Search for


TEXT SIZE

search for



CrossRef (0)
Detection of Microbial Contamination in Commercial Berries
Biomed Sci Letters 2017;23:333-338
Published online December 31, 2017;  https://doi.org/10.15616/BSL.2017.23.4.333
© 2017 The Korean Society For Biomedical Laboratory Sciences.

Kyu-Bong Cho

Department of Biomedical Laboratory Science, Shinhan University, Gyeonggi 11644, Korea
Correspondence to: Kyu-Bong Cho. Department of Biomedical Laboratory Science, Shinhan University, Gyeongg 11644, Korea. Tel: +82-31-870-3712, Fax: +82-31-870-3719, e-mail: kbcho@shinhan.ac.kr
Received November 7, 2017; Revised November 23, 2017; Accepted November 23, 2017.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract

This study was performed to assess microbial contamination of Aronia melanocarpa, blueberry, raspberry, and cranberry sold in several markets. We investigated total aerobic bacteria and detected foodborne bacteria by multiplex PCR from Aronia melanocarpa, blueberry, raspberry, and cranberry. Total aerobic bacteria of each sample showed mean 3.54 log CFU/g for Aronia melanocarpa, mean 1.90 log CFU/g for blueberry, and mean 1.40 log CFU/g for raspberry, but not detected in cranberry. Specially, Aronia melanocarpa contained high total aerobic bacteria contamination among various berries and contamination level reached 4.17 log CFU/g in sample 5. To evaluate the effect of distribution conditions, we also investigated total aerobic bacteria of various berries. Total aerobic bacteria showed mean 2.89 log CFU/g for berries in refrigerated distribution and 1.40 log CFU/g in frozen distribution, but not in dry distribution. For assessment of foodborne bacteria contamination, we conducted PCR with multiplex primers of E. coliO157, S. aureus, B. cereus, V. parahaemolyticus, L. monocytogenes, Y. enterocolitica, Salmonella spp., Shigella spp. Among these foodborne bacteria, B. cereus was amplified in Aronia melanocarpa in sample 4 and blueberry in sample 1, 2, 3, and 5. The result of quantitative analysis of B. cereus contamination showed 4.08 log CFU/g of Aronia melanocarpa in sample 4 and higher contamination rate 4.07 log CFU/g of blueberry in sample 3. These results suggest that strict food safety control in harvest and distribution of various berries is necessary to prevent foodborne disease and improve microbiological safety.

Keywords : Berries, Total aerobic bacteria, Foodborne bacteria, PCR, B. cereus
꽌濡

理쒓렐 쓽븰쓽 諛쒕떖濡 怨좊졊솕떆媛 룄옒븿뿉 뵲씪 떎뼇븳 떇臾쇱꽦 湲곕뒫떇뭹쓽 슚뒫뿉 븳 솢諛쒗븳 뿰援ш 吏꾪뻾릺怨 엳떎. 듅엳 踰좊━瑜섏뿉 뱾뼱엳뒗 빆궛솕臾쇱쭏씠 꽭룷 궡 옄쑀씪뵒移쇱쓣 냼嫄고븯뿬 끂솕瑜 吏뿰떆耳쒖<怨 뒪듃젅뒪濡 씤븳 吏덈퀝뿉 슚怨쇨 엳떎뒗 슚뒫씠 븣젮吏湲 떆옉븯硫댁꽌 쟾 꽭怨꾩쟻쑝濡 踰좊━瑜섏쓽 냼鍮꾧 利앷븯怨 엳떎(Lee and Bae, 2011; FAO, 2014). 理쒓렐뿉뒗 援궡뿉꽌룄 踰좊━瑜섏쓽 옱諛곕㈃쟻씠 겕寃 利앷릺怨 엳쑝硫 뼢썑 깮궛웾 諛 냼鍮꾨웾씠 겕寃 利앷븷 寃껋쑝濡 삁긽릺怨 엳떎(Kim et al., 2013). 諛섎㈃뿉 踰좊━瑜섏쓽 깮궛怨 냼鍮꾧 利앷븯怨 엳吏留, 媛怨 諛 쑀넻怨쇱젙뿉꽌 쐞깮怨 븞쟾愿由ш 젣濡 씠猷⑥뼱吏吏 븡뒗떎硫 떇以묐룆 벑 쐞빐媛 諛쒖깮븷 媛뒫꽦씠 留ㅼ슦 而ㅼ怨 엳뒗 떎젙씠떎. 듅엳 踰좊━瑜섎뒗 넗뼇뿉꽌 옄씪뒗 떇臾쇰줈 닔솗怨쇱젙뿉꽌 넗뼇怨 愿怨꾩슜닔쓽 젒珥, 옉뾽옄쓽 鍮꾩쐞깮쟻씤 痍④툒 벑쑝濡 씤븯뿬 誘몄깮臾쇱뿉 삤뿼맆 媛뒫꽦씠 넂떎(Pangloli and Hung, 2013). 떎젣濡 넗뼇뿉꽌 꽦옣븯뒗 떎뼇븳 寃ш낵 醫낆떎瑜섍 B. cereus뿉 떖媛곹븯寃 삤뿼릺뼱 엳쓬씠 援궡뿉꽌 蹂닿퀬맂 諛 엳떎(Hong, 2016). 洹몃윭誘濡 踰좊━瑜섏쓽 븞쟾꽦쓣 솗蹂댄븯湲 쐞빐꽌뒗 깮궛, 닔솗 썑 愿由 諛 쑀넻떒怨꾩뿉꽌 踰좊━瑜섏뿉 옍瑜섑븷 닔 엳뒗 誘몄깮臾쇳븰쟻 쐞빐 슂냼瑜 쟻젅븯寃 愿由ы븯뒗 寃껋씠 븘슂븯떎(Lee et al., 2009).

