Search for


TEXT SIZE

search for



CrossRef (0)
Microbial Forensics: Bioterrorism and Biocrime
Biomed Sci Letters 2018;24:55-63
Published online June 30, 2018;  https://doi.org/10.15616/BSL.2018.24.2.55
© 2018 The Korean Society For Biomedical Laboratory Sciences.

Yong-Bin Eom

Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Korea
Correspondence to: Yong-Bin Eom. Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si, Chungcheongnam-do 31538, Korea. Tel: +82-41-530-3039, Fax: +82-41-530-3085, e-mail: omnibin@sch.ac.kr
Received March 5, 2018; Revised March 16, 2018; Accepted May 29, 2018.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract

Microbes and their toxins can be bioweapons that bioterrorists use them to commit bioterrorism and biocrime. Due to the potential and relative ease of the bioattack, life-threat pathogenic agents (bacteria, viruses, and toxins) as bioweapon revealed the need for a new field of microbial forensics. Microbial forensics is a new scientific discipline combining microbiology and forensic science, which is focused on characterization of evidence from a bioterrorism, biocrime, and an inadvertent release of biothreat agents. The sophisticated analytical tool and knowledge of microbial forensics can provide investigative leads and help determine who was responsible for the biocrime, the source of the bioweapon, and how and where the bioweapon was produced. Among the fields of microbial forensics, this paper will briefly describe evidence collection, handling, packaging, transportation, storage, analytical methods of evidence, and review microbial forensics as a response to bioterrorism and biocrime.

Keywords : Microbes, Microbial forensics, Bioweapon, Bioterrorism, Biocrime
꽌濡

誘몄깮臾쇱 닔꽭湲 룞븞 깮臾쇰Т湲(bioweapon)濡쒖꽌 궗슜媛뒫꽦씠 젣湲곕릺뼱 솕吏留(Lederberg, 2000), 2001뀈뿉 誘멸뎅뿉꽌 諛쒖깮븳 911 뀒윭 씠썑 깂洹 븘룷 렪吏遊됲닾 怨듦꺽쑝濡 씤빐 以묒뿉寃 꼸由 븣젮吏湲 떆옉븯떎(Read et al., 2002). 씠윭븳 깮臾쇳뀒윭(bioterrorism)뿉 븳 쓳 誘멸뎅 肉먮쭔 븘땲씪 쟾꽭怨꾩쟻쑝濡 痍⑥빟븳 긽깭怨, 깮臾쇰Т湲곕줈 궗슜맂 썝씤泥대 솗씤븯怨 蹂묒씤濡좎쓣 寃곗젙븯뒗뜲룄 留롮 뼱젮쓣 엳뿀湲 븣臾몄뿉 寃곌낵쟻쑝濡 誘멸뎅쓣 鍮꾨’븳 뿬윭 援媛뿉꽌 踰뺣몄깮臾쇳븰(microbial forensics) 遺꾩빞쓽 諛쒖쟾 븘닔쟻씠뿀떎. 踰뺣몄깮臾쇳븰옄뒗 湲곗〈쓽 怨쇳븰쟻 踰붿즲닔궗 遺꾩빞씤 踰붿즲쁽옣 議곗궗, 利앷굅臾 愿由ъ쓽 뿰냽꽦(chain of custody), 利앷굅臾 梨꾩쭛, 泥섎━ 諛 蹂닿, 利앷굅臾 슫넚, 遺꾩꽍, 寃곌낵쓽 빐꽍쓣 踰뺤젙뿉꽌 利앹뼵븯뒗 벑쓽 遺꾩빞 쇅뿉 깮臾쇰Т湲곕줈 궗슜맂 利앷굅臾쇱쓽 湲곗썝쓣 젙솗븯寃 솗씤븯湲 쐞빐 蹂묒썝泥대 遺꾨━븯뿬 洹 썝씤泥댁뿉 븳 異⑸텇븳 젙蹂대 젣怨듯빐빞 븷 엫臾닿 異붽릺뿀떎.

