Search for


TEXT SIZE

search for



CrossRef (0)
Cell Proliferation and Antioxidative Effects of Ultrasonic Coffee Extracts
Biomed Sci Letters 2017;23:388-394
Published online December 31, 2017;  https://doi.org/10.15616/BSL.2017.23.4.388
© 2017 The Korean Society For Biomedical Laboratory Sciences.

Hyunwoo Jin1,2,†

1Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea,
2Construction of Diagnosis System to Create an Ecosystem for Elder-friendly Medical Health Care, Brain Busan 21 Program, Graduate School, Catholic University of Pusan, Busan 46252, Korea
Correspondence to: Hyunwoo Jin. Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea. Tel: +82-51-510-0567, Fax: +82-51-510-0568, e-mail: jjinhw@cup.ac.kr
Received October 13, 2017; Revised November 7, 2017; Accepted November 9, 2017.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract

Recently, coffee is the most popular beverage for modern people. A great number of substances are found in coffee beans and have been studied for many years such as aliphatic and aromatic compounds. However, studies on the physiological activity of coffee extracts are insufficient. This study was performed to determine the contents of caffeine and chlorogenic acid in coffee extracts according to the solvent and to investigate the physiological activity of coffee extracts. Coffee extracts were extracted by ultrasonication method with various types of solvents including distilled water, ethanol, and other organic solvents under 50°C and 80°C. The contents of caffeine and chlorogenic acid in coffee extracts were determined by Liquid Chromatography-Mass Spectrometry (LC-MS). Also, cytotoxic and antioxidative effects of coffee extracts were evaluated with MTT and DPPH assays to analyze the physiological activity. As a result, it was confirmed that caffeine and chlorogenic acid contents were extracted in distilled water with the highest rate. Antioxidative activity was observed below 10-fold dilute of coffee extracts, however cytotoxicity was not observed. In conclusion, distilled water was the best solvent for extracting caffeine and chlorogenic acids from coffee bean with ultrasonication and these coffee extracts are less cytotoxic in human skin cell lines and have antioxidant effect.

Keywords : Coffee extract, Caffeine, Chlorogenic acid, Antioxidant activity, LC-MS
Body

理쒓렐 쁽씤뱾쓽 깮솢닔以쓽 뼢긽쑝濡 嫄닿컯怨 궣쓣 以묒슂떆븯怨 뻾蹂듭쓣 異붽뎄븯뒗 깮솢諛⑹떇쑝濡 씤떇쓽 蹂솕媛 엳怨 옄뿰뒪읇寃 嫄닿컯怨 궣쓽 吏덉쓣 넂씠뒗 냼鍮 삎깭濡 愿떖씠 蹂솕븯뿬 긽뭹쓽 슚뒫怨 슚怨쇰 以묒슂븯寃 깮媛곹븳떎. 洹 以 泥쒖뿰臾쇱쭏뱾쓽 꽦遺꾩씠 떎뼇븳 슚뒫쓣 媛吏뒗 寃껋쓣 븣寃 릺硫댁꽌 떒닚엳 씤媛꾩쓽 궣쓣 쑀吏븯젮뒗 쁽씤뱾뿉寃 吏덈퀝쓣 삁諛⑺븯怨 끂솕 삁諛⑷낵 嫄닿컯쑀吏뿉 룄쓣 以 닔 엳뒗 泥쒖뿰옄썝쑝濡 씤떇븯怨 엳떎(Hur, 2015). 泥쒖뿰臾쇱쓣 異붿텧븯뒗 諛⑸쾿쑝濡 쟾넻쟻 諛⑸쾿씤 뿴닔異쒕쾿, 怨좎삩슜留 異붿텧踰, 湲곌퀎 븬李⑸쾿 벑쓣 二쇰줈 궗슜븯吏留 씠윭븳 쟾넻쟻 諛⑸쾿쓣 넻븳 異붿텧 異붿텧슜留ㅼ쓽 냼紐⑤웾씠 留롪퀬 뿴뿉 쓽빐 蹂꽦씠 맆 닔 엳떎뒗 떒젏쓣 媛吏怨 엳떎. 씠뿉 理쒓렐 泥쒖뿰臾쇱쭏뿉꽌 쑀슜 꽦遺꾩쓣 異붿텧븯뒗뜲 珥덉쓬뙆泥섎━踰, 슚냼異붿텧踰, 珥덉엫怨 쑀泥대쾿 벑쓽 깉濡쒖슫 湲곗닠뱾씠 媛쒕컻릺뿀怨 씠 以 珥덉쓬뙆 異붿텧踰뺤 媛꾪렪븯怨 슚쑉쟻씤 異붿텧湲곕쾿쑝濡 泥쒖뿰臾쇱쭏 異붿텧뿉 떎뼇븯寃 솢슜븳떎(Hwang and Park, 2015).

