Search for


TEXT SIZE

search for



CrossRef (0)
Anti-obesity Effect of Black Vinegar Fermented with Herbal Extracts
Biomed Sci Letters 2017;23:402-405
Published online December 31, 2017;  https://doi.org/10.15616/BSL.2017.23.4.402
© 2017 The Korean Society For Biomedical Laboratory Sciences.

Dongsub Lee1, and Sangwook Park2,†

1Department of Healthcare and Biotecnology, College of Aeroservice, Kyungwoon University, Gumi 39160, Korea,
2Department of Biomedical Laboratory Science, College of Health and Nurse, Kyungwoon University, Gumi 39160, Korea
Correspondence to: Sangwook Park. Department of Biomedical Laboratory Science, College of Health and Nurse, Kyungwoon University, Gumi 39160, Korea. Tel: +82-54-479-1282, Fax: +82-54-479-1280, e-mail: spark367@ikw.ac.kr
Received October 20, 2017; Revised November 11, 2017; Accepted November 13, 2017.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract

Vinegar has been widely produced for a variety of industrial and domestic use as well as medicinal use. For sale of the commercial vinegar with herbal extracts, we produced an experimental black vinegar through sequential fermentation of alcohol, followed by acetic acid according to the manufacturer’s procedure. To investigate the effect of anti-obesity of black vinegar on biochemical values, we evaluated enzyme activities via acetyl-CoA carboxylase (ACC), which plays a critical role in the lipid metabolism. We found that increased phosphorylated adenosine monophosphate (AMP) activated protein kinase (AMPK) and ACC in L6 mouse muscle cells treated with the manufactured vinegar. Based on the results, supplementation of experimental herbal black vinegar inactivates ACC, enhancing the phosphorylation of AMPK. Thus, the lipid oxidation and inhibitory effect of fatty acid synthesis by the black vinegar expects to facilitate the anti-obesity activity.

Keywords : Black vinegar, Anti-obesity, AMP activated protein kinase, Acetyl-CoA carboxylase
Body