踰뺣몄깮臾쇳븰 遺꾩빞뒗 떎븰젣媛(삁瑜 뱾硫, 誘몄깮臾쇳븰, 쑀쟾泥댄븰, 깮臾쇱젙蹂댄븰, 踰뺢낵븰, 硫댁뿭븰, 씤援ъ쑀쟾븰, 깮솕븰, 遺꾩옄깮臾쇳븰, 뿭븰 벑)쓽 쟾臾 遺꾩빞 寃쎌같뻾젙븰, 怨듭쨷蹂닿굔븰, 젙梨 諛 吏뒫 踰붿즲닔궗븰 벑쓽 떎뼇븳 쟾臾멸 꽕듃썙겕쓽 뿰怨꾧 븘슂븯떎. 듅엳 踰뺣몄깮臾쇳븰 蹂묒썝泥대굹 룆냼瑜 媛쒕퀎 遺꾨━븯뿬 뼱뼸寃 깮궛릺뼱 諛고룷릺뿀뒗吏 벑쓣 吏묒쨷쟻쑝濡 議곗궗빐꽌 깮臾쇳뀒윭由ъ뒪듃(bioterrorist) 깮臾쇰쾾二꾩옄(biocrime perpetrator)瑜 솗씤븯뒗뜲 紐⑹쟻쓣 몢怨 엳떎(Schmedes et al., 2016).

씤媛꾩쓽 깮紐낃낵 嫄닿컯쓣 쐞삊븯뒗 誘몄깮臾 洹좎<뒗 빟 1,400뿬醫 씠긽씠硫, 떇臾쇨낵 룞臾 蹂묒썝泥닿퉴吏 怨좊젮븯硫 洹 닔뒗 뾼泥굹寃 뒛뼱궃떎(Taylor et al., 2001). 씠젃寃 닔留롮 蹂묒썝泥대 젙솗븯寃 遺꾩꽍븯湲 쐞빐꽌뒗 쑀쟾泥대 넂 泥섎━웾쑝濡 떊냽븯寃 遺꾩꽍 媛뒫븳 슜웾 蹂묐젹 뿼湲곗꽌뿴 遺꾩꽍踰(massively parallel sequencing; MPS) 삉뒗 怨좏슚쑉 泥섎━웾 뿼湲곗꽌뿴 遺꾩꽍踰(high-throughput sequencing; HTS) 湲곕쾿씠 븘닔쟻씠떎. 씠윭븳 遺꾩꽍踰뺣뱾濡 씤빐 湲곗〈뿉 븣젮吏吏 븡븯뜕 蹂묒썝泥댁쓽 룞젙, 샎빀 利앷굅臾쇱뿉꽌 誘몄꽭븳 뼇쑝濡 議댁옱븯뒗 誘몄깮臾쇰뱾쓣 솗씤븯뒗 寃껋씠 媛뒫븯寃 릺뿀떎. 2001뀈 깂洹 븘룷 깮臾쇳뀒윭쓽 利앷굅臾쇱뿉꽌 Bacillus anthracis 洹좎<쓽 뿼湲곗꽌뿴쓣 솗씤븿쑝濡쒖뜥 洹 寃껋씠 B. anthracis Ames strains엫쓣 諛앺議뚮떎(Rasko et al., 2011; 2013).

蹂 끉臾몄뿉꽌뒗 踰뺣몄깮臾쇳븰쓽 媛쒕뀗, 利앷굅臾쇱쓽 梨꾩쭛, 룷옣, 슫넚, 蹂닿 諛⑸쾿 諛 쟾왂뿉 빐 紐⑥깋븯怨 깮臾쇳뀒윭뿉꽌 二쇰줈 궗슜릺뒗 誘몄깮臾쇱쓽 醫낅쪟 洹 湲곗썝쓣 異붿쟻븯뒗 뿬윭 媛吏 遺꾩꽍 湲곕쾿뱾뿉 愿빐 궡렣蹂닿퀬옄 븳떎.

