Search for


TEXT SIZE

search for



CrossRef (0)
Antimicrobial Activities of Extracts of Camellia sinensis (L.) O. Kuntze and Profile of Antimicrobial Agents Resistance for Carbapenem-Resistant Enterobacteriaceae
Biomed Sci Letters 2019;25:288-292
Published online September 30, 2019;  https://doi.org/10.15616/BSL.2019.25.3.288
© 2019 The Korean Society For Biomedical Laboratory Sciences.

Jong Hwa Yum†,*

Department of Clinical Laboratory Science, Dongeui University, Busan 47340, Korea
Correspondence to: Jong Hwa Yum. Department of Clinical Laboratory Science, Dongeui University, Busan 47340, Korea.
Tel: +82-51-890-2682, Fax: +82-505-182-6877, e-mail: auxotype@deu.ac.kr
*Professor.
Received August 20, 2019; Revised September 2, 2019; Accepted September 9, 2019.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
In vitro antimicrobial activities of hot water extracts of Camellia sinensis (L.) O. Kuntze, for carbapenem-resistant Enterobacteriaceae (CRE) were compared to commonly used conventional antimicrobial agents. CRE was not only resistant to imipenem, meropenem or ertapenem, but also to various antimicrobial agents, such as amikacin (> 128 µg/mL). The hot water extracts of Camellia sinensis (L.) O. Kuntze had the lowest MIC (0.06~0.5 µL/mL) of the carbapenem-resistant E. coli, K. pneumoniae, and Enterobacter spp. tested, and it was possible more potent than various conventional antimicrobial agents. Synergistic combinations of the extract with used commonly antimicrobial agents might even improve its antimicrobial chemotherapy property.
Keywords : Camellia sinensis (L.) O. Kuntze, Enterobacteriaceae, Carbepenem resistant, Catechin, Antimicrobial agent
Body

Carbapenem 洹몃엺쓬꽦 꽭洹좎뿉 슦닔븳 빟젣濡 븣젮졇 엳떎. 援궡뿉꽌 carbapenem-resistant Enterobacteriaceae (CRE)뒗 쓷엳 寃異쒕릺뒗 Enterobacteriaceae 以 쐞以묓븳 媛먯뿼利앹쓣 씪쑝궎湲곕룄 븯硫, CRE 媛먯뿼솚옄쓽 移섎즺媛 뼱졄떎(Shin et al., 2018; Kim and Park, 2018; Kang et al., 2019). 쟻젅븳 移섎즺媛 떆뻾릺吏 븡 寃껊룄 臾몄젣媛 릺吏留, 썝궡媛먯뿼쓽 利앷 벑쓽 씠쑀濡 떎뼇븳 빟젣 궡꽦 Enterobacteriaceae 媛먯뿼솚옄쓽 궗留앹쑉룄 利앷븯怨 엳떎(Tellado et al., 2007; Raman et al., 2015; Bonine et al., 2017; Zilberberg et al., 2017). 뵲씪꽌, 깉濡쒖슫 빟젣 깘깋 諛 蹂묓빀슂踰 벑쓽 諛⑸쾿 媛쒕컻씠 븘슂븯떎.

Camellia sinensis (L.) O. Kuntze뒗 catechins (C), (-)-epigallocatechin-3-gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin-3-gallate (ECG) 洹몃━怨 (-)-epicatechin (EC)怨 媛숈 二쇱슂 뵆씪蹂대끂씠뱶瑜 媛뽮퀬 엳떎(Cabrera et al., 2006; Zaveri, 2006). 씠뱾 catechin 솕빀臾쇱 뿴쓣 媛븯硫, (-)-catechin (c), (-)-gallocatechin (GC), (-)-catechin gallate (CG), 洹몃━怨 (-)-gallocatechin gallate (GCG) 媛숈 씠꽦泥닿 릺湲곕룄 븳떎(Ikeda et al., 2005). 씠뱾 뤃由ы럹 솕빀臾쇨낵 뵆씪蹂 솕빀臾쇱 쓷엳 빆洹 슚怨쇨 엳뒗 寃껋쑝濡 븣젮졇 엳떎(Sajilata et al., 2008). 듅엳, Camellia sinensis (L.) O. Kuntze쓽 (-)-epigallocatechin gallate (-)-epicatechin gallate뒗 洹몃엺쓬꽦 꽭洹좉낵 洹몃엺뼇꽦 꽭洹좎뿉 꽦옣쓣 뼲젣븳떎怨 븣젮졇 엳떎(Gulati et al., 2003; Taylor et al., 2005).

