Search for


TEXT SIZE

search for



CrossRef (0)
Comparison of Predictive Value of Obesity and Lipid Related Variables for Metabolic Syndrome and Insulin Resistance in Obese Adults
Biomed Sci Letters 2019;25:256-266
Published online September 30, 2019;  https://doi.org/10.15616/BSL.2019.25.3.256
© 2019 The Korean Society For Biomedical Laboratory Sciences.

Kyung A Shin†,*

Department of Clinical Laboratory Science, Shinsung University, Dangjin 31801, Korea
Correspondence to: Kyung A Shin. Department of Clinical Laboratory Science, Shinsung University, 1 Daehak-ro, Jeongmi-myeon, Dangjin 31801, Korea.
Tel: +82-41-350-1408, Fax: +82-41-350-1355, e-mail: mobitz2@hanmail.net
*Professor.
Received June 5, 2019; Revised July 16, 2019; Accepted July 24, 2019.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
In this study, obese adults were compared for their ability to predict obesity and lipid related variables and their optimal cutoff values to predict metabolic syndrome and insulin resistance. In this study, 9,256 adults aged 20 years or older and less than 80 years old, who were in the Gyeonggi region from January 2014 to December 2016 and who were examined at a general hospital, were enrolled. The diagnostic criteria for obesity were WHO (World Health Organization), and BMI 25 kg/m2 or more presented in the Asia-Pacific region. Metabolic syndrome was diagnosed based on the criteria of American Heart Association / National Heart, Lung, and Blood Institute (AHA / NHLBI). According to the results of receiver operating characteristic curve (ROC) analysis, Triglyceride / HDL-cholesterol (TG / HDL-C), Triglyceride and Glucose (TyG) index, lipid accumulation product (LAP) and visceral adiposity index (VAI) showed high predictive power for diagnosing metabolic syndrome. The diagnostic accuracy of LAP (AUC: 0.854) for males and VAI (0.888) for females was the highest. The optimal cutoff value of LAP was 42.71 for male and 35.44 for female, and the cutoff value of VAI was 1.92 for male and 2.15 for female. In addition, WHtR (waist to height ratio), TyG index, and LAP were used as predictors of insulin resistance in obese adults. Therefore, LAP and VAI were superior to other indicators in predicting metabolic syndrome in obese adults.
Keywords : Insulin resistance, Lipid, Metabolic syndrome, Obesity
꽌 濡

궗利앺썑援곗 깮솢뒿愿怨 떇뒿愿쓽 蹂솕濡 씤빐 鍮꾨쭔씤援ъ쓽 利앷 룞諛섑븯뿬 吏냽쟻쑝濡 利앷븯뒗 異붿꽭씠떎. 2007뀈遺꽣 2010뀈源뚯 援誘쇨굔媛뺤쁺뼇議곗궗瑜 넻빐 遺꾩꽍븳 寃곌낵 30꽭 씠긽 븳援씤쓽 궗利앺썑援 쑀蹂묐쪧 28.8%濡 蹂닿퀬맂떎(Korea Ministry of Health and Welfare, 2012). 궗利앺썑援곗 떖삁愿怨 吏덊솚怨 떦눊蹂묒쓣 쑀諛쒗븯뒗 愿젴 쐞뿕슂씤쓽 蹂듯빀泥대줈꽌, 蹂듬鍮꾨쭔, 삁븬긽듅, 怨듬났삁떦 긽듅, 以묒꽦吏諛 긽듅, 怨좊룄 吏떒諛(high density lipoprotein, HDL)-肄쒕젅뒪뀒濡 媛먯냼媛 쐞뿕슂냼濡 븣젮졇 엳떎(Galassi et al., 2006; Ford et al., 2008; Alberti et al., 2009). 삉븳 씤뒓由곗빆꽦 깂닔솕臾 諛 吏吏 궗, 옄쑉떊寃쎄퀎, 삁愿궡뵾꽭룷 湲곕뒫뿉 씠긽쓣 씪쑝궎硫, 궗利앺썑援 쐞뿕슂냼뱾怨 뿰愿꽦씠 엯利앸릺硫댁꽌 궗利앺썑援곗쓣 씪쑝궎뒗 洹쇰낯 썝씤쑝濡 젣떆맂떎(Hsueh and Quiñones, 2003; Perseghin et al., 2003). 뵲씪꽌 궗利앺썑援곗 蹂듬 吏諛⑹텞쟻怨 씤뒓由곗빆꽦쑝濡 씤븳 留뚯꽦 뿼利앹긽깭瑜 굹궦떎(Esser et al., 2014).

궗利앺썑援곌낵 씤뒓由곗빆꽦쓽 諛쒕퀝 諛 吏꾪뻾쓣 삁諛⑺븯湲 쐞빐꽌뒗 궗利앺썑援 諛쒕퀝쐞뿕씠 넂 솚옄瑜 議곌린뿉 吏꾨떒븯뒗 寃껋씠 以묒슂븯떎(Gu et al., 2018). 듅엳 씤뒓由곗빆꽦쓣 吏꾨떒븯뒗 몴以諛⑸쾿씤 怨좎씤뒓由고삁利 젙긽삁떦 겢옩봽(hyperinsulinemic euglycemic glucose clamp)踰뺤 엫긽뿉 쟻슜븯뒗뜲 엳뼱꽌 떎슜쟻씠吏 紐삵븯떎뒗 븳怨꾧 엳떎(Elahi, 1996).

泥댁쭏웾吏닔(body mass index, BMI), 뿀由щ몮젅 떊옣 鍮꾩쑉(waist/height ratio, WHtR), 以묒꽦吏諛⑷낵 HDL-肄쒕젅뒪뀒濡 鍮꾩쑉(TG/HDL-C), LAP (lipid accumulation product), VAI (visceral adiposity index), Triglyceride and Glucose (TyG) index뒗 씪諛섏쟻쑝濡 궗利앺썑援곗쓣 삁痢≫븯뒗 媛꾨떒븯怨 쑀슜븳 吏몴濡 젣븞맂떎(Wang et al., 2009; Li et al., 2018; Shin, 2018a; Shin, 2018b). 꽑뻾뿰援ъ뿉꽌 BMI WHtR 떖옣궗 쐞뿕슂냼瑜 吏꾨떒븯湲 쐞븳 씤泥 痢≪젙븰쟻 蹂씤쑝濡 媛꾩<릺뿀떎(Wang et al., 2009; Shin, 2018a). 理쒓렐뿉 젣떆맂 LAP VAI뒗 궡옣鍮꾨쭔쓣 痢≪젙븯뒗뜲 쑀슜븳 寃껋쑝濡 븣젮졇 엳떎(Kahn, 2005; Amato et al., 2010). LAP뒗 뿀由щ몮젅 以묒꽦吏諛⑹쓽 議고빀쑝濡 怨꾩궛릺硫, VAI 怨듭떇뿉뒗 BMI 諛 뿀由щ몮젅쓽 떊泥닿퀎痢 吏몴 以묒꽦吏諛 諛 HDL-肄쒕젅뒪뀒濡ㅼ쓽 吏吏 吏몴濡 援ъ꽦맂떎(Kahn, 2005; Amato et al., 2010). TyG Index뒗 씤뒓由곗빆꽦쓣 吏꾨떒븯뒗 媛꾩젒쟻 吏몴씤 HOMA-IR (homeostasis model assessment of insulin resistance)蹂대떎 넂 吏꾨떒쟻 媛移섎 蹂댁뿬 궗利앺썑援 쐞뿕쓣 씤떇븯뒗뜲 醫뗭 吏몴濡 븣젮吏꾨떎(Shin, 2017).