떇珥덈뒗 씪諛섏쓬떇쓣 삤옒 蹂닿븯湲 쐞븳 蹂댁〈젣굹 쓬떇뿉 吏곸젒 怨곷뱾뿬꽌 癒뱀쓣 닔 엳뒗 뼇뀗쑝濡 븷슜릺뼱 솕쑝硫, 꽭怨 뿬윭 臾명솕沅뚯뿉꽌뒗 쓬猷뚯닔濡쒖뜥 떆옣뿉꽌 돺寃 援ы빐꽌 吏곸젒 떇珥덈Ъ쓣 留덉떆湲곕룄 븳떎. 뿭궗쟻쑝濡 떇珥덈 씠슜븯뿬 넻利앹셿솕젣濡 궗슜릺湲곕룄 븯怨(Rund et al., 1996; Johnston and Gaas, 2006) 긽泥섎 移섎즺븯湲 쐞빐 쓽븰쟻쑝濡 궗슜릺湲곕룄 븯떎(Budak et al., 2014). 삉븳 以묎뎅 湲곕줉뿉 쓽븯硫 媛먯뿼쓣 삁諛⑺븯湲 쐞빐 넀 냼룆젣濡쒕룄 궗슜븳 湲곕줉씠 엳떎(Chan et al., 1994; Ho et al., 2017). 18꽭湲 誘멸뎅쓽궗뱾씠 쐞옣蹂, 遺醫낃낵 怨좎뿴쓣 移섎즺븯湲 쐞빐 愿묐쾾쐞븯寃 떇珥덈 궗슜뻽떎(Ho et al., 2017). 誘멸뎅 Food and Drug Administration (FDA) 떇뭹쓽빟뭹踰뺤뿉 떇珥덉뿉 븳 紐낇솗븳 젙쓽뒗 紐낆떆릺뼱 엳吏 븡吏留 떇珥덈뒗 怨쇱씪쓣 씠슜븯뿬 븣肄붿삱쓣 諛쒗슚븳 썑 씠뼱꽌 珥덉궛 諛쒗슚瑜 넻빐 留뚮뱾뼱吏꾨떎怨 젙쓽븯怨 엳쑝硫 100 mL 떦 珥덉궛씠 4 g쓣 珥덇낵븯吏 븡븘빞 옄뿰 떇珥덈줈뜥 씤젙븯怨 엳떎. 諛섎㈃뿉 슦由щ굹씪 떇뭹쓽빟뭹븞쟾泥(Ministry of Food and Drug Safety, MFDS) 諛쒗뻾 떇뭹怨듭쟾뿉뒗 떇珥 깮궛뿉 븳 몴以씠 떎쓬怨 媛숈씠 紐낆떆릺뼱 엳떎. 怨〓Ъ, 怨쇱씪 삉뒗 븣肄붿삱 쓬猷뚮 諛쒗슚븯뿬 뼇議고븯嫄곕굹 삉뒗 怨〓Ъ쓣 떦솕떆궓 슜븸怨 꽎뼱 諛쒗슚떆궎嫄곕굹 쓬猷뚯닔濡 鍮숈큹궛 삉뒗 珥덉궛留뚯쓣 씗꽍븯뿬 젣議고븳 빀꽦 떇珥덈 留먰븳떎(Baek et al., 2015). 떇珥덈 留뚮뱾湲 쐞빐꽌뒗 몢 媛吏 깮臾쇨났븰쟻 怨듭젙씠 븘슂븳뜲, 臾댁궛냼꽦 긽깭뿉꽌 슚紐⑥뿉 쓽븳 븣肄붿삱 諛쒗슚(Saccharomyces cerevisiae) 궛냼꽦 긽깭쓽 珥덉궛 諛쒗슚(Acetobacter 꽭洹)뿉 쓽빐 깮궛맂떎. 븣肄붿삱 諛쒗슚뒗 떦쓣 븣肄붿삱濡 蹂솕떆궎뒗 諛섎㈃뿉 珥덉궛 諛쒗슚뒗 蹂솕맂 븣肄붿삱쓣 븘꽭듃궛쑝濡 蹂솕떆耳 以뚯쑝濡쒖뜥 떇珥덉쓽 쟾삎쟻씤 떆겮븳 留쏆쓣 留뚮뱾뼱 궦떎. 