭룷 떊샇 以 몴쟻쑝濡 븣젮졇 엳뒗 TNF receptor 1 (TNFR1)怨 Fas媛 솢꽦솕 맂떎(Penny et al., 1999; Taniguchi et al., 2002). 蹂 뿰援ш껐怨쇱뿉꽌룄 議곗쭅쓽 利앹떇씠 솢諛쒗븯寃 씪뼱굹뒗 珥덇린 솴泥댁“吏곸뿉뒗 TNFR1 mRNA媛 媛먯냼븯굹 눜뻾씠 씪뼱굹뒗 썑湲곗뿉뒗 apoptosis 닔슜泥댁쓽 諛쒗쁽뼇씠 利앷븳 寃껋쓣 솗씤븯떎. 떎젣濡 TNFα mRNA뒗 諛곕 썑 13~18씪 씠썑 눜뻾湲곗쓽 솴泥댁“吏곸뿉꽌 利앷븳떎怨 蹂닿퀬(Sakumoto et al., 2000)븯쑝硫, 蹂 떎뿕뿉꽌뒗 썑湲 솴泥댁뿉꽌 TNFR1쓽 mRNA媛 利앷븯뒗뜲 씠뒗 TNFα쓽 옉슜씠 솢諛쒗븯湲 쐞븳 寃껋씠씪 뙋떒맂떎. 삉븳 솴泥 몴硫댁뿉 議댁옱븯뒗 Fas뒗 硫댁뿭꽭룷뿉 議댁옱븯뒗 Fas Ligand (FasL) 寃고빀븯뿬 솴泥댁꽭룷쓽 apoptosis瑜 쑀諛쒗븳떎怨 븣젮졇 엳떎(Stocco et al., 2007). 떎젣濡 솴泥 썑湲곗뿉뒗 硫댁뿭꽭룷뱾쓽 利앷뿉 쓽븳 솴泥 눜뻾씠 利앷븯硫 씠뿉 뵲씪 눜뻾湲곗쓽 솴泥댁뿉뒗 Fas FasL쓽 솢룞씠 利앷맂떎怨 蹂닿퀬릺뿀떎(Kuranaga et al., 2000). 蹂 뿰援ш껐怨쇱뿉꽌뒗 議곗쭅쓽 옱援ъ꽦씠 솗꽦븯寃 씪뼱굹뒗 珥덇린 luteolysis媛 湲됯꺽븯寃 씪뼱굹뒗 썑湲곗뿉 Fas mRNA쓽 뼇씠 利앷븯뒗뜲 씠윭븳 寃곌낵뒗 湲곗〈쓽 蹂닿퀬맂 寃곌낵 씪移섑븳 寃껋쓣 솗씤븯떎. 씠썑 썝삎吏덈쭑뿉 쐞移섑븯뿬 apoptosis 꽭룷 떊샇瑜 쑀諛쒗븯뒗 씤옄뱾뿉 쓽빐 利앷븯뒗 誘명넗肄섎뱶由ъ븘 쓽議댁쟻 apoptosis 씤옄뱾씤 Bax 諛 Bcl-2 以 TNFR1 諛 Fas媛 利앷븯뒗 썑湲곗뿉 Bax뒗 利앷븯쑝硫 Bcl-2뒗 媛먯냼븯떎. 씠윭븳 寃곌낵뒗 솴泥댁“吏곸뿉꽌 luteolysis媛 씪뼱궇 븣 誘명넗肄섎뱶由ъ븘 쓽議댁쟻 apoptosis룄 cytokine apoptosis 닔슜泥대뱾뿉 쓽빐 솢꽦솕 맂떎怨 뙋떒맂떎.

Fig. 2.

Change of Bax, Bcl-2, Fas and TNFR1 mRNA expression during estrous cycle in corpus luteum, corpus luteum tissues were classified to early, middle and late according to morphology and genes expression of middle and late tissues was normalized to early group. *P<0.05.


