Search for


TEXT SIZE

search for



CrossRef (0)
Protective Effect of Kaempferol on Cultured Neuroglial Cells Damaged by Induction of Ischemia-like Condition
Biomed Sci Letters 2017;23:339-347
Published online December 31, 2017;  https://doi.org/10.15616/BSL.2017.23.4.339
© 2017 The Korean Society For Biomedical Laboratory Sciences.

Young-Woo Son1, Yu-Ran Choi2, and Young-Mi Seo3,†

1Sanbon Hospital, School of Medicine, Wonkwang University, Gunpo 15865, Korea,
2Department of Physical Therapy, Graduate School of Daejeon University, Daejeon 35235, Korea,
3Department of Nursing, College of Medicine, Seonam University, Namwon 55724, Korea
Correspondence to: Young-Mi Seo. Department of Nursing, College of Medicine, Seonam University, Namwon 55724, Korea. Tel: +82-63-620-0102, Fax: +82-63-620-0154, e-mail: dudn0408@naver.com
Received November 22, 2017; Revised December 19, 2017; Accepted December 19, 2017.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract

This study was performed to evaluate the cytotoxicity induced by ischemia-like condition (ILC) in cultured neuroglial cells (C6 glioma cells). The protective effect of kaempferol (KAE), flavonoid against the cytotoxicity induced by ILC induction was assessed. In addition, antioxidative effects of KAE were done by colorimetric assays. Cell viability and the antioxidative effects such as DPPH-radical scavenging activity, superoxide dismutase (SOD)-like activity and inhibitory activity of lipid peroxidation (LP) were analyzed. ILC induction decreased cell viability in a dose-dependent manner, and the XTT90 value (low cytotoxicity value) and XTT50 value (high cytotoxicity value) were determined during ILC induction for 15 and 40 minutes, respectively. The butylated hydroxytoluene (BHT) antioxidant significantly increased cell viability damaged by the ILC-induced cytotoxicity. In the protective effect of KAE on ILC-induced cytotoxicity, KAE protected the ILC-induced cytotoxicity by the significant increase of cell viability, and also it showed DPPH-radical scavenging ability, SOD-like ability and inhibitory ability of LP. From these results, it is suggested that ILC induction showed cytotoxicity in these cultures and the oxidative stress is involved in the ILC-induced cytotoxicity. While, KAE prevented ILC-induced cytotoxicity by antioxidative effects. In conclusion, natural products like KAE may be a putative therapeutic agent for the treatment of disease associated with oxidative stress such as ischemia.

Keywords : Ischemia, Flavonoid, Cytotoxicity, Antioxidative effect
꽌濡

뿀삁(ischemia) 삁愿쓽 룓깋씠굹 삊李⑹뿉 쓽븳 씪떆쟻씤 삁븸怨듦툒쓽 遺議깆쓣 쓽誘명븯뒗뜲, 뇤뿀삁 뇤삁愿쓽 異쒗삁怨 븿猿 뇤議몄쨷(stroke)쓽 以묒슂븳 슂씤쓽 븯굹濡 옉슜븳떎(Lee and Kim, 2006). 뇤議곗쭅뿉꽌 삁愿씠긽뿉 쓽븳 뿀삁 뇤꽭룷瑜 궛냼寃고븤긽깭濡 留뚮뱾硫 씠 긽깭媛 삤옯룞븞 吏냽릺硫 寃곌뎅 뇤꽭룷뒗 궗硫몃맂떎(Lee et al., 2005). 뇤 援ъ꽦 꽭룷 以 떊寃쎄탳꽭룷뒗 떊寃쎌꽭룷뿉 쁺뼇怨듦툒, 옱깮 諛 젙솕湲곕뒫쓣 媛吏怨 엳쑝硫, 뿀삁怨 媛숈 蹂蹂 떆 쉶蹂듭쓣 쐞븳 빆긽꽦 뿭븷쓣 닔뻾븳떎. 뵲씪꽌 떊寃쎄탳꽭룷媛 넀긽릺硫 뇤꽭룷쓽 궗硫몄씠 뜑슧 珥됱쭊맂떎(Endoh et al., 1994). 뿀삁 쑀諛쒓낵 愿젴씠 源딆 뇤삁愿 吏덊솚쓽 媛옣 몴쟻씤 蹂묒씤쓽 븯굹씤 二쎌긽寃쏀솕利(atherosclerosis) 궡뵾넀긽쓣 鍮꾨’븯뿬 吏吏덉묠李⑹쓽 利앷, 寃고빀議곗쭅꽦遺꾩쓽 빀꽦 利앷 媛숈 蹂묐━쟻 利앹긽쓣 굹궦떎怨 븣젮졇 엳떎(Jialal and Devaraj, 1996). 삉븳 二쎌긽寃쏀솕利앹씠 끂異쒕맂 룞留λ궡留됱 삁냼뙋쓽 쑀李⑷낵 쓳吏묓쁽긽씠 諛섎났릺硫댁꽌 삁쟾씠 뜑슧 鍮좊Ⅴ寃 吏꾪뻾릺怨(Hamsten et al., 1994), 吏꾪뻾怨쇱젙 以묒뿉 thromboxane A2 媛숈 삁愿솢꽦臾쇱쭏씠 깮꽦 遺꾨퉬릺硫댁꽌 삁냼뙋쓽 쓳吏묒씠 뜑슧 媛냽솕맂떎(Schwartz et al., 1990). 洹몃윭굹 젙긽 떆뿉뒗 쐞쓽 諛섏쓳怨 븿猿 arachidonic acid媛 궛솕릺뼱 prostaglandin쑝濡 蹂솚릺뒗 궗怨쇱젙 以묒뿉 깮꽦맂 臾쇱쭏뱾씠 삁愿닔異뺤쓽 二쇱슂븳 슂씤쑝濡 옉슜븯뿬 삁愿쓣 닔異뺤떆궓떎(Luscher et al., 1991). 씠뒗 諛섎濡 삁愿궡뵾뿉꽌뒗 arachidonic acid媛 prostacyclin (PGI2)쑝濡 쟾솚릺뒗 궗옉슜씠 씪뼱굹硫댁꽌 삁愿솗옣옉슜쓣 씪쑝궎寃 맂떎(Sellke et al., 1990). 씠 媛숈씠 삁愿쓽 씠셿怨 닔異뺤씠 긽샇삊젰븯뿬 삁냼뙋 移⑥갑쓣 諛⑹븯뒗 룞떆뿉, 삁愿넀긽뿉 뵲瑜 援냼異쒗삁쓣 뼲젣븳떎怨 븣젮졇 엳떎. 뿀삁 쑀諛쒖뿉 吏곸젒쟻쑝濡 쁺뼢쓣 誘몄튂뒗 삁愿닔異뺢낵 솗옣뿉뒗 cyclooxygenase媛 愿뿬븯硫, 븘슂 떆 씠 怨쇱젙쓣 議곗젅븯뒗 빟臾 以 븯굹씤 aspirin씠 몴쟻씤 빆삁냼뙋젣젣濡 궗슜릺怨 엳떎(Verbeuren et al., 1986).

뿀삁뿉 쓽븳 뇤議몄쨷 쑀諛 떆 뇤愿瑜(cerebral perfusion)媛 뿭移 씠븯濡 뼥뼱吏硫댁꽌 ATP 媛먯냼 諛 lactate쓽 利앷 媛숈 깮솕븰쟻 蹂솕 諛 뿼利 쑀諛쒖쓽 쐞뿕꽦씠 利앷릺뒗뜲(Stanimirovic and Satoh, 2000), 씠 寃쎌슦 뿀삁꽦 蹂묐쓽 以묒떖遺쐞뿉꽌뒗 寃쎌깋(infarction)씠 씪뼱굹뒗 諛섎㈃, 二쇰遺뒗 븘吏 냼깮쓽 湲고쉶媛 궓븘 엳뒗 씪떆쟻 뿀삁긽깭濡 鍮좎쭊떎. 뵲씪꽌 씠 媛숈 긽깭瑜 議곌린 諛쒓껄븯뿬 移섎즺븯뒗 寃껋 뇤議몄쨷 移섎즺뿉 二쇰맂 移섎즺쟻 諛⑸쾿쓽 븯굹씠떎(Lee et al., 2006).