떖삁愿怨 吏덊솚쓽 쐞뿕쓣 삁痢≫븯뒗뜲 엳뼱꽌 吏吏 吏몴瑜 媛쒕퀎쟻쑝濡 룊媛븯뒗 寃껊낫떎 吏吏 鍮꾩쑉쓣 솗씤븯뒗 寃껋씠 吏꾨떒 슚쑉꽦쓣 넂씪 닔 엳떎怨 蹂닿퀬맂떎(Eliasson et al., 2011). 吏吏 鍮꾩쑉 삉븳 떖삁愿怨 吏덊솚 諛 留뚯꽦 떊옣吏덊솚쓽 쐞뿕쓣 룊媛븯뒗 뜲 궗슜맆 닔 엳떎(Arsenault et al., 2011; Zhang et al., 2014). Gaziano 벑(1997)뿉 뵲瑜대㈃ TG/HDL-C 鍮꾩쑉 떖洹쇨꼍깋쓽 媛뺣젰븳 삁痢≪씤옄씠硫, 씤醫낆씠굹 誘쇱”怨 愿怨꾩뾾씠 怨좎씤뒓由고삁利앷낵 쑀쓽븳 愿젴꽦쓣 蹂닿퀬븯떎. 듅엳 以묒꽦吏諛⑹쓽 긽듅怨 HDL-肄쒕젅뒪뀒濡ㅼ쓽 븯뒗 紐⑤몢 궗利앺썑援곗쓽 援ъ꽦 슂냼씠떎.

씠 媛숈씠 WHtR, LAP, VAI, TyG index, 吏吏 鍮꾩쑉 벑쓽 떎뼇븳 吏몴뱾怨 궗利앺썑援곗쓽 긽愿愿怨꾧 엯利앸릺뿀吏留, 궗利앺썑援곗쓣 삁痢≫븯湲 쐞븳 理쒖쟻쓽 湲곗移(optimum cut-off values)瑜 젣떆븳 뿰援щ뒗 븘吏곴퉴吏 誘명씉븯떎. 씠뿉 蹂 뿰援ъ뿉꽌뒗 鍮꾨쭔 꽦씤쓣 긽쑝濡 꽦蹂꾩뿉 뵲瑜 궗利앺썑援 諛 씤뒓由곗빆꽦뿉 븳 鍮꾨쭔怨 吏吏덇젴 蹂닔쓽 삁痢〓뒫젰怨 理쒖쟻쓽 湲곗移섎 鍮꾧탳븿쑝濡쒖뜥 뼱뼚븳 吏몴媛 궗利앺썑援곌낵 씤뒓由곗빆꽦쓣 삁痢≫븯뒗 媛옣 醫뗭 吏몴씤吏瑜 솗씤븯怨좎옄 븯떎.

옱猷 諛 諛⑸쾿

뿰援 긽

씠 뿰援щ뒗 2014뀈 1썡遺꽣 2016뀈 12썡源뚯 寃쎄린吏뿭뿉 쐞移섑븳 醫낇빀蹂묒썝뿉꽌 嫄닿컯寃吏꾩쓣 諛쏆 20꽭 씠긽 80꽭 씠븯쓽 鍮꾨쭔 꽦씤궓瑜 긽쑝濡 븯떎. 쟾泥 9,280紐낆쓽 긽옄 以 떖삁愿吏덊솚옄, 떊옣吏덊솚옄, 媛꾩뿼蹂닿퇏옄, 媛꾧꼍솕, 媛꾩븫쓣 룷븿븳 媛꾩쭏솚옄瑜 젣쇅븳 뿰援 긽옄뒗 궓꽦 7,109紐, 뿬꽦 2,147紐낆쑝濡 珥 9,256紐낆씠뿀떎. 鍮꾨쭔 吏꾨떒湲곗 WHO (World Health Organization) 븘떆븘깭룊뼇吏뿭뿉꽌 젣떆븯뒗 BMI 25 kg/m2 씠긽쓣 湲곗쑝濡 븯떎(WHO, 2004). 蹂묐젰궗빆 嫄닿컯寃吏 꽕臾몄뿉 옄湲곌린엯떇 諛⑸쾿쑝濡 議곗궗븯쑝硫, 씠 뿰援щ뒗 寃쎄린吏뿭 醫낇빀蹂묒썝뿉꽌 湲곌깮紐낆쑄由ъ떖쓽쐞썝쉶(institutional review board)뿉꽌 떖쓽瑜 諛쏄퀬 닔뻾븯떎(IRB No: SP-2019-11-020-021).

뿰援щ갑踰

씤泥댁륫젙 蹂씤쓽 怨꾩륫 諛 삁븬痢≪젙: 떊옣 諛 泥댁쨷쓽 痢≪젙 泥댁꽦遺 痢≪젙湲 씤諛붾뵒 720 (Biospace Co., Seoul, Korea)쓣 궗슜븯쑝硫, 泥댁쨷쓣 궎쓽 젣怨깆쑝濡 굹늻뼱 BMI瑜 怨꾩궛븯떎. 뿀由щ몮젅뒗 25~30 cm 젙룄 뼇諛쒖쓣 泥댁쨷씠 遺꾩궛릺寃 踰뚮━怨 닲쓣 궡돭 떎쓬 媛덈퉬堉 젣씪 븘옒 遺遺꾧낵 怨⑤컲쓽 媛옣 넂 遺쐞쓽 以묎컙쐞移섎 痢≪젙븯떎. 뿁뜦씠 몮젅뒗 쁿쑝濡 蹂댁븯쓣 븣 뿁뜦씠쓽 媛옣 넂 遺쐞瑜 닔룊쑝濡 痢≪젙븯떎. 옄룞삁븬怨(A&D Co., Asahi, Japan)濡 10遺꾧컙 븞젙쓣 痍⑦븳 썑 닔異뺢린 씠셿湲 삁븬쓣 痢≪젙븯떎.

鍮꾨쭔 諛 吏吏덇젴 蹂닔쓽 痢≪젙: 鍮꾨쭔愿젴 吏몴씤 WHtR 뿀由щ몮젅(cm)瑜 떊옣(m)쑝濡 굹늿 媛믪쑝濡 援ы븯떎. 吏吏덇젴 吏몴씤 TyG index뒗 Ln [TG (mg/dL) × FPG (mg/dL)/2]쓽 怨듭떇쑝濡 怨꾩궛븯떎(Simental-Mendía et al., 2008). LAP뒗 뿬꽦쓽 寃쎌슦 (WC -58) × TG, 궓꽦쓽 寃쎌슦 (WC -65) × TG濡 怨꾩궛븯떎(Kahn, 2005). VAI뒗 뿬꽦 [WC/36.58 + (1.89 × BMI)] × (TG/0.81) × (1.52/HDL), 궓꽦쓽 寃쎌슦 [WC/39.68 + (1.88 × BMI)] × (TG/1.03) × (1.31/HDL)쓽 怨듭떇뿉 뵲씪 궛異쒗븯떎(Amato et al., 2010).