諛쒖젙二쇨린 蹂 솴泥댁“吏곸뿉꽌 apoptosis 닔슜泥대뱾怨 誘명넗肄섎뱶由ъ븘 쓽議댁쟻 apoptosis 씤옄뱾쓣 솗씤븳 썑 솴泥대 援ъ꽦븯뒗 떎뼇븳 꽭룷 蹂꾨줈 apoptosis 愿젴맂 씤옄뱾쓣 遺꾩꽍븯湲 쐞븯뿬 以묎린 솴泥대줈遺꽣 遺꾨━븳 솴泥댁꽭룷뿉꽌 꽭룷궗硫 mRNA 諛 protein 諛쒗쁽쓣 Fig. 3 諛 4뿉 굹궗떎. Bax Bcl-2쓽 mRNA 諛쒗쁽 LSCs뿉꽌 LTCs LECs蹂대떎 넂 닔以쑝濡 諛쒗쁽릺뿀怨, Fas mRNA뒗 LTCs LECs뿉꽌 LSCs蹂대떎 넂寃 諛쒗쁽맂 寃껋쑝濡 솗씤릺뿀쑝硫, TNFR1쓽 寃쎌슦 꽭룷 蹂 mRNA 諛쒗쁽뿉 엳뼱 쑀쓽쟻씤 李⑥씠媛 솗씤릺吏 븡븯떎(Fig. 3). Bax Fas쓽 protein 諛쒗쁽 LECs뿉꽌 LSCs LTCs蹂대떎 넂 닔以쑝濡 솗씤릺뿀떎. Bcl-2뒗 mRNA 媛숈 뙣꽩씠 솗씤릺뿀떎. TNFR1 protein LECs뿉꽌 쟻寃 諛쒗쁽릺뿀怨, LSCs LTCs쓽 諛쒗쁽뿉뒗 李⑥씠媛 솗씤릺吏 븡븯떎(Fig. 4, P<0.05). 솴泥댁쓽 luteolysis뒗 씠瑜 援ъ꽦븯뒗 꽭룷뱾쓽 궗硫몃줈遺꽣 떆옉맂떎(Schams and Berisha, 2004; Tomac et al., 2011; Shirasuna et al., 2012). 솴泥대뒗 二쇰줈 LSCs 諛 LECs 몢 媛吏 엯쓽 꽭룷뿉 쓽븯뿬 援ъ“ 湲곕뒫씠 쑀吏맂떎怨 蹂닿퀬릺뼱 엳湲 븣臾몄뿉 씠뿉 븳 뿰援щ뒗 솢諛쒗븯寃 씠猷⑥뼱吏怨 엳떎(Skarzynski and Okuda, 1999; Davis et al., 2003; Lee et al., 2010). 삉븳 LSCs 씠쇅뿉룄 LECs 뿭떆 PGF2α 닔슜泥대 媛뽮퀬 엳湲 븣臾몄뿉 솴泥 눜뻾湲곗뿉꽌 遺꾨퉬릺뒗 PGF2α뿉 쓽븯뿬 꽭룷궗硫몄씠 씪뼱궃떎(Gwon et al., 2013). 蹂 뿰援ъ뿉꽌뒗 LSCs뿉꽌 TCs쓽 꽦寃⑹쓣 씈怨 엳怨 steroidogenic 湲곕뒫쓣 媛뽮퀬 엳뒗 솴泥 궡 LTCs瑜 遺꾨━븯뿬 떎뿕뿉 씠슜븯怨 씠윭븳 꽭룷뒗 솴泥 궡 議댁옱븯硫 LSCs 궡뿉 쟻 鍮꾩쑉濡 룷븿릺뼱 엳쑝굹 LECs泥섎읆 利앹떇쓣 븯湲 븣臾몄뿉 蹂 뿰援ъ뿉꽌뒗 LSCs뒗 援щ텇릺뒗 꽭룷濡 뙋떒븳 썑 떎뿕뿉 씠슜븯떎. 떎젣濡 TNFR1, Fas, Bax 諛 Bcl-2 諛쒗쁽뿉 엳뼱 LTCs뒗 LSCs 꽌濡 떎瑜 뼇긽쑝濡 mRNA 諛 protein씠 諛쒗쁽릺뿀怨 떎뿕 寃곌낵瑜 넻빐 TNFR1濡쒕꽣 떆옉릺뒗 apoptosis뒗 LECs뿉 鍮꾪븯뿬 LSCs 諛 LTCs뿉꽌 뜑슧 솢諛쒗엳 씪뼱궇 닔 엳쓬쓣 븣寃 릺뿀떎. 븯吏留 Fas쓽 寃쎌슦 떎瑜 꽭룷뱾뿉 鍮꾪븯뿬 LTCs뿉꽌 쟻寃 諛쒗쁽릺뿀뒗뜲 씠뒗 솴泥 눜뻾 떆 硫댁뿭꽭룷쓽 FasL媛 LSCs 諛 LECs뿉 鍮꾪븯뿬 LTCs媛 뜑 쟻寃 諛섏쓳븷 寃껋씠씪 뙋떒맂떎. 떎젣濡 솴泥대줈遺꽣 遺꾨━븳 SLCs쓽 寃쎌슦 LLCs뿉 鍮꾪빐 Fas mRNA쓽 뼇씠 쟻寃 諛쒗쁽릺뿀떎뒗 蹂닿퀬(Kuranaga et al., 2000)媛 엳뿀쑝굹 LECs 鍮꾧탳븯吏뒗 븡븯湲 븣臾몄뿉 蹂 떎뿕뿉꽌 궗슜맂 LTCs쓽 寃쎌슦 Fas 諛쒗쁽뿉 엳뼱 SLCs 鍮꾩듂븳 寃쏀뼢쓣 蹂댁씠굹 LECs쓽 鍮꾧탳媛 릺吏 븡븯湲 븣臾몄뿉 씠 썑 LTCs뿉 븳 異붽쟻씤 떎뿕씠 븘슂븯떎怨 뙋떒맂떎.

