Search for


TEXT SIZE

search for



CrossRef (0)
Antioxidants and Anti-inflammatory Effects of Fermented Houttuynia cordata Thunb and Scoria Mixture Extract
Biomed Sci Letters 2017;23:355-361
Published online December 31, 2017;  https://doi.org/10.15616/BSL.2017.23.4.355
© 2017 The Korean Society For Biomedical Laboratory Sciences.

Sung-Gyu Lee1, Sangmoon Kang2, Kee-Young Lee2, Kwang-Lyul Park3, and Hyun Kang1,†

1Department of Medical Laboratory Science, College of Health Science, Dankook University, Chungnam 31116, Korea,
2Department of A&PEP, Rearch Institute, Chungbuk, 363-883, Korea,
3Scoria Industry Co., LTD, Jeju-city, 63018, Korea
Correspondence to: Hyun Kang. Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si, Chungnam 31116, Korea. Tel: +82-41-550-3015, Fax: +82-41-559-7934, e-mail: hkang@dankook.ac.kr
Received September 1, 2017; Revised September 20, 2017; Accepted September 26, 2017.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract

In this study, antioxidant and anti-inflammatory of fermented Houttuynia cordata Thunb and scoria mixture extract were investigated in vitro. Radical-scavenging activities of the ethanol extracts were examined by using α,α-diphenyl-β-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS)) radicals assay. Consequently, we confirmed that fermented Houttuynia cordata Thunb and scoria mixture extract dependent removed DPPH and ABTS radical. Also, to confirm anti-inflammatory activity of ethanol extract, we treated fermented Houttuynia cordata Thunb and scoria mixture extract on BV-2 cell with LPS. The result showed that fermented Houttuynia cordata Thunb and scoria mixture extract concentration-dependent inhibited NO production. Therefore, fermented Houttuynia cordata Thunb and scoria mixture extract showed inhibition radical oxygen activities and inflammatory and have available for a pharmacological composition on neuritis-protection and treatment.

Keywords : Antioxidant, Anti-inflammatory, Scoria, Fermentation, Houttuynia cordata
꽌濡

理쒓렐 湲곕뒫꽦 泥쒖뿰 냼옱뿉꽌 諛쒗슚湲곗닠쓣 젒紐⑺븳 냼옱뱾뿉 븳 愿떖씠 利앷븯怨 엳떎. 諛쒗슚맂 냼옱뱾 뿉꼫吏썝쓣 젣쇅븳 쁺뼇 꽦遺꾨뱾 遺遺 洹몃濡 蹂댁〈릺怨 깮由ы솢꽦 諛곕떦泥 꽦遺꾨뱾쓣 鍮꾨같떦泥대줈 쟾솚븯뿬 깮由ы솢꽦臾쇱쭏쓽 泥대궡 씉닔쑉쓣 利앸떆궗 닔 엳뒗 씠젏쓣 媛吏怨 엳떎(Bae et al., 2004). 븳렪, 씤媛꾩쓽 닔紐낆씠 뿰옣릺硫댁꽌 留뚯꽦吏덊솚씤 깮솢뒿愿蹂(lifestyle related disease)씠 湲됱쬆븯怨 엳뒗뜲(Tanaka et al., 2000), 씠윭븳 썝씤 깮泥댁쓽 궗怨쇱젙뿉꽌 諛쒖깮릺뒗 솢꽦궛냼瑜(reactive oxygen species, ROS)뿉 湲곗씤븳떎怨 븣젮議뚮떎(Wiseman, 1996; Bouayed and Bohn, 2010). ROS뒗 꽭룷 궡 DNA, RNA, 떒諛깆쭏 벑怨 諛섏쓳븯뿬 꽭룷 넀긽 諛 뙆愿 벑쓣 쑀諛쒗븯뿬(Aischer and Hess, 1993; Chen et al., 2012) 븫, 룞留κ꼍솕, 떦눊蹂묎낵 媛숈 떎뼇븳 吏덈퀝怨 끂솕瑜 씠걣怨 듅엳 떎瑜 옣湲곗뿉 鍮꾪빐 궛냼쓽 씠슜쑉씠 넂 뇤쓽 寃쎌슦, 떊寃쎌꽭룷쓽 궗硫몄쓣 쑀룄븯뿬 븣痢좏븯씠癒몃퀝, 뙆궓뒯蹂, 媛꾩쭏, 뇤議몄쨷 벑怨 媛숈 吏덊솚쓣 쑀諛쒖떆궓떎(Decker et al., 1992).

씠윭븳 솢꽦궛냼뒗 泥대궡뿉꽌 議댁옱븯뒗 Superoxide dismutase(SOD), glutathione peroxidase (GPX), catalase (CAT), glutathione reductase, glutathione-S-transferase怨 媛숈 빆궛솕 슚냼뱾濡 씤븯뿬 옄뿰쟻쑝濡 뾾뼱吏湲 븯吏留, 궗怨쇱젙뿉 엳뼱 臾몄젣媛 諛쒖깮릺嫄곕굹 뿼利앷낵 愿젴맂 씤泥댁쭏솚씠 빞湲곕맂떎硫, 泥대궡뿉 議댁옱븯뒗 빆궛솕 臾쇱쭏씠 怨좉컝릺뼱 슚怨쇱쟻쑝濡 ROS瑜 젣嫄고븯뒗뜲 떎뙣븷 닔 엳湲 븣臾몄뿉 쇅遺濡쒕꽣 빆궛솕 臾쇱쭏쓣 꽠痍⑦븷 븘슂媛 엳떎(Wiseman, 1996; Bouayed and Bohn, 2010; Aischer and Hess, 1993).