蹂 뿰援ъ뿉꽌뒗 援궡뿉꽌 遺꾨━맂 carbapenem 궡꽦 Escherichia coli, Klebsiella pneumoniaeEnterobacter spp.뿉 븳 빆洹좎젣 궡꽦 뼇긽쓣 遺꾩꽍븯怨, 씠뱾 꽭洹좎뿉 븳 Camellia sinensis (L.) O. Kuntze濡쒕꽣 뼸 뿴닔異붿텧臾쇱쓽 빆洹 슚怨쇰 遺꾩꽍븯怨좎옄 븯떎.

엫긽뿉꽌 遺꾨━맂 carbapenem 궡꽦씤 E. coli 7二, K. pneumoniae 16二, Enterobacter cloacae 4二 洹몃━怨, Enterobacter aerogenes 1二쇰 긽쑝濡 떆뿕븯쑝硫, 洹좎쥌 룞젙 쟾넻쟻씤 諛⑸쾿怨 16S rDNA 뿼湲곗꽌뿴遺꾩꽍쓣 씠슜븯떎(Loffler et al., 2000). E. coli ATCC 25922 Pseudomonas aeruginosa ATCC 27853瑜 빆洹좎젣 媛먯닔꽦 떆뿕뿉 李몄“ 洹좎<濡 궗슜븯떎.

嫄댁“ Camellia sinensis (L.) O. Kuntze 옂 300 g쓣 3 L DW. 뿉 50~70°C뿉꽌 24떆媛 룞븞 뿴닔異붿텧븳 썑, 100 mL濡 냽異뺥븳 뿴닔異붿텧臾쇱쓣 -70°C뿉 蹂닿븯뿬 떆뿕뿉 궗슜븯떎. Camellia sinensis (L.) O. Kuntze 뿴닔異붿텧臾쇱쓣 鍮 뵒뒪겕뿉 0 μL, 1 μL, 3 μL, 5 μL, 10 μL, 15 μL, 洹몃━怨 20 μL 뵫 쟻떆怨 嫄댁“떆耳 떆뿕 꽭洹좎뿉 븳 빆洹좊젰 떆뿕뿉 궗슜븯떎.

Carbapenem 궡꽦 Enterobacteriaceae (Carbapenem-Resistant Enterobacteriaceae; CRE)쓽 寃異쒖 뵒뒪겕솗궛踰뺤쑝濡 imipenem, meropenem, 샊 ertapenenm뿉 궡꽦씤 洹좎<瑜 꽑蹂꾪븯떎. 씠뱾 CRE 以 carbapenemase뿉 쓽븳 궡꽦洹좉낵 porin 냼떎씠굹, efflux pump뿉 쓽븳 궡꽦洹좎쓣 援щ퀎븯湲 쐞빐 Lee 벑씠 蹂닿퀬븳 諛⑸쾿쑝濡 Hodge 蹂踰뺤쓣 떆뻾븯怨, metallo-β-lactamases (MBLs) 깮꽦 洹좎< serine-carbapenemases 깮꽦 洹좎<瑜 援щ퀎븯湲 쐞빐 sodium mercaptopropionic acid (SMA) double disc synergy (DDS) 떆뿕쓣 떆뻾븯떎(Lee et al., 2004).

빆洹좎젣 理쒖냼뼲젣냽룄 떆뿕(Minimal inhibitory concentration; MIC) CLSI (Clinical and Laboratory Standards Institute, 2017)쓽 沅뚯옣뿉 뵲씪, 빆洹좎젣 媛먯닔꽦 떆뿕 104 colony forming units쓽 젒醫낆븸쓣 Mueller-Hinton agar (Difco Laboratories, USA)뿉 젒醫낇븯怨 18떆媛 룞븞 諛곗뼇븯뿬 怨좎껜븳泥쒗씗꽍踰뺤쑝濡 떆뿕븯떎. Camellia sinensis (L.) O. Kuntze 뿴닔異붿텧臾쇱쓽 MIC 떆뿕 怨좎껜븳泥쒗씗꽍踰뺤쑝濡 떆뻾븯쑝硫, Mueller-Hinton agar 떦 8 μL 뿴닔異붿텧臾쇱쓣 젣議고븯뿬 0.008 μL/mL源뚯 2떒怨 뿰냽 씗꽍븯뿬 떆뻾븯떎. 洹 쇅 諛⑸쾿 CLSI쓽 沅뚯옣뿉 뵲씪 떆뻾븯떎.