Fig. 3.

Change of Bax, Bcl-2, Fas and TNFR1 mRNA expression in LSCs, LECs, and LTCs, luteal cells were isolated from middle phase corpus luteum. Genes expression of LECs and LTCs was normalized to LSCs group. *P<0.05.


Fig. 4.

Change of Bax, Bcl-2, TNFR1 protein expression in LSCs, LECs, and LTCs, luteal cells were isolated from middle phase corpus luteum. Protein intensity of LECs and LTCs was normalized to LSCs group. *P<0.05.


뵲씪꽌 蹂 떎뿕쓣 넻븯뿬 LTCs뒗 솴泥 궡 議댁옱븯硫 LSCs 궡 쟻 鍮꾩쑉濡 룷븿맂 꽭룷엫쓣 솗씤븯떎. 삉븳 LTCs뒗 LSCs 떎瑜닿쾶 apoptosis뿉 엳뼱 Fas뿉 븳 諛섏쓳씠 쟻 諛섎㈃ TNFR1쓽 諛섏쓳 鍮꾩듂븳 寃껋쑝濡 뙋떒맂떎. 諛섎㈃ apoptosis 愿젴맂 쑀쟾옄 諛쒗쁽 LECs 鍮꾩듂븳 뼇긽쓣 蹂댁씠굹 떒諛깆쭏 諛쒗쁽쓽 寃쎌슦 LECs뿉 鍮꾪븯뿬 Fas 諛쒗쁽 쟻 諛섎㈃ TNFR1뒗 留롮 寃껋쓣 솗씤븷 닔 엳뿀떎. 寃곕줎쟻쑝濡 솴泥 궡 議댁옱븯硫 steroidogenic 湲곕뒫쓣 븯硫 利앹떇꽦쓣 媛뽮퀬 엳뒗 LTCs뒗 솴泥 눜뻾 떆 諛쒖깮븯뒗 apoptosis뿉 엳뼱 LSCs 諛 LECs뒗 떎瑜 꽭룷 떊샇媛 議댁옱븷 寃껋씠씪 뙋떒맂떎. 뼢썑 異붽쟻씤 떎뿕쓣 넻븯뿬 LTCs뿉꽌 듅씠쟻쑝濡 諛쒗쁽릺뒗 꽭룷遺李⑹씤옄 諛 small G protein 뿰援ш껐怨쇰 湲곕컲쑝濡 솴泥 눜뻾쓽 硫붿빱땲利섏뿉 쟻슜븳떎硫 솴泥 궡 apoptosis뿉 븳 湲곗큹쟻씤 뿰援ъ뿉 룄쓣 以 寃껋씠씪 뙋떒맂떎.