뼱꽦珥(Houttuynia cordata)뒗 궪諛깆큹怨(Saururaceae)뿉 냽븯뒗 떎뀈깮 珥덈낯쓽 빞깮 빟珥덈줈꽌 蹂몄쓽 빞깮 빟珥덈줈꽌 슦由щ굹씪, 以묎뎅, 씪蹂 벑吏뿉꽌 옄깮븯怨 엳떎(Jang et al., 1999). 吏뿭뿉 뵲씪 빟媛꾩쓽 李⑥씠뒗 엳쑝굹, 蹂댄넻 4썡寃쎌뿉 떦씠 듃怨, 6~8썡寃쎌뿉 苑껋씠 뵾硫, 듅쑀쓽 룆듅븳 깂깉(鍮꾨┛궡)瑜 븿쑀븳 깮由ы솢꽦 臾쇱쭏뱾씠 엳떎. 뼱꽦珥덉쓽 깮由ы솢꽦 꽦遺꾩 뵆씪蹂대끂씠뱶 쑀룄泥댁씤 quercetin, quercitrin, isoquercitrin, reynoutrin, hyperin, rutin 벑怨 젙쑀 꽦遺꾩쑝濡 decanoyl acetaldehyde, methyl nonylketone, laurinaldehyde, myrcene 벑씠 븿쑀릺뼱 엳쑝硫(Hong and Kim, 2004), 슚뒫뿉 愿븳 뿰援щ줈뒗 빆洹(Song et al., 2003), 빆궛솕(Lee et al., 1993), 빆諛깊삁蹂 諛 怨좎삁利 뼲젣 슚怨(Chung et al., 1999), 떊寃쎌꽭룷 蹂댄샇옉슜(Jeong et al., 2010) 벑씠 蹂닿퀬릺怨 엳떎.

젣二 솕궛넚씠뒗 젣二쇰룄 씪썝쓽 110쉶 솕궛씠 룺諛쒗븷 븣 遺꾩텧맂 뿬윭 臾쇱쭏 媛슫뜲 떎怨듭쭏쓽 솕궛븫, 솕궛 紐⑤옒, 湲고 솕궛쉶 벑씠 샎빀릺뼱 怨좎뿴뿉꽌 냼꽦맂 냼꽦泥대줈 씠猷⑥뼱吏 湲곌났瑜좎씠 넂 솕궛넗瑜 씪而ъ쑝硫, 슦由щ굹씪 젣二쇰룄뿉留 엳뒗 꽭怨 쑀씪쓽 씤泥댄삁븸怨 쑀궗븳 빟븣移쇰━꽦 옄썝쑝濡, 젣二쇰룄 諛⑹뼵쑝濡 ’넚씠(Scoria)’씪 遺덈┛떎. 넚씠뒗 湲곗깮솕궛(삤由)쑝濡 깮꽦릺뼱 젣二 쟾뿭뿉 嫄곗퀜 遺꾪룷릺뼱 엳쑝硫, 깋긽뿉 엳뼱꽌 쟻媛덉깋, 솴媛덉깋, 寃젙깋 諛 븫쉶깋쓽 깋긽쑝濡 겕寃 援щ텇릺怨, 媛옣 씪諛섏쟻쑝濡 쟻媛덉깋쓣 쓣뒗 넚씠媛 媛옣 留롮씠 遺꾪룷릺뼱 엳떎. 삁濡쒕꽣 怨좎삩 떎뒿븳 솚寃쎌씤 젣二쇰룄뿉꽌뒗 솕궛꽍 넚씠瑜 씠슜븯뿬 媛삦쓽 吏遺, 궡쇅 踰쎌뿉 궗슜븯뿬 蹂댁삩, 떒뿴, 諛⑹쓬, 諛⑹뒿젣濡 궗슜븯怨, 留덈떦 룄濡쒖뿉 源붿븘 蹂듭궗뿴 諛⑹뒗 臾쇰줎, 슦泥 떆 쓾깢臾 諛⑹ 뿬怨쇱젣濡 꼸由 씠슜릺뼱 솕쑝硫, 理쒓렐뿉뒗 넗뼇 媛쒕웾젣, 鍮꾨즺 泥④젣, 궗猷 泥④젣, 泥쒖뿰뿼깋젣, 솕옣뭹 썝猷 벑쑝濡 媛쒕컻릺怨 엳떎. 듅엳 빆洹, 빆뿼, 蹂댁뒿 슚怨쇱 媛숈 슚뒫뱾씠 엳吏留 씠뿉 븳 泥닿퀎쟻씤 뿰援ш 遺議깊븳 떎젙씠떎.

뵲씪꽌 蹂 뿰援ъ뿉꽌뒗 뼱꽦珥 諛쒗슚븸怨 솕궛넚씠 蹂듯빀 諛쒗슚븸쓽 빆궛솕 諛 빆뿼 슚怨쇰 議곗궗븯뿬 깉濡쒖슫 湲곕뒫꽦 떇뭹 諛 솕옣뭹 냼옱媛 맆 닔 엳뒗吏瑜 寃넗빐 蹂댁븯쑝硫, 솕궛넚씠뿉 쓽븳 솢꽦쓽 李⑥씠룄 솗씤빐 蹂댁븯떎.