쐞 媛숈 썝씤쁽긽뿉 쓽븯뿬 쑀諛쒕맂 뿀삁긽깭뿉꽌뒗 옄쑀씪뵒移(free radical)씠 留롮씠 諛쒖깮릺怨, 씠濡 씤빐 뇤꽭룷뒗 궛솕쟻 넀긽(oxidative stress)뿉 쓽븯뿬 눜솕 궡吏뒗 궗硫몄뿉 씠瑜닿쾶 맂떎(Pellegrini-Giampietro et al., 1990). 뵲씪꽌, 뿀삁 諛쒕퀝 떆 怨쇰룄븯寃 깮꽦맂 옄쑀씪뵒移쇱쓣 젣嫄고븿쑝濡쒖뜥 蹂묐쓽 吏꾪뻾怨 媛냽솕瑜 뒭異 닔 엳湲 븣臾몄뿉 뿀삁 떆뿉뒗 삁愿쓽 삊李⑹씠굹 룓뇙 삉뒗 異쒗삁 遺쐞瑜 移섎즺븯뒗 븳렪, 옄쑀씪뵒移쇱쓽 쁺뼢쓣 젣嫄고븯뿬 移섎즺쟻 슚怨쇰 넂씠怨 엳떎(Jung, 2009). 옄쑀씪뵒移쇱 꽭룷濡쒕꽣 씎遺꾩꽦 븘誘몃끂궛쓽 遺꾨퉬뒗 臾쇰줎 Ca2+怨 諛젒븳 愿젴씠 엳뒗 N-methyl-D-aspartate (NMDA) 닔슜泥댁쓽 怨쇳솢꽦, 꽭룷 吏吏덈쭑쓽 怨쇱궛솕 諛 吏덉냼씪뵒移쇨낵쓽 諛섏쓳뿉 쓽븳 peroxynitrite씪뒗 룆꽦臾쇱쭏쓽 깮꽦怨 媛숈 꽭룷눜솕 쁽긽쓣 쑀諛쒗븳떎怨 븣젮졇 엳떎(Lee et al., 2005).

理쒓렐, 泥쒖뿰臾쇱쓽 꽦遺 以묒뿉 옄쑀씪뵒移쇱쓣 젣嫄고븯뒗 빆궛솕 臾쇱쭏쓣 鍮꾨’븯뿬 빆洹좎씠굹 빆븫, 빆룆뿉 쑀슚븳 깮由ы솢꽦臾쇱쭏씠 떎웾 븿쑀릺뼱 엳쓬씠 諛앺吏怨 엳떎. 삁瑜 뱾뼱 flavonoid 媛숈 럹솕빀臾(phenolic compound)쓣 鍮꾨’븯뿬 carotenoids 媛숈 isoprenoid 諛 sphingolipid 媛숈 諛곕떦泥 벑 留롮 꽦遺꾨뱾씠 異붿텧 젙젣릺뼱 엳떎(Li et al., 2007). 듅엳 flavonoid 怨꾪넻씠 냽븯뒗 럹솕빀臾쇱 isoprenoid 븿猿 떇臾쇱뿉꽌 媛옣 留롮씠 遺꾪룷맂 꽦遺 以묒쓽 븯굹濡 븣젮졇 엳떎(Wang et al., 2006).

Kaempferol (KAE) 怨쇱씪씠굹 梨꾩냼瑜 鍮꾨’븯뿬 뿰苑껉낵 媛숈 뿬윭 떇臾쇰뱾濡쒕꽣 遺꾨━릺뒗 flavonoid 怨꾪넻쓽 꽦遺꾩쨷 븯굹濡 3媛쒖쓽 留(ring)쑝濡 援ъ꽦맂 遺꾩옄援ъ“瑜 삎꽦븯怨 엳떎(Fig. 1). 씠뱾쓽 媛 留곸뿉뒗 1媛 삉뒗 洹 씠긽쓽 닔궛湲(-OH)瑜 媛吏怨 엳뼱 떎瑜 꽦遺꾧낵쓽 寃고빀젰씠 媛뺥븿쑝濡쒖뜥 媛뺣젰븳 빆궛솕뒫쓣 鍮꾨’븯뿬 빆븫씠굹 빆뿼옉슜씠 쎇뼱굹떎怨 븣젮졇 엳떎(Gates et al., 2007). 洹몃읆뿉룄 遺덇뎄븯怨 븘吏곴퉴吏 KAE뿉 븳 빆궛솕뿉 븳 뿰援щ뒗 留롮씠 릺뼱 엳吏 븡쑝硫, 뜑슧씠 諛곗뼇꽭룷瑜 긽쑝濡 븳 뿰援щ뒗 李얠븘蹂닿린 뼱졄떎(Kim et al., 2010). 諛곗뼇꽭룷뒗 깮泥댁꽭룷泥섎읆 솕븰쟻 듅꽦怨 삎깭媛 媛숆퀬 긽샇 룞吏덉쟻씠硫 닽옄쟻쑝濡 留롮븘 뿬윭 踰덉쓽 踰덈났 떎뿕씠 媛뒫븯뿬 옱쁽꽦씠 쎇뼱굹떎뒗 씠젏씠 엳떎. 뜑슧씠 룞臾쇱쓽 씗깮 뾾씠룄 떎뿕옱猷뚯쓽 솗蹂닿 媛뒫븯떎뒗 옣젏씠 엳떎(Kim and Jekal, 2016). 뵲씪꽌 蹂 뿰援щ뒗 뿀삁뿉 쑀슚븳 泥쒖뿰냼옱쓽 깘깋쓣 쐞븳 씪솚쑝濡 떎뿕쟻쑝濡 뿀삁쓣 쑀룄븳 諛곗뼇 떊寃쎄탳꽭룷쓽 씪醫낆씤 C6 glioma 꽭룷瑜 옱猷뚮줈 뿀삁뿉 븳 꽭룷룆꽦쓣 遺꾩꽍븯怨 씠 룞떆뿉 씠뿉 븳 KAE쓽 쁺뼢쓣 빆궛솕 痢〓㈃뿉꽌 議곗궗븯떎.

Fig. 1.

The structure of Kaempferol (KAE)


옱猷 諛 諛⑸쾿

꽭룷二

蹂 떎뿕뿉 궗슜븳 떊寃쎄탳꽭룷씤 C6 glioma 꽭룷二쇰뒗 American Type Culture Collection (ATCC)뿉꽌 遺꾩뼇 諛쏆븘 궗슜븯떎.

빟젣 젣議

蹂 떎뿕뿉 궗슜븳 떆빟쑝濡 KAE쓣 鍮꾨’븳 trypsin, pyrogallol, butylated hydroxytoluene (BHT), isopropanol, ferrous chloride, ethylenediaminetetraacetic acid (EDTA), hydrogen chloride (HCl), vitamin E, 1,1-diphenyl-2-picrylhydrazyl (DPPH), phosphate-buffered saline (PBS), dimethylsulfoxide (DMSO), linoleic acid, ammonium thiocyanate, 諛 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetra-zolium-5-carboxanilide (XTT)뒗 Sigma궗(St. Louis. MO, U.S.A.)뿉꽌 援ъ엯븯떎. 삉븳, Hanker’s balanced salt solution (HBSS)怨 fetal bovine serum(FBS) 諛 minimum essential medium (MEM) Gibco궗(Grand Island, NY, U.S.A.)뿉꽌 援ъ엯븯떎. KAE쓽 젣議곕뒗 FBS媛 뾾뒗 MEM쓣 궗슜븯뿬 媛곴컖 50 μM, 100 μM, 250 μM 諛 500 μM쓽 옣븸쓣 留뚮뱾뼱 씗꽍븯뿬 궗슜븯떎. XTT뒗 PBS瑜 씠슜븯뿬 50 μg/ml쓽 옣븸쓣 留뚮뱺 썑 깋븫냼뿉 蹂닿븳 떎쓬 븘슂븳 뼇쓣 吏곸젒 諛곗뼇븸뿉 泥④븯뿬 궗슜븯떎.