떆뿕뿉 궗슜븳 빆洹좎젣뒗 amoxicillin (Kun Wha Pharmaceuticals, Korea), piperacillin (Wyeth, USA), cephalothin (Sigma Chemical Co., USA), ceftazidime (GlaxoSmithKline, UK), cefotaxime (Handok, Korea), cefoxitin怨 imipenem (Merck Sharp & Dohme, USA), aztreonam怨 cefepime (Bristol-Myers Squibb, USA), meropenem (Sumitomo, Japan), tetracycline (Sigma Chemical, St. Louis, MO), amikacin (Dong-A Pharmaceutical, Seoul, Korea), gentamicin怨 chloramphenicol (Chong Kun Dang, Seoul, Korea), 洹몃━怨 ciprofloxacin (Bayer Korea, Seoul, Korea)씠떎.

Camellia sinensis (L.) O. Kuntze 뿴닔異붿텧臾쇱쓣 뵒뒪겕솗궛踰뺤쓣 씠슜븳 E. coli K. pneumoniae뿉 븳 媛먯닔꽦 떆뿕뿉꽌 냽룄媛 利앷븿뿉 뵲씪 떆뿕 꽭洹좎쓽 뼲젣媛 利앷븯뿬 씠뱾 꽭洹좎뿉 븳 빆洹좊젰쓣 솗씤븯떎(Fig. 1).

Fig. 1.

The result of antibacterial effect screen test for water extracts of Camellia sienensis (L.) O. Kuntze for E. coli (A), and K. pneumonia (B) using disk diffusion test



엫긽뿉꽌 遺꾨━맂 CRE 28二쇰뒗 냼蹂 寃泥댁뿉꽌 E. coli 2二쇱 K. pneumoniae媛 8二쇰줈 珥 10二쇨 遺꾨━릺뼱 媛옣 留롮 遺꾨━쑉쓣 蹂댁怨, 떎쓬쑝濡 媛앸떞 寃泥댁뿉꽌 E. coli 1二, K. pneumoniae 5二, E. cloacae 4二, E. aerogenes媛 1二쇰줈 珥 8二쇨 遺꾨━릺뿀怨, 洹 쇅 삁븸 寃泥 벑뿉꽌 10二쇨 遺꾨━릺뿀떎(Table 1). Hodge 蹂踰 떆뿕뿉꽌 E. coli 1二, K. pneumonia 6二, 洹몃━怨 Enterbacter spp. 4二쇰줈 珥 11二쇨 뼇꽦쑝濡 굹굹, 떆뿕뿉 궗슜븳 洹좎<뒗 슚냼뿉 쓽븳 carbapenem 궡꽦쓣 蹂댁씠뒗 洹좎<媛 11二(39.3%)씠怨, porin 냼떎씠굹, efflux pump뿉 쓽븳 궡꽦 洹좎<뒗 17二(60.7%)濡 굹궗떎(data not shown). Sodium mercaptopropionic acid (SMA) double disc synergy (DDS) 떆뿕뿉꽌뒗 뼇꽦쓣 蹂댁씠뒗 洹좎<媛 뾾뼱 MBL뿉 쓽븳 carbapenem 궡꽦 洹좎<뒗 뾾뿀떎. Lee 벑쓽 쓽븯硫 援궡 MBL 깮꽦 P. aeruginosa A. baumanni媛 넂 鍮꾩쑉濡 寃異쒕릺뒗 寃껋쑝濡 蹂닿퀬븯쑝굹(Lee et al., 2004), 씠뱾 Enterobacteriaceae 媛꾩뿉 MBL뿉 쓽븳 궡꽦 닔룊쟾떖 븘吏 뱶臾 寃껋쑝濡 蹂댁씠硫, CRE媛 寃異쒕맂 씠옒濡 떆湲곗 吏뿭뿉 뵲씪꽌뒗 CPE 異쒗쁽쑉뿉 李⑥씠媛 엳쓣닔 엳뒗 寃껋쑝濡 蹂댁씤떎.