떇뭹쑝濡 씤븳 쐞빐瑜 諛⑹븯怨 븞쟾꽦쓣 솗蹂댄븯湲 쐞븯뿬 떇뭹 썝猷뚯쓽 깮궛뿉꽌遺꽣 쑀넻떒怨꾧퉴吏 留롮 끂젰뱾씠 븘슂븯硫 援媛 李⑥썝뿉꽌 泥좎븳 떇以묐룆 愿由ш 씠猷⑥뼱吏怨 엳쓬뿉룄 遺덇뎄븯怨 떇뭹쓽 꽠痍⑤줈 씤븳 떇以묐룆 솚옄 諛쒖깮嫄댁닔뒗 以꾩뼱뱾吏 븡怨 엳떎(떇뭹븞쟾젙蹂댄룷꽭). 듅엳 誘멸뎅뿉꽌뒗 2013뀈源뚯 씪利덈쿋由(raspberrry)쓽 꽠痍④ 썝씤씠 릺뼱 뿬윭 踰덉쓽 삎 떇以묐룆씠 諛쒖깮븳 궗濡媛 蹂닿퀬릺뿀떎(Xu and Wu, 2016). 씠뒗 냼鍮꾩옄뱾씠 踰좊━瑜섎 援щℓ븯뿬 蹂꾨룄쓽 뿴 泥섎━굹 꽭泥숈뾾씠 洹몃濡 꽠痍⑦븯嫄곕굹 룞寃 썑 깋룞 긽깭濡 씠슜븯湲 븣臾몄뿉 삤뿼맂 誘몄깮臾쇱뿉 쓽븳 떇以묐룆 쑀諛 媛뒫꽦씠 뜑슧 넂湲 븣臾몄씠떎(Oms-Oliu et al., 2010). 씠윭븳 踰좊━瑜섏쓽 誘몄깮臾 삤뿼쓣 궙異붽린 쐞븳 諛⑸쾿쓽 씪솚쑝濡 씠궛솕뿼냼 벑 솕븰쟻 궡洹좎젣뱾 諛 뿼냼怨 궡洹좎젣瑜 泥댄븷 닔 엳뒗 꽭泥숈궡洹좎뿉 븳 뿰援ш 솢諛쒗븯寃 吏꾪뻾릺怨 엳떎(Keskinen et al., 2009; Vaid, 2010). 븯吏留 踰좊━瑜섏쓽 듅꽦씠 諛섏쁺맂 쐞깮 긽깭뿉 븳 議곗궗媛 옒 씠猷⑥뼱吏吏 븡怨 엳쑝硫 援ъ껜쟻씤 쐞깮湲곗쓽 留덈젴 삉븳 떆湲됲븳 긽깭씠떎.

떆以묒뿉 쑀넻 諛 뙋留ㅻ릺怨 엳뒗 踰좊━瑜섎뒗 媛뿴怨쇱젙 뾾씠 洹몃濡 꽠痍⑦븯뒗 듅꽦쑝濡 씤븯뿬 떇以묐룆쓽 諛쒖깮 쐞뿕씠 떎瑜 떇뭹뱾뿉 鍮꾪븯뿬 留ㅼ슦 넂쓣 寃껋쑝濡 삁긽맂떎. 뵲씪꽌 蹂 뿰援ъ뿉꽌뒗 떆以묒뿉 쑀넻릺怨 엳뒗 踰좊━瑜섏뿉 븳 誘몄깮臾쇳븰쟻 삤뿼룄瑜 뙆븙븯뿬 쐞깮떎깭瑜 議곗궗븯怨좎옄 떎떆븯떎.

옱猷 諛 諛⑸쾿

踰좊━瑜 援ъ엯 諛 寃泥댁븸 젣議

蹂 뿰援щ긽 떆猷뚮뒗 2017뀈 6썡遺꽣 꽌슱遺곷 諛 寃쎄린遺곷 吏뿭뿉 냼옱븯뒗 4怨녹쓽 삎留덊듃 留ㅼ옣뿉꽌 4醫낅쪟쓽 踰좊━瑜 珥 18媛쒖쓽 떆猷뚮 援ъ엯븯뿬 떎뿕뿉 궗슜븯떎. 援ъ엯븳 踰좊━瑜섎뒗 븘濡쒕땲븘(Aronia melanocarpa) 5媛 떆猷, 釉붾(踰좊━(blueberry) 5媛 떆猷, 옪뒪踰좊━(raspberry) 4媛 떆猷, 겕옖踰좊━(cranberry) 4媛 떆猷뚯씠떎. 援ъ엯븳 踰좊━瑜 떆猷뚮 硫멸퇏諛깆뿉 꽔怨 떆猷뚯 硫멸퇏깮由ъ떇뿼닔瑜 1:10 (w/v)쓽 鍮꾩쑉濡 븯뿬 bag-mixer (Interscience, HG-92G, USA)濡 1遺꾧컙 洹좎쭏솕븯떎.