썝옱猷뚯 諛쒗슚諛⑹떇뿉 뵲씪꽌 떇珥덉쓽 씠由꾩쓣 紐낅챸븯뒗뜲, 諛쒖궗誘 떇珥, 씤 떇珥, 넗留덊넗 떇珥, 굹臾 떇珥, 쓳珥 벑씠 洹 삁씠떎. 洹 以 쓳珥덈뒗 떎瑜 떇珥 꽦遺꾨낫떎 쑀湲곗궛怨 븘誘몃끂궛씠 뭾遺븯뿬(Nishidai et al., 2000; Beh et al., 2017), 嫄닿컯쓬猷뚮줈 씤떇릺怨 엳쑝硫 떎젣濡 吏諛⑹꽭룷(Chou et al., 2015)쓽 겕湲곕 以꾩뿬二쇨굅굹 빆궛솕 슚怨(Tong et al., 2010; Choi et al., 2015)媛 엳뒗 寃껋쑝濡 蹂닿퀬릺怨 엳떎. 理쒓렐 뿰援 寃곌낵뿉 쓽븯硫 뤃由ы럹怨 鍮꾪誘 벑怨 媛숈 깮臾쇳솢꽦 꽦遺꾩씠 빆궛솕 슚怨쇰 굹깂쑝濡쒖뜥 눜뻾꽦 뇤吏덊솚(Pandey and Rizvi, 2009; Seo et al., 2010)쓽 諛쒖깮쓣 以꾩씪 닔 엳떎뒗 뿰援щ룄 냼媛쒕릺뼱 떇珥덉뿉 븳 떎뼇븳 뿰援ш 븘슂븷 寃껋쑝濡 깮媛곹븳떎. 蹂 뿰援ъ뿉꽌뒗 븳빟옱濡 留뚮뱺 븳諛 쓳珥덉쓽 빆鍮꾨쭔 슚怨쇱뿉 誘몄튂뒗 슂냼媛 臾댁뾿씤吏 솗씤븯怨좎옄 븯떎. 諛쒗슚 議곌굔쓣 理쒖쟻솕 븯湲 쐞빐 썝猷뚯쓽 떦룄뿉 븳 議곌굔쓣 寃넗븯떎. 슚紐④퇏뿉 쓽빐 떇珥 諛쒗슚뿉 異⑸텇븳 븣肄붿삱쓣 깮궛븯湲 쐞븯뿬 쁽誘몃떦솕븸 떦룄瑜 떖由ы븯뿬 理쒖쟻 떦룄瑜 寃넗븳 寃곌낵, 떦瑜섏쓽 븿웾씠 20 brix 誘몃쭔씪 寃쎌슦뿉뒗 議곗꽦臾쇱뿉꽌 異⑸텇븳 븣肄붿삱 諛쒗슚瑜 씪쑝궎湲 옒뱾怨, 55 brix瑜 珥덇낵븷 寃쎌슦뿉뒗 泥④븯뒗 뼇뿉 鍮꾪븯뿬 뜑씠긽 븣肄붿삱 諛쒗슚媛 利앷븯吏 븡쓬쓣 솗씤븿쑝濡쒖꽌 理쒖쟻 쁽誘몃떦솕븸怨 泥섎갑 븳빟옱 諛쒗슚븸씠 샎빀맂 議곗꽦臾쇱쓽 떦룄瑜 55 brix濡 寃곗젙븯떎(data not shown). 1李 諛쒗슚瑜 쐞빐, 븳빟옱 蹂듯빀 異붿텧븸 빟 10~20 遺뵾%, 쁽誘몃떦솕븸 20~40 以묐웾% 踰붿쐞뿉꽌 理쒖쟻 샎빀 議곌굔쓣 寃넗븯쑝硫, 듅엳 븳빟옱 蹂듯빀 異붿텧븸 15 遺뵾% 쁽誘 떦솕븸쓣 30 以묐웾%濡 샎빀븯뿬 理쒖쥌 55 brix瑜 留욎텣 寃쎌슦 1李 븣肄붿삱 諛쒗슚뿉 媛옣 쑀由ы븯떎뒗 寃곌낵瑜 룄異쒗븯떎.