옱猷 諛 諛⑸쾿

뼱꽦珥 諛 솕궛넚씠 蹂듯빀 諛쒗슚븸 젣議

뼱꽦珥덈뒗 寃쎈룞떆옣뿉꽌 援ъ엯븯뿬 20 mesh 씠븯濡 議곕텇뇙븯뿬 떆猷 100 g뿉 빐 100諛곗쓽 70% 뿉깂삱쓣 꽔뼱 72떆媛 룞븞 異붿텧븳 썑, 뿬怨(Whatman No 2, Maidstone, England)븯떎. 뿬怨쇳븳 뿉깂삱 異붿텧븸쓣 媛먯븬냽異(N-1000S-WD, Eyela Co., Tokyo, Japan) 썑 룞寃곌굔議(FDU-1100, Eyela Co., Tokyo, Japan)븯뿬 뿉깂삱 異붿텧臾쇱쓣 젣議고븯떎.

蹂 뿰援ъ뿉 궗슜맂 諛쒗슚 誘몄깮臾쇱 Apep Microorganism Jeju 170201濡 뿉씠븻렔뿉꽌 遺꾨━ 룞젙븳 誘몄깮臾쇰줈 븰紐낆 Bacillus subtilis씠떎. 쟾諛곗뼇 nutrient broth (Difco, Detroit, MI, USA), 37°C 吏꾪깢 諛곗뼇湲곗뿉꽌 24떆媛 諛곗뼇븯떎. 諛쒗슚뿉 궗슜맂 솕궛넚씠뒗 (二)넚씠궛뾽쓽 솕궛넚씠瑜 諛쏆븘 吏꾪뻾븯떎. 諛쒗슚 떆 궗슜맂 議곗꽦 뼱꽦珥 異붿텧臾 5%, 솕궛넚씠 0.5%, glucose 0.6%, yeast extract 0.3%, soytone 0.1%濡 吏꾪뻾븯떎. 諛쒗슚 議곗꽦뿉 Bacillus subtilis瑜 젒醫낇븯뿬 37°C뿉꽌 3씪媛 吏꾪깢 諛곗뼇븯뿬 諛쒗슚瑜 吏꾪뻾븯떎. 諛쒗슚 셿猷 썑 諛쒗슚臾쇱 0.2 μm 븘꽣瑜 씠슜븯뿬 뿬怨쇳븯떎(Fig. 1).

Fig. 1.

Schematic diagram for preparation of fermented Houttuynia cordata (FHC) and fermented Houttuynia cordata-scoria (FHC-S)


珥 뤃由ы럹 븿웾 痢≪젙

뼱꽦珥 諛 솕궛넚씠 蹂듯빀 諛쒗슚臾쇱쓽 珥 뤃由ы럹 솕빀臾쇱쓽 븿웾 鍮꾧탳瑜 쐞빐 Folin-Denis踰(Folin and Denis, 1912)쓣 쓳슜븯떎. 媛 諛쒗슚븸쓣 냽룄蹂꾨줈 씗꽍븳 슜븸 2 mL뿉 2諛 씗꽍맂 Folin 떆빟(Sigma Co., St. Louis, MO, USA) 2 mL쓣 泥④븯뿬 옒 샎빀븯떎. 샎빀븸쓣 3遺꾧컙 諛⑹튂븳 떎쓬 10% Na2CO3 (Sigma Co., St. Louis, MO, USA) 2 mL쓣 꽔怨 1떆媛 諛섏쓳떆궓 썑 UV/Visible spectrophotometer(UVIKON 922, Kontran Co., Milan, Italy) 700 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯뿬 옉꽦븳 몴以怨≪꽑쑝濡쒕꽣 븿웾쓣 援ы븯떎. 씠 븣 gallic acid (Sigma Co., St. Louis, MO, USA)瑜 씠슜븳 몴以怨≪꽑 gallic acid쓽 理쒖쥌냽룄媛 0, 5, 25, 50, 75 μg/mL媛 릺룄濡 븯뿬 쐞 媛숈 諛⑸쾿쑝濡 700 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯뿬 援ы븯떎.

珥 뵆씪蹂대끂씠뱶 븿웾 痢≪젙

뼱꽦珥 諛 솕궛넚씠 蹂듯빀 諛쒗슚븸쓽 珥 뵆씪蹂대끂씠뱶 븿웾 Nieva Moreno 벑(Nieva et al., 2000)쓽 諛⑸쾿쓣 쓳슜븯뿬 痢≪젙븯떎. 媛 깦뵆 0.1 mL 80% 뿉깂삱 0.9 mL쓣 샎빀븳 샎빀臾 0.5 mL뿉 10% aluminium nitrate (Sigma Co., St. Louis, MO, USA) 1 M potassium acetate (Sigma Co., St. Louis, MO, USA) 0.1 mL 洹몃━怨 80% 뿉깂삱 4.3 mL쓣 媛븯뿬 떎삩뿉 40遺 諛⑹튂븳 뮘 415 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 씠븣 珥 뵆씪蹂대끂씠뱶 븿웾 quercetin (Sigma Co., St. Louis, MO, USA)쓣 씠슜븯뿬 옉꽦븳 몴以怨≪꽑쑝濡쒕꽣 븿웾쓣 援ы븯떎.