而ㅽ뵾 깮몢(Green Coffee Beans)뒗 而ㅽ뵾굹臾댁쓽 뿴留(Coffee cherry) 以묒뿉 엳뒗 뵪븮뿉꽌 쇅뵾瑜 諛뺥뵾븯뿬 꽭泥숉븯怨 嫄댁“븳 寃껋쓣 留먰븳떎. 而ㅽ뵾쓽 二쇱슂 썝猷뚯씤 而ㅽ뵾 깮몢쓽 援ъ꽦 꽦遺꾩쑝濡쒕뒗 닔遺, 깂닔솕臾, 吏諛⑹쭏, 떒諛깆쭏, 臾닿린吏, Caffeine怨 Chlorogenic acid쑝濡 씠猷⑥뼱졇 엳怨 씠쓽 븿웾 깮궛솚寃쎌씠굹 뭹醫낆뿉 뵲씪 議곌툑뵫 李⑥씠媛 엳떎. 씠윭븳 而ㅽ뵾뒗 쟾 꽭怨꾩쟻쑝濡 媛옣 꼸由 쓬슜븯뒗 쓬猷 以 븯굹濡 븳援뿉꽌룄 而ㅽ뵾쓽 닔엯웾 留ㅻ뀈 利앷븯怨 엳怨 理쒓렐 而ㅽ뵾쓽 솢슜 利앷 뜑遺덉뼱 떎뼇븳 諛⑸쾿쓣 넻빐 而ㅽ뵾쓽 깮由ы솢꽦 슚怨쇰 利앸챸븯湲 쐞븳 뿰援ш 吏꾪뻾릺怨 엳떎(Lee et al., 2016; Kim et al., 2018).

而ㅽ뵾 以 媛옣 옒 븣젮吏 꽦遺꾩씤 caffeine 而ㅽ뵾 쇅뿉룄 떎뼇븳 뭹紐⑹뿉 븿쑀릺뼱 엳뒗 xanthine怨 솕빀臾쇰줈 而ㅽ뵾肄⑹뿉꽌 泥섏쓬 諛쒓껄맂 씎遺꾩젣쓽 븳 醫낅쪟씠硫 遺떊뵾吏 샇瑜대が 遺꾨퉬瑜 珥됱쭊븯뿬 닚솚湲 怨꾪넻쓽 슫룞쓣 뒛由щʼn 以묒텛떊寃쎌쓣 솢꽦솕 떆궎뒗 벑 떎뼇븳 슚怨쇰 蹂댁씠뒗 寃껋쑝濡 븣젮졇 엳떎(Cho, 2015). 而ㅽ뵾쓽 빆궛솕 슚怨쇱뿉 븳 뿰援щ줈 럹솕빀臾쇱씠굹 chlorogenic acid쓽 븿웾씠 而ㅽ뵾뿉꽌 넂 寃껋쑝濡 굹궗怨 諛붿씠윭뒪 媛먯뿼뿉 쓽븳 쁺뼢쓣 留됰뒗 슚怨쇰 媛吏怨 엳떎뒗 蹂닿퀬媛 엳떎. 삉븳 而ㅽ뵾뒗 而ㅽ뵾瑜 끃씠뒗 슜留ㅼ뿉 뵲씪 뿬윭 醫낅쪟쓽 洹좎뿉 븳 빆洹좎옉슜쓽 슚怨쇰 蹂댁씠怨 끂솕 泥쒖떇뿉룄 슚怨쇰 蹂댁씤떎뒗 蹂닿퀬媛 엳떎. 옣湲곌컙 而ㅽ뵾쓽 꽠痍⑤뒗 2삎 떦눊 諛쒕퀝쓣 궙異붽퀬 젙떊怨 떊寃쎌쭏蹂묒씤 뙆궓뒯蹂묎낵 븣痢좏븯씠癒 吏덈퀝쓽 諛쒕퀝뿉룄 슚怨쇰 蹂댁씤떎뒗 뿰援ш 蹂닿퀬릺怨 엳떎(Campos-Florián et al., 2013).

Chlorogenic acid뒗 green coffee bean쓣 룷븿븳 떎뼇븳 떇臾쇱씠굹 떇臾쇱쓽 씪遺뿉꽌 깮꽦릺뒗 泥쒖뿰 깮꽦臾쇱씠떎. 솕븰쟻쑝濡 caffeic acid quinic acid, 3-O-caffeoylquinic acid (3-CQA)쓽 뿉뒪뀒瑜댁씠怨 떎瑜 씠꽦吏덉껜濡쒕뒗 crypto-chlorogenic acid (4-CQA) neo-chlorogenic acid (5-CQA)媛 엳떎. Chlorogenic acid뒗 誘쇨컧븳 쐞옣쓣 媛吏 궗엺뱾뿉寃 臾몄젣媛 릺뒗 寃껋쑝濡 븣젮吏 而ㅽ뵾 꽦遺 以 븯굹씠떎. 諛섎㈃ 뤃由ы럹 솕빀臾쇰줈꽌 chlorogenic acid뒗 媛뺥븳 antioxidant濡 꽭룷 諛 紐⑤뱺 湲곌쓽 궛솕쟻 눜뻾쑝濡쒕꽣 蹂댄샇븯뒗 뿭븷쓣 븯뿬 嫄닿컯뿉 룄쓣 二쇰뒗 寃껋쑝濡 븣젮졇 엳떎(Farah et al., 2008; Jeszka-Skowron et al., 2016b).