궗利앺썑援 吏꾨떒 諛 깮솕븰쟻 遺꾩꽍: 궗利앺썑援곗쓽 吏꾨떒 American Heart Association (AHA)/National Heart, Lung, and Blood Institute (NHLBI) 吏移⑥쓽 湲곗뿉 뵲씪 3媛吏 씠긽 빐떦븯뒗 寃쎌슦 궗利앺썑援곗쑝濡 뙋젙븯쑝硫, 1~2媛쒖쓽 궗利앺썑援 湲곗뿉 빐떦븯뒗 寃쎌슦뒗 궗利앺썑援 쟾떒怨꾧뎔쑝濡 뙋젙븯떎(Grundy et al., 2005). 援ъ껜쟻씤 吏꾨떒湲곗 몺 뿀由щ몮젅뒗 뿬꽦 ≥88 cm, 궓꽦 ≥102 cm 몼 삁븬 닔異뺢린 삁븬 ≥130 mmHg 삉뒗 씠셿湲 삁븬 ≥85 mmHg 몾 怨듬났삁떦 ≥100 mg/dL 몿 HDL-肄쒕젅뒪뀒濡ㅼ 뿬꽦<50 mg/dL, 궓꽦 <40 mg/dL 뫀 以묒꽦吏諛⑹ ≥150 mg/dL 씠떎. 吏꾨떒湲곗 以 蹂듬鍮꾨쭔 WHO쓽 븘떆븘깭룊뼇吏뿭뿉꽌 젣떆븯怨 엳뒗 湲곗뿉 뵲씪 뿬꽦 ≥80 cm, 궓꽦 ≥90 cm쓣 쟻슜븯떎(WHO, 2000). 삁븸寃궗뒗 8떆媛 씠긽 怨듬났긽깭뿉꽌 梨꾪삁 썑 遺꾩꽍븯떎. 깮솕븰쟻 蹂닔 以 珥앹퐳젅뒪뀒濡, 以묒꽦吏諛, HDL-肄쒕젅뒪뀒濡, 諛룄 吏떒諛(low density lipoprotein, LDL)-肄쒕젅뒪뀒濡, 怨듬났삁떦, 슂궛, 怨좉컧룄 C-諛섏쓳꽦떒諛(high sensitivity C-reactive protein, hs-CRP) TBA-200FR NEO (Toshiba, Tokyo, Japan)濡 痢≪젙븯떎. 떦솕삁깋냼(hemoglobin A1c, HbA1c)뒗 怨좎냽븸泥댄겕濡쒕쭏넗洹몃옒뵾踰(high performance liquid chromatography)쓣 쟻슜븳 Variant II (Bio Rad, CA, USA)瑜 씠슜븯뿬 痢≪젙븯떎. 씤뒓由곗 쟾湲고솕븰諛쒓킅 硫댁뿭遺꾩꽍踰(electrochemiluminescence immunoassay)쓽 썝由щ 쟻슜븳 Roche Modular Analytics E170 (Roche, Mannheim, Germany)쑝濡 痢≪젙븯떎. 씤뒓由곗빆꽦 룊媛뒗 HOMA-IR쓣 쟻슜븯쑝硫, 怨듬났삁떦怨 씤뒓由 냽룄瑜 씠슜븯뿬 [怨듬났 씤뒓由(μIU/mL) × 怨듬났삁떦(mmol/L)/22.5]濡 怨꾩궛븯떎. 씤뒓由곗빆꽦 HOMA-IR移섍 3.0 씠긽뿉 빐떦븯뒗 寃쎌슦 씤뒓由곗빆꽦쑝濡 뙋젙븯떎(Lee et al., 2006). HOMA-IR쓣 룷븿븳 鍮꾨쭔 諛 吏吏덇젴 蹂닔뒗 怨듭떇뿉 留욎떠 mg/dL뒗 mmol/L濡 솚궛븯뿬 怨꾩궛븯떎.

넻怨꾨텇꽍

씠 뿰援ъ뿉꽌 궗利앺썑援곌낵 씤뒓由곗빆꽦 쑀臾댁뿉 뵲瑜 긽옄쓽 씤泥댁륫젙븰쟻 諛 깮솕븰쟻 듅꽦쓽 李⑥씠瑜 寃利앺븯怨좎옄 룆由쏀몴蹂 t-寃利(independent sample t-test)쓣 쟻슜븯떎. 꽦蹂꾩뿉 뵲瑜 궗利앺썑援 援ъ꽦슂냼 諛 씤뒓由곗빆꽦쓽 李⑥씠뒗 移댁씠뒪섏뼱 寃利(chi-squared test)쓣 떎떆븯떎. 궗利앺썑援 젙룄뿉 뵲瑜 鍮꾨쭔 諛 吏吏덇젴 吏몴쓽 李⑥씠뒗 씪썝諛곗튂 遺꾩궛遺꾩꽍(one-way ANOVA)쑝濡 솗씤븯쑝硫, 궗썑寃젙쑝濡 Scheffe 諛⑸쾿쓣 쟻슜븯떎. 삉븳 ROC (receiver operating characteristic) 遺꾩꽍쓣 씠슜븯뿬 鍮꾨쭔 諛 吏吏덇젴 吏몴媛 궗利앺썑援 諛 씤뒓由곗빆꽦 삁痢≪쓣 쐞빐 젙솗븳 吏몴씤吏瑜 솗씤븯湲 쐞빐 硫댁쟻쓣 援ы븯뿬 鍮꾧탳븯떎. 삉븳 궗利앺썑援 諛 씤뒓由곗빆꽦쓣 삁痢≫븯湲 쐞븳 鍮꾨쭔 諛 吏吏덇젴 吏몴쓽 쟻젙 湲곗移섎 솗씤븯湲 쐞빐 誘쇨컧룄 듅씠룄쓽 빀씠 理쒕媛 릺뒗 吏젏쓣 꽑깮븯떎. 씠 뿰援ъ뿉꽌 ROC 遺꾩꽍쓣 젣쇅븳 紐⑤뱺 넻怨꾨텇꽍 SPSS넻怨꾪봽濡쒓렇옩(IBM, NY, USA)쑝濡 泥섎━븯쑝硫, ROC 遺꾩꽍 MedCalc Statistical Software 19.0.3 (MedCalc Software, Mariakerke, Belgium)쓣 궗슜븯떎. 삉븳 씠 뿰援ъ쓽 紐⑤뱺 넻怨꾩쟻 쑀쓽꽦쓽 룊媛湲곗 P<0.05濡 꽕젙븯떎.

寃 怨

궗利앺썑援 諛 씤뒓由곗빆꽦 쑀臾댁뿉 뵲瑜 긽옄쓽 씤泥댁륫젙븰쟻 諛 깮솕븰쟻 듅꽦

궓꽦 긽옄瑜 궗利앺썑援 諛 씤뒓由곗빆꽦 議댁옱 쑀臾대줈 援щ텇븯뿬 씤泥댁륫젙븰쟻 諛 깮솕븰쟻 듅꽦쓣 鍮꾧탳븳 寃곌낵, 珥앹퐳젅뒪뀒濡ㅼ쓣 젣쇅븳 紐⑤뱺 吏몴뿉꽌 吏묐떒媛 쑀쓽븳 李⑥씠媛 엳뿀떎(紐⑤몢 P<0.05). 듅엳 WHtR怨 TG/HDL-C, TyG index, LAP, VAI뒗 궗利앺썑援 吏꾨떒援곗씤 寃쎌슦 넂寃 굹궗떎(紐⑤몢 P<0.001). 씤뒓由곗빆꽦 쑀臾댁뿉 뵲씪 떊옣, 뿁뜦씠 몮젅, 씠셿湲 삁븬, 珥앹퐳젅뒪뀒濡, LDL-肄쒕젅뒪뀒濡, 슂궛, hs-CRP瑜 젣쇅븳 紐⑤뱺 吏몴뿉꽌 吏묐떒媛 쑀쓽븳 李⑥씠瑜 굹깉떎(紐⑤몢 P<0.05). 듅엳 WHtR, TG/HDL-C, TyG index, LAP, VAI뒗 씤뒓由곗빆꽦援곗뿉꽌 넂븯떎(紐⑤몢 P<0.001) (Table 1). 뿬꽦 긽옄瑜 궗利앺썑援 諛 씤뒓由곗빆꽦 쑀臾대줈 援щ텇븯뿬 씤泥댁륫젙븰쟻 諛 깮솕븰쟻 듅꽦쓽 李⑥씠瑜 鍮꾧탳븳 寃곌낵, 뿁뜦씠 몮젅, hs-CRP瑜 젣쇅븳 紐⑤뱺 蹂씤뿉꽌 吏묐떒媛 쑀쓽븳 李⑥씠瑜 蹂댁떎(紐⑤몢 P<0.05). 듅엳 WHtR, TG/HDL-C, TyG index, LAP, VAI 궗利앺썑援 吏꾨떒援곗씤 寃쎌슦 넂븯떎(紐⑤몢 P<0.001). 씤뒓由곗빆꽦 쑀臾댁뿉 뵲씪 뿰졊(P<0.001), BMI (P=0.002), 뿀由щ몮젅(P<0.001), WHtR (P<0.001), 닔異뺢린 삁븬(P=0.003), 以묒꽦吏諛(P=0.002), 怨듬났삁떦(P<0.001), HbA1c (P<0.001), 씤뒓由(P<0.001), HOMA-IR (P<0.001) 씤뒓由곗빆꽦援곗뿉꽌 쑀쓽븯寃 넂븯떎. 삉븳 TG/HDL-C (P=0.007), TyG index (P<0.001), LAP (P<0.001), VAI (P=0.002)룄 씤뒓由곗빆꽦援곗씠 넂븯떎(Table 2).