1,1-diphenyl-2-picryl hydrazyl (DPPH) radical 냼嫄 솢꽦 痢≪젙

뼱꽦珥 諛 솕궛넚씠 蹂듯빀 諛쒗슚臾쇱쓽 free radical 냼嫄고솢꽦 stable radical씤 DPPH (Sigma Co., St. Louis, MO, USA)뿉 븳 솚썝젰쓣 痢≪젙븳 寃껋쑝濡 99% 硫뷀깂삱뿉 媛 떆猷뚮 씗꽍븳 씗꽍븸 800 μL 硫뷀깂삱뿉 끃씤 0.15 mM DPPH 슜븸 200 μL瑜 媛븯뿬 떎삩뿉 30遺 諛⑹튂븳 썑 517 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. DPPH radical 냼嫄고솢꽦 떎쓬 떇뿉 뵲씪 냼嫄고솢꽦쓣 怨꾩궛븯떎.

DPPHradicalscavengingactivity(%)=[100-(S/C×100]

S : 떆猷뚭뎔 諛섏쓳 썑 씉愿묐룄 - 떆猷뚭뎔 諛섏쓳 쟾 씉愿묐룄

C : 議곌뎔 諛섏쓳 썑 씉愿묐룄 - 議곌뎔 諛섏쓳 쟾 씉愿묐룄

2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid(ABTS)) radical 냼嫄고솢꽦

ABTS radical쓣 씠슜븳 빆궛솕젰 痢≪젙 ABTS+· cation decolorization assay 諛⑸쾿(Re et al., 1999)뿉 쓽븯뿬 떆뻾븯떎. 7 mM ABTS (Sigma Co., St. Louis, MO, USA) 2.45 mM potassium persulfate (Sigma Co., St. Louis, MO, USA)瑜 理쒖쥌냽룄濡 샎빀븯뿬 떎삩씤 븫냼뿉꽌 24떆媛 룞븞 諛⑹튂븯뿬 ABTS+·쓣 삎꽦떆궓 썑 732 nm뿉꽌 씉愿묐룄 媛믪씠 0.70(±0.02)씠 릺寃 phosphate buffered saline (PBS, pH 7.4)濡 씗꽍븯떎. 씗꽍맂 슜븸 990 μL뿉 sample 10 μL瑜 媛븯뿬 젙솗엳 1遺 룞븞 諛⑹튂븳 썑 씉愿묐룄瑜 痢≪젙븯떎.

꽭룷二 諛곗뼇

蹂 떎뿕뿉 궗슜맂 microglia cell line BV-2 꽭룷뒗 誘멸뎅 븯踰꾨뱶븰援먯뿉꽌 遺꾩뼇諛쏆븘 궗슜븯떎. BV-2 꽭룷뒗 10% fetal bovine serum (FBS; Gibco, BRL, USA), 100 μg/mL penicillin (Gibco, BRL, USA) 洹몃━怨 100 μg/mL streptomycin(Gibco, BRL, USA)쓣 泥④븳 RPMI1640 諛곗(Gibco, BRL, USA)瑜 씠슜븯뿬 5% CO2媛 議댁옱븯뒗 37°C 諛곗뼇湲곗뿉꽌 2~3씪뿉 븳 踰덉뵫 怨꾨 諛곗뼇븯떎.

꽭룷 깮議댁쑉 痢≪젙

LPS濡 옄洹밸맂 BV-2 꽭룷뿉꽌 LPS 諛 紐⑥떆 異붿텧臾쇱씠 꽭룷 깮議댁뿉 誘몄튂뒗 쁺뼢쓣 솗씤븯湲 쐞빐 cell viability瑜 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide(MTT) 遺꾩꽍踰뺤쑝濡 痢≪젙븯떎. 꽭룷(1×105 cell/mL)瑜 96-well plate뿉 180 μL뵫 遺꾩<븯뿬 12떆媛 씠긽 CO2 諛곗뼇湲곗뿉꽌 諛곗뼇븳 떎쓬, 떆猷뚮 媛곴컖쓽 議곌굔뿉 뵲씪 泥섎━븯뿬 24떆媛 諛곗뼇븯떎. 諛곗뼇븳 썑 諛곗뼇븸쓣 젣嫄고븯怨 0.5 mg/mL MTT媛 븿쑀릺뼱 엳뒗 諛곗 200 μL瑜 泥④븳 떎쓬 4떆媛 룞븞 諛곗뼇븯뿬 MTT媛 솚썝릺룄濡 븯떎. 洹 썑 諛곗뼇븸쓣 젣嫄고븯怨 dimethyl sulfoxide (DMSO) 100 μL 泥④븯뿬 깮꽦맂 formazone 寃곗젙쓣 슜빐떆궓 썑, ELISA reader(Bio-Rad Co., USA)瑜 씠슜븯뿬 540 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 꽭룷 깮議댁쑉 議곌뎔怨 鍮꾧탳븯뿬 諛깅텇쑉(%)濡 굹궡뿀떎.