꽭룷 諛곗뼇

떊寃쎄탳꽭룷(C6 glioma cell)쓽 諛곗뼇 Oh et al. (2012)쓽 諛⑸쾿뿉 뵲씪 諛곗뼇슜湲곗뿉 遺李⑸맂 꽭룷瑜 0.025% trypsin쓣 궗슜븯뿬 遺꾨━븯떎. 遺꾨━맂 꽭룷뱾 썝移 썑 10% FBS媛 븿쑀맂 MEM 諛곗뼇븸뿉 꽔怨 1 × 105 cells/well씠 릺룄濡 議곗젅븳 썑 96-well 諛곗뼇슜湲곗뿉 諛곕텇븯떎. 諛곕텇맂 꽭룷뱾 36°C, 5% CO2濡 議곗젅맂 빆삩湲 궡뿉꽌 72떆媛 룞븞 諛곗뼇븯떎.

뿀삁 쑀룄(ischemia-like condition, ILC)

諛곗뼇以묒씤 C6 glioma 꽭룷瑜 HBSS濡 3쉶 꽭泥숉븳 썑 N2 CO2媛 샎빀 議곗젅맂 젙삩湲곗뿉꽌 媛곴컖 15~40遺 룞븞 諛곗뼇븳 썑 꽭룷깮議댁쑉뿉 쓽빐 XTT90 媛믨낵 XTT50 媛믪쓣 痢≪젙븯떎. 삉븳, 빟젣쓽 빆궛솕뒫뿉 븳 遺꾩꽍 ILC 쑀룄怨쇱젙뿉꽌 痢≪젙맂 XTT50 媛믪쓽 끂異쒖뿉꽌 뻾븯떎.

BHT쓽 빆궛솕뒫 痢≪젙

BHT쓽 빆궛솕뒫쓣 議곗궗븯湲 쐞븯뿬 옄쑀씪뵒移쇱쓽 씪醫낆씤 30 μM H2O2瑜 諛곗뼇꽭룷瑜 泥섎━븯湲 2떆媛 쟾뿉 BHT媛 20~60 μM 냽룄濡 媛곴컖 룷븿맂 諛곗뼇븸뿉꽌 꽭룷瑜 泥섎━븳 썑 꽭룷깮議댁쑉쓣 議곌뎔怨 鍮꾧탳 議곗궗븯떎.

ILC 쑀룄뿉 븳 빆궛솕젣쓽 쁺뼢

ILC 쑀룄뿉 븳 BHT쓽 쁺뼢쓣 議곗궗븯湲 쐞븯뿬 諛곗뼇以묒씤 C6 glioma 꽭룷뿉 ILC 쑀룄 2떆媛 쟾뿉 BHT媛 40~60 μM 냽룄濡 媛곴컖 룷븿맂 諛곗뼇븸뿉꽌 꽭룷瑜 泥섎━븳 썑 꽭룷깮議댁쑉쓣 ILC 쑀룄援곌낵 鍮꾧탳 議곗궗븯떎.

ILC뿉 븳 KAE쓽 쁺뼢

ILC瑜 諛곗뼇꽭룷뿉 쑀룄븯湲 2떆媛 쟾뿉 KAE媛 180 μM怨 200 μM濡 媛곴컖 룷븿맂 諛곗뼇븸뿉꽌 꽭룷瑜 諛곗뼇븳 떎쓬 꽭룷깮議댁쑉뿉 쓽븯뿬 議곌뎔怨 鍮꾧탳 議곗궗븯떎.

DPPH-씪뵒移 냼嫄 솢꽦(DPPH-radical scavenging activity) 痢≪젙

DPPH-씪뵒移 냼嫄 솢꽦쓽 痢≪젙 Blois (1958)쓽 諛⑸쾿뿉 뵲씪, 硫뷀깂삱떆猷뚯뿉 0.3 mM DPPH 硫뷀깂삱슜븸 100 μL瑜 泥④븯뿬 떎삩뿉꽌 30遺꾧컙 泥섎━븯떎. 泥섎━ 셿猷 썑 ELISA reader (Spectra max 250, Molecular Devices, Sunnyvale, U.S.A.)濡 517 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 씪뵒移 냼嫄고솢꽦 떆猷뚯꺼媛援곌낵 떆猷뚮Т泥④援곌컙쓽 李⑥씠瑜 떆猷뚮Т泥④援곗뿉 쓽븳 諛깅텇쑉濡 굹깉떎. 삉븳 BHT쓽 솢꽦쓣 뼇꽦議곌뎔쑝濡 궗슜븯떎.

Superoxide dismutase (SOD)-쑀궗 솢꽦 痢≪젙

SOD-쑀궗 솢꽦 Marklund & Marklund (1974)쓽 諛⑸쾿뿉 뵲씪 뻾븯떎. 利, 떆猷뚯뿉 Tris-HCl buffer 10 mM pyrogallol쓣 媛븯怨 25°C뿉꽌 10遺 룞븞 泥섎━븯떎. 泥섎━셿猷 썑 1 N HCl濡 諛섏쓳떆궓 떎쓬 ELISA reader (Spectra max 250, Molecular Devices, Sunnyvale, U.S.A.)濡 420 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 쑀궗 솢꽦쓽 痢≪젙 떆猷뚯꺼媛援곌낵 臾댁꺼媛援곗쓽 李⑥씠뿉 쓽븳 諛깅텇쑉濡 몴떆븯떎. 삉븳 BHT쓽 솢꽦쓣 뼇꽦議곌뎔쑝濡 궗슜븯떎.

吏吏덇낵궛솕(lipid peroxidation, LP) 솢꽦 痢≪젙

LP 솢꽦 痢≪젙 Kikuzaki & Nakatani (1993)쓽 諛⑸쾿뿉 뵲씪, 2.52% linoleic acid 0.05 M PBS (pH 7.0) 슜븸 12.1 ml뿉 뿉깂삱怨 떆猷 3.9 ml 샎빀븸쓣 泥④븳 썑 24떆媛 룞븞 40°C뿉꽌 諛곗뼇븯떎. 諛곗뼇 셿猷 썑 뿉깂삱怨 30% ammonium thiocyanate 0.02 M ferrous chloride瑜 0.1 ml瑜 꽔 썑 떎삩뿉꽌 3遺 룞븞 諛섏쓳떆耳곕떎. 諛섏쓳 썑 ELISA reader (Spectra max 250, Molecular Devices, Sunnyvale, U.S.A.)濡 500 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎.

넻怨 泥섎━

떎뿕 寃곌낵뒗 SPSS/WIN 18.0쓣 씠슜븯뿬 援곌컙쓽 李⑥씠瑜 鍮꾧탳븯湲 쐞븯뿬 ANOVA瑜 떆뻾븯怨 궗썑 遺꾩꽍 Tukey’s HSD濡 븯떎. 紐⑤뱺 넻怨꾩쓽 쑀쓽닔以 P-value媛 0.05 誘몃쭔쓽 寃쎌슦瑜 쑀쓽븳 寃껋쑝濡 梨꾪깮븯떎.