씪諛섏꽭洹 젙웾遺꾩꽍

씪諛섏꽭洹좎 洹좎쭏솕맂 씗꽍슜븸 1 ml瑜 씪諛섏꽭洹좎닔 痢≪젙嫄댁“諛곗(aerobic count plate, 3 M, USA)뿉 triplicate濡 遺꾩<븯뿬 35°C뿉꽌 24~48떆媛 룞븞 諛곗뼇븳 썑 遺됱 吏묐씫닔瑜 怨꾩궛븯쑝硫 룊洹 吏묐씫닔뿉 씗꽍諛곗닔瑜 怨깊븯뿬 理쒖쥌洹좎닔瑜 궛異쒗븯떎.

Multiplex PCR뿉 쓽븳 떇以묐룆洹 議곗궗

떇以묐룆洹좎뿉 븳 寃異쒖 떇뭹쓽빟뭹븞쟾泥섏쓽 떇以묐룆 썝씤議곗궗 떆뿕踰 媛씠뱶씪씤쓣 以닔븯뿬 multiplex PCR쓣 닔뻾븯떎. Listeria monocytogenes뒗 떆猷 25 g怨 Listeria enrichment broth (LEB) 225 ml瑜 硫멸퇏諛깆뿉 꽔뼱 bag-mixer瑜 씠슜븯뿬 mix븳 썑 35°C뿉꽌 48떆媛 諛곗뼇븯쑝硫 湲고 굹癒몄 떇以묐룆 썝씤洹좎 tripticase soy broth (TSB) 諛곗瑜 씠슜븯뿬 룞씪븳 諛⑸쾿쑝濡 mix븳 썑 35°C뿉꽌 24떆媛 諛곗뼇븯떎. LEB TSB뿉꽌 利앷퇏맂 媛 떆猷뚯쓽 DNA뒗 Power prepTM DNA extraction kit (Kogenbiotech, Korea)瑜 씠슜븯뿬 젣議곗궗媛 젣떆븯뒗 諛⑸쾿뿉 뵲씪 異붿텧븯떎. 媛꾨떒엳 슂빟븯硫 利앷퇏븸 1 ml뿉 400 μl쓽 lysis buffer A 40 μl쓽 lysis buffer B, 10 μl쓽 proteinase K RNase A瑜 꽔怨 65°C water bath뿉꽌 1떆媛 룞븞 諛섏쓳떆궓 썑 binding buffer 400 μl瑜 泥④븯떎. Spin column怨 썝떖遺꾨━瑜 씠슜븯뿬 떆猷뚯쓽 DNA瑜 移⑥쟾떆궓 썑, washing buffer 600 μl濡 꽭泥숉븳 떎쓬, elution buffer 100 μl뿉 끃뿬 8,000 rpm쑝濡 3遺 썝떖遺꾨━븯뿬 DNA瑜 異붿텧븯뿬 multiplex PCR뿉 궗슜븯떎.

Multiplex PCR kit뒗 E. coli O157, Staphylococcus aureus, Bacillus cereus, Vibrio parahaemolyticus, Listeria monocytogenes, Yersinia enterocolitica, Salmonella spp., Shigella spp. 벑 珥 8醫낆쓽 떇以묐룆 썝씤洹좎쓣 寃異쒗븯湲 쐞븯뿬 젣議곕맂 powerchekTM multiplex pathogen detection kit (Kogenbiotech, Korea)瑜 씠슜븯뿬 PCR쓣 닔뻾븯뿬 媛곴컖쓽 떇以묐룆 썝씤洹좎뿉 븳 듅씠 쑀쟾옄瑜 利앺룺븯떎. Multiplex primers쓽 媛 꽭洹좊퀎 긽쑀쟾옄 利앺룺궛臾쇱쓽 DNA쓽 겕湲곕뒗 Table 1怨 媛숇떎. Polymerase chain reaction (PCR)쓣 닔뻾븯湲 쐞븯뿬, 珥 諛섏쓳븸씠 20 μl媛 릺룄濡 primer mix 4 μl, 5× reaction buffer 4 μl, Taq DNA polymerase 0.5 μl, template DNA distilled water瑜 泥④븯뿬 95°C뿉꽌 10遺 룞븞 諛섏쓳떆궓 썑 95°C뿉꽌 30珥, 60°C뿉꽌 30珥, 72°C뿉꽌 30珥 諛섏쓳 議곌굔쑝濡 35 cycle쓣 利앺룺븯떎. PCR 利앺룺뿉뒗 MJ research PCR system쓣 씠슜븯떎. 씠젃寃 뼸뼱吏 PCR 利앺룺궛臾쇱 2% agarose gel뿉꽌 쟾湲곗쁺룞 썑 ethidium bromide (EtBr)濡 뿼깋븯뿬 솗씤븯떎.