Anthropometric and characteristics of the study male subjects

 Variables With MetSy
(N=1,448)
Without MetSy
(N=5,661)
p-value With IR
(N=97)
Without IR
(N=7,012)
p-value
Age (years) 48.18±10.76 45.25±10.43 <0.001 49.49±12.55 45.79±10.52 0.005
Height (cm) 171.80±6.31 171.26±6.41 0.004 170.96±6.95 171.38±6.38 0.523
Weight (kg) 83.48±9.96 78.17±8.12 <0.001 83.71±12.30 79.19±8.71 <0.001
BMI (kg/m2) 28.25±2.53 26.63±1.82 <0.001 28.54±2.79 26.94±2.07 <0.001
WC (cm) 93.38±5.92 87.38±5.58 <0.001 94.25±7.93 88.52±6.08 <0.001
HC (cm) 102.44±43.02 98.36±24.14 0.001 100.58±6.44 99.18±29.34 0.644
WHtR 0.54±0.03 0.51±0.03 <0.001 0.55±0.04 0.51±0.03 <0.001
SBP (mmHg) 123.23±14.52 113.03±11.88 <0.001 119.63±15.22 115.04±13.08 0.001
DBP (mmHg) 80.42±10.51 73.40±9.26 <0.001 76.77±9.91 74.81±9.94 0.054
TC (mg/dL) 200.74±36.71 199.24±34.53 0.162 200.89±40.82 199.53±34.91 0.703
TG (mg/dL) 242.70±121.07 148.09±89.15 <0.001 224.71±156.18 166.57±102.63 <0.001
HDL-C (mg/dL) 43.63±9.99 50.44±10.53 <0.001 45.21±8.95 49.10±10.79 <0.001
LDL-C (mg/dL) 124.35±33.25 127.09±30.84 0.005 124.00±32.05 126.57±31.35 0.422
GLU (mg/dL) 108.70±29.81 91.28±15.72 <0.001 127.29±43.82 94.38±19.79 <0.001
HbA1c (%) 6.20±1.12 5.61±0.62 <0.001 6.81±1.56 5.71±0.76 <0.001
Insulin (μU/mL) 8.12±4.06 5.85±3.15 <0.001 13.93±4.60 5.71±2.49 <0.001
HOMA-IR 0.42±1.06 0.22±0.60 <0.001 4.09±1.25 0.21±0.55 <0.001
UA (mg/dL) 6.41±1.45 6.25±1.28 <0.001 6.16±1.43 6.28±1.32 0.378
hs-CRP (mg/dL) 0.21±0.50 0.17±0.40 0.001 0.38±1.11 0.17±0.40 0.075
TG/HDL-C 5.95±3.57 3.16±2.26 <0.001 5.22±3.66 3.71±2.79 <0.001
TyG index 9.35±0.48 8.66±0.56 <0.001 9.37±0.62 8.79±0.61 <0.001
LAP 74.65±40.52 35.95±24.00 <0.001 70.69±46.43 43.46±31.79 <0.001
VAI 3.31±1.97 1.70±1.22 <0.001 2.91±1.99 2.02±1.53 <0.001

Calculated by independent t-test

Values are presented as means± standard deviations

Abbreviations: MetSy, metabolic syndrome; IR, insulin resistance; BMI, body mass index; WC, waist circumference; HC, hip circumference; WHtR, waist to height ratio; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, triglyceride; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; GLU, fasting glucose; HbA1c, hemoglobin A1c; HOMA-IR, homeostasis model assessment for insulin resistance; UA, uric acid; hs-CRP, high sensitivity C-reactive protein; TyG, triglyceride and glucose; LAP, lipid accumulation product; VAI, visceral adiposity index



꽦蹂꾩뿉 뵲瑜 궗利앺썑援 援ъ꽦슂냼 諛 씤뒓由곗빆꽦쓽 諛쒖깮 鍮덈룄 李⑥씠

蹂듬鍮꾨쭔, 궙 HDL-肄쒕젅뒪뀒濡ㅽ삁利, 궗利앺썑援 쑀蹂묐쪧 뿬꽦뿉꽌 넻怨꾩쟻쑝濡 쑀쓽븯寃 넂 鍮덈룄瑜 蹂댁쑝硫, 넂 삁븬, 怨좏삁떦, 怨좎쨷꽦吏諛⑺삁利앹 궓꽦뿉꽌 넂 鍮덈룄瑜 굹깉떎(紐⑤몢 P<0.05). 洹몃윭굹 씤뒓由곗빆꽦 쑀蹂묐쪧 꽦蹂꾩뿉 뵲瑜 李⑥씠瑜 蹂댁씠吏 븡븯떎(Fig. 1).

Fig. 1.

Prevalence of MetS, IR and MetS components in males and females. *, P<0.05. Abbreviations: See Table 1.



궗利앺썑援 젙룄뿉 뵲瑜 鍮꾨쭔 諛 吏吏덇젴 蹂씤쓽 李⑥씠

궓꽦쓽 궗利앺썑援 젙룄뿉 뵲瑜 鍮꾨쭔 諛 吏吏덇젴 蹂씤쓽 李⑥씠瑜 궡렣蹂대㈃, BMI, 뿀由щ몮젅, WHtR, TG/HDL-C, TyG index, LAP, VAI뒗 궗利앺썑援 쟾떒怨꾩 궗利앺썑援 吏꾨떒援곗쓽 寃쎌슦 궗利앺썑援 쐞뿕슂씤씠 뾾뒗援곕낫떎 넂寃 굹궗怨, 궗利앺썑援 吏꾨떒援곗 궗利앺썑援 쟾떒怨꾧뎔蹂대떎 넂븯떎(紐⑤몢 P<0.001). 뿬꽦쓽 궗利앺썑援 젙룄뿉 뵲瑜 鍮꾨쭔 諛 吏吏덇젴 蹂씤쓽 李⑥씠瑜 솗씤븳 寃곌낵, 궓꽦怨 룞씪븯寃 BMI, 뿀由щ몮젅, WHtR, TG/HDL-C, TyG index, LAP, VAI뒗 궗利앺썑援 쟾떒怨꾧뎔씠 궗利앺썑援 쐞뿕슂씤씠 뾾뒗援곕낫떎 넂븯쑝硫, 궗利앺썑援 吏꾨떒援곗 궗利앺썑援 쐞뿕슂씤씠 뾾뒗援곌낵 궗利앺썑援 쟾떒怨꾧뎔蹂대떎 넂븯떎(紐⑤몢 P<0.001) (Table 3).