寃곌낵

ILC 쑀룄뿉 븳 꽭룷룆꽦 痢≪젙

ILC 쑀룄뿉 븳 XTT90 媛믨낵 XTT50 媛믪쓽 痢≪젙쓣 쐞븯뿬 諛곗뼇꽭룷瑜 15~40遺 룞븞 媛곴컖 ILC뿉 끂異쒖쓣 쑀룄븳 寃곌낵, 15遺꾧컙 끂異쒖쓽 寃쎌슦 꽭룷깮議댁쑉씠 議곌뎔씤 100%(0.54±0.06)뿉 鍮꾪븯뿬 90.7% (0.49±0.03)濡 굹궗쑝硫 20遺꾧컙 끂異쒖쓽 寃쎌슦 72.2% (0.39±0.02)濡 굹궗떎. 삉븳, 25遺꾧컙 끂異쒖쓽 寃쎌슦 꽭룷깮議댁쑉 68.5% (0.37±0.02)濡 굹궗떎. 븳렪, 諛곗뼇꽭룷瑜 30遺 룞븞 ILC뿉 끂異쒗븳 寃곌낵 꽭룷깮議댁쑉씠 64.8% (0.35±0.03)濡 굹궗쑝硫, 35遺 룞븞 끂異쒖뿉꽌뒗 57.4% (0.31±0.02)濡 굹궗떎. 삉븳, 40遺 룞븞 끂異쒖뿉 엳뼱꽌 꽭룷깮議댁쑉 50.4% (0.27±0.01)濡 굹궗떎. 쐞쓽 寃곌낵뿉꽌 15~40遺 룞븞 諛곗뼇꽭룷瑜 ILC뿉 끂異쒗븳 寃곌낵 룆꽦(low cytotoxicity) 媛믪씤 XTT90 媛믪 15遺 끂異쒖뿉꽌 굹궃뜲 鍮꾪븯뿬 怨좊룆꽦(high cytotoxicity) 媛믪씤 XTT50 媛믪 40遺 끂異쒖뿉꽌 굹궗떎(P<0.001) (Table 1). ILC 쑀룄瑜 쐞븳 끂異 떆媛꾩뿉 뵲瑜 궗썑遺꾩꽍 寃곌낵 議곌뎔怨 15遺 끂異쒖 넻怨꾩쟻쑝濡 李⑥씠媛 뾾뿀떎. 20遺, 25遺, 30遺 끂異 떆뿉룄 넻怨꾩쟻쑝濡 李⑥씠媛 뾾뿀쑝굹 議곌뎔怨 15遺 끂異쒕낫떎 꽭룷깮議댁쑉씠 쑀쓽븯寃 媛먯냼릺뿀쓬쓣 븣닔 엳뿀떎. 삉븳 30遺꾧낵 35遺꾩뿉꽌 넻怨꾩쟻쑝濡 李⑥씠媛 뾾쑝굹 議곌뎔, 15~25遺 끂異쒓낵뒗 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠瑜 蹂댁떎. 삉븳 35遺꾧낵 40遺 끂異쒖뿉꽌룄 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠媛 뾾쑝굹, 40遺 끂異쒖씠 議곌뎔, 15~30遺 끂異쒓낵뒗 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠瑜 蹂댁씠뒗 寃껋쓣 븣 닔 엳뿀떎.

The cytotoxicity of cultured C6 glioma cells exposed by ischemia-like condition (ILC) by XTT assay

Incubation time of ILC (min)XTT assay (450 nm)FP

Mean ± SD
Control0.54±0.06
15 (XTT90)0.49±0.03
200.39±0.02
250.37±0.0268.23.000
300.35±0.03
350.31±0.02
40 (XTT50)0.27±0.01

Cultured C6 glioma cells were exposed to ILC for 15~40 min., respectively. The data indicate the mean ± SD for triplicate experiments. Significantly different from the control


BHT쓽 빆궛솕뒫 痢≪젙

BHT瑜 뼇꽦議곌뎔쑝濡 궗슜븯湲 쐞븯뿬 BHT쓽 빆궛솕뒫쓣 議곗궗븳 寃곌낵, 30 μM쓽 H2O2留뚯쓣 泥섎━븳 寃쎌슦 議곌뎔뿉 鍮꾪븯뿬 꽭룷깮議댁쑉씠 37.0% (0.10±0.02)濡 굹궃 諛섎㈃, 20 μM怨 40 μM쓽 BHT쓽 泥섎━뿉꽌뒗 媛곴컖 63.0% (17±0.01) 81.5% (0.22±0.03)濡 굹궗떎. 삉븳, 60 μM 냽룄쓽 BHT쓽 泥섎━뿉꽌뒗 88.9% (0.24±0.04)濡 굹굹 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠媛 굹궗떎(P<0.001) (Table 2). BHT쓽 냽룄蹂 빆궛솕뒫뿉 븳 궗썑遺꾩꽍 寃곌낵 議곌뎔怨 60 μM BHT뒗 넻怨꾩쟻쑝濡 李⑥씠媛 뾾씠 꽭룷깮議댁쑉씠 媛옣 넂븯쑝硫, 40 μM怨 60 μM룄 넻怨꾩쟻쑝濡 李⑥씠媛 뾾씠 洹 떎쓬쑝濡 꽭룷깮議댁쑉씠 넂븯떎. 洹몃윭굹 議곌뎔怨 40 μM BHT뒗 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠媛 엳뿀떎. 씠뼱꽌 20 μM BHT, 30 μM H2O2 닚쑝濡 꽭룷깮議댁쑉씠 넻怨꾩쟻쑝濡 쑀쓽븯寃 媛먯냼븯뒗 寃껋쓣 븣 닔 엳뿀떎. 뵲씪꽌, BHT쓽 냽룄媛 넂쓣닔濡 H2O2뿉 븳 빆궛솕뒫씠 利앷븿쓣 븣 닔 엳뿀떎.

The antioxidative activity of butylated hydroxytoluene (BHT) on the hydrogen peroxide (H2O2) in cultured C6 glioma cells

Concentrations of BHT (μM)XTT assay (450 nm)FP

Mean ± SD
Control0.27±0.02
30 H2O20.10±0.02
200.17±0.0152.27.000
400.22±0.03
600.24±0.04

Cultured C6 glioma cells were pretreated with 20 μM, 40 μM and 60 μM of BHT for 2 hours. The data indicate the mean ± SD for triplicate experiments. Significantly different from H2O2-treated group


ILC 쑀룄뿉 븳 빆궛솕젣쓽 쁺뼢

ILC 쑀룄뿉 븳 빆궛솕젣쓽 쁺뼢쓣 븣븘蹂 寃곌낵, ILC 쑀룄쓽 寃쎌슦 꽭룷깮議댁쑉씠 議곌뎔뿉 鍮꾪븯뿬 38.5% (0.05±0.02)濡 굹궃 寃껋뿉 鍮꾪븯뿬 40 μM怨 60 μM쓽 BHT쓽 泥섎━뿉꽌뒗 媛곴컖 69.2% (0.09±0.02) 84.6% (0.11±0.03)濡 굹굹 紐⑤몢 ILC 쑀룄뿉 鍮꾪븯뿬 쑀쓽븳 利앷瑜 蹂댁떎(P<0.001) (Table 3). ILC 쑀룄뿉 븳 BHT 냽룄뿉 뵲瑜 궗썑寃젙 寃곌낵 議곌뎔怨 60 μM BHT뒗 넻怨꾩쟻쑝濡 李⑥씠媛 뾾씠 꽭룷깮議댁쑉씠 媛옣 넂븯쑝硫, 40 μM BHT뒗 60 μM怨 넻怨꾩쟻쑝濡 李⑥씠뒗 뾾뿀쑝굹 議곌뎔怨쇰뒗 넻怨꾩쟻 李⑥씠瑜 蹂댁떎. 洹몃━怨 ILC 쑀룄媛 꽭룷깮議댁쑉씠 넻怨꾩쟻쑝濡 媛옣 궙 寃껋쓣 솗씤븯떎.