LPS濡 솢꽦솕맂 떊寃쎄탳꽭룷뿉꽌 NO 깮꽦빐 옉슜

뼱꽦珥 諛 솕궛넚씠 蹂듯빀 諛쒗슚븸쓽 빆뿼利 슚뒫쓣 遺꾩꽍븯湲 쐞븯뿬 蹂 뿰援ъ뿉꽌뒗 뿼利 쑀諛 씤옄씤 LPS瑜 媛 냽룄蹂꾨줈 옄洹밸맂 떊寃쎄탳꽭룷뿉꽌 깮궛릺뒗 NO 냽룄瑜 쓽議댁쟻쑝濡 슚뒫쓣 엳뒗吏 솗씤븯떎. NO 痢≪젙 24 well plate뿉 꽭룷瑜 5×105 cell/쓣 seeding븳 썑, LPS 諛쒗슚臾쇱쓣 냽룄李⑤ 몢뼱 泥④븳 썑, 24 h incubator뿉꽌 諛섏쓳떆궓 썑, 媛곴컖 50 μL뵫 Griess reagent (1% sulfanilamide/0.1% N-(1-naphthyl)-ethylenediamine dihydrochloride/2.5% H3PO4) 諛섏쓳떆궓 썑, 뙆옣씠 540 nm씤 ELISA reader (Bio-Rad Co., USA)瑜 궗슜븯뿬 媛믪쓣 痢≪젙븯떎.

寃곌낵

뤃由ы럹 諛 뵆씪蹂대끂씠뱶 븿웾 鍮꾧탳

뼱꽦珥 諛 솕궛넚씠 蹂듯빀 諛쒗슚븸뿉 議댁옱븯뒗 珥 뤃由ы럹 諛 뵆씪蹂대끂씠뱶 븿웾 媛곴컖 gallic acid, quercetin쓣 湲곗 臾쇱쭏濡 븯뿬 痢≪젙븯떎(Table 1). 洹 寃곌낵, FHC(뼱꽦珥 諛쒗슚븸)쓽 珥 뤃由ы럹 븿웾 6.02 μg/mL, FHC-S(뼱꽦珥-솕궛넚씠 蹂듯빀 諛쒗슚븸)뒗 3.84 μg/mL濡 굹굹, 솕궛넚씠瑜 泥④븯吏 븡 諛쒗슚븸뿉꽌 넂 뤃由ы럹 븿웾쓣 蹂댁떎. 珥 뵆씪蹂대끂씠뱶 븿웾 FHC FHC-S뿉꽌 媛곴컖 10.85, 8.55 μg/mL濡 뤃由ы럹 븿웾 寃쏀뼢怨 쑀궗븯寃 굹궗떎.

Total polyphenols and flavonoids contents in fermented Houttuynia cordata (FHC) and fermented Houttuynia cordatascoria (FHC-S)

 SampleTotal polyphenols1) (μg/mL)Total flavonoids2) (μg/mL)
FHC6.02±0.173)10.85±0.45
FHC-S3.84±0.328.55±0.17

1)Milligrams of total polyphenol content/g of samples based on gallic acid as standard.

2)Milligrams of total flavonoid content/g of samples based on quercetin as standard.

3)Each value is mean ± S.D. (n=3).

FHC : Fermented Houttuynia cordata

FHC-S : Fermented Houttuynia cordata-scoria


뼱꽦珥 諛 솕궛넚씠 蹂듯빀 諛쒗슚븸쓽 DPPH 諛 ABTS free radical 냼嫄고솢꽦

뼱꽦珥 諛 솕궛넚씠 蹂듯빀 諛쒗슚븸쓽 빆궛솕뒫쓣 痢≪젙븯湲 쐞빐 DPPH 냼嫄고솢꽦쓣 냽룄蹂꾨줈 痢≪젙븳 寃곌낵뒗 Fig. 2A 媛숇떎. FHC(뼱꽦珥 諛쒗슚븸) 100諛, 50諛, 10諛, 5諛 媛곴컖 씗꽍븸뿉꽌 빟 0, 11.5, 41.5, 70%쓽 냼嫄곕뒫쓣 蹂댁怨, 룞씪븳 씗꽍븸뿉꽌쓽 FHC-S(뼱꽦珥-솕궛넚씠 蹂듯빀 諛쒗슚븸)뒗 빟 100, 100, 88, 35.5%쓽 냼嫄곕뒫쓣 蹂댁떎. 듅엳 솕궛넚씠媛 泥④릺硫댁꽌 뼱꽦珥 떒룆 諛쒗슚븸蹂대떎 냼嫄고솢꽦씠 넂븘吏뒗 寃껋쓣 솗씤븷 닔 엳뿀떎. ABTS+· 냼嫄고솢꽦 뿭떆 DPPH 냼嫄고솢꽦怨 쑀궗븯寃 솕궛넚씠瑜 泥④븯뿬 諛쒗슚븳 FHC-S뿉꽌 넂 냼嫄고솢꽦쓣 굹깂쓣 솗씤븯떎(Fig. 2B).

Fig. 2.