씠 媛숈씠 而ㅽ뵾뒗 理쒓렐 깮솢닔以쓽 뼢긽뿉 뵲씪 븷슜븯뒗 벖留, 떊留 벑쓽 怨좎쑀쓽 룆듅븳 留쏄낵 뼢씠 뼱슦윭吏 몴쟻 湲고샇떇뭹쑝濡 씠쓽 슚뒫뱾씠 븣젮吏怨 엳떎. 븯吏留 而ㅽ뵾쓽 슚뒫씠 諛앺吏먯뿉 뵲씪 떎뼇븯寃 떇뭹쑝濡 씠슜릺怨 엳吏留 而ㅽ뵾 깮몢 異붿텧臾쇱쓽 슜留ㅼ 異붿텧踰뺤뿉 뵲瑜 꽦遺 븿웾 蹂솕 깮由ы솢꽦뿉 愿븳 뿰援щ뒗 誘명씉븳 떎젙씠떎. 뵲씪꽌 蹂 뿰援ъ뿉꽌뒗 而ㅽ뵾 깮몢瑜 긽쑝濡 슜留ㅼ뿉 뵲瑜 而ㅽ뵾 異붿텧臾 궡 caffeine 諛 chlorogenic acid쓽 븿웾쓣 遺꾩꽍븯怨 而ㅽ뵾 異붿텧臾쇱쓽 깮由ы솢꽦 슚怨쇰 솗씤븯怨좎옄 븯떎.

而ㅽ뵾 異붿텧臾쇱 깮몢(Arabica)瑜 씠슜븯뿬 닔꽭븳 썑 룞寃곌굔議고븯뿬 떆猷뚮줈 궗슜븯떎. 슜留ㅼ뿉 뵲瑜 chlorogenic acid쓽 븿웾 遺꾩꽍쓣 쐞븯뿬 媛 슜留(ethanol, 떇臾쇱꽦 ethanol, distilled water) 100 mL뿉 媛곴컖 깮몢 30 g쓣 꽔怨 sonicator(VCX 500, Sonics & Material Inc.)瑜 씠슜 (amplitude; 70% of 400 W, 3.0 sec pules, 1.0 sec. rest)쓽 議곌굔쑝濡 sonication 븯쑝硫 異붿텧 醫낅즺 썑 caffeine怨 chlorogenic acid쓽 븿웾 遺꾩꽍쓣 쐞븯뿬 0.2 μm syringe filter濡 뿬怨쇳븯뿬 궗슜븯떎. 삉븳 삩룄 蹂솕뿉 뵲瑜 chlorogenic acid쓽 븿웾쓣 遺꾩꽍븯湲 쐞븯뿬 50°C 80°C뿉꽌 2쉶 諛섎났븯뿬 吏꾪뻾븯쑝硫 젣議곕맂 떆猷뚮뒗 -20°C뿉 蹂닿븯뿬 궗슜븯떎.

而ㅽ뵾 깮몢 궡 二쇱슂 꽦遺꾩씤 Caffeine怨 Chlorogenic acid쓽 븿웾쓣 遺꾩꽍븯湲 쐞븯뿬 LC-MS (6530 Accurate-Mass Q-TOF LC/MS, Agilent Technologies)瑜 궗슜븯뿬 痢≪젙븯떎. 遺꾩꽍뿉 궗슜 맂 移쇰읆 Kinetex 2.6u C18 100A (100 X 3.00 mm, Phenomenex, Torrance, CA, USA) 移쇰읆쓣 궗슜븯怨, 移쇰읆삩룄뒗 40°C濡 遺꾩꽍븯떎. 쑀냽 0.3 mL/min쑝濡 쓽젮 二쇱뿀쑝硫 二쇱엯웾 3 μl떎. 씠룞긽 0.1% formic acid 닔슜븸怨, acetonitrile뿉 끃씤 0.1% formic acid瑜 궗슜븯쑝硫 寃異쒗뙆옣 325 nm뿉꽌 寃異쒗븯떎.

而ㅽ뵾 異붿텧臾쇱씠 꽭룷뿉 룆꽦쓣 굹궡뒗 냽룄瑜 솗씤븯湲 쐞븯뿬 룞臾 쑀옒 꽟쑀븘꽭룷 cell line씤 vero cell怨 씤泥 쑀옒 꽟쑀븘꽭룷 cell line씤 CCD-986sk, 뵾遺媛곸쭏꽭룷 cell line씤 HeCaT cell쓣 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay濡 蹂삎븯뿬 떎뿕븯떎. 떎뿕뿉 궗슜맂 Cell쓽 냽룄瑜 1 × 105媛/mL濡 議곗젙븯뿬 96 well plate뿉 100 μl뵫 遺꾩< 썑 37°C, 5% CO2 議곌굔뿉꽌 24떆媛 諛곗뼇븯떎. 0.2 μm syringe filter濡 뿬怨쇳븳 而ㅽ뵾 깮몢 異붿텧臾쇱쓣 냽룄 蹂꾨줈 100 μl뵫 遺꾩< 썑 150 rpm뿉꽌 5遺 shake븯怨 37°C, 5% CO2 議곌굔뿉꽌 48떆媛 諛 72떆媛 諛곗뼇븯떎. 5 mg/mL in PBS 냽룄씤 MTT 슜븸(Ambresco)쓣 以鍮꾪븯뿬 媛 well뿉 20 μl뵫 遺꾩<븯뿬 150 rpm, 5遺 shake븯怨 37°C, 5% CO2뿉꽌 2떆媛 諛곗뼇븯떎. 諛곗瑜 理쒕븳 젣嫄고븯怨 dimethyl sulfoxide (DMSO)瑜 200 μl뵫 遺꾩<븳 뮘 150 rpm뿉꽌 5遺꾧컙 援먮컲븯뿬 ELISA reader湲곕 씠슜븯뿬 595 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎.