궗利앺썑援 삁痢≪쓣 쐞븳 鍮꾨쭔 諛 吏吏덇젴 蹂씤 룊媛

鍮꾨쭔 꽦씤궓꽦쓽 궗利앺썑援 삁痢≪쓣 쐞븳 BMI쓽 理쒖쟻 湲곗移섎뒗 26.00, AUC 媛믪 0.709(誘쇨컧룄 73.55%, 듅씠룄 57.55%)씠뿀떎. 뿀由щ몮젅쓽 理쒖쟻 湲곗移섎뒗 89.00, AUC 媛믪 0.793(誘쇨컧룄 82.73%, 듅씠룄 71.35%)씠뿀떎. TG/HDL-C, TyG index, LAP, VAI뒗 BMI 뿀由щ몮젅蹂대떎 궗利앺썑援곗쓣 삁痢≫븯뒗 뜑 쑀슜븳 吏몴떎. 삉븳 WHtR BMI蹂대떎뒗 쑀슜븳 吏몴쑝굹, 궗利앺썑援곗쓣 삁痢≫븯뒗뜲 뿀由щ몮젅蹂대떎 쑀슜븳 吏몴뒗 븘땶 寃껋쑝濡 굹궗떎(Table 4). 鍮꾨쭔 꽦씤뿬꽦쓽 궗利앺썑援 삁痢≪쓣 쐞븳 BMI쓽 理쒖쟻 湲곗移섎뒗 26.80, AUC 媛믪 0.655(誘쇨컧룄 67.28%, 듅씠룄 58.56%)씠뿀떎. 뿀由щ몮젅쓽 理쒖쟻 湲곗移섎뒗 79.00, AUC 媛믪 0.739(誘쇨컧룄 94.07%, 듅씠룄 45.05%)씠뿀떎. TG/HDL-C, TyG index, LAP, VAI뒗 BMI 뿀由щ몮젅蹂대떎 궗利앺썑援곗쓣 삁痢≫븯뒗 뜑 쑀슜븳 吏몴떎. 삉븳 WHtR BMI蹂대떎뒗 쑀슜븳 吏몴쑝굹, 뿀由щ몮젅蹂대떎뒗 삁痢〓뒫젰씠 궙븯떎. 듅엳 鍮꾨쭔 꽦씤궓꽦뿉꽌 LAP뒗 궗利앺썑援 삁痢≪쓣 쐞빐 媛옣 쑀슜븳 吏몴쑝硫, 鍮꾨쭔 꽦씤뿬꽦쓽 VAI뒗 궗利앺썑援곗쓣 삁痢≫븯뒗 媛옣 슚쑉쟻씤 吏몴濡 굹궗떎(Table 4, Fig. 2).


씤뒓由곗빆꽦 삁痢≪쓣 쐞븳 鍮꾨쭔 諛 吏吏덇젴 蹂씤 룊媛

鍮꾨쭔 꽦씤궓꽦쓽 씤뒓由곗빆꽦 삁痢≪쓣 쐞븳 BMI쓽 理쒖쟻 湲곗移섎뒗 26.00, AUC 媛믪 0.696(誘쇨컧룄 78.35%, 듅씠룄 51.63%)씠뿀떎. 뿀由щ몮젅쓽 理쒖쟻 湲곗移섎뒗 92.60, AUC 媛믪 0.722(誘쇨컧룄 57.73%, 듅씠룄 77.58%)씠뿀떎. WHtR, TyG index, LAP뒗 BMI 뿀由щ몮젅蹂대떎 씤뒓由곗빆꽦쓣 삁痢≫븯뒗 쑀슜븳 吏몴굹, TG/HDL-C, VAI뒗 BMI 뿀由щ몮젅蹂대떎 뜑 쑀슜븳 吏몴뒗 븘땲뿀떎(Table 5). 鍮꾨쭔 꽦씤뿬꽦쓽 씤뒓由곗빆꽦 삁痢≪쓣 쐞븳 BMI쓽 理쒖쟻 湲곗移섎뒗 28.00, AUC 媛믪 0.661(誘쇨컧룄 51.28%, 듅씠룄 79.08%)씠뿀떎. 뿀由щ몮젅쓽 理쒖쟻 湲곗移섎뒗 84.50, AUC 媛믪 0.752 (誘쇨컧룄 69.23%, 듅씠룄 66.79%)씠뿀떎. WHtR, TyG index뒗 BMI 뿀由щ몮젅蹂대떎 씤뒓由곗빆꽦쓣 삁痢≫븯뒗 뜑 쑀슜븳 吏몴쑝硫, LAP VAI뒗 BMI蹂대떎 씤뒓由곗빆꽦쓣 삁痢≫븯뒗뜲 뜑 넂 쑀슜꽦쓣 蹂댁떎. 듅엳 鍮꾨쭔 꽦씤궓꽦뿉꽌 TyG index뒗 씤뒓由곗빆꽦 삁痢≪쓣 쐞븳 媛옣 쑀슜븳 吏몴쑝硫, 鍮꾨쭔 꽦씤뿬꽦쓽 WHtR 씤뒓由곗빆쓣 삁痢≫븯뒗 媛옣 슚쑉쟻씤 吏몴濡 굹궗떎(Table 5).

怨 李

蹂 뿰援ъ뿉꽌 鍮꾨쭔 諛 吏吏덇젴 蹂닔 以 뼱뼚븳 吏몴媛 궗利앺썑援곌낵 씤뒓由곗빆꽦쓣 삁痢≫븯뒗 媛옣 醫뗭 吏몴씤吏瑜 솗씤븳 寃곌낵, 鍮꾨쭔 꽦씤뿉꽌 TG/HDL-C, TyG index, LAP, VAI뒗 궗利앺썑援곗쓣 삁痢≫븯뒗뜲 엳뼱꽌 슦닔븳 吏몴쑝硫, 궓꽦 LAP, 뿬꽦 VAI媛 媛옣 넂 吏꾨떒 젙솗룄瑜 蹂댁떎. 삉븳 WHtR, TyG index, LAP뒗 궓 紐⑤몢뿉꽌 씤뒓由곗빆꽦쓣 삁痢≫븯뒗뜲 엳뼱꽌 슦닔븯吏뒗 븡吏留 솢슜 媛뒫븳 吏몴濡 굹궗떎.

궗利앺썑援곗 젣 2삎 떦눊蹂묒씠굹 떖삁愿怨 吏덊솚쓽 쐞뿕슂씤씠 븳 媛쒖씤뿉寃 援곗쭛븯뿬 굹굹뒗 吏덊솚쑝濡, 鍮꾨쭔怨 씤뒓由곗빆꽦씠 二쇱슂 썝씤쑝濡 젣떆맂떎(Reaven, 1988). 듅엳 궗利앺썑援 쐞뿕슂씤 以 鍮꾨쭔 BMI, 뿀由щ몮젅 諛 뿀由щ몮젅 뿁뜦씠 몮젅 鍮꾩쑉(waist/hip ratio, WHR) 媛숈 씤泥닿퀎痢 吏몴뿉 쓽빐 異붿젙맂떎(Pouliot et al., 1994; Haslam and James, 2005). 洹몃윭굹 씠 媛숈 吏몴뱾쓽 젣븳젏 泥댁諛 遺꾪룷뿉 븳 젣븳맂 젙蹂대쭔쓣 젣怨듯븯硫, 궡옣吏諛 遺꾪룷瑜 솗씤븷 닔 뾾떎뒗 젏씠떎(Pouliot et al., 1994; Haslam and James, 2005). 뵲씪꽌 씠윭븳 떒젏쓣 蹂댁셿븯湲 쐞빐 吏諛 異뺤쟻怨 遺꾪룷瑜 怨좊젮븳 吏몴뱾씠 蹂닿퀬맂떎.