DPPH (A) and ABTS (B) radical scavenging effects of fermented Houttuynia cordata (FHC) and fermented Houttuynia cordata-scoria (FHC-S). Dilution concentration: 5×, 10×, 50×, 100×


꽭룷 깮議댁쑉 痢≪젙

뼱꽦珥 諛 솕궛넚씠 蹂듯빀 諛쒗슚븸씠 꽭룷 깮議댁뿉 겮移섎뒗 쁺뼢쓣 솗씤븯湲 쐞빐 BV-2 cell뿉 LPS, FHC(뼱꽦珥 諛쒗슚븸) 洹몃━怨 FHC-S(뼱꽦珥-솕궛넚씠 蹂듯빀 諛쒗슚븸)瑜 냽룄蹂꾨줈 泥섎━븯떎. 癒쇱, LPS 100 ng/mL瑜 떒룆쑝濡 泥섎━븯쓣 븣, 議곌뎔뿉 鍮꾧탳븯뿬 겙 李⑥씠媛 뾾뿀떎. 삉븳, LPS FHC 샊 FHC-S瑜 媛숈씠 泥섎━븯쓣 븣뿉룄 cell viability媛 20~200諛 씗꽍븸뿉꽌뒗 95% 씠긽쑝濡 꽭룷 깮議댁뿉 겮移섎뒗 쁺뼢씠 뾾뿀吏留 FHC-S 10諛 씗꽍븸뿉꽌뒗 꽭룷뿉 룆꽦쓣 굹궡뒗 寃껋쓣 솗씤븯떎(Fig. 3).

Fig. 3.

Effect of fermented Houttuynia cordata (FHC) and fermented Houttuynia cordata-scoria (FHC-S) on cytotoxicity in BV-2 cells. FHC and FHC-S was treated with various concentrations in BV-2 cells for 24 h. Values are expressed as the mean ± SD (n=3) of determinations made in triplicate experiments. Dilution concentration: 10×, 20×, 40×, 100×, 200×


뼱꽦珥 諛 솕궛넚씠 蹂듯빀 諛쒗슚븸쓽 NO 깮꽦빐 슚怨

뼱꽦珥 諛 솕궛넚씠 蹂듯빀 諛쒗슚븸쓽 빆뿼 슚怨쇰 솗씤븯湲 쐞븯뿬 LPS濡 옄洹뱁븯뿬 뿼利 諛섏쓳쓣 쑀룄븳 BV-2 cell뿉 FHC(뼱꽦珥 諛쒗슚븸) 洹몃━怨 FHC-S(뼱꽦珥-솕궛넚씠 蹂듯빀 諛쒗슚븸)瑜 씗꽍븸蹂꾨줈 泥섎━븳 썑, NO쓽 깮꽦냽룄瑜 솗씤븯떎. 癒쇱 FHC瑜 泥섎━븯쓣 븣, BV-2 cell뿉꽌 깮꽦븯뒗 NO쓽 냽룄뒗 40諛 씗꽍븸뿉꽌遺꽣 利앷맂 NO냽룄媛 50% 씠긽 媛먯냼릺뒗 寃껋쓣 솗씤븷 닔 엳뿀떎. 諛섎㈃, FHC-S뒗 100諛 씗꽍븸뿉꽌遺꽣 LPS control怨 議고븯뿬 50% 씠긽 以꾩뼱뱶뒗 寃껋쓣 솗씤븷 닔 엳뿀떎(Fig. 4).

Fig. 4.

Effect of fermented Houttuynia cordata (FHC) and fermented Houttuynia cordata-scoria (FHC-S) on NO production in BV-2 cells. FHC and FHC-S was treated with various concentrations in BV-2 cells for 24 h. Values are expressed as the mean ± SD (n=3) of determinations made in triplicate experiments. Dilution concentration: 10×, 20×, 40×, 100×, 200×


怨좎같

蹂 뿰援ъ뿉꽌뒗 뼱꽦珥 諛쒗슚븸쓽 빆궛솕 諛 빆뿼 슚怨쇰 痢≪젙븯怨, 뜑遺덉뼱 솕궛넚씠 泥④濡 씤븳 諛쒗슚븸쓽 湲곕뒫꽦 뼢긽 슚怨쇰 솗씤븯떎. 뤃由ы럹 솕빀臾쇱씠굹 뵆씪蹂대끂씠뱶瑜섎뒗 뿬윭 媛吏 떇뭹뿉 遺꾪룷릺뼱 엳쑝硫 泥쒖뿰빆궛솕젣濡 옉슜븳떎뒗 蹂닿퀬媛 留롮씠 븣젮졇 엳떎(Sato et al., 1996; Bors and Saran, 1987). 듅엳 뵆씪蹂대끂씠뱶瑜섎뒗 븫꽭룷쓽 DNA, RNA 洹몃━怨 protein쓽 빀꽦쓣 뼲젣 삉뒗 cAMP쓽 냽룄瑜 利앷떆궡쑝濡쒖뜥 醫낆뼇꽭룷쓽 遺꾩뿴쓣 뼲젣븯嫄곕굹 apoptosis瑜 쑀룄븯뒗 벑쓽 떎媛곸쟻 湲곗쟾쓣 넻빐 빆븫 슚怨쇰 諛쒗쐶븯뒗 寃껋쑝濡 븣젮졇 엳떎(Suolinna et al., 1975; Gerriten, 1995). 泥쒖뿰빆궛솕젣쓽 뿭븷쓣 븯뒗 뤃由ы럹怨쇳뵆씪蹂대끂씠뱶 뼚옉쓣 痢≪젙븳 寃곌낵, 솕궛넚씠媛 泥④맂 諛쒗슚븸뿉꽌 떎냼 媛먯냼릺뒗 寃쏀뼢쓣 蹂댁떎(Table 1). 씠뒗 泥쒖뿰 냼옱 쇅뿉 솕궛넚씠媛 泥④릺뼱 뤃由ы럹怨 뵆씪蹂대끂씠뱶 븿웾씠 媛먯냼맂 寃곌낵濡 깮媛곷맂떎.