而ㅽ뵾 異붿텧臾쇱쓣 냽룄 蹂꾨줈 1, 10, 102, 103, 104諛 씗꽍븯뿬 以鍮꾪븯쑝硫, 뿉깂삱뿉 슜빐떆궓 0.2 Mm쓽 2,2-diphenyl-1-picrylhydrazyl (DPPH) 슜븸 190 μl瑜 96 well plate뿉 媛곴컖 遺꾩<븳 썑 而ㅽ뵾 異붿텧臾 씗꽍븸쓣 10 μl 遺꾩<븯뿬 37°C뿉꽌 30遺꾧컙 諛섏쓳떆耳곕떎. 떆猷뚯븸쓽 議곌뎔쑝濡 硫멸퇏 利앸쪟닔瑜 궗슜븯쑝硫 諛섏쓳 썑 550 nm뿉꽌 씉愿묐룄瑜 痢≪젙븳 떎쓬 떆猷 泥④援곌낵 臾댁꺼媛援 궗씠쓽 씉愿묐룄쓽 李⑥씠瑜 諛깅텇쑉(%)濡 몴떆븯떎.

而ㅽ뵾 썝몢뿉 룷븿맂 chlorogenic acid 諛 caffeine쓽 슜留ㅼ쓽 醫낅쪟뿉 뵲瑜 異붿텧 슚쑉쓣 遺꾩꽍븯湲 쐞빐 떇臾쇱꽦 뿉깂삱, 빀꽦 뿉깂삱, 利앸쪟닔쓽 꽭 媛吏 슜留ㅻ 씠슜븯떎. 삉븳 슜留ㅼ쓽 醫낅쪟뿉 뵲瑜 chlorogenic acid 異붿텧 슚쑉쓣 鍮꾧탳븯湲 쐞빐 HPLC LC-MS 遺꾩꽍쓣 떎떆븯怨, chlorogenic acid쓽 젙솗븳 臾쇱쭏 遺꾩꽍쓣 쐞빐 SIGMA 궗濡쒕꽣 몴以臾쇱쭏씤 빀꽦 chlorogenic acid (Sigma-Aldrich Co., St.Louis, MO, USA)쓣 援ъ엯븯뿬, 異붿텧臾 궡뿉 룷븿맂 chlorogenic acid怨쇱쓽 씪移섏꽦쓣 솗씤븯쑝硫, 異붽쟻쑝濡 몴以臾쇱쭏쓣 씠슜븳 standard curve瑜 洹몃젮꽌 異붿텧臾 궡쓽 젙솗븳 chlorogenic acid 냽룄瑜 솗씤븯떎(Fig. 1A).

Fig. 1.

Standard curve of chlorogenic acid (A), caffeine contents (B)


몴以臾쇱쭏쓣 씠슜븳 몴以怨≪꽑쓣 넻빐 슜留ㅼ쓽 醫낅쪟뿉 뵲瑜 chlorogenic acid 븿웾쓣 遺꾩꽍븳 寃곌낵 利앸쪟닔瑜 슜留ㅻ줈 뻽쓣 븣 chlorogenic acid 異붿텧 냽룄뒗 59.54 mg/L, 떇臾쇱꽦 뿉깂삱쓣 슜留ㅻ줈 뻽쓣 븣 chlorogenic acid 異붿텧 냽룄뒗 19.2 mg/L, 빀꽦 뿉깂삱쓣 슜留ㅻ줈 뻽쓣 븣 chlorogenic acid 異붿텧 냽룄뒗 55.2 mg/L濡 利앸쪟닔瑜 슜留ㅻ줈 씠슜뻽쓣 븣 chlorogenic acid쓽 異붿텧 슚쑉씠 媛옣 넂 寃껋쓣 솗씤븯떎. Chlorogenic acid 븿웾쓽 젙솗븳 遺꾩꽍쓣 넻빐 몴以臾쇱쭏 씠슜빐 슦꽑쟻쑝濡 LC-MS 議곌굔쓣 닔由(Peak 쐞移: 빟 5.28)븳 썑 꽭 醫낅쪟쓽 슜留ㅻ 씠슜븳 異붿텧臾쇱뿉 룷븿맂 chlorogenic acid 쐞移섎 솗씤븯떎(Fig. 2A).

Fig. 2.