Kahn (2005) 怨쇰룄븳 吏諛 異뺤쟻쓣 솗씤븯뒗 깉濡쒖슫 吏몴濡쒖꽌 LAP瑜 냼媛쒗븯쑝硫, LAP뒗 떖삁愿怨 쐞뿕쓣 떇蹂꾪븯뒗뜲 愿묐쾾쐞븯寃 쟻슜맂떎. Amato 벑(2010)뿉 쓽빐 냼媛쒕맂 VAI뒗 吏諛 議곗쭅쓽 湲곕뒫怨 遺꾪룷瑜 솗씤븷 닔 엳뒗 吏몴濡쒖꽌 떖삁愿怨 吏덊솚 쐞뿕怨 룆由쎌쟻쑝濡 뿰愿릺뼱 엳떎. 理쒓렐 뿰援ъ뿉 뵲瑜대㈃ LAP VAI뒗 궗利앺썑援곗쓣 吏꾨떒븯湲 쐞븳 媛꾨떒븯怨 쑀슜븳 吏몴濡 젣븞맂떎(Goldani et al., 2015; Guo et al., 2016; Li et al., 2018). BMI, WHtR, TG/HDL-C, LAP, VAI쓽 5媛吏 吏몴뒗 以묎뎅 끂씤뿉꽌 궗利앺썑援곗쓣 吏꾨떒븯뒗뜲 넂 삁痢〓젰쓣 蹂댁씠硫, 洹 以묒뿉꽌 LAP媛 媛옣 넂 AUC 媛(궓꽦 0.897, 뿬꽦 0.875)쓣 蹂댁뿬 궗利앺썑援곗쓣 吏꾨떒븯뒗뜲 슦닔븳 吏몴濡 굹궗떎(Gu et al., 2018).

鍮꾨쭔 꽦씤쓣 긽쑝濡 떆뻾븳 蹂 뿰援ш껐怨, 궗利앺썑援곗쓣 삁痢≫븯뒗뜲 궓꽦 LAP (AUC: 0.854), 뿬꽦 VAI (AUC: 0.888)쓽 吏꾨떒 젙솗룄媛 媛옣 넂븯떎. 삉븳 궓 紐⑤몢뿉꽌 TG/HDL-C, TyG index, LAP, VAI뒗 쟾넻쟻씤 吏몴씤 BMI 뿀由щ몮젅蹂대떎 궗利앺썑援곗쓣 삁痢≫븯뒗뜲 엳뼱꽌 AUC 媛믪씠 0.8 씠긽쓽 넂 吏꾨떒 젙솗룄瑜 蹂댁떎. 諛섎㈃뿉 WHtR, TyG index, LAP뒗 궓 紐⑤몢뿉꽌 씤뒓由곗빆꽦쓣 삁痢≫븯뒗뜲 AUC 媛믪씠 0.7 씠긽 0.8 씠븯濡 吏꾨떒뿉 솢슜 媛뒫븳 吏몴떎.

以묎뎅 끂씤쓣 긽쑝濡 궗利앺썑援 삁痢≪쓣 쐞븳 LAP쓽 쟻젙 湲곗移섎뒗 궓꽦 26.35, 뿬꽦 31.04쑝硫(Gu et al., 2018), 以묎뎅 꽦씤쓣 긽쑝濡 븳 뿰援ъ뿉꽌뒗 궓꽦 34.7, 뿬꽦 27.3씠뿀떎(Guo et al., 2016). 삉븳 뒪럹씤 꽦씤뿉꽌 궗利앺썑援 삁痢≪쓣 쐞븳 LAP쓽 쟻젙 湲곗移섎뒗 궓꽦 48.09, 뿬꽦 31.77씠뿀怨(Taverna et al., 2011), 룓寃쎄린 뿬꽦쓽 寃쎌슦 47.63쑝濡 넂寃 蹂닿퀬맂떎(Namazi Shabestari et al., 2016). 蹂 뿰援ъ뿉꽌 LAP쓽 쟻젙 湲곗移섎뒗 궓꽦 42.71, 뿬꽦 35.44濡 굹궗쑝硫, VAI쓽 쟻젙 湲곗移섎뒗 궓꽦 1.92, 뿬꽦 2.15떎. 諛깆씤쓣 긽쑝濡 궗利앺썑援 삁痢≪쓣 쐞븳 VAI쓽 쟻젙 湲곗移섎뒗 1.9 씠긽쑝濡 젣떆릺硫(Amato et al., 2010), 궗利앺썑援곗뿉 븳 쟻젙 湲곗移섏쓽 긽씠븳 寃곌낵뒗 뿰援 긽옄쓽 李⑥씠뿉꽌 鍮꾨’맂 寃껋쑝濡 깮媛곷맂떎.

理쒓렐뿉 TyG index媛 씤뒓由곗빆꽦쓣 삁痢≫븯뒗뜲 媛꾨떒븯硫댁꽌 떊猶고븷 닔 엳뒗 吏몴濡 異붿쿇릺硫, 떦눊蹂 諛 떖삁愿吏덊솚쓽 諛쒕퀝怨 愿젴씠 엳떎怨 蹂닿퀬맂떎(Simental-Mendía et al., 2008; Lee et al., 2014; Sánchez-Íñigo et al., 2016). 삉븳 Shin (2017) TyG index 궗利앺썑援 쐞뿕슂씤媛꾩쓽 愿젴꽦쓣 솗씤븯쑝硫, 씤뒓由곗빆꽦쓣 룊媛븯뒗뜲 HOMA-IR蹂대떎 쑀슜븳 吏몴濡 蹂닿퀬븯떎. 蹂 뿰援ъ뿉꽌 鍮꾨쭔 꽦씤쓣 긽쑝濡 궗利앺썑援곗쓣 삁痢≫븯뒗 TyG index쓽 쟻젙 湲곗移섎뒗 궓꽦 8.91, 뿬꽦 8.74떎. Shin (2017) 궗利앺썑援 삁痢≪쓣 쐞븳 嫄닿컯븳 꽦씤뿉꽌 TyG index쓽 쟻젙 湲곗移섎뒗 8.81濡 蹂닿퀬븯쑝硫, 以묎뎅 끂씤쓣 긽쑝濡 궗利앺썑援곗쓣 삁痢≫븷 닔 엳뒗 쟻젙 湲곗移섎줈 8.7쓣 젣떆븯怨 엳뼱 鍮꾨쭔 꽦씤쓣 긽쑝濡 븳 蹂 뿰援ш껐怨쇱 쑀궗븯떎(Li et al., 2018).

Yang 벑(2017) WHtR媛 BMI 뿀由щ몮젅蹂대떎 궗利앺썑援곗뿉 븳 뜑 굹 꽑蹂 吏몴씪怨 蹂닿퀬븯떎. 蹂 寃곌낵뿉꽌 WHtR 궗利앺썑援곗쓣 삁痢≫븯뒗뜲 BMI蹂대떎뒗 쑀슜븯吏留 뿀由щ몮젅蹂대떎 쑀슜븳 吏몴뒗 븘땲뿀쑝硫, TG/HDL-C, TyG index, LAP, VAI蹂대떎 궗利앺썑援 삁痢〓젰씠 뼥뼱吏뒗 寃껋쑝濡 굹궗떎. 씠윭븳 寃곌낵뒗 씤泥닿퀎痢 吏몴留뚯쓣 룷븿븳 蹂닔濡 궗利앺썑援곗쓣 吏꾨떒븯뒗 寃껊낫떎 씤泥닿퀎痢 吏몴뿉 깮솕븰쟻 蹂씤쓣 룷븿븳 蹂닔뿉꽌 궗利앺썑援곗뿉 븳 삁痢 젙솗룄媛 넂떎뒗 寃껋쓣 뮮諛쏆묠븯뒗 寃곌낵씠떎.