The effect of butylated hydroxytoluene (BHT) on the cytotoxicity induced by ischemia like condition (ILC) in cultured C6 glioma cells

Concentrations of BHT (μM)XTT assay (450 nm)FP

Mean ± SD
Control0.13±0.0218.92.000
ILC0.05±0.02
400.09±0.02
600.11±0.03

Cultured C6 glioma cells were pretreated with 40 μM and 60 Μm of BHT for 2 hours. The data indicate the mean ± SD for triplicate experiments. Significantly different from ILC-treated group.


ILC 쑀룄뿉 븳 KAE쓽 쁺뼢

KAE媛 ILC 쑀룄뿉 誘몄튂뒗 쁺뼢쓣 議곗궗븳 寃곌낵, ILC 쑀룄留뚯쓽 泥섎━뿉꽌뒗 꽭룷깮議댁쑉씠 議곌뎔뿉 鍮꾪븯뿬 35.1%(0.13±0.01)濡 굹궃뜲 鍮꾪븯뿬 180 μM KAE쓽 泥섎━뿉꽌뒗 62.2% (0.23±0.02)濡 굹궗떎. 삉븳 200 μM 泥섎━뿉꽌뒗 75.7% (0.28±0.03)濡 굹굹 紐⑤몢 ILC 쑀룄 泥섎━뿉 鍮꾪븯뿬 留ㅼ슦 쑀쓽븳 利앷瑜 蹂댁떎(P<0.001) (Table 4). KAE媛 ILC 쑀룄뿉 誘몄튂뒗 쁺뼢뿉 븳 궗썑寃젙 寃곌낵 議곌뎔, ILC 쑀룄援, 180 μM KAE, 200 μM KAE 닚쑝濡 꽭룷깮議댁쑉씠 넂 寃껋쓣 븣 닔 엳뿀떎.

The protective effect of kaempferol (KAE) on ischemialike condition (ILC)-induced cytotoxicity in cultured C6 glioma cells

Concentrations of KAE (μM)XTT assay (450 nm)FP

Mean ± SD
Control0.37±0.03139.50.000
ILC0.13±0.01
1800.23±0.02
2000.28±0.03

Cultured C6 glioma cells were pretreated with 180 μM and 200 μM of KAE for 2 hours. The data indicate the mean ± SD for triplicate experiments. Significantly different from the ILC-treated group


DPPH-씪뵒移 냼嫄 솢꽦 痢≪젙

DPPH-씪뵒移 냼嫄 솢꽦 痢≪젙 寃곌낵 180 μM KAE 냽룄泥섎━뿉꽌뒗 議곌뎔뿉 鍮꾪븯뿬 솢꽦씠 69.4% (1.20±0.09)濡 굹궗쑝硫, 200 μM쓽 泥섎━뿉꽌뒗 53.9% (0.93±0.14)濡 굹궗떎(Table 5). 뵲씪꽌, 180 μM怨 200 μM뿉꽌 냼嫄곕뒫 媛곴컖 30.6% 46.1%濡 굹굹 紐⑤몢 議곌뎔뿉 鍮꾪븯뿬 넻怨꾩쟻쑝濡 쑀쓽븳 DPPH-씪뵒移 냼嫄곕뒫쓣 蹂댁떎(P<0.001). 듅엳, 200 μM KAE쓽 DPPH-씪뵒移 냼嫄곕뒫 82.7% (0.30±0.04)쓽 DPPH-씪뵒移 냼嫄곕뒫쓣 蹂댁씤 60 μM BHT쓽 50% 씠긽씤 寃껋쑝濡 굹궗떎(Fig. 2). 궗썑寃젙 寃곌낵 60 μM BHT, 200 μM KAE, 180 μM KAE, 議곌뎔 닚쑝濡 DPPH-씪뵒移 냼嫄곕뒫씠 넂 寃껋쑝濡 굹궗떎.

The DPPH-radical scavenging activity of kaempferol (KAE) determined at a wavelength of 517 nm

Concentrations of KAE (μM)DPPH-radical scavenging activity (517 nm)FP

Mean ± SD
Control1.73±0.24129.74.000
60 BHT0.30±0.04
1801.20±0.09
2000.93±0.14

The data indicate the mean ± SD for triplicate experiments. Significantly different from the control. BHT was used as positive control


Fig. 2.

DPPH-radical scavenging ability of KAE at concentrations of 180 μM and 200 μM, respectively. The data indicate the mean ± SD for triplicate experiments. Significantly different from the control. BHT was used as positive control


SOD-쑀궗 솢꽦 痢≪젙

KAE뿉 븳 SOD-쑀궗 솢꽦 痢≪젙쓣 쐞븯뿬 180 μM怨200 μM 냽룄쓽 KAE瑜 媛곴컖 遺꾩꽍븳 寃곌낵 180 μM쓽 泥섎━뿉꽌뒗 議곌뎔뿉 鍮꾪븯뿬 쑀궗 솢꽦씠 104.5% (0.23±0.03)濡 굹궗떎. 씠뿉 鍮꾪븯뿬 200 μM쓽 泥섎━뿉꽌뒗 118.2%(0.26±0.03)濡 굹궗떎(Table 6). 뵲씪꽌, SOD-쑀궗 솢꽦뒫 180 μM怨 200 μM뿉꽌 媛곴컖 4.5% 18.2%濡 굹굹 議곌뎔뿉 鍮꾪븯뿬 紐⑤몢 쑀쓽븳 쑀궗 솢꽦뒫쓣 굹깉떎(P<0.001). 듅엳, 200 μM뿉꽌쓽 쑀궗 솢꽦뒫 뼇꽦議곌뎔씤 60 μM BHT 솢꽦뒫 媛믪씤 68.2% (0.37±0.03)뿉 븳 26.7%씤 寃껋쑝濡 굹궗떎(Fig. 3). 궗썑寃젙 寃곌낵 議곌뎔怨 180 μM KAE뒗 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠媛 뾾뿀쑝硫, 180 μM KAE 200 μM KAE媛꾩뿉룄 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠媛 뾾뿀쑝굹, 議곌뎔怨 200 μM KAE뒗 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠媛 굹궗떎.

The superoxide dismutase (SOD)-like activity of kaempferol (KAE) determined at a wavelength of 420 nm

Concentrations of KAE (μM)SOD-like activity (420 nm)FP

Mean ± SD
Control0.22±0.0351.71.000
60 BHT0.37±0.03
1800.23±0.03
2000.26±0.03

The data indicate the mean ± SD for triplicate experiments. Significantly different from the control. BHT was used as positive control


Fig. 3.

The SOD-like ability of KAE at concentrations of 180 μM and 200 μM, respectively. The data indicate the mean ± SD for triplicate experiments. Significantly different from the control. BHT was used as positive control.