PCR amplicon size in multiplex PCR

 Control  PathogenTarget geneAmplicon size (bp)
Control DNA 1Salmonella spp. invA675
Listeria monocytogenes prfA450
Bacillus cereus groEL303
E. coli O157 VT2208

Control DNA 2Yersinia enterocolitica inv562
Vibrio paraheamolyticus toxR375
Staphylococcus aureus femA264
Shigella spp. ipaH141

B. cereus 젙웾寃궗

PCR쓣 넻븯뿬 寃異쒕맂 二쇱슂 떇以묐룆洹좎씤 B. cereus뿉 븯뿬 媛 떆猷뚮퀎濡 젙웾寃궗瑜 떎떆븯떎. 寃異쒕맂 떆猷뚯 硫멸퇏깮由ъ떇뿼닔瑜 1:10 (w/v)쓽 鍮꾩쑉濡 븯뿬 bag-mixer뿉 꽔怨 1遺꾧컙 洹좎쭏솕 븳 썑뿉 10諛곕줈 怨꾨떒 씗꽍븯떎. 씗꽍븸 0.2 ml쓣 mannitol egg yolk polymicin agar (MYP agar; Difco, USA)뿉 룄留먰븯뿬 30°C뿉꽌 24떆媛 諛곗뼇븳 썑 깮꽦맂 吏묐씫닔瑜 怨꾩닔븯떎.

寃곌낵

씪諛섏꽭洹좎닔 삤뿼룄 遺꾩꽍

踰좊━瑜섏쓽 씪諛섏꽭洹좎닔 삤뿼룄瑜 遺꾩꽍븯湲 쐞븯뿬 삎留덊듃 4怨녹뿉꽌 븘濡쒕땲븘, 釉붾(踰좊━, 옪뒪踰좊━, 겕옖踰좊━ 18媛 떆猷뚮 援ъ엯븯뿬 떆猷뚮 利앸쪟닔뿉 떒怨꾨퀎濡 씗꽍븳 썑 씪諛섏꽭洹좎닔 痢≪젙 嫄댁“븘由꾨같吏뿉 젒醫낇븯怨 諛곗뼇븯뿬 吏묐씫닔瑜 痢≪젙븯떎. 븘濡쒕땲븘뒗 3媛쒖쓽 떆猷뚯뿉꽌 씪諛섏꽭洹좎씠 寃異쒕릺뿀怨 釉붾(踰좊━뒗 2媛쒖쓽 떆猷뚯뿉꽌 씪諛섏꽭洹좎씠 寃異쒕릺뿀쑝硫 옪뒪踰좊━ 뿭떆 2媛쒖쓽 떆猷뚯뿉꽌 寃異쒕릺뿀떎. 겕옖踰좊━뒗 援ъ엯븳 紐⑤뱺 떆猷뚯뿉꽌 씪諛섏꽭洹좎씠 寃異쒕릺吏 븡븯떎(Table 2). 븘濡쒕땲븘뒗 떆猷 5뿉꽌 4.17 log CFU/g쑝濡 媛옣 넂 삤뿼쓣 蹂댁쑝硫 룊洹 3.54 log CFU/g瑜 굹깉떎. 釉붾(踰좊━뒗 떆猷 2 떆猷 5뿉꽌 씪諛섏꽭洹좎씠 寃異쒕릺뿀쑝硫 룊洹 1.90 log CFU/g瑜 굹깉떎. 옪뒪踰좊━뒗 떆猷 1怨 떆猷 4뿉꽌 寃異쒕릺뿀怨 룊洹 1.40 log CFU/g瑜 굹깉떎. 洹몃윭誘濡 떆以묒뿉 쑀넻릺뒗 踰좊━瑜 以묒뿉꽌 씪諛섏꽭洹좎삤뿼씠 媛옣 떖븳 寃껋 븘濡쒕땲븘濡 굹궗떎.

Number of total aerobic bacteria in berries

Type of berriesSamplesTotal aerobic bacteria (log CFU/g)

EachMean ± SD
Aronia melanocarpa13.733.54±0.74
2ND
3ND
42.73
54.17

Blueberry1ND1.90±0.14
22.0
3ND
4ND
51.90

Raspberry11.301.40±0.14
2ND
3ND
41.50

Cranberry1NDND
2ND
3ND
4ND

Abbreviations: CFU, colony forming unit; SD, standard deviation; ND, not detected


援ъ엯븳 踰좊━瑜섎뒗 嫄댁“, 깋옣, 깋룞 긽깭濡 援щ텇븯뿬 떆以묒뿉꽌 쑀넻릺怨 엳뼱 踰좊━瑜섏쓽 쑀넻 議곌굔뿉 뵲瑜 씪諛섏꽭洹좎닔 삤뿼룄瑜 遺꾩꽍븯떎. 洹 寃곌낵, 嫄댁“ 긽깭濡 쑀넻릺뒗 踰좊━瑜섏뿉꽌뒗 씪諛섏꽭洹좎씠 寃異쒕릺吏 븡븯쑝硫 깋옣 긽깭濡 쑀넻릺뒗 踰좊━瑜섎뒗 룊洹 2.89 log CFU/g媛 寃異쒕릺뿀떎. 삉븳 깋룞 긽깭濡 쑀넻릺뒗 踰좊━瑜섎뒗 룊洹 1.40 log CFU/g쓽 씪諛섏꽭洹좎씠 寃異쒕릺뿀떎(Table 3).