Specimens with isolates of carbapenem-resistant Enterobacteriaceae

Isolates (No. of isolates) No. of specimens

Sputum Urine Blood Catheter tip Bile Fluid
E. coli (7) 1 2 2 1 1 0
K pneumoniae (16) 5 8 1 0 0 2
E. cloacae (4) 2 0 2 0 0 0
E. aerogenes (1) 0 0 0 0 1 0

Total 8 10 5 1 2 2


CRE뿉 븳 빆洹좎젣쓽 MIC뒗 imipenem 1~64 μg/mL, meropenem 0.12~32 μg/mL瑜 蹂댁怨, cephalothin >128 μg/mL, ceftazidime 128~>128 μg/mL, cefotaxime 32~>128 μg/mL濡 굹굹, carbapenem뿉 궡꽦씪 肉 븘땲씪, 떎瑜 醫낅쪟쓽 β-lactam젣젣뿉룄 넂 MIC瑜 蹂댁떎. 삉븳 떎瑜 怨꾩뿴쓽 빆洹좎젣쓽 MIC룄 amikacin >128 μg/mL, ciprofloxacin 1~128 μg/mL濡 굹굹 鍮꾧탳쟻 넂 MIC 媛믪쓣 蹂댁怨(Table 2), 뵲씪꽌 떎젣 궡꽦 Enterobacteriaceae媛 異쒗쁽븯뒗 寃껋쓣 븣 닔 엳뿀떎. 븳렪, E. coli 7二쇱 K. pneumoniae 16二쇱뿉 븳 Camellia sienensis (L.) O. Kuntze 뿴닔異붿텧臾쇱쓽 MIC뒗 0.12~0.5 μl/ml, Enterobacter spp. 5二쇱뿉 빐꽌뒗 0.06~0.25 μL/mL濡 굹굹 鍮꾧탳쟻 궙 媛믪쓣 蹂댁떎.

MICs of antimicrobial agents and Camellia sienensis (L.) O. Kuntze hot water extract for carbapenem-resistant Enterobacteriaceae isolates

Isolates
(No. of isolates)
MIC range (μg/mL)a

Camellia sienensis (L.) O. Kuntze hot water extract (μL/mL) IPM MEM AZT CEP CTX CAZ FEP
E. coli (7) 0.12~0.5 1~64 0.12~8 128~> 128 >128 >128 128~>128 16~>128
K. pneumoniae (16) 0.12~0.5 1~64 0.25~32 64~> 128 >128 128~>128 128~>128 32~>128
Enteiobacter spp. (5) 0.06~0.25 1~8 0.25~2 128~>128 >128 32~>128 128 2~>128

Total (28) 0.06~0.5 1~64 0.12~ 32 64~>128 >128 32~>128 128~>128 2~>128

Isolates
(No. of isolates)
MIC range (μg/mL)a

FOX PIP TET AMK GM CM CIP

E. coli (7) >128 256~>256 1~> 128 >128 ≤0.5~>128 8~128 64~>128
K. pneumoniae (16) 64~> 128 256~>256 2~> 128 >128 ≤0.5~>128 8~128 32~>128
Enteiobacter spp. (5) >128 16~>256 1~> 128 >128 ≤0.5~>128 8~64 1~128

Total (28) 64~> 128 16~>256 1~> 128 >128 ≤0.5~>128 8~128 1~128
IMP, imipenem; MEM, meropenem; AZT, aztreonam; CTX, cefotaxime; CAZ, ceftazidime; FEP, cefepime; CEP, cephalothin; FOX, cefoxitin; AMX, amoxicillin; PIP, piperacillin; TET, tetracycline; AMK, amikacin; GM, gentamicin; CM, chloramphenicol; CIP, ciprofloxacin