Comparison of chlorogenic acid (A) and caffeine (B) peak with standard


而ㅽ뵾 썝몢뿉꽌 chlorogenic acid 異붿텧 떆 caffeine씠 而ㅽ뵾 깮몢 extract뿉꽌 븿猿 異붿텧릺硫, chlorogenic acid caffeine쓽 遺꾩옄웾 삉븳 쑀궗븯湲 븣臾몄뿉 젙솗븳 臾쇱쭏 遺꾩꽍쓣 쐞빐 而ㅽ뵾 깮몢 extract뿉 룷븿맂 caffeine쓽 뼇 諛 異붿텧 슚쑉룄 븿猿 遺꾩꽍븯떎. 슜留ㅼ쓽 醫낅쪟뿉 뵲瑜 caffeine 異붿텧 슚쑉쓣 鍮꾧탳븯湲 쐞빐 LC-MS 遺꾩꽍쓣 떎떆븯怨, caffeine쓽 젙솗븳 臾쇱쭏 遺꾩꽍쓣 쐞빐 SIGMA 궗濡쒕꽣 빀꽦 caffeine 몴以臾쇱쭏쓣 援ъ엯븯뿬, 異붿텧臾 궡뿉 룷븿맂 caffeine쓽 씪移섏꽦쓣 솗씤븯쑝硫, 몴以怨≪꽑쑝濡 異붿텧臾 궡쓽 젙솗븳 caffeine 냽룄瑜 솗씤븯떎(Fig. 1B).

몴以臾쇱쭏쓣 씠슜븳 몴以怨≪꽑쓣 넻빐 슜留ㅼ쓽 醫낅쪟뿉 뵲瑜 caffeine 븿웾쓣 遺꾩꽍븳 寃곌낵 利앸쪟닔瑜 슜留ㅻ줈 뻽쓣 븣 caffeine 異붿텧 냽룄뒗 127.62 mg/L, 떇臾쇱꽦 뿉깂삱쓣 슜留ㅻ줈 뻽쓣 븣 caffeine 異붿텧 냽룄뒗 15.14 mg/L, 빀꽦 뿉깂삱쓣 슜留ㅻ줈 뻽쓣 븣 caffeine 異붿텧 냽룄뒗 25.28 mg/L濡 利앸쪟닔瑜 슜留ㅻ줈 씠슜뻽쓣 븣 삉븳 caffeine쓽 異붿텧 슚쑉씠 媛옣 넂 寃껋쓣 솗씤븯떎. Caffeine 븿웾쓽 젙솗븳 遺꾩꽍쓣 넻빐 몴以臾쇱쭏 씠슜빐 슦꽑쟻쑝濡 HPLC LC-MS 議곌굔쓣 닔由(Peak 쐞移: 빟 5.41)븳 썑 꽭 醫낅쪟쓽 슜留ㅻ 씠슜븳 異붿텧臾쇱뿉 룷븿맂 caffeine쓽 쐞移섎 chlorogenic acid怨 젙솗엳 援щ텇븯뿬 솗씤븯떎(Fig. 2B). 而ㅽ뵾 썝몢濡쒕꽣 caffeine怨 chlorogenic acid쓽 理쒕 異붿텧 슚쑉쓣 쐞븳 理쒖쟻 삩룄 꽑젙쓣 쐞빐 湲곗〈 뿰援щ뱾쓣 湲곗쑝濡 븯뿬, 씠쟾 떆뿕 寃곌낵뿉꽌 chlorogenic acid 異붿텧 슚쑉씠 媛옣 넂븯뜕 利앸쪟닔瑜 슜留ㅻ줈 븯뿬 50°C 80°C 몢 삩룄 議곌굔뿉꽌 chlorogenic acid 異붿텧 슚쑉쓣 鍮꾧탳븯떎.

洹 寃곌낵, 利앸쪟닔瑜 슜留ㅻ줈 븯쓣 븣, 50°C 議곌굔뿉꽌 caffeine 0.014 mg/mL, chlorogenic acid 0.012 mg/mL媛 異붿텧릺뿀怨, 80°C 議곌굔뿉꽌 caffeine 0.032 mg/mL, chlorogenic acid 0.064 mg/mL濡 80°C 議곌굔뿉꽌 caffeine씠 빟 3諛 젙룄쓽 異붿텧 슚쑉씠, 빟 5諛 젙룄쓽 chlorogenic acid 異붿텧 슚쑉씠 넂 寃껋쓣 솗씤븷 닔 엳뿀떎.

蹂 뿰援ъ뿉 씠슜븳 紐⑤뱺 씤泥 쑀옒 꽭룷二쇱쓽 諛곗뼇 Dulbecco’s modified Eagle medium (DMEM) 諛곗뿉 10% heat-inactivated fetal bovine serum (FBS) penicillin (100 U/mL)/streptomycin (100 μg/mL)쓣 泥④븳 DMEM 諛곗瑜 궗슜븯쑝硫, 37°C, 5% CO2 incubator뿉꽌 諛곗뼇븯떎. 떆뿕뿉 궗슜맂 꽭룷쓽 醫낅쪟뒗 씤泥 쑀옒 꽟쑀븘꽭룷(CCD-986sk) 뵾遺媛곸쭏꽭룷(HaCaT cell), 룞臾 쑀옒 꽟쑀븘꽭룷(Vero cell)瑜 긽쑝濡 諛곗뼇븯떎.