Number of total aerobic bacteria according to distribution conditions of berries

 DistributionsTotal aerobic bacteria (log CFU/g) (Mean ± SD)
Refrigerated distribution2.89±1.04
Frozen distribution1.40±0.14
Dry distributionND

Abbreviations: CFU, colony forming unit; SD, standard deviation; ND, not detected


Multiplex PCR쓣 씠슜븳 떇以묐룆洹 議곗궗

踰좊━瑜섏쓽 떇以묐룆洹 삤뿼쓣 遺꾩꽍븯湲 쐞븯뿬 E. coli O157, S. aureus, B. cereus, V. parahaemolyticus, L. monocytogenes, Y. enterocolitica, Salmonella spp., Shigella spp. 벑 8醫낆쓽 二쇱슂 떇以묐룆洹 multiplex primes瑜 씠슜븯뿬 polymerase chain reaction (PCR)쓣 닔뻾븯떎. 媛 떆猷뚮 떇以묐룆洹 利앹떇諛곗뿉 씗꽍븯뿬 諛곗뼇븯怨 利앹떇븳 꽭洹좎쓽 DNA瑜 異붿텧븯뿬 PCR뿉 씠슜븯떎. 4媛쒖쓽 釉붾(踰좊━ 떆猷뚯 븳 媛쒖쓽 븘濡쒕땲븘 떆猷뚯뿉꽌 B. cereus媛 寃異쒕릺뿀쑝硫 옪뒪踰좊━ 겕옖踰좊━뿉꽌뒗 二쇱슂 떇以묐룆洹좎쓽 DNA媛 寃異쒕릺吏 븡븯떎(Fig. 1). PCR 寃곌낵 B. cereus 쑀쟾옄 利앺룺 뼇긽씠 떆猷뚯뿉 뵲씪 떎냼 李⑥씠媛 엳뒗 寃껋쓣 븣 닔 엳뿀떎. 쑀쟾옄 利앺룺궛臾쇱쓽 뼇씠 떆猷뚯뿉 뵲씪 李⑥씠媛 엳뿀쑝硫, 媛옣 利앺룺 뼇씠 옉 寃껋 釉붾(踰좊━쓽 떆猷 1濡 굹궗怨, 媛옣 利앺룺 뼇씠 留롮 寃껋 釉붾(踰좊━쓽 떆猷 3쑝濡 굹궗떎.

Fig. 1.

Detection of foodborne bacteria by PCR using multiplex pathogen detection primers from Blueberry (A) and Aronia melanocarpa (B). 1: sample 1, 2: sample 2, 3: sample 3, 4: sample 4, CON1: control DNA 1, CON2: control DNA 2


B. cereus 삤뿼룄 遺꾩꽍

踰좊━瑜섏뿉꽌 떇以묐룆쓣 쑀諛쒗븯뒗 썝씤洹좎쓽 遺꾪룷瑜 솗씤븯湲 쐞븯뿬 PCR쓣 닔뻾븳 寃곌낵 B. cereus媛 寃異쒕릺뿀쑝硫 寃異쒕맂 踰좊━瑜섏뿉꽌 B. cereus쓽 삤뿼 젙룄瑜 솗씤븯湲 쐞븯뿬 젙웾떎뿕쓣 닔뻾븯떎. 븘濡쒕땲븘쓽 寃쎌슦 떆猷 4뿉꽌 4.08 log CFU/g媛 寃異쒕릺뿀쑝硫 釉붾(踰좊━쓽 寃쎌슦 떆猷 1뿉꽌 3.68 log CFU/g, 떆猷 2뿉꽌 3.73 log CFU/g, 떆猷 3뿉꽌 4.07 log CFU/g, 洹몃━怨 떆猷 5뿉꽌 3.67 log CFU/g媛 寃異쒕릺뿀떎(Table 4). 釉붾(踰좊━ 떆猷뚮뱾뿉꽌 媛옣 B. cereus쓽 삤뿼씠 떖븳 寃껋 떆猷 3쑝濡 굹궗떎. 씠윭븳 寃곌낵뒗 PCR 닔뻾 떆 媛옣 留롮 쑀쟾옄媛 利앺룺맂 寃곌낵 씪移섑븯뒗 寃껋쓣 븣 닔 엳뿀떎. 삉븳 紐⑤몢 깋옣 긽깭濡 쑀넻릺怨 엳뒗 踰좊━瑜섏뿉꽌留 B. cereus媛 寃異쒕릺뿀怨 嫄댁“ 諛 깋룞 쑀넻뿉꽌뒗 떇以묐룆洹좎씠 寃異쒕릺吏 븡븯떎.