Carbapenem 洹몃엺쓬꽦 留됰洹좎뿉 슦닔븳 빟젣濡 븣젮졇 엳쑝굹, carbapenem뿉 궡꽦쓣 蹂댁씠뒗 E. coli, K. pneumonia 洹몃━怨 Enterobacter spp. 媛숈 CRE뒗 쓷엳 슂濡쒓컧뿼 벑 媛먯뿼솚옄 移섎즺뿉 뼱젮쓣 蹂댁씤떎. Friedman怨 Toda 벑 洹몃엺뼇꽦 꽭洹좉낵 洹몃엺쓬꽦 꽭洹좎 catechin뿉 媛먯닔꽦씠 엳쓬쓣 떆궗븳 諛 엳떎(Toda et al., 1989; Toda et al., 1990; Friedman et al., 2006). 蹂 뿰援ъ뿉꽌 CRE뒗 imipenem怨 meropenem肉 븘땲씪 떎뼇븳 빟젣뿉 빐 궡꽦쓣 蹂댁씠怨 엳쑝굹, Camellia sinensis (L.) O. Kuntze 뿴닔異붿텛臾쇱뿉 빐 궙 MIC瑜 蹂댁씠怨 엳뼱 移섎즺 슚怨쇨 떎냼 엳쓣 寃껋쑝濡 湲곕맂떎. 삉븳, Camellia sinensis (L.) O. Kuntze쓽 뵆씪蹂 솕빀臾쇱 留ㅼ슦 넂 냽룄뿉꽌 룞臾쇱뿉 븳 룆꽦씠 뾾쓬쓣 諛앺엺 諛 엳떎(Bandyopadhyay et al., 2005).

Camellia sinensis (L.) O. Kuntze뿉꽌 뼸 뿴닔異붿텧臾쇱뿉뒗 catechin 벑怨 媛숈 럹 솕빀臾쇰뱾쓣 븿쑀븯怨 엳怨, catechin 솕빀臾쇨낵 뿴쓣 媛븯硫 깮꽦릺뒗 씠뱾 씠꽦泥대뱾씠 CRE뿉 븳 빆洹좊젰쓣 蹂댁씠誘濡, 씠뱾 쑀룄泥댁뿉 쓽븳 넂 빆洹좏솢꽦 臾쇱쭏쓣 깘깋븯嫄곕굹, 긽뭹솕맂 빆洹좎젣 蹂묓빀슂踰뺤쓣 궗슜븳떎硫 궃移섏꽦 CRE 媛먯뿼 移섎즺뿉 룄씠 맆 寃껋쑝濡 蹂댁씤떎.

ACKNOWLEDGEMENT

洹좎< 닔吏묒뿉 룄쓣 二쇱떊 源쑄떇 꽑깮떂뿉寃 媛먯궗뱶由쎈땲떎.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

References
  1. Bandyopadhyay D, Chatterjee TK, Dasgupta A, Lourduraja J, Dastidar SG. 2005. In vitro and in vivo antimicrobial action of tea:The commonest beverage of asia. Biol Pharm Bull. 2005. 28: 2125-2127.
    Pubmed CrossRef
  2. Bonine NG, Berger A, Altincatal A, Wang R, Bhagnani T, Gillard P, Lodise T. Associations between timeliness of therapy and clinical and economic outcomes among patients with serious infections due to gram-negative bacteria (GNB):how much does delayed appropriate therapy (DAT) matter?
  3. Tellado JM, Sen SS, Caloto MT, Kumar RN, Nocea G. 2007. Consequences of inappropriate initial empiric parenteral antibiotic therapy among patients with community-acquired intra-abdominal infections in Spain. Scand J Infect Dis. 2007. 39: 947-955.
    Pubmed CrossRef
  4. Toda M, Okubo S, Hiyoshi R, Shimamura T. 1989. The bactericidal activity of tea and coffee. Lett Appl Microbiol. 1989. 8: 123-125.
    CrossRef
  5. Toda M, Okubo S, Ikigai H, Shimamura T. 1990. Antibacterial and anti-hemolysin activities of tea catechins and their structural relatives. Jap J Bacteriol. 1990. 45: 561-566.
    Pubmed CrossRef
  6. Zaveri NT. 2006. Green tea and its polyphenolic catechins:Medicinal uses in cancer and non cancer applications. Life Sci. 2006. 78: 2073-2080.
    Pubmed CrossRef
  7. Zilberberg MD, Nathanson BH, Sulham K, Fan W, Shorr AF. 2017. Carbapenem resistance, inappropriate empiric treatment and outcomes among patients hospitalized with Enterobacteriaceae urinary tract infection, pneumonia and sepsis. BMC Infect Dis. 2017. 17: 279.
    Pubmed KoreaMed CrossRef