TG/HDL-C뒗 궗利앺썑援 쐞뿕씠 넂 솚옄瑜 솗씤븯뒗 옞옱쟻씤 룄援щ줈 젣븞릺硫, TG/HDL-C 씤뒓由곗빆꽦쓣 痢≪젙븯뒗뜲 泥 媛뒫븳 吏몴濡 蹂닿퀬맂떎(McLaughlin et al., 2005; Cordero et al., 2008). 듅엳 븳援 泥냼뀈쓣 긽쑝濡 TG/HDL-C쓽 궗利앺썑援곗쓣 솗씤븯湲 쐞븳 쟻젙 湲곗移섎뒗 3.3쑝濡 蹂닿퀬릺硫, 떒씪 吏吏 痢≪젙移 諛 HOMA-IR蹂대떎 吏吏 鍮꾩쑉쓣 솢슜븯뒗 寃껋씠 泥냼뀈쓽 궗利앺썑援곗쓣 吏꾨떒븯뒗뜲 슦닔븳 吏몴엫쓣 엯利앺븯떎(Chu et al., 2019). 삉븳 Cordero 벑(2008) 뒪럹씤 꽦씤쓣 긽쑝濡 븳 洹쒕え 뿰援ъ뿉꽌 궗利앺썑援곗쓣 吏꾨떒븯湲 쐞븳 TG/HDL-C쓽 쟻젙 湲곗移섎뒗 궓꽦 2.75, 뿬꽦 1.65濡 蹂닿퀬븯떎. 蹂 뿰援ъ뿉꽌뒗 鍮꾨쭔씤쓽 궗利앺썑援곗뿉 븳 TG/HDL-C쓽 쟻젙 湲곗移섎뒗 궓꽦 3.36, 뿬꽦 2.51濡 굹굹, 뒪럹씤 꽦씤쓣 긽쑝濡 븳 꽑뻾뿰援щ낫떎 넂 湲곗移섎 蹂댁떎.

鍮꾨쭔 諛 吏吏덇젴 蹂닔뱾 二쇰줈 꽌뼇씤쓣 긽쑝濡 꽕젙맂 吏몴뱾濡쒖꽌 븘떆븘씤怨 꽌뼇씤 떊泥닿뎄꽦 諛 삁以 吏吏덉닔移섏뿉 李⑥씠瑜 蹂댁씪 닔 엳쑝誘濡, 씠윭븳 吏몴瑜 븘떆븘씤뿉寃 쟻슜 媛뒫븳吏瑜 솗씤븯뒗 寃껋 以묒슂븯떎. 듅엳 꽌뼇씤怨 鍮꾧탳빐 븘떆븘씤 BMI媛 긽쟻쑝濡 궙 닔以엫뿉룄 遺덇뎄븯怨 鍮꾨쭔쑝濡 씤븳 吏덈퀝 쑀蹂묐쪧 넂 듅꽦쓣 蹂댁씠怨 엳뼱 븘떆븘씤뿉寃 留욌뒗 쟻젙 湲곗移섎 꽕젙븯뒗 寃껋씠 븘슂븯떎(Gill, 2006). 씠 뿰援ъ쓽 븳怨꾨뒗 鍮꾨쭔뿉 쁺뼢쓣 誘몄튂뒗 떇씠긽깭굹 슫룞뿬遺, 鍮꾨쭔 쑀吏湲곌컙怨 媛숈 옞옱쟻씤 슂씤뿉 븳 젙蹂닿 遺議깊븯뿬 뿰援ъ뿉꽌 諛곗젣릺뿀떎뒗 젏씠떎. 삉븳 鍮꾨쭔씤쓣 긽쑝濡 븯쑝굹, 鍮꾨쭔 젙룄뿉 뵲씪 遺꾨쪟븯吏 븡븯怨 BMI 25 kg/m2 씠긽쓣 紐⑤몢 鍮꾨쭔씤쑝濡 遺꾨쪟븯떎뒗 젣븳젏씠 엳떎. 뵲씪꽌 뼢썑 鍮꾨쭔 젙룄 諛 鍮꾨쭔 쑀吏湲곌컙, 뿰졊蹂 鍮꾨쭔 諛 吏吏덇젴 蹂닔쓽 궗利앺썑援 諛 씤뒓由곗빆꽦뿉 븳 삁痢 뒫젰쓣 솗씤븯뒗 뿰援ш 異붽릺뼱빞 븷 寃껋씠떎. 洹몃윭굹 蹂 뿰援щ뒗 BMI 諛 뿀由щ몮젅 鍮꾧탳븯뿬 WHtR, TG/HDL-C, TyG index, LAP, VAI瑜 룷븿븳 鍮꾨쭔 諛 吏吏덇젴 蹂닔쓽 궗利앺썑援 諛 씤뒓由곗빆꽦뿉 븳 삁痢〓젰쓣 룞떆뿉 鍮꾧탳 룊媛븯떎뒗뜲 쓽誘멸 엳떎 븯寃좊떎.

寃곕줎쟻쑝濡 鍮꾨쭔 꽦씤뿉꽌 TG/HDL-C, TyG index, LAP, VAI뒗 궗利앺썑援곗쓣 삁痢≫븯뒗 쑀슜븳 吏몴쑝硫, 듅엳 LAP VAI뒗 궗利앺썑援곗쓣 삁痢≫븯뒗뜲 엳뼱꽌 떎瑜 吏몴뱾蹂대떎 슦닔븳 蹂닔떎. 삉븳 WHtR, TyG index, LAP뒗 鍮꾨쭔 꽦씤쓽 씤뒓由곗빆꽦쓣 삁痢≫븯뒗뜲 엳뼱꽌 솢슜 媛뒫븳 吏몴濡 굹궗떎.