ACKNOWLEDGEMENT

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A3B07048167). This study was supported by 2017 Research Grant from Kangwon National University (No. D1001265-01-01).

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

Acknowledgments
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A3B07048167). This study was supported by 2017 Research Grant from Kangwon National University (No. D1001265-01-01).
References
  1. Abulafia O, Sherer DM. Angiogenesis of the ovary. American Journal of Obstetrics and Gynecology 2000. 182: 240-246.
    Pubmed CrossRef
  2. Benyo DF, Pate JL. Tumor necrosis factor-alpha alters bovine luteal cell synthetic capacity and viability. Endocrinology 1992. 130: 854-860.
    Pubmed CrossRef
  3. Berisha B, Schams D, Rodler D, Pfaffl MW. Angiogenesis in the ovary뱓he most important regulatory event for follicle and corpus luteum development and function in cow밶n overview. Anatomia, Histologia, Embryologia 2016. 45: 124-130.
    Pubmed CrossRef
  4. Chouhan V, Dangi S, Gupta M, Babitha V, Khan F, Panda R, Yadav V, Singh G, Sarkar M. Stimulatory effect of vascular endothelial growth factor on progesterone production and survivability of cultured bubaline luteal cells. Animal Reproduction Science 2014. 148: 251-259.
    Pubmed CrossRef
  5. Davis JS, Rueda BR. The corpus luteum:An ovarian structure with maternal instincts and suicidal tendencies. Frontiers in Bioscience 2002. 7: d1949-d1978.
    Pubmed CrossRef
  6. Davis JS, Rueda BR, Spanel-Borowski K. Microvascular endothelial cells of the corpus luteum. Reproductive Biology and Endocrinology 2003. 1: 89.
    Pubmed KoreaMed CrossRef
  7. Devoto L, Fuentes A, Kohen P, C챕spedes P, Palomino A, Pommer R, Mu챰oz A, Strauss JF III. The human corpus luteum:Life cycle and function in natural cycles. Fertility and Sterility 2009. 92: 1067-1079.
    Pubmed CrossRef
  8. Gwon SY, Rhee KJ, Lee S. Endothelial cells isolated from the bovine corpus luteum synthesize prostaglandin f2慣receptor. Biomedical Science Letter 2013. 19: 261-265.
  9. Han H-I, Lee S-H, Park C-K. Development of in vitro embryo production system using collagen matrix gel attached with vascular endothelial growth factor derived from interleukin-1 beta-treated porcine endometrial tissue. Tissue Engineering Part C:Methods 2017. 23: 396-403.
    Pubmed CrossRef
  10. Kim M, Lee S-H, Lee S. Expression of H-ras, RLIP76 mRNA and protein, and angiogenic receptors in corpus luteum tissues during estrous cycles. Korean Journal of Clinical Laboratory Science 2018. 50: 457-461.
    CrossRef
  11. Kuranaga E, Kanuka H, Furuhata Y, Yonezawa T, Suzuki M, Nishihara M, Takahashi M. Requirement of the fas ligandexpressing luteal immune cells for regression of corpus luteum. FEBS Letters 2000. 472: 137-142.
    Pubmed CrossRef