蹂 뿰援ъ뿉꽌뒗 떎씠뼱듃 愿젴 떇슜 媛뒫븳 븳諛 냼옱쓽 蹂듯빀 泥섎갑쟾쓣 룄異쒗븯怨, 씠윭븳 븳諛 냼옱瑜 뿴닔異붿텧 諛 蹂듯빀 諛쒗슚 議곌굔 理쒖쟻솕瑜 넻븳 븳諛⑹옱猷 泥섎갑 쓳珥 깮궛쓣 솗由쏀븯뿬, 빆鍮꾨쭔 슚뒫 룊媛瑜 넻빐 湲곗〈 媛먯떇珥 鍮 쓳珥덈 뿰援ш컻諛쒗븯湲 쐞빐 빆鍮꾨쭔 愿젴 슚뒫쓣 癒쇱 룊媛븯떎. 쁽옱 떇뭹쓽빟뭹븞쟾泥 湲곗 떇슜쑝濡 遺꾨쪟릺뼱 엳뒗 븳빟옱瑜 湲곗쑝濡 鍮꾨쭔뿉 슚怨쇨 엳뒗 寃껋쑝濡 븣젮吏 븳빟옱 議고빀쓣 넻븯뿬 理쒖쟻 泥섎갑쟾怨 샎빀鍮꾨 룄異쒗븯떎: 媛뺥솴 100 g, 쑉臾 100 g, 寃곕챸옄 100 g, 諛깆 150 g, 떦洹 300 g, 쁽궪 150 g(臾 3 L 湲곗). 븳빟옱猷 泥섎갑쟾 諛쒗슚 쟾泥섎━ 怨듭젙뿉꽌 쑉臾, 떦洹, 媛뺥솴, 寃곕챸옄, 諛깆 諛 쁽궪 벑쓽 븳諛 썝猷 쟾泥섎━ 諛 諛쒗슚怨듭젙쓣 쐞븯뿬 썝猷뚯쓽 떦룄 議곗젅 諛 諛쒗슚, 썑怨듭젙 議곌굔쓣 理쒖쟻솕븯떎. 蹂 뿰援ъ뿉 궗슜븳 븳諛 諛쒗슚 쓳珥 깮由ы솢꽦 꽦遺 遺꾩꽍寃곌낵, 븳諛 諛쒗슚 쓳珥덉쓽 珥덉궛 븿웾 4.9%濡 궙븯吏留 떇뭹怨듭쟾쓽 떇珥 洹쒓꺽뿉 쟻빀븳 踰붿쐞뿉 룷븿릺뿀떎. 珥 뤃由ы럹 븿웾쓣 궛異쒗븯湲 쐞빐꽌 몴以怨꾩궛떇쓣 씠슜븯뿬 1 N Folinciocalteu 떆빟 0.2 mL怨 떆猷 0.1 mL쓣 泥④ 썑 吏꾪깢븳 썑 1遺꾧컙 떎삩뿉꽌 諛섏쓳떆耳곕떎. 20% Na2CO3 3 mL쓣 떎떆 泥④븯뿬 吏꾪깢븳 썑 2떆媛 떎삩뿉꽌 諛⑹튂 썑 765 nm 씉愿묐룄濡 痢≪젙븯떎. 蹂 븳諛 諛쒗슚 쓳珥덉쓽 뤃由ы럹 븿웾 233.36 ppm쑝濡 遺꾩꽍릺뼱 湲곗〈 젣뭹(媛먰쁽誘 蹂듯빀 떇珥 109.21 ppm)뿉 鍮꾪빐 2.1諛 넂 媛믪쓣 굹궡뼱 깮由ы솢꽦씠 뭾遺븳 諛쒗슚 떇珥덉엫쓣 븣 닔 엳뿀떎. 蹂 뿰援ъ뿉꽌뒗 븳 빟옱濡 留뚮뱺 븳諛 쓳珥덉쓽 빆鍮꾨쭔 슚怨쇱뿉 誘몄튂뒗 슂냼媛 臾댁뾿씤吏 솗씤븯怨좎옄 븯떎. 븳諛 쓳珥덉뿉 쓽빐꽌 adenosine monophosphate (AMP) activated protein kinase (AMPK)媛 솢꽦솕릺뼱 씤궛솕媛 利앷븯硫 吏吏덈궗뿉 湲띿젙쟻씤 궗슚怨쇱뿉 쁺뼢쓣 誘몄튂뒗 뜲, 씠 怨쇱젙뿉꽌 acetyl-CoA carboxylase (ACC)쓽 씤궛솕媛 씪뼱굹寃 릺怨 긽쟻쑝濡 ACC뒗 鍮꾪솢꽦솕릺뼱 吏吏덊삎꽦쓣 뼲젣븳떎. ACC뒗 媛, 洹쇱쑁 벑쓽 議곗쭅뿉꽌 吏吏덈궗瑜 議곗젅븯뒗 以묒슂븳 슚냼씠硫, Acetyl-CoA瑜 malonyl-CoA濡 깂궛솕떆궎뒗 옉슜쓣 븳떎. 씠 븣, malonyl-CoA뒗 誘명넗肄섎뱶由ъ븘쓽 쇅留됱뿉 議댁옱븯뒗 Carnitine palmitoyltransferase-1 (CPT-1)쓽 빐젣濡 옉슜븳떎. CPT-1쓽 湲곕뒫 깮泥 궡뿉꽌 吏諛⑹궛솕瑜 珥됰ℓ븯뒗 뿭븷쓣 븯뒗 뜲 湲댁궗뒳 吏諛⑹궛쓣 誘명넗肄섎뱶由ъ븘 궡遺濡 씠룞떆耳 β-oxidation쓣 븳떎. CPT-1쓽 솢꽦 誘명넗肄섎뱶由ъ븘뿉꽌 씪뼱굹뒗 吏諛⑹쓽 β-oxidation뿉 留ㅼ슦 以묒슂븳 옉슜쓣 븳떎. 洹몃윭誘濡, AMPK쓽 솢꽦솕뿉 쓽빐 ACC쓽 씤궛솕(pACC)媛 利앹쭊릺뼱 ACC 슚냼솢꽦씠 뼲젣릺硫 malonyl-CoA쓽 깮꽦웾씠 媛먯냼븯뿬 吏諛⑹궛솕瑜 씪쑝궓떎. 씠뿉 吏諛⑹궛쓣 깭슦뒗 궛솕옉슜뿉 쓽빐 ATP 깮꽦웾씠 利앷븯怨 吏諛⑹궛 궛솕 利앷뿉 쓽븳 泥댁諛 媛먯냼뿉 湲곗뿬븯寃 맂떎.