而ㅽ뵾 썝몢 洹몃┛ 異붿텧臾쇱쓽 씤泥 쑀옒 뵾遺꽭룷뿉 븳 룆꽦쓣 솗씤븯湲 쐞빐 MTT assay瑜 넻빐 꽭룷 깮議댁쑉 痢≪젙쓣 Carmichael쓽 諛⑸쾿뿉 뵲씪 痢≪젙븯怨 떎뿕뿉 궗슜맂 떆猷뚯 룞웾쓽 利앸쪟닔瑜 泥④븯뿬 議곌뎔쑝濡 궗슜븯쑝硫 異붿텧臾쇨낵 룞씪븳 議곌굔쑝濡 諛곗뼇븯떎. 씠뿉 5 mg/mL 냽룄濡 젣議고븳 MTT 슜븸 0.02 mL쓣 泥④븯뿬 4떆媛 諛곗뼇븳 썑 諛곗뼇븸쓣 젣嫄고븯怨 媛 well떦 DMSO 0.2 mL쓣 媛빐 떎삩뿉꽌 30遺 諛섏쓳떆궓 뮘 ELISA reader 湲곌린瑜 궗슜븯뿬 595 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯怨, 꽭룷 룆꽦 痢≪젙 떆猷뚯슜븸쓽 泥④援곌낵 臾댁꺼媛援곗쓽 씉愿묐룄 媛먯냼쑉濡 몴떆븯떎.

而ㅽ뵾 洹몃┛ 異붿텧臾쇱씠 씤泥 쑀옒 꽭룷쓽 깮議댁쑉뿉 誘몄튂뒗 쁺뼢쓣 솗씤븯湲 쐞븯뿬 而ㅽ뵾 異붿텧臾쇱쓣 1, 10, 102, 103, 104쓽 냽룄濡 씗꽍 泥섎━븯뿬 씤泥 쑀옒 꽭룷 븿猿 24떆媛 諛곗뼇븳 썑뿉 MTT assay濡 而ㅽ뵾 洹몃┛ 異붿텧臾쇱쓽 꽭룷뿉 愿븳 룆꽦 뿬遺瑜 愿李고븯떎. 媛 꽭룷二쇱뿉 븳 而ㅽ뵾 異붿텧臾쇱쓽 꽭룷 깮議댁쑉쓣 痢≪젙븳 寃곌낵, 異붿텧臾 썝븸뿉꽌 媛곴컖 9.78%, 8.03%, 19.98%쓽 꽭룷 깮議댁쑉쓣 굹궡뿀怨, 10諛 씗꽍 냽룄 씠븯뿉꽌뒗 90% 씠긽쓽 꽭룷 깮議댁쑉쓣 솗씤븯떎(Fig. 3).

Fig. 3.

Cell viability of coffee extracts on fibroblast (CCD-986sk, Vero Cell) and epithelial keratinocyte (HaCaT cell). The data were expressed as the mean ± S.D. Results are representatives of more than three independent experiments.


DPPH (1, 1-diphenyl-2-picryl hydrazyl)뒗 솕빀臾 궡 吏덉냼 以묒떖쓽 radical濡 free radical쓽 븞젙솕맂 臾쇱쭏씠湲 븣臾몄뿉 諛섏쓳 以 DPPH쓽 媛먯냼뒗 free radical쓽 냼嫄곕컲쓳씠 吏꾪뻾맖쓣 븣 닔 엳怨 吏덉냼怨쇱궛솕쓽 珥덇린諛섏쓳쓽 뼲젣 젙룄瑜 삁痢≫븷 닔 엳떎. DPPH뒗 510~590 nm뿉꽌 理쒕 씉닔瑜 굹궡硫, 솚썝릺硫 씉닔媛 궗씪吏湲 븣臾몄뿉 DPPH쓽 솚썝젙룄뒗 솚썝젣쓽 솚썝젰뿉 뵲씪 떖씪吏꾨떎. 而ㅽ뵾 洹몃┛ 異붿텧臾쇱쓽 빆궛솕 옉슜쓣 솗씤븯湲 쐞븯뿬 1, 10, 102, 103, 104諛곕줈 씗꽍맂 而ㅽ뵾 洹몃┛ 異붿텧臾쇱뿉 DPPH瑜 씠슜 빆궛솕 옉슜쓣 痢≪젙븯떎. 議곌뎔쑝濡 異붿텧臾 臾댁꺼媛援곗쓣 긽쑝濡 鍮꾧탳븳 寃곌낵 썝븸뿉꽌 媛옣 넂 66%쓽 빐솢꽦씠 굹궗怨 10諛 씗꽍븳 異붿텧臾쇱뿉꽌뒗 43.2%, 洹 씠븯濡쒕뒗 6% 誘몃쭔쓽 궙 빐솢꽦쓣 솗씤븷 닔 엳뿀떎. 솗씤 寃곌낵 異붿텧臾쇱쓽 냽룄 쓽議댁쟻쑝濡 DPPH radical 냼嫄곗옉슜쓣 굹깂쓣 솗씤븷 닔 엳뿀떎(Fig. 4).