吏吏덇낵궛솕(LP) 솢꽦 痢≪젙

KAE媛 LP뿉 誘몄튂뒗 쁺뼢쓣 議곗궗븯湲 쐞븯뿬 180 μM怨 200 μM쓽 KAE瑜 泥섎━븳 寃곌낵 180 μM KAE뿉꽌 LP솢꽦씠 議곌뎔뿉 鍮꾪븯뿬 56.8% (0.25±0.01)濡 굹궃뜲 鍮꾪븯뿬, 200 μM KAE 泥섎━뿉꽌뒗 36.4% (0.16±0.02)쓽 LP 솢꽦쓣 蹂댁떎(Table 7). 뵲씪꽌, LP 뼲젣뒫 180 μM怨 200 μM뿉꽌 媛곴컖 43.2% 63.6%濡 굹굹 씠뒗 紐⑤몢 議곌뎔뿉 쑀쓽븳 LP 뼲젣뒫쓣 蹂댁쑝硫(P<0.001), 듅엳, 200 μM KAE뒗 84.1%쓽 LP 뼲젣뒫쓣 蹂댁씤 뼇꽦議곌뎔씤 60 μM BHT쓽 75.0% 씠긽쑝濡 굹궗떎(Fig. 4). 궗썑寃젙 寃곌낵 60 μM BHT, 200 μM KAE, 180 μM KAE, 議곌뎔 닚쑝濡 LP 뼲젣뒫씠 넂寃 굹궗떎.

The lipid peroxidation (LP) of kaempferol (KAE) determined at a wavelength of 500 nm

Concentrations of KAE (μM)Lipid peroxidation (500 nm)FP

Mean ± SD
Control0.44±0.03197.74.000
60 BHT0.07±0.02
1800.25±0.01
2000.16±0.02

The data indicate the mean ± SD for triplicate experiments. Significantly different from the control.


Fig. 4.

The inhibitory activity of LP in KAE at concentrations of 180 μM and 200 μM, respectively. The data indicate the mean ± SD for triplicate experiments. Significantly different from the control. BHT was used as positive control