ACKNOWLEDGEMENT

None.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

References
  1. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. 2009. Harmonizing the metabolic syndrome:a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention;National Heart, Lung, and Blood Institute;American Heart Association;World Heart Federation;International Atherosclerosis Society;and International Association for the Study of Obesity. Circulation. 2009. 120: 1640-1645.
    Pubmed CrossRef
  2. Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M, et al. 2010. Visceral Adiposity Index:a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010. 33: 920-922.
    Pubmed KoreaMed CrossRef
  3. Arsenault BJ, Boekholdt SM, Kastelein JJ. 2011. Lipid parameters for measuring risk of cardiovascular disease. Nat Rev Cardiol. 2011. 8: 197-206.
    Pubmed CrossRef
  4. Chu SY, Jung JH, Park MJ, Kim SH. 2019. Risk assessment of metabolic syndrome in adolescents using the triglyceride/high-density lipoprotein cholesterol ratio and the total cholesterol/high-5 density lipoprotein cholesterol ratio. Ann Pediatr Endocrinol Metab. 2019. 24: 41-48.
    Pubmed KoreaMed CrossRef
  5. Cordero A, Laclaustra M, León M, Casasnovas JA, Grima A, Luengo E, et al. 2008. Comparison of serum lipid values in subjects with and without the metabolic syndrome. Am J Cardiol. 2008. 102: 424-428.
    Pubmed CrossRef
  6. Elahi D. 1996. In praise of the hyperglycemic clamp. A method for assessment of beta-cell sensitivity and insulin resistance. Diabetes Care. 1996. 19: 278-286.
    Pubmed CrossRef
  7. Eliasson B, Cederholm J, Eeg-Olofsson K, Svensson AM, Zethelius B, Gudbjörnsdottir S. 2011. Clinical usefulness of different lipid measures for prediction of coronary heart disease in type 2 diabetes:a report from the Swedish National Diabetes Register. Diabetes Care. 2011. 34: 2095-2100.
    Pubmed KoreaMed CrossRef
  8. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. 2014. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014. 105: 141-150.
    Pubmed CrossRef
  9. Ford ES, Li C, Sattar N. 2008. Metabolic syndrome and incident diabetes:current state of the evidence. Diabetes Care. 2008. 31: 1898-1904.
    Pubmed KoreaMed CrossRef
  10. Galassi A, Reynolds K, He J. 2006. Metabolic syndrome and risk of cardiovascular disease:a meta-analysis. Am J Med. 2006. 119: 812-819.
    Pubmed CrossRef
  11. Gaziano JM, Hennekens CH, O’Donnell CJ, Breslow JL, Buring JE. 1997. Fasting triglycerides, high-density lipoprotein, and risk of myocardial infarction. Circulation. 1997. 96: 2520-2525.
    Pubmed CrossRef
  12. Gill T. 2006. Epidemiology and health impact of obesity:an Asia Pacific perspective. Asia Pac J Clin Nutr. 2006. 15: 3-14.
    Pubmed
  13. Goldani H, Adami FS, Antunes MT, Rosa LH, Fassina P, Quevedo Grave MT, et al. 2015. Applicatility of the visceral adiposity index (VAI) in the prediction of the components of the metabolic syndrome in elderly. Nutr Hosp. 2015. 32: 1609-1615.
    Pubmed
  14. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. 2005. Diagnosis and management of the metabolic syndrome:an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005. 112: 2735-2752.
    Pubmed CrossRef
  15. Gu Z, Zhu P, Wang Q, He H, Xu J, Zhang L, et al. 2018. Obesity and lipid-related parameters for predicting metabolic syndrome in Chinese elderly population. Lipids Health Dis. 2018. 17: 289.
    Pubmed KoreaMed CrossRef
  16. Guo SX, Zhang XH, Zhang JY, He J, Yan YZ, Ma JL, et al. 2016. Visceral Adiposity and Anthropometric Indicators as Screening Tools of Metabolic Syndrome among Low Income Rural Adults in Xinjiang. Sci Rep. 2016. 6: 36091.
    Pubmed KoreaMed CrossRef
  17. Haslam DW, James WP. 2005. Obesity. Lancet. 2005. 366: 1197-1209.
    CrossRef
  18. Hsueh WA, Quiñones MJ. 2003. Role of endothelial dysfunction in insulin resistance. Am J Cardiol. 2003. 92: 10J-17J.
    Pubmed CrossRef
  19. Kahn HS. 2005. The “lipid accumulation product”performs better than the body mass index for recognizing cardiovascular risk:a population-based comparison. BMC Cardiovasc Disord. 2005. 5: 26.
    Pubmed KoreaMed CrossRef
  20. Korea Ministry of Health and Welfare. Korean national health and nutrition examination survey ’07~’10 [Internet]. Sejong: Ministry of Health and Welfare; 2012 [cited 2019 May 13].
    Available from: http://webcache.googleusercontent.com/search?q=cache:pHqT6158rPAJ:www.mohw.go.kr/react/modules/download.jsp%3FBOARD_ID%3D140%26CONT_SEQ%3D268137%26FILE_SEQ%3D102553+&cd=1&hl=ko&ct=clnk &gl=kr.
  21. Lee S, Choi S, Kim HJ, Chung YS, Lee KW, Lee HC, et al. 2006. Cutoff values of surrogate measures of insulin resistance for metabolic syndrome in Korean non-diabetic adults. J Korean Med Sci. 2006. 21: 695-700.
    Pubmed KoreaMed CrossRef
  22. Lee SH, Kwon HS, Park YM, Ha HS, Jeong SH, Yang HK, et al. 2014. Predicting the development of diabetes using the product of triglycerides and glucose:the Chungju Metabolic Disease Cohort (CMC) study. PLoS One. 2014. 9: e90430.
    Pubmed KoreaMed CrossRef
  23. Li R, Li Q, Cui M, Yin Z, Li L, Zhong T, et al. 2018. Clinical surrogate markers for predicting metabolic syndrome in middle-aged and elderly Chinese. J Diabetes Investig. 2018. 9: 411-418.
    Pubmed KoreaMed CrossRef
  24. McLaughlin T, Reaven G, Abbasi F, Lamendola C, Saad M, Waters D, et al. 2005. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? Am J Cardiol. 2005. 96: 399-404.
    Pubmed CrossRef
  25. Namazi Shabestari A, Asadi M, Jouyandeh Z, Qorbani M, Kelishadi R. 2016. Association of Lipid Accumulation Product with Cardio-Metabolic Risk Factors in Postmenopausal Women. Acta Med Iran. 2016. 54: 370-375.
    Pubmed
  26. Perseghin G, Petersen K, Shulman GI. 2003. Cellular mechanism of insulin resistance:potential links with inflammation. Int J Obes Relat Metab Disord. 2003. 27: S6-11.
    Pubmed CrossRef
  27. Pouliot MC, Després JP, Lemieux S, Moorjani S, Bouchard C, Tremblay A, et al. 1994. Waist circumference and abdominal sagittal diameter:best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol. 1994. 73: 460-468.
    Pubmed CrossRef
  28. Reaven GM. 1988. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988. 37: 1595-1607.
    Pubmed CrossRef
  29. Sánchez-Íñigo L, Navarro-González D, Fernández-Montero A, Pastrana-Delgado J, Martínez JA. 2016. The TyG index may predict the development of cardiovascular events. Eur J Clin Invest. 2016. 46: 189-197.
    Pubmed CrossRef
  30. Shin KA. 2017. Triglyceride and glucose (TyG) index is a clinical surrogate marker for the diagnosis of metabolic syndrome. Biomedical Science Letters. 2017. 23: 348-354.
    CrossRef
  31. Shin KA. 2018a. Assessing a body shape index and waist to height ratio as a risk predictor for insulin resistance and metabolic syndrome among Korean adults. Korean J Clin Lab Sci. 2018a. 50: 44-53.
    CrossRef
  32. Shin KA. 2018b. Significance of non HDL-cholesterol and triglyceride to HDL-cholesterol ratio as predictors for metabolic syndrome among Korean elderly. Korean J Clin Lab Sci. 2018b. 5: 245-252.
    CrossRef
  33. Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. 2008. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008. 6: 299-304.
    Pubmed CrossRef
  34. Taverna MJ, Martínez-Larrad MT, Frechtel GD, Serrano-Ríos M. 2011. Lipid accumulation product:a powerful marker of metabolic syndrome in healthy population. Eur J Endocrinol. 2011. 164: 559-567.
    Pubmed CrossRef
  35. Wang F, Wu S, Song Y, Tang X, Marshall R, Liang M, et al. 2009. Waist circumference, body mass index and waist to hip ratio for prediction of the metabolic syndrome in Chinese. Nutr Metab Cardiovasc Dis. 2009. 19: 542-547.
    Pubmed CrossRef
  36. World Health Organization. The Asia-Pacific Perspective:Redefining obesity and its treatment. Sydney, Australia: health communications Australia; 2000. p19-20.
  37. WHO Expert Consultation. 2004. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004. 363: 157-163.
    Pubmed CrossRef
  38. Yang H, Xin Z, Feng JP, Yang JK. 2017. Waist-to-height ratio is better than body mass index and waist circumference as a screening criterion for metabolic syndrome in Han Chinese adults. Medicine (Baltimore). 2017. 96: e8192.
    Pubmed KoreaMed CrossRef
  39. Zhang L, Yuan Z, Chen W, Chen S, Liu X, Liang Y, et al. 2014. Serum lipid profiles, lipid ratios and Chronic Kidney Disease in a Chinese population. Int J Environ Res Public Health. 2014. 11: 7622-7635.
    Pubmed KoreaMed CrossRef