Fig. 4.

Effect of coffee extracts on DPPH radical scavenging activities. The data were expressed as the mean ± S.D. Results are representatives of more than three independent experiments


泥쒖뿰臾쇱쭏 슜留ㅼ 異붿텧議곌굔, 異붿텧諛⑸쾿뿉 뵲씪 異붿텧릺뒗 꽦遺꾨뱾씠 떖씪졇 媛곴컖쓽 異붿텧 슚쑉뿉 엳뼱꽌 李⑥씠媛굹怨 泥쒖뿰臾쇱쭏쓽 異붿텧쓣 쐞빐 珥덉쓬뙆瑜 씠슜븯쓣 븣 異붿텧닔슚쑉씠 넂寃 굹궃떎뒗 뿰援 寃곌낵媛 굹삤怨 엳떎(Jeon et al., 2015; Cho and Kim, 2016). 씠踰 뿰援ъ뿉꽌 궗슜븳 썝몢 븘씪鍮꾩뭅 醫 씠쇅뿉룄 理쒓렐 떎뼇븳 醫낆쓽 而ㅽ뵾瑜 긽쑝濡 뿰援ш 吏꾪뻾릺怨 엳怨(Ayelign and Sabally, 2013; Jeszka-Skowron et al., 2016a) 而ㅽ뵾瑜 쓬猷뚮줈 궗슜븯怨 궓 遺궛臾쇱쓣 씠슜븳 뿰援щ룄 씠琉꾩怨 엳뒗 떎젙씠떎(Song et al., 2009; Lee and Park, 2015).

蹂 뿰援ъ뿉꽌뒗 빆궛솕 諛 뼢洹 슚怨쇨 엳뒗 寃껋쑝濡 븣젮吏 썝몢而ㅽ뵾뿉 븯뿬 異붿텧諛⑸쾿쓣 珥덉쓬뙆(利앸쪟닔), 珥덉쓬뙆(떇臾쇱꽦 뿉깂삱), 珥덉쓬뙆(뿉깂삱) 異붿텧踰뺤쑝濡 媛곴린 떖由ы븯뿬 쑀슚 꽦遺꾩쓣 異붿텧븳 썑 媛 異붿텧臾쇱뿉꽌 caffeine怨 chlorogenic acid쓽 븿웾쓣 遺꾩꽍븿쑝濡쒖뜥 利앸쪟닔濡 異붿텧뻽쓣 븣 媛곴컖 127.62 mg/mL, 59.54 mg/mL濡 떇臾쇱꽦 뿉깂삱怨 빀꽦 뿉깂삱蹂대떎 뜑 넂 異붿텧 슚쑉쓣 媛吏뒗 寃껋쓣 솗씤븯떎. 삉븳 而ㅽ뵾쓽 異붿텧씠 80~90°C 젙룄쓽 긽삩뿉꽌슚쑉씠 넂떎뒗 뿰援 寃곌낵뿉(Salamanca et al., 2017) 뵲씪 媛옣 넂 異붿텧 슚쑉 蹂댁씤 利앸쪟닔瑜 슜留ㅻ줈 50°C 80°C뿉꽌 痢≪젙븳 寃곌낵 caffeine씠 0.032 mg/mL, chlorogenic acid媛 0.064 mg/mL濡 80°C쓽 긽삩뿉꽌 異붿텧 슚쑉씠 넂떎뒗 寃껋쓣 솗씤븷 닔 엳뿀떎. 而ㅽ뵾 쓬猷뚯쓽 醫낅쪟씤 뿉뒪봽젅냼 뜑移섏빱뵾쓽 異붿텧 떆媛꾩씠굹 삩룄쓽 蹂솕뿉 뵲씪 異붿텧 슚쑉씠굹 빆궛솕 슚怨쇱쓽 蹂솕瑜 蹂댁씤떎뒗 뿰援 寃곌낵媛 蹂닿퀬릺뼱 而ㅽ뵾異붿텧臾쇱쓽 뿬윭 媛吏 삎깭濡쒖쓽 씠슜媛뒫꽦씠 몢릺怨 엳떎(Hwang et al., 2013; Salamanca et al., 2017).