빆궛솕 솢꽦 痢≪젙뿉 씠슜릺怨 엳뒗 몴쟻씤 radical씤 DPPH뒗 吏숈 옄깋쓣 쓣뒗 鍮꾧탳쟻 븞젙븳 free radical濡쒖꽌 빆궛솕젣, 諛⑺뼢議 븘誘쇰쪟 벑뿉 쓽빐 솚썝릺뼱 깋씠 깉깋릺뒗 寃껋쓣 씠슜븯뿬 빆궛솕 臾쇱쭏쓣 寃깋븯뒗뜲 씠슜릺怨 엳떎. 삉븳, ABTS+· 냼嫄고솢꽦 泥濡앹깋쑝濡 깉깋맂 free radical쓽 젣嫄 젙룄瑜 씉愿묐룄 媛믪쑝濡 굹궡뼱 ABTS+·쓽 냼嫄 솢꽦뒫쓣 痢≪젙븷 닔 엳怨 깉깋 諛섏쓳씠 1遺 븞뿉 醫낅즺릺뼱 떒떆媛꾩뿉 痢≪젙 媛뒫븯떎. 뼱꽦珥 諛 솕궛넚씠 蹂듯빀 諛쒗슚븸쓽 DPPH ABTS 씪뵒移 냼嫄곕뒫 뤃由ы럹 諛 뵆씪蹂대끂씠뱶 븿웾쓽 寃쏀뼢怨 떖由 솕궛넚씠瑜 泥④븯뿬 諛쒗슚븯쓣 寃쎌슦 냼嫄고솢꽦씠 利앷릺뒗 寃껋쓣 솗씤븯떎(Fig. 2). 씠뒗 솕궛넚씠 옄泥댁쓽 빆궛솕 슚뒫뿉 쓽빐 뼱꽦珥 異붿텧臾쇨낵쓽 떆꼫吏 슚怨쇰 蹂댁씤 寃껋쑝濡 깮媛곷맂떎.

LPS뒗 洹몃엺 쓬꽦 꽭洹좎쓽 꽭룷踰 臾쇱쭏씠떎. 떒援ъ꽭룷 삉뒗 떇꽭룷뒗 誘몃웾쓽 LPS뿉 쓽빐 솢꽦솕릺怨 떎뼇븳 궗씠넗移댁씤, 븘씪궎룉궛 궗궛臾, 솢꽦궛냼, NO 벑쓣 깮궛, 諛⑹텧븳떎(Gross and Wolin, 1995; Stuehr, 1999). NO뒗 젙긽쟻씤 깮由 긽깭뿉꽌 삁愿쓽 빆긽꽦, apoptosis 쑀룄 옉슜 벑以 슂븳 깮由ъ쟻씤 湲곕뒫쓣 留ㅺ컻븯吏留 떎웾쓽 NO뒗 젙긽 꽭룷瑜 二쎌씠怨 뿼利앹쓣 쑀룄븯뿬 湲됱꽦 삉뒗 留뚯꽦 뿼利앹쭏솚쓽 썝씤씠 릺뒗 臾쇱쭏濡 옉슜븯寃 맂떎(Halliwell, 1992).뵲씪꽌, 슚怨쇱쟻씤 NO 遺꾨퉬議곗젅 湲됱꽦 삉뒗 留뚯꽦 뿼利앹쭏솚쓽 移섎즺諛⑸쾿쑝濡 븣젮졇 엳쑝硫 씠뿉 븳 뿰援ш 솢諛쒗엳 吏꾪뻾릺怨 엳떎. 씠뿉 뼱꽦珥 諛 솕궛넚씠 蹂듯빀 諛쒗슚븸씠 NO쓽 깮꽦쓣 빐븷 닔 엳뒗吏瑜 븣븘蹂 寃곌낵 Fig. 4 媛숈씠 굹궗떎. NO 깮꽦빐 슚怨쇰 痢≪젙븯湲 쟾뿉 뼱꽦珥 諛 솕궛넚씠 蹂듯빀 諛쒗슚븸씠 꽭룷뿉 룆꽦쓣 굹궡뒗吏瑜 MTT assay瑜 씠슜븯뿬 痢≪젙븯쓣 븣, FHC-S(뼱꽦珥-솕궛넚씠 蹂듯빀 諛쒗슚븸) 10諛 씗꽍븸뿉꽌 꽭룷룆꽦쓣 솗씤븯떎(Fig. 3). 씠뒗 솕궛넚씠 泥④濡 씤븳 寃곌낵濡 궗猷뚮맂떎. LPS留 泥섎━븳 援곗뿉꽌뒗 NO媛 빟 19.9 μM濡 泥섎━븯吏 븡 援곕낫떎 빟 5諛 씠긽쓽 NO瑜 깮꽦븯怨 뿬湲곗뿉 FHC(뼱꽦珥 諛쒗슚븸) 洹몃━怨 FHC-S(뼱꽦珥-솕궛넚씠 蹂듯빀諛쒗슚븸)瑜 泥섎━븳 援곗쓽 寃쎌슦 씗꽍냽룄뿉 뵲씪 NO 깮꽦씠 媛먯냼릺뒗 寃껋쓣 솗씤븯怨, FHC-S(뼱꽦珥-솕궛넚씠 蹂듯빀 諛쒗슚븸) 泥섎━븳 援곗뿉꽌 NO 깮꽦빐 슚怨쇨 뜑 슦닔븯寃 굹굹뒗 寃껋쓣 솗씤븯떎(Fig. 4). 씠뒗 씪뵒移 냼嫄곕뒫씠 FHC-S(뼱꽦珥-솕궛넚씠 蹂듯빀 諛쒗슚븸)媛 뜑 슦닔븯寃 굹궃 寃곌낵 씪移섑븳 寃껋쓣 蹂댁떎.