씠윭븳 슚怨쇰뒗 엫긽移섎즺젣濡 궗슜릺怨 엳뒗 metformin 닾뿬뿉꽌룄 룞씪븳 슚怨쇰 굹궡뒗 뜲, 吏諛⑸궗뿉 쁺뼢쓣 誘몄튂뒗 triglyceride 벑怨 媛숈 吏諛⑺삎꽦 쑀쟾옄諛쒗쁽쓣 뼲젣븯뒗 寃껋쑝濡 븣젮졇 엳떎. 씠瑜 솗씤븯湲 쐞빐 븳諛 諛쒗슚 쓳珥덈 泥섎━븳 留덉슦뒪 洹쇱쑁꽭룷, L6 꽭룷二쇱뿉꽌 빆鍮꾨쭔 愿젴 몴쟻 슚냼씤 AMPK 솢꽦쓣 遺꾩꽍븯떎(Vytla and Ochs, 2013; Kristensen et al., 2013; Kim et al., 2017). 諛쒗슚 쓳珥덈 L6 꽭룷뿉 泥섎━뻽쓣 븣 냽룄쓽議댁쟻쑝濡 AMPK ACC쓽 씤궛솕媛 紐⑤몢 利앷릺뼱 ACC쓽 슚냼솢꽦쓣 鍮꾪솢꽦솕 떆궡쑝濡쒖뜥 씤궛솕맂 AMPK媛 쁽엳 솢꽦솕 맖쓣 븣 닔 엳뿀떎(Fig. 1A). 냽룄援щ같蹂 ACC뿉 븳 AMPKα쓽 씤궛솕 젙웾遺꾩꽍 鍮꾩쑉뿉꽌룄 AMPK媛 냽룄媛 利앷븿쓣 븣 닔 엳뿀떎(Fig. 1B). 씠윭븳 寃곌낵濡, 諛쒗슚 쓳珥덉븸씠 꽭룷 궡 吏諛⑹쓽 궛솕瑜 珥됱쭊븯怨 吏諛⑺빀꽦쓣 뼲젣븷 닔 엳뒗 슚怨쇨 엳뼱 빆鍮꾨쭔 벑쓣 룷븿븳 궗吏덊솚 媛쒖꽑 移섎즺 湲곕뒫뿉 슚怨쇨 엳쓣 寃껋쑝濡 湲곕븳떎. 뼢썑, 怨좎諛 떇씠 留덉슦뒪瑜 솢슜븳 빆鍮꾨쭔 愿젴 諛붿씠삤留덉빱瑜 遺꾩꽍븯뿬 븳諛 諛쒗슚 쓳珥덇 怨좎諛 떇씠濡 쑀룄맂 留덉슦뒪쓽 鍮꾨쭔쓣 뼲젣븷 닔 엳쓣 寃껋쑝濡 湲곕븯硫, 쑀愿 젣뭹솢슜뿉 湲띿젙쟻씤 媛移섎 젣怨듯븷 寃껋쑝濡 궗猷뚮맂떎.