  12. Lee S, Acosta TJ, Nakagawa Y, Okuda K. Role of nitric oxide in the regulation of superoxide dismutase and prostaglandin f2慣production in bovine luteal endothelial cells. Journal of Reproduction and Development 2010. 56: 454-459.
    Pubmed CrossRef
  13. Lei Z, Chegini N, Rao CV. Quantitative cell composition of human and bovine corpora lutea from various reproductive states. Biology of Reproduction 1991. 44: 1148-1156.
    Pubmed CrossRef
  14. Miyamoto Y, Skarzynski DJ, Okuda K. Is tumor necrosis factor 慣a trigger for the initiation of endometrial prostaglandin f2慣release at luteolysis in cattle?. Biology of Reproduction 2000. 62: 1109-1115.
    Pubmed CrossRef
  15. Neuvians T, Berisha B, Schams D. Vascular endothelial growth factor (vegf) and fibroblast growth factor (fgf) expression during induced luteolysis in the bovine corpus luteum. Molecular Reproduction and Development 2004. 67: 389-395.
    Pubmed CrossRef
  16. Penny L, Armstrong D, Bramley T, Webb R, Collins R, Watson E. Immune cells and cytokine production in the bovine corpus luteum throughout the oestrous cycle and after induced luteolysis. Journal of Reproduction and Fertility 1999. 115: 87-96.
    Pubmed CrossRef
  17. Sakumoto R, Berisha B, Kawate N, Schams D, Okuda K. Tumor necrosis factor-慣and its receptor in bovine corpus luteum throughout the estrous cycle. Biology of Reproduction 2000. 62: 192-199.
    Pubmed CrossRef
  18. Schams D, Berisha B. Regulation of corpus luteum function in cattle밶n overview. Reproduction in Domestic Animals 2004. 39: 241-251.
    Pubmed CrossRef
  19. Shirasuna K, Nitta A, Sineenard J, Shimizu T, Bollwein H, Miyamoto A. Vascular and immune regulation of corpus luteum development, maintenance, and regression in the cow. Domestic Animal Endocrinology 2012. 43: 198-211.
    Pubmed CrossRef
  20. Skarzynski DJ, Okuda K. Sensitivity of bovine corpora lutea to prostaglandin f2慣is dependent on progesterone, oxytocin, and prostaglandins. Biology of Reproduction 1999. 60: 1292-1298.
    Pubmed CrossRef
  21. Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocrine Reviews 2007. 28: 117-149.
    Pubmed CrossRef
  22. Tamanini C, De Ambrogi M. Angiogenesis in developing follicle and corpus luteum. Reproduction in Domestic Animals 2004. 39: 206-216.
    Pubmed CrossRef
  23. Taniguchi H, Yokomizo Y, Okuda K. Fas-fas ligand system mediates luteal cell death in bovine corpus luteum. Biology of Reproduction 2002. 66: 754-759.
    Pubmed CrossRef
  24. Tomac J, Cekinovi훶 휂, Arapovi훶 J. Biology of the corpus luteum. Periodicum Biologorum 2011. 113: 43-49.
  25. Yoshioka S, Abe H, Sakumoto R, Okuda K. Proliferation of luteal steroidogenic cells in cattle. PLoS One 2013. 8: e84186.
    Pubmed KoreaMed CrossRef
  26. Zheng J, Fricke PM, Reynolds LP, Redmer DA. Evaluation of growth, cell proliferation, and cell death in bovine corpora lutea throughout the estrous cycle. Biology of Reproduction 1994. 51: 623-632.
    Pubmed CrossRef