蹂 뿰援ъ뿉꽌 궗슜맂 FHC(뼱꽦珥 諛쒗슚븸) 蹂대떎뒗 FHC-S(뼱꽦珥-솕궛넚씠 蹂듯빀 諛쒗슚븸)媛 솕궛넚씠媛 샎빀릺硫댁꽌 떆꼫吏 슚怨쇰 굹궡뒗 寃껋쑝濡 깮媛곷릺硫 씠윭븳 솕궛넚씠 泥④ 諛쒗슚븸 뿼利앹꽦 吏덊솚쓽 삁諛 諛 移섎즺슜 湲곕뒫꽦 냼옱濡 솢슜맆 닔 엳쑝由щ씪 蹂몃떎.

ACKNOWLEDGEMENTS

This research was supported by the Ministry of Trade, Industry & Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT) through the Encouragement Program for The Industries of Economic Cooperation Region.

References
  1. Aischer RG, and Hess JL. Antioxidants in higher plants. Boca Raton: CRC Press; 1993 p. 1-17.
  2. Bae EA, Han MJ, Kim EJ, and Kim DH. Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformations. Archives of Pharmacal Research 2004;27:61-67.
    Pubmed CrossRef
  3. Bors W, and Saran M. Radical scavenging by flavonoid antioxidants. Free Radical Research Communications 1987;2:289-294.
    Pubmed CrossRef
  4. Bouayed J, and Bohn T. Exogenous antioxidants-Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Medicine and Cellular Longevity 2010;3:228-237.
    Pubmed KoreaMed CrossRef
  5. Chen L, Hu JU, and Wang SQ. The role of antioxdants in photoprotection: A critical review. Journal of the American Academy of Dermatology 2012;67:1013-1024.
    Pubmed CrossRef
  6. Chung CK, Ham SS, Lee SY, Oh DH, Choi SY, Kang IJ, and Nam SM. Effects of Houttuynia cordata ethanol extracts on serum lipids and antioxidant enzymes in rats fed high fat diet. Journal of the Korean Society of Food Science and Nutrition 1999;28:205-211.
  7. Decker EA, Crum AD, and Calvert JT. Differences in the antioxidant mechanism of carmosine in the presence of copper and iron. Journal of Agricultural and Food Chemistry 1992;40:756-759.
    CrossRef
  8. Folin O, and Denis W. On phosphotungstic-phosphomolybdic compounds as color reagents. The Journal of Biological Chemistry 1912;12:239-249.
  9. Gerriten ME. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression. American Journal of Pathology 1995;147:278-292.
  10. Gross SS, and Wolin MS. Nitric oxide: Pathophysiological mechanisms. Annual Review of Physiology 1995;57:737-769.
    Pubmed CrossRef
  11. Halliwell B. Reactive oxygen species and the central nervous system. Journal of Neurochemistry 1992;59:1609-1623.
    Pubmed CrossRef
  12. Hong ND, and Kim NJ. Quality control of herbal medicines: Shinil Books; 2004.
  13. Jang SM, Noh SH, and Park SD. Herbal resource plant: Hakmoon Press; 1999.
  14. Jeong HR, Kwak JH, Kim JH, Choi GN, Jeong CH, and Heo HJ. Antioxidant and neuronal cell protective effects of an extract of Houttuynia cordata Thunb (a culinary herb). Korean Journal of Food Preservation 2010;17:720-726.
  15. Lee YJ, Shin DH, Chang YS, and Shin JH. Antioxidative effect of some edible plant solvent extracts with various synergists. Korean Journal of Food Science and Technology 1993;25:683-688.
  16. Nieva Moreno MI, Isla MI, Sampietro AR, and Vattuone MA. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. Journal of Ethnopharmacology 2000;71:109-114.
    CrossRef
  17. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, and Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 1999;26:1231-1237.
    CrossRef
  18. Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, and Ochi H. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. Journal of Agricultural and Food Chemistry 1996;44:37-41.
    CrossRef
  19. Song JH, Kim MJ, Kwon HD, and Park IH. Antimicrobial activity of fractional extracts from Houttuynia cordata root. Journal of the Korean Society of Food Science and Nutrition 2003;32:1053-1058.
    CrossRef
  20. Stuehr DJ. Mammalian nitric oxide synthases. Biochimica et Biophysica Acta 1999;1411:217-230.
    CrossRef
  21. Suolinna EM, Buchsbaum RN, and Racker E. The effect of flavonoids on aerobic glycolysis and growth of tumor cells. Cancer Research 1975;35:1865-1872.
    Pubmed
  22. Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, and Seals DR. Aging, habitual exercise, and dynamic arterial compliance. Circulation 2000;102:1270-1275.
    Pubmed CrossRef
  23. Wiseman H. Dietary influences on membrane function: impotent in protection against oxidative damage and disease. The Journal of Nutritional Biochemistry 1996;7:2-15.
    CrossRef