Number of B. cereus detected from various berries

 Type of berriesSamplesB. cereus (log CFU/g)
Aronia melanocarpa44.08

Blueberry13.68
23.73
34.07
53.67

Abbreviations: CFU, colony forming unit


怨좎같

蹂 뿰援ъ뿉꽌뒗 嫄닿컯쓣 쑀吏븯怨 吏덈퀝쓽 삁諛⑹뿉 븘슂븳 떎뼇븳 깮由ы솢꽦臾쇱쭏쓣 븿쑀븯怨 엳뒗 寃껋쑝濡 븣젮吏硫댁꽌 理쒓렐 냼鍮꾨웾씠 湲됱쬆븯怨 엳뒗 踰좊━瑜섏뿉 븳 誘몄깮臾쇳븰쟻 븞쟾꽦쓣 솗씤븯湲 쐞븯뿬, 떆以묒뿉 쑀넻릺怨 엳뒗 떎뼇븳 醫낅쪟쓽 踰좊━瑜섏뿉꽌 誘몄깮臾 삤뿼쓣 遺꾩꽍븯怨좎옄 닔뻾븯떎. 뿰援 寃곌낵, 떆以묒뿉 쑀넻릺怨 엳뒗 踰좊━瑜섏뿉꽌 씪諛섏꽭洹좎씠 寃異쒕릺뿀쑝硫 媛옣 삤뿼씠 떖븳 寃껋 븘濡쒕땲븘濡 굹궗떎. 삉븳 嫄댁“, 깋옣, 깋룞 쑀넻 議곌굔뿉 뵲瑜 씪諛섏꽭洹 삤뿼룄瑜 鍮꾧탳븳 寃곌낵 깋옣 쑀넻쓽 寃쎌슦媛 씪諛섏꽭洹좎쓽 삤뿼씠 媛옣 떖븯怨 洹 떎쓬씠 깋룞 쑀넻쑝濡 굹궗떎. 嫄댁“긽깭濡 쑀넻릺뒗 踰좊━瑜섏뿉꽌 씪諛섏꽭洹좎씠 寃異쒕릺吏 븡 寃껋 닔遺꾪솢꽦룄媛 궙븘꽌 誘몄깮臾쇱씠 利앹떇븯湲곗뿉 쟻빀븯吏 紐삵븳 솚寃 븣臾몄씠씪 깮媛곷맂떎. 깋옣 긽깭濡 쑀넻릺뒗 踰좊━瑜섎뒗 떎瑜 쑀넻 議곌굔蹂대떎 誘몄깮臾쇱씠 利앹떇븯湲곗뿉 鍮꾧탳쟻 쟻빀븳 삩룄濡 씤븯뿬 媛옣 넂 삤뿼룄瑜 蹂댁쓣 寃껋쑝濡 깮媛곷맂떎. 븯吏留 援궡뿉꽌 踰좊━瑜섎 寃쎌옉븯뒗 넗뼇뿉꽌 씪諛섏꽭洹좎쓣 鍮꾨’븳 떎뼇븳 꽭洹좊뱾씠 肉뚮━ 븿猿 利앹떇븯怨 엳떎뒗 寃껋씠 蹂닿퀬맂 諛 엳쑝硫(Ahn et al., 2010) 넗뼇쑝濡쒕꽣 쑀옒븯뒗 寃 쇅뿉룄 옉뾽옄쓽 鍮꾩쐞깮쟻씤 痍④툒, 븞쟾븯吏 紐삵븳 옉뾽솚寃, 쑀넻怨쇱젙뿉꽌쓽 삤뿼 벑 떎뼇븳 썝씤뱾뿉꽌 湲곗씤븯뒗 寃껋쑝濡 븣젮議뚮떎. 洹몃윭誘濡 닔솗 썑 踰좊━瑜섏뿉 誘몄깮臾쇱쓽 삤뿼쓣 諛⑹븯湲 쐞븳 뜑슧 泥좎븳 쐞깮愿由ш 씠猷⑥뼱졇빞 븷 寃껋쑝濡 깮媛곷릺硫, 씠瑜 쐞빐 쁽옱 踰좊━瑜섏쓽 誘몄깮臾쇳븰쟻 뭹吏덊뼢긽쓣 쐞븳 꽭泥숈떆뒪뀥 媛쒕컻 諛 옣 湲곌컙 룞븞쓽 誘몄깮臾쇳븰쟻 븞쟾꽦쓣 솗蹂 벑쓣 쐞븳 뿰援щ뱾씠 솢諛쒗엳 씠猷⑥뼱吏怨 엳뒗 떎젙씠떎(Kim et al., 2010; Chun et al., 2013).