利앸쪟닔瑜 슜留ㅻ줈븳 而ㅽ뵾 異붿텧臾쇱쓽 MTT assay DPPH 씪뵒而 냼嫄곕뒫 솢꽦 떎뿕쓣 븳 寃곌낵 3醫 紐⑤몢뿉꽌 珥덉쓬뙆(利앸쪟닔) 而ㅽ뵾 異붿텧臾쇱씠 10諛곗쓽 씗꽍 냽룄뿉꽌뒗 90% 씠긽쓽 깮議대쪧쓣 蹂댁뿬 꽭룷 룆꽦씠 궙 寃껋쓣 솗씤븯怨 DPPH 씪뵒而 냼嫄곕뒫 슚怨쇰뒗 썝븸뿉꽌 媛옣 넂 빐솢꽦씠 굹궗쑝硫 냽룄 쓽議댁쟻쑝濡 DPPH radical 냼嫄곗옉슜쓣 솗씤븯떎. 씠윭븳 寃곌낵濡 誘몃(뼱 蹂 븣 쑀湲곗슜留ㅻ 궗슜븯吏 븡怨 珥덉쓬뙆(利앸쪟닔) 異붿텧踰뺤쓣 궗슜븯뿬 긽삩뿉꽌 異붿텧븯쓣 븣 媛옣 슚쑉쟻씤 寃껋쓣 솗씤븯怨, 씠윭븳 而ㅽ뵾 異붿텧臾쇱씠 꽭룷 룆꽦씠 궙怨 빆궛솕 옉슜쓣 븯湲 븣臾몄뿉 뵾遺뿉꽌 쓷엳 諛쒖깮븯뒗 솢꽦궛냼뿉 뵲瑜 끂솕瑜 諛⑹븯뒗뜲 룄쓣 以 닔 엳쓣 寃껋씠씪怨 湲곕븯怨, 異뷀썑 뿰援ъ뿉꽌뒗 而ㅽ뵾 異붿텧臾쇱쓣 씠슜븳 솕옣뭹쓣 젣옉븯뿬 궗슜븯쓣 븣 굹굹뒗 뵾遺쓽 蹂솕瑜 愿李고븯뿬 뵾遺쓽 끂솕諛⑹ 슚怨쇰 솗씤븷 삁젙씠떎.

ACKNOWLEDGEMENTS

蹂 뿰援щ뒗 以묒냼湲곗뾽泥 2015뀈 궛븰뿰 삊젰 泥リ구쓬 湲곗닠媛쒕컻궗뾽쓽 吏썝쑝濡 닔뻾릺뿀쑝硫 씠뿉 媛먯궗뱶由쎈땲떎.

References
  1. Ayelign A, and Sabally K. Determination of chlorogenic acids (CGA) in coffee beans using HPLC. American Journal of Research Communication 2013;1:78-91.
  2. Campos-Flori찼n J, Bardales-Valdivia J, Caruajulca-Guevara L, and Cueva-Llanos D. Anti-diabetic effect of coffea arabica, in alloxan-induced diabetic rats. Emirates Journal of Food and Agriculture 2013;25:772-777.
    CrossRef
  3. Cho IH, Hong MS, Lee ES, Kim SJ, Lee YC, Kim SD, Jo HB, Kim JH, and Jung K. Study of the characteristics of roasted coffee bean in Seoul. Journal of Food Hygiene and Safety 2015;30:236-241.
    CrossRef
  4. Cho S, and Kim OH. Antioxidative activity and protein expression effects of the extracts from cinnamomum camphora on the hair-growth relevant factors. Asian Journal of Beauty Cosmetology 2016;14:18-29.
    CrossRef
  5. Farah A, Monteiro M, Donangelo CM, and Lafay S. Chlorogenic acids from green coffee extract are highly bioavailable in humans. The Journal of Nutrition 2008;138:2309-2315.
    Pubmed CrossRef
  6. Hur SS. Evaluation of Physiological Activities of cnidium officinale makino extracts with different solvents. Journal of Korean Oil Chemists'Society 2015;32:170-179.
  7. Hwang SH, Kim KS, Kang HJ, and Kim MJ. Phenolic Compound contents and antioxidative effects on dutch coffee by extraction time. Korean Public Health Research 2013;39:21-29.
  8. Hwang HS, and Park GD. A comparative study of anti-oxidant effect and cell proliferation effect based on extraction method of natural substances. Journal of Korean Beauty Society 2015;21:729-736.
  9. Jeon KM, Park KH, and Pyo AJ. A research on cell proliferation effect and antioxidant activity of extracts based on different extraction methods of salvia miltiorrhiza bunge and scutellaria baicalensis. Korean Journal of Aesthetic Society 2015;13:495-502.
  10. Jeszka-Skowron M, Sentkowska A, Pyrzyn쨈ska K, and De Pe챰a MP. Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: influence of green coffee bean preparation. European Food Research and Technology 2016;242:1403-1409.
    CrossRef
  11. Kim W, Kim SY, Kim DO, Kim BY, and Baik MY. Puffing, A novel coffee bean processing technique for the enhancement of extract yield and antioxidant capacity. Food chemistry 2018;240:594-600.
    Pubmed CrossRef
  12. Lee BE, Yang JC, and Kim BA. A study of antioxidative and antimicrobial effects of coffee residue extracts. Journal of Korean Oil Chemists'Society 2016;33:606-613.
  13. Lee KS, and Park KS. A study of effects of coffee waste extracts obtained from solvents. Korean Journal of Food and Nutrition 2015;28:866-870.
    CrossRef
  14. Salamanca CA, Fiol N, Gonzalez C, Saez M, and Villaescusa I. Extraction of espresso coffee by using gradient of temperature effect on physicochemical and sensorial characteristics of espresso. Food chemistry 2017;214:622-630.
    Pubmed CrossRef
  15. Song EJ, Kim JY, Lee SY, Kim KBWR, Kim SJ, Yoon SY, Lee SJ, Lee CJ, and Ahn DH. Effect of roasted ground coffee residue extract on shelf-life and quality of salted mackerel. Journal of Korean Society of Food Science and Nutrition 2009;38:780-786.
    CrossRef