怨좎같

뿀삁 떆 뇤議곗쭅뿉꽌뒗 삁愿씠 씪떆 醫곸븘졇 뇤꽭룷뿉 궛냼利앷낵 쁺뼇怨듦툒쓽 遺議깆쓣 쑀諛쒗븯誘濡 꽭룷쓽 넀긽 궡吏뒗 궗硫몄쓣 珥덈옒븯寃 맂떎(Lee et al., 2005). 뇤뿀삁 떆 떊寃쎄탳꽭룷媛 젣씪 癒쇱 솢꽦솕릺뼱 蹂묒쟻긽깭뿉 諛섏쓳쓣 蹂댁씠뒗 寃껋 뇤쓽 솚寃 蹂솕뿉 븳 빆긽꽦쓣 쉶蹂듯븯젮뒗 泥 踰덉㎏ 諛섏쓳꽭룷씠湲 븣臾몄씠떎(Endoh et al., 1994). 뵲씪꽌, 蹂 뿰援ъ뿉꽌뒗 떊寃쎄탳꽭룷씤 C6 glioma 꽭룷瑜 諛곗뼇븳 썑 15~40遺 룞븞 媛곴컖 떎뿕쟻쑝濡 ILC 쑀룄瑜 떆뻾븯뿬 씠뿉 븳 쁺뼢쓣 議곗궗븯떎. 諛곗뼇꽭룷瑜 ILC 쑀룄뿉 끂異쒗븳 寃곌낵 泥섎━ 떆媛꾩뿉 쓽議댁쟻쑝濡 議곌뎔뿉 鍮꾪븯뿬 꽭룷깮議댁쑉쓣 젏李 媛먯냼떆耳곗쑝硫 씠 怨쇱젙뿉꽌 ILC 쑀룄 15遺꾧낵 40遺 끂異쒖뿉꽌 媛곴컖 룆꽦(low cytotoxicity) 媛믪씤 XTT90媛믨낵 怨좊룆꽦(high cytotoxicity) 媛믪씤 XTT50 媛믪씠 굹궗떎. XTT90怨 XTT50 議곌뎔뿉 鍮꾪븯뿬 궡븘 엳뒗 꽭룷 닔 떊 꽭룷 솢꽦씠 媛곴컖 議곌뎔쓽 90怨 50씠 릺뒗 媛믪쓣 쓽誘명븳떎(Kim et al., 2010). 蹂 뿰援 寃곌낵뒗 ILC 쑀룄媛 꽭룷룆꽦쓣 媛吏怨 엳떎뒗 寃껋쓣 留먰빐二쇨퀬 엳쑝硫 씠뒗 ILC 쑀룄媛 깭뼱궃 吏 3씪맂 떊깮깮伊 떊寃쎌꽭룷뿉 룆꽦쓣 굹깉떎뒗 뿰援 蹂닿퀬룄 씪移섑븯떎(Jung, 2009). 뿀삁 떆 궛냼뿉 쓽븯뿬 꽭룷愿댁궗媛 쑀諛쒕릺硫 怨쇰웾쓽 옄쑀씪뵒移쇱씠 깮꽦릺뼱 궛솕쟻 넀긽씠 諛쒖깮릺뒗뜲, 씠 寃곌낵 꽭룷넀긽뿉 쓽빐 꽭룷깮議댁쑉쓽 媛먯냼媛 珥덈옒릺뿀쓣 寃껋쑝濡 뙋떒맂떎(Pellegrini-Giampietro et al., 1990). 뵲씪꽌, 蹂 뿰援ъ뿉꽌뒗 뿀삁怨 궛솕쟻 넀긽怨쇱쓽 愿젴꽦쓣 議곗궗븯湲 쐞븯뿬 癒쇱 빆궛솕젣쓽 씪醫낆씤 BHT쓽 빆궛솕뒫쓣 옄쑀씪뵒移쇱쓽 씪醫낆씤 H2O2瑜 鍮꾧탳援곗쑝濡 議곗궗븯떎. 洹 寃곌낵 BHT뒗 泥섎━ 냽룄뿉 鍮꾨븯뿬 H2O2留뚯쓽 泥섎━뿉 鍮꾪븯뿬 꽭룷깮議댁쑉쓣 쑀쓽븯寃 利앷떆耳 넂 빆궛솕뒫쓣 굹깉떎. BHT뒗 vitamin E 媛숈씠 hydroxyl radical (OH-)쓣 鍮꾨’븳 H2O2 諛 superoxide (O-2) 媛숈 옄쑀씪뵒移쇱쓽 젣嫄곕뒫쓣 媛吏怨 엳뒗 빆궛솕젣쓽 씪醫낆쑝濡 븣젮졇 엳떎(Kim and Jekal, 2016). 븳렪, 뿀삁 떆뿉뒗 nuclear factor-kappa B (NF-κB) 媛숈 빑쟾궗씤옄쓽 솢꽦怨 뜑遺덉뼱 씠濡 씤븳 솢꽦궛냼(reactive oxygen species, ROS)쓽 룺二, interleukin (IL)-1씠굹 tumor necrosis factor (TNF)-α 媛숈 궗씠넗移댁씤쓽 遺꾨퉬 벑쑝濡 씤븯뿬 蹂묐쓣 뜑슧 媛냽솕 떆궓떎(Gracia-Lopez et al., 2007). 뵲씪꽌, 蹂 뿰援ъ뿉꽌뒗 ILC 쑀룄 궛솕쟻 넀긽媛꾩쓽 愿젴꽦쓣 議곗궗븯湲 쐞븯뿬 ILC 쑀룄뿉 븳 BHT쓽 쁺뼢쓣 議곗궗븯떎. 洹 寃곌낵 BHT쓽 泥섎━援곗씠 ILC 쑀룄援곗뿉 鍮꾪븯뿬 쑀쓽븳 꽭룷깮議댁쑉쓽 利앷瑜 蹂댁엫쑝濡쒖꽌 諛⑹뼱슚怨쇨 엳뒗 寃껋쑝濡 굹궗떎. 씠 媛숈 寃곌낵뒗 ILC 쑀룄뿉 궛솕쟻 넀긽씠 愿뿬븯怨 엳쓬쓣 젣떆븯怨 엳쑝硫, 씠뒗 씠 뿀삁뿉 옄쑀씪뵒移쇱씠 愿뿬븯怨 엳떎怨 蹂닿퀬븳 뿰援ш껐怨쇱 씪移섑븯떎(Pellegrini-Giampietro et al., 1990). 븳렪, KAE뒗 럹솕빀臾쇱쓽 씪醫낆쑝濡 flavon쓣 鍮꾨’븳 flavanol 諛 isoflavon怨 媛숈 flavonoid 怨꾪넻쓽 꽦遺꾩쑝濡쒖꽌 媛뺥븳 빆궛솕뒫쓣 媛吏怨 엳떎(Leung et al., 2007). 蹂 뿰援ъ뿉꽌뒗 ILC 쑀룄뿉 븳 KAE쓽 쁺뼢쓣 議곗궗븳 寃곌낵 KAE, 180 μM怨 200 μM쓽 泥섎━뿉꽌 紐⑤몢 ILC 쑀룄留뚯쓽 泥섎━뿉 鍮꾪븯뿬 쑀쓽븳 꽭룷깮議댁쑉쓽 利앷瑜 蹂댁떎. 蹂 뿰援 寃곌낵뒗 KAE媛 ILC 쑀룄濡쒕꽣 꽭룷넀긽쓣 諛⑹뼱븳 寃껋쑝濡쒖꽌 硫뷀떥닔쓽 씪뵒移쇱뿉 쓽븳 궛솕쟻 넀긽쑝濡쒕꽣 KAE媛 꽭룷룆꽦쓣 諛⑹뼱븯떎뒗 뿰援 蹂닿퀬룄 씪移섑븯떎(Kim et al., 2010). 씠 媛숈 寃곌낵뒗 ILC 쑀룄뿉 쓽빐 쑀諛쒕맂 궛솕쟻 넀긽쓣 KAE媛 諛⑹뼱븳 寃곌낵濡 KAE쓽 빆궛솕뒫쓣 젣떆븯怨 엳떎(El-Sayed et al., 2001). KAE쓽 빆궛솕뒫 럹솕빀臾쇱쓽 씪醫낆씤 polyphenol怨 媛숈씠 씪뵒移 젣嫄곕뒫씠 媛뺥븳 flavonoid 怨꾪넻쓽 꽦遺 솢꽦뿉 쓽븳 寃껋쑝濡 깮媛곷맂떎(Li et al., 2007). 뵲씪꽌 蹂 뿰援ъ뿉꽌뒗 KAE쓽 빆궛솕뒫쓣 븣븘蹂닿린 쐞븯뿬 DPPH-씪뵒移 냼嫄곕뒫쓣 鍮꾨’븯뿬 SOD-쑀궗 솢꽦뒫 諛 LP 뼲젣뒫쓣 議곗궗븯떎. DPPH-씪뵒移 냼嫄곕뒫뿉 엳뼱꽌 KAE뒗 180 μM怨 200 μM뿉꽌 紐⑤몢 議곌뎔뿉 鍮꾪븯뿬 쑀쓽븳 씪뵒移 냼嫄곕뒫쓣 蹂댁떎. 蹂 떎뿕 寃곌낵뒗 KAE媛 씪뵒移쇱쓣 젣嫄고븯뒗 빆궛솕뒫씠 엳쓬쓣 留먰빐二쇨퀬 엳쑝硫, 씠 媛숈 빆궛솕 슚怨쇰뒗 쐞뿉꽌 媛숈씠 KAE媛 럹솕빀臾 怨꾪넻뿉 냽븯뒗 flavonoid 怨꾪넻쓽 꽦遺꾩뿉 쓽븳 寃껋쑝濡 깮媛곷맂떎(Ma et al., 2003). 럹솕빀臾쇱 遺꾩옄援ъ“뿉 닔궛湲(-OH)瑜 媛吏怨 엳뼱 씠濡 씤븳 寃고빀젰씠 留ㅼ슦 쎇뼱굹湲 븣臾몄뿉 빆궛솕 諛 빆뿼, 빆룆 벑뿉 쑀슚븳 깮由 솢꽦쓣 굹궦떎怨 븣젮졇 엳떎(Krizkova et al., 2000). 븳렪, KAE쓽 SOD-쑀궗 솢꽦뒫쓽 議곗궗瑜 쐞븳 180 μM怨 200 μM쓽 KAE 泥섎━뿉꽌뒗 議곌뎔뿉 鍮꾪븯뿬 紐⑤몢 넂 쑀궗 솢꽦뒫쓣 蹂댁떎. 蹂 떎뿕 寃곌낵 KAE媛 씤泥댁쓽 빆궛솕 怨꾪넻뿉 냽븯뒗 SOD 슚냼泥섎읆 옄쑀씪뵒移쇱쓣 젣嫄고븯뒗 빆궛솕뒫씠 엳쓬쓣 留먰빐 二쇨퀬 엳쑝硫, KAE쓽 SOD-쑀궗솢꽦뒫쓣 蹂닿퀬븳 뿰援 寃곌낵룄 씪移섑븯떎(Kim et al., 2010). KAE쓽 씠 媛숈 빆궛솕뒫 蹂 떎뿕뿉꽌 뻾븳 DPPH-씪뵒移 냼嫄곕뒫쓽 遺꾩꽍怨 븿猿 KAE쓽 빆궛솕뒫쓣 뮮諛쏆묠빐二쇨퀬 엳떎. SOD 빆궛솕 슚냼뒗 씤泥댁쓽 궗怨쇱젙 以 깮꽦맂 OH-굹 O-2 媛숈 옄쑀씪뵒移쇱쓣 H2O2濡 쟾솚븯怨 臾쇰줈 蹂솕떆耳쒖꽌 씤泥댁뿉뒗 븘臾대윴 쁺뼢쓣 誘몄튂吏 븡寃 븳떎(Linke et al., 2005). LP 뼲젣뒫 議곗궗뿉 븳 KAE뒗 180 μM怨 200 μM쓽 泥섎━ 냽룄 紐⑤몢뿉꽌 議곌뎔뿉 鍮꾪븯뿬 LP 솢꽦쓣 쁽엳 媛먯냼떆궡쑝濡쒖뜥 쑀쓽븳 LP 뼲젣뒫쓣 蹂댁떎. 蹂 뿰援 寃곌낵뒗 KAE뿉 븳 LP 뼲젣뒫쓣 蹂닿퀬븳 뿰援 寃곌낵 씪移섑븯쑝硫(Kim et al., 2010), 蹂 寃곌낵뒗 KAE媛 留됱쓽 援ъ꽦쓣 씠猷④퀬 엳뒗 留됱吏덉쓽 궛솕瑜 諛⑹븯뒗 빆궛솕 옉슜씠 엳쓬쓣 젣떆븯怨 엳떎. 씠 媛숈 쁽긽 KAE뿉 븿쑀릺뼱 엳뒗 flavonol쓣 鍮꾨’븳 anthocyanin 諛 iron怨 媛숈 빆궛솕 슚뒫씠 넂 flavonoid 怨꾪넻쓽 꽦遺꾨뱾뿉 쓽빐 LP 솢꽦씠 뼲젣맂 寃껋쑝濡 깮媛곷맂떎(Wang et al., 2006). LP 솢꽦쓽 痢≪젙 lactate dehydrogenase (LDH) 솢꽦怨 븿猿 留됱넀긽 젙룄瑜 痢≪젙븷 닔 엳뒗 몴쟻씤 젙웾 遺꾩꽍 諛⑸쾿쓽 븯굹濡 븣젮졇 엳떎(Hah et al., 2005). 씠긽쓽 寃곌낵濡쒕꽣 KAE 媛숈 꽦遺꾩 뿀삁怨 媛숈씠 궛솕쟻 넀긽怨 愿젴맂 蹂묐뿉 븳 移섎즺젣濡, 빆궛솕젣 빟臾쇨컻諛쒖쓣 쐞빐 솢슜媛移섍 겢 寃껋쑝濡 깮媛곷맂떎. 洹몃윭굹 泥쒖뿰꽦遺꾩뿉 븳 빆궛솕 痢〓㈃뿉꽌쓽 깮由 솢꽦 遺꾩꽍 寃젙꽦遺꾩뿉 븳 깮솕븰쟻 遺꾩꽍 臾쇰줎, 빟由щ굹 遺꾩옄 諛 援ъ“쟻 痢〓㈃뿉꽌 蹂대떎 옄꽭븳 뿰援ш 븘슂븷 寃껋쑝濡 깮媛곷맂떎.