踰좊━瑜섏뿉꽌 떎뼇븳 醫낅쪟쓽 떇以묐룆 썝씤洹좎쓽 삤뿼 젙룄瑜 遺꾩꽍븯湲 쐞븯뿬 multiplex PCR쓣 씠슜븯뿬 떇以묐룆 썝씤洹좎쓽 쑀쟾옄瑜 利앺룺븯떎. 洹 寃곌낵, 븘濡쒕땲븘 釉붾(踰좊━뿉꽌 B. cereus媛 寃異쒕릺뿀쑝硫, E. coli O157, S. aureus, B. cereus, V. parahaemolyticus, L. monocytogenes, Y. enterocolitica, Salmonella spp., Shigella spp.뒗 紐⑤뱺 踰좊━瑜섏뿉꽌 寃異쒕릺吏 븡븯떎. 삉븳 B. cereus쓽 삤뿼 젙룄媛 떆以묒뿉 쑀넻릺怨 엳뒗 뙋留 옣냼뿉 뵲씪 李⑥씠媛 엳뒗 寃껋쓣 븣 닔 엳뿀떎. 뼱뼡 옣냼쓽 떆猷뚯뿉꽌뒗 釉붾(踰좊━ 븘濡쒕땲븘뿉꽌 紐⑤몢 B. cereus媛 寃異쒕릺뿀쑝硫 뼱뼡 옣냼쓽 떆猷뚯뿉꽌뒗 紐⑤뱺 떇以묐룆 썝씤洹좎씠 寃異쒕릺吏 븡븯떎. 洹몃윭誘濡 踰좊━瑜섏쓽 쑀넻 諛 뙋留 옣냼뿉 뵲씪 씪諛섏꽭洹 諛 떇以묐룆洹좎쓽 삤뿼룄 삉븳 떎瑜대떎뒗 寃껋쓣 븣 닔 엳뿀쑝硫, 쑀넻怨쇱젙 以묒쓽 쐞깮愿由ъ뿉룄 李⑥씠媛 엳뒗 寃껋쑝濡 궗猷뚮맂떎. B. cereus뒗 二쇱슂 떇以묐룆 썝씤洹좎쑝濡 援ы넗 꽕궗 利앹긽쓣 굹궡怨, 룷옄 룆냼瑜 삎꽦븯뒗 媛먯뿼꽦 諛 룆냼삎 떇以묐룆쓣 쑀諛쒗븯뒗 寃껋쑝濡 븣젮졇 엳쑝硫 넗뼇쓣 鍮꾨’븯뿬 옄뿰怨꾩뿉 꼸由 遺꾪룷븯怨 엳뼱 떇뭹뿉 삤뿼맆 媛뒫꽦씠 넂怨 떇뭹뿉 냼웾留 삤뿼릺뼱룄 떇以묐룆쓣 쑀諛쒗븷 닔 엳뼱 援媛뿉꽌 떇뭹 쑀삎蹂꾩뿉 뵲씪 湲곗쓣 젙븯뿬 愿由ы븯怨 엳떎(Ceuppens et al., 2013).

떎뼇븳 踰좊━瑜섏뿉 븳 誘몄깮臾쇱쓽 삤뿼 옱諛고솚寃 諛 닔솗 以묒쓽 嫄곕쫫, 愿怨꾩슜닔, 쑀넻떒怨꾩뿉꽌 鍮꾩쐞깮쟻씤 痍④툒 벑씠 썝씤쑝濡 議곗궗릺怨 엳쑝硫(Lee and Eom, 2016). 듅엳 B. cereus뒗 옄뿰怨꾩뿉 二쇰줈 遺꾪룷븯뒗 떇以묐룆 썝씤洹좎쑝濡 넗뼇怨 諛젒븯寃 젒珥됲븯뿬 옱諛고븯뒗 냽궛臾쇱뿉꽌 삤뿼룄媛 넂怨 떇以묐룆 諛쒖깮瑜좊룄 留롮 寃껋쑝濡 蹂닿퀬릺뿀떎(Hong et al., 2012). 삉 떎瑜 썝씤쑝濡 옉뾽옄쓽 媛쒖씤쐞깮 遺덈웾 벑쑝濡 삤뿼맆 媛뒫꽦씠 넂쓣 寃껋쑝濡 깮媛곷맂떎(Kim et al., 2011; Chang, 2016). 踰좊━瑜섏쓽 寃쎌슦 겕湲곌 옉 怨쇱씪瑜섏씠굹 몴硫댁쟻씠 꼻怨 怨쇳뵾媛 뿰빟븯뿬 臾쇰━쟻씤 넀긽씠굹 議곗쭅쓽 뿰솕 벑쑝濡 돺寃 臾쇰윭吏怨 誘몄깮臾 삤뿼뿉 痍⑥빟븯湲 븣臾몄뿉 닔솗븯怨 룷옣븯뒗 떒怨꾩뿉꽌 鍮꾩쐞깮쟻씤 옉뾽옄쓽 넀쓣 넻븯뿬 援먯감삤뿼씠 씪뼱궇 솗瑜좎씠 넂쓣 寃껋쑝濡 깮媛곷맂떎. 理쒓렐뿉뒗 떇뭹쓽 븞쟾꽦쓣 솗蹂댄븯湲 쐞븯뿬 떊꽑렪쓽 떇뭹뿉꽌 誘몄깮臾 깮옣 媛뒫꽦쓣 삁痢≫븯뒗 遺꾩빞쓽 뿰援ш 솢諛쒗븯寃 씠猷⑥뼱吏怨 엳떎. 뵲씪꽌 떇뭹쓽 옣삩룄 룷옣 諛⑸쾿, 꽭泥 諛 궡洹 泥섎━ 벑 떎뼇븳 議곌굔뿉꽌 떆媛꾩쓽 寃쎄낵뿉 뵲瑜 誘몄깮臾쇱쓽 닔瑜 痢≪젙븳 寃곌낵瑜 諛뷀깢쑝濡 誘몄깮臾 삤뿼 媛뒫꽦쓣 삁痢≫븯뒗 닔븰 紐⑤뜽뱾씠 媛쒕컻릺怨 엳쑝굹, 踰좊━瑜섏쓽 寃쎌슦 꽭泥 諛 옣怨쇱젙뿉꽌 誘몄깮臾 삁痢≪뿉 븳 뿰援щ뒗 留ㅼ슦 遺議깊븳 긽깭씠떎. 理쒓렐 吏덈퀝쓽 삁諛 諛 嫄닿컯뿉 븳 愿떖씠 넂븘吏硫댁꽌 떎뼇븳 슚뒫쓣 굹궡뒗 깮由ы솢꽦臾쇱쭏뱾쓣 룷븿븯怨 엳뒗 踰좊━瑜섏쓽 냼鍮꾨웾씠 湲됱쬆븯怨 엳뒗 긽솴씠굹 踰좊━瑜섎뒗 媛뿴븯吏 븡怨 꽠痍⑦븯뒗 듅꽦쑝濡 씤븯뿬 떇以묐룆 쑀諛쒖쓽 떖媛곸꽦씠 留ㅼ슦 넂寃 굹굹怨 엳떎. 洹몃윭誘濡 踰좊━瑜섎줈 씤븳 쐞빐(harm)瑜 삁諛⑺븯怨 떇뭹쓽 븞쟾꽦쓣 솗蹂댄븯湲 쐞븯뿬 踰좊━瑜섏쓽 깮궛 諛 쑀넻떒怨꾩뿉꽌 泥닿퀎쟻씠怨 怨쇳븰쟻씤 쐞깮愿由ъ 씠瑜 쐞븳 뿰援ш 븘슂븷 寃껋쑝濡 깮媛곷맂떎.