Fig. 1.

The phosphorylation of pAMPKα and pACC. (A) Representative immunoblots showing phospho-AMPKα (upper), phosphor-ACC (lower), and ACC on L6 cell. Dose-dependent black vinegar enhances the phosphorylation of AMPKα and ACC. Met, metformin. (B) Ratio of phosphorylation was quantified against ACC, and AMPKα


ACKNOWLEDGEMENTS

This study was supported by Kyungwoon University domestic grant in 2017.

References
  1. Baek SY, Lee CH, Park YK, Choi HS, Mun JY, and Yeo SH. Quality characteristics of fermented vinegar prepared with the detoxified Rhus verniciflua extract. Korean Journal of Food Preservation 2015;22:674-682.
    CrossRef
  2. Beh BK, Mohamad NE, Yeap SK, Ky H, Boo SY, Chua JYH, Tan SW, Ho WY, Sharifuddin SA, Long K, and Alitheen NB. Antiobesity and anti-inflammatory effects of synthetic acetic acid vinegar and Nipa vinegar on high-fat-diet-induced obese mice. Scientific Reports 2017;7:6664.
    Pubmed KoreaMed CrossRef
  3. Budak NH, Aykin E, Seydim AC, Greene AK, and Seydim ZBG. Functional properties of vinegar. Journal of Food Science 2014;79:757-764.
    Pubmed CrossRef
  4. Chan E, Ahmed TM, Wang M, and Chan JC. History of medicine and nephrology in Asia. American Journal of Nephrology 1994;14:295-301.
    Pubmed CrossRef
  5. Choi HJ, Gwak KJ, Choi DB, Park JY, and Cheong HS. Antimicrobial efficacy of fermented dark vinegar from unpolished rice. Microbiology and Biotechnology Letters 2015;43:97-104.
    CrossRef
  6. Chou CH, Liu CW, Yang DJ, Wu YH, and Chen YC. Amino acid, mineral, and polyphenolic profiles of black vinegar, and its lipid lowering and antioxidant effects in vivo. Food Chemistry 2015;168:63-69.
    Pubmed CrossRef
  7. Ho CW, Lazim AM, Fazry S, Zaki UKHH, and Lim SJ. Varieties, production, composition and health benefits of vinegars: A review. Food Chemistry 2017;221:1621-1630.
    Pubmed CrossRef
  8. Johnston CS, and Gaas CA. Vinegar Medicinal uses and antiglycemic effect. Medscape General Medicine 2006;8:61.
    Pubmed KoreaMed
  9. Kim YJ, Park HB, Kim PH, Park JS, and Kim KS. Enhanced anticancer efficacy in MCF-7 breast cancer cells by combined drugs of metformin and sodium salicylate. Biomedical Science Letters 2017;23:290-294.
    CrossRef
  10. Kristensen JM, Larsen S, Helge JW, Dela F, and Wojtaszewski JFP. Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice. PLOS One 2013;8:e53533.
    Pubmed KoreaMed CrossRef
  11. Nishidai S, Nakamura Y, Torikai K, Yamamoto M, Ishihara N, Mori H, and Ohigashi H. Kurosu, a traditional vinegar produced from unpolished rice, suppress lipid peroxidation in vitro and in mouse skin. Bioscience Biotechnology Biochemistry 2000;64:1909-1914.
    Pubmed CrossRef
  12. Pandey KB, and Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity 2009;2:270-278.
    Pubmed KoreaMed CrossRef
  13. Rund CR. Nonconventional topical therapies for wound care. Ostomy Wound Management 1996;42:22-24.
  14. Seo HK, Jang SY, Kim HJ, Park HR, Park JH, Ahn GH, and Lee SC. Antioxidant activity and neuroprotective effect of concentrates from commercial sweet persimmon wine. Korean Journal of Food and Cookery Science 2010;26:13-17.
  15. Tong LT, Katakura Y, Kawamura S, Baba S, Tanaka Y, Udono M, Kondo Y, Nakamura K, Imaizumi K, and Sato Masao. Effects of Kurozu concentrated liquid on adipocyte size in rats. Lipids in Health and Disease 2010;9:134-142.
    Pubmed KoreaMed CrossRef
  16. Vytla VS, and Ochs RS. Metformin increases mitochondrial energy formation in L6 muscle cell cultures. The Journal of Biological Chemistry 2013;288:20369-20377.
    Pubmed KoreaMed CrossRef