ACKNOWLEDGEMENTS

씠 끉臾몄 2017 븰뀈룄 썝愿묐븰援먯쓽 援먮퉬 吏썝뿉 쓽빐 닔뻾맖.

References
  1. Blois MS. Antioxidant determination by the use of a stable free radical. Nature 1958;26:1199-1200.
    CrossRef
  2. EI-Sayed NH, Omara NM, Yousef AK, Farag AM, and Mabry TJ. Kaempferol triosides from Reseda muricata. Phytochem 2001;57:575-578.
    CrossRef
  3. Endoh M, Maiese K, and Wanger J. Expression of the inducible form of nitric oxide synthase by reactive astrocytes after transient global ischemia. Brain Research 1994;651:92-100.
    CrossRef
  4. Gates MA, Tworoger SS, Hecht JL, De Vivo I, Rosner B, and Hankinson SE. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. International Journal of Cancer 2007;121:2225-2232.
    Pubmed CrossRef
  5. Gracia-Lopez D, Cuevas MJ, Almar M, Lima E, De Paz JA, and Gonzalez-Gallego J. Effects of eccentric exercise on NF-觀B activation in blood mononuclear cells. Medicine & Science in Sports & Exercise 2007;39:653-664.
    Pubmed CrossRef
  6. Hah DS, Kim CH, Kim GS, Kim EG, and Kim JS. Antioxidant effects of traditional medicinal plants on lipid peroxidation. Korean Journal of Veterinary Research 2005;45:341-350.
  7. Hamsten A, Eriksson P, Karpe F, and Silveria A. Relationships of thrombosis and fibrinolysis to atherosclerosis. Current Opinion in Lipidology 1994;5:382-389.
    Pubmed CrossRef
  8. Jialal I, and Devaraj S. Low-density lipoprotein oxidation, antioxidants, and atherosclerosis: a clinical biochemistry perspective. Clinical Chemistry 1996;42:498-506.
    Pubmed
  9. Jung IJ. The effect of NMDA/glycin receptor antagonist, 7-chlorokynurenic acid on cultured astrocytes damaged by ischemialike condition. Journal of Experimental & Biomedical Sciences 2009;15:355-362.
  10. Kikuzaki H, and Nakatani N. Antioxidant effects of some ginger constituents. Journal of Food Science 1993;58:1407-1410.
    CrossRef
  11. Kim MS, Seo YM, and Park ST. Antioxidant effect of kaempferol on cultured human skin fibroblasts damaged by methylmercuric chloride. Journal of Plants People and Environment 2010;13:23-29.
  12. Kim TY, and Jekal SJ. Antioxidative effect of Chelidonium majus extract on cultured NIH3T3 fibroblasts injured by cadmium chloride of toxicant. Korean Journal of Clinical Laboratory Science 2016;48:1-7.
    CrossRef
  13. Krizkova L, Nagy M, Polonyi J, Dobias J, Belicova A, Grancai D, and Krajcovic J. Phenolic acids inhibit chloroplast mutagenesis in Euglena gracilis. Mutation Research 2000;469:107-114.
    CrossRef
  14. Lee JC, Cho GS, Choi BO, Kim HC, Kim YS, and Kim WK. Intracerebral hemorrhage-induced brain injury is aggravated in a senescence accelerated prone mouse. Stroke 2006;37:216-222.
    Pubmed CrossRef
  15. Lee JC, Cho GS, Kim HJ, Lim JH, Oh YK, Nam WW, Chung JH, and Kim WK. Accelerated cerebral ischemic injury by activated macrophage/microglia after lipopolysaccharide microinjection into at corpus callosum. Glia 2005;50:168-181.
    Pubmed CrossRef
  16. Lee JC, and Kim WK. Aging and stroke. Journal of Korean Gerontological Nursing 2006;16:11-16.
  17. Leung HWC, Lin CJ, Hour MJ, Yang WH, Wang MY, and Lee HZ. Kaempferol induces apoptosis in human lung non-small carcinoma cells accompanied by an induction of antioxidant enzyme. Food and Chemical Toxicology 2007;45:2005-2013.
    Pubmed CrossRef
  18. Li YL, Gan GP, Zhang HZ, Wu HZ, Li CL, Hung YP, Liu TW, and Liu JW. A flavonoid glycoside isolated from Smilax china L. rhizome in vitro anticancer effects on human cancer cell lines. Journal of Ethnopharmacology 2007;113:115-124.
    Pubmed CrossRef
  19. Linke A, Adams V, Schulze PC, Erbs S, Gielen S, Fiehn E, Mobius-Winkler S, Schbert A, Schuler G, and Hambrecht R. Antioxidative effects of exercise training in patients with chronic heart failure: increase in radical scavenger enzyme activity in skeletal muscle. Circulation 2005;111:1763-1770.
    Pubmed CrossRef
  20. Luscher TF, Vanhoutte PM, and Boulanger C. Endothelial dysfunction in hypertension, in Rubanyi G (ed): Cardiovascular significance of endothelium-derived vasoactive factors. Future New York 1991;20:199-221.
  21. Ma J, Luo XD, Protiva P, Yang H, Ma C, Basile MJ, Weinstein IB, and Kennelly EJ. Bioactive novel polyphenols from the fruit of Manikara zapota (Sapodolla). Journal of Natural Products 2003;66:983-986.
    Pubmed CrossRef
  22. Marklund S, and Marklund G. Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 1974;47:468-474.
    CrossRef
  23. Oh YL, Choi YR, Chang BS, and Jung IJ. Antioxidative effect of Portulaca oleracea L. extract on allergic contact dermatitis agent, copper in cultured human skin fibroblasts. Journal of Investigative Cosmetology 2012;8:243-249.
    CrossRef
  24. Pellegrini-Giampietro DE, Cherici G, Alesiani M, Carla V, and Moroni F. Excitatory amino acid and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage. Journal of Neuroscience 1990;10:1035-1041.
    Pubmed
  25. Schwartz SM, Foy L, Bowen-Pope DF, and Ross R. Derivation and properties of platelet-derived growth factor-independent rat smooth muscle cells. American Journal of Pathology 1990;136:1417-1428.
    Pubmed KoreaMed
  26. Sellke FW, Armstrong ML, and Harrison DG. Endothelium-dependent vascular relaxation is abnormal in the coronary microcirculation of atherosclerotic primates. Circulation Research 1990;81:1586-1593.
    CrossRef
  27. Stanimirovic D, and Satoh K. Inflammatory mediators of cerebral endothelium: a role in ischemic brain inflammation. Brain Pathology 2000;10:113-126.
    Pubmed CrossRef
  28. Verbeuren TJ, Jordaens FH, and Zonnekeyn LL. Effect of hypercholesterolemia on vascular reactivity in the rabbit I. endotheliumdependent and endothelium-independent contractions and relaxations in isolated arteries of control and hypercholesterolemic rabbits. Circulation Research 1986;58:552-564.
    Pubmed CrossRef
  29. Wang L, Tu YC, Lian TW, Hung JT, Yen JH, and Wu MJ. Distinctive antioxidant and antiinflammatory effects of flavonols. Journal of Agricultural and Food Chemistry 2006;54:9798-9804.
    Pubmed CrossRef