ACKNOWLEDGEMENTS

This work was supported by the Shinhan University Research Fund, 2017.

References
  1. Ahn BK, Lee JH, Kim KC, Choi DC, Lee JH, and Han SS. Investigation of relationships between soil physic-chemical properties and topography in Jeonbuk upland fields. Korean Journal of Soil Science and Fertilizer 2010;43:268-274.
  2. Ceuppens S, Boon N, and Uyrrendaele M. Diversity of Bacillus cereus group strains if reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiology Ecology 2013;84:433-450.
    Pubmed CrossRef
  3. Chong MS. Bacterial contamination in disposable wet wipes from general restaurants. Korean Journal of Clinical Laboratory Science 2016;48:237-241.
    CrossRef
  4. Chun HH, Park SH, Choi SR, Song KB, Park SJ, and Lee SH. Development of washing system for improving microbiological quality of blueberry after Postharvest. Journal of the Korean Society of Food Science and Nutrition 2013;42:1886-1891.
    CrossRef
  5. Food and Agriculture Organization (FAO). Food and agricultural organization statistics database (FAOSTAT) 2014.
  6. Hong CK, Seo YH, Choi JM, Hwang IS, and Kim MS. Microbial quality of fresh vegetables and fruits in Seoul, Korea. Journal of Food Hygiene and Safety 2012;27:24-27.
    CrossRef
  7. Hong SH. Investigation of microbial contamination of nuts and seeds. Journal of the Korea Entertainment Industry Association 2016;10:397-403.
    CrossRef
  8. Keskinen LA, Burke A, and Annous BA. Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157: H7 from lettuce leaves. International Journal of Food Microbiology 2009;132:134-140.
    Pubmed CrossRef
  9. Kim JG, Park JY, and Kim JS. A comparison of microbial load on bare and gloved hands among food handlers. Journal of Environ- mental Health Sciences 2011;37:298-305.
  10. Kim JY, Kim HJ, Lim GO, Jang SA, and Song KB. The effects of aqueous chlorine dioxide or fumaric acid treatment combined with UV-C on postharvest quality of 'Maehyang'strawberries. Postharvest Biology and Technology 2010;56:254-256.
    CrossRef
  11. Kim SJ, Park KS, Park SJ, and Kwon YH. Current status of blueberry culture in Korea. Korean Journal of Horticultural Science and Technology 2013;31:139-139.
  12. Lee EJ, and Bae JH. Study on the alleviation of an alcohol induced hangover and the antioxidant activity by mulberry fruit. The Korean Journal of Food and Nutrition 2011;24:204-209.
    CrossRef
  13. Lee HW, Yoon YH, Seo EK, Kim KY, Shim WB, Kil JK, and Jung DH. Microbial hazard analysis for agricultural products processing center of tomato and recommendations to introduce good agricultural practices (GAP) system. Korean Journal of Food Science and Technology 2009;41:210-214.
  14. Lee SY, and Eom YB. Analysis of microbial composition associated with freshwater and seawater. Biomedical Science Letters 2016;22:150-159.
    CrossRef
  15. Oms-Oliu G, Rojas-Grau MA, Gonzalez LA, Varela P, Soliva-Fortuny R, and Hernando MIH. Recent approaches using chemical treatments to preserve quality of fresh-cut fruit: A review. Postharvest Biology and Technology 2010;57:139-148.
    CrossRef
  16. Pangloli P, and Hung YC. Reducing microbiological safety risk on blueberries through innovative washing technologies. Food Control 2013;32:621-625.
    CrossRef
  17. Vaid R, Linton RH, and Morgan MT. Comparison of inactivation of Listeria monocytogenes within a biofilm matrix using chlorine dioxide gas, aqueous chlorine dioxide and sodium hypochlorite treatments. Food Microbiology 2010;27:979-984.
    Pubmed CrossRef
  18. Xu W, and Wu C. The impact of pulsed light on decontamination, quality, and bacterial attachment of fresh raspberries. Food Microbiology 2016;57:135-143.
    Pubmed CrossRef