蹂몃줎

利앷굅臾 梨꾩쭛(Evidence collection)

씪諛섏쟻쑝濡 湲곕낯쟻씤 踰붿즲쁽옣 議곗궗 湲곕쾿씠 깮臾쇳뀒윭 諛 깮臾쇰쾾二 궗嫄댁뿉룄 쟻슜맂떎(FBI, 2013). 젣씪 癒쇱 理쒖슦꽑쟻쑝濡 痍⑦빐빞 븷 寃껋 뵾빐옄瑜 蹂댄샇븯뒗 寃껋씠怨, 怨듭쨷蹂닿굔 쐞뿕쓣 李⑤떒븯뒗 寃껋씠떎(Schutzer et al., 2005). 洹 썑뿉 踰붿즲쁽옣쓣 蹂댁〈븯怨, 踰붿즲쁽옣 議곗궗옄뒗 궗嫄 옄猷뚮 닔吏묓븳 씪李⑤쓳湲곌뎄굹 議곗궗쓽 궗쟾 젙蹂대 뵲瑜몃떎. 궗쟾怨꾪쉷 닔由쎌 븘닔쟻씤 옉뾽쑝濡 쟻젅븳 떆媛 궡뿉 誘몄깮臾쇰쾾二 利앷굅臾쇱쓣 梨꾩쭛, 泥섎━빐빞 븯뒗 옉뾽뿉 빐 移섎븯寃 怨꾪쉷빐빞 븳떎(Budowle et al., 2006).

깮臾쇳뀒윭굹 깮臾쇰쾾二 쁽옣뿉꽌 利앷굅臾 梨꾩쭛 씗깮옄 二쇰 솚寃쎌쑝濡쒕꽣 몮떎 寃泥대 梨꾩랬빐빞 깮臾쇱쐞삊 썝씤泥대 룞젙븯怨 洹 湲곗썝쓣 異붿쟻븯硫 異뷀썑 옱뙋怨쇱젙뿉꽌 利앷굅濡 梨꾪깮쓣 以鍮꾪븷 닔 엳떎. 利앷굅臾쇱 꽭 媛吏쓽 씪諛섏쟻 젒洹쇱뿉 쓽빐 梨꾩쭛씠 媛뒫븯떎. 泥 踰덉㎏ 젒洹 諛⑸쾿 떆猷 쟾泥대 닔嫄고븯뿬 諛룓맂 硫멸퇏 슜湲곕줈 슫諛섑븯뒗 寃껋씠떎. 씠 諛⑸쾿 議곗궗옄媛 蹂댄샇옣援щ 李⑹슜븯뒗 寃껋씠 以묒슂븯怨 利앷굅臾 梨꾩쭛뿉 븘슂븳 떆媛꾩쓣 理쒖냼濡 븳떎. 씪떒 利앷굅臾쇱씠 븞쟾븳 옣냼濡 슫諛섎릺硫 醫뜑 뾼寃⑺븳 룊媛 옄꽭븳 梨꾩쭛씠 쟻젅븳 諛룓 議곌굔븯뿉꽌 닔뻾맆 닔 엳떎. 몢 踰덉㎏濡 쟾泥 利앷굅臾쇱쓽 닔吏묒씠 뼱졄떎硫 踰붿즲쁽옣 議곗궗옄뒗 利앷굅臾쇱쓽 씪遺留뚯쓣 梨꾩쭛븯뒗 諛⑸쾿씠 엳떎. 꽭 踰덉㎏濡 誘몄꽭븳 利앷굅臾쇱쓽 寃쎌슦뿉뒗 쟻젅븳 룄援щ 궗슜빐꽌 벝嫄곕굹 떐븘꽌 梨꾩쭛븯뒗 諛⑸쾿씠 엳떎. 留욎땄삎 梨꾩쭛 쟾왂 깮臾쇰Т湲곌 쓽떖릺嫄곕굹 옞옱쟻씤 蹂묒썝洹좎뿉 븳 젙蹂닿 엳쓣 븣 怨좊젮릺뼱빞 븳떎(Budowle et al., 2005b; Budowle et al., 2006).

씪諛섏쟻씤 踰붿즲닔궗 怨쇱젙뿉 쟻슜븯뒗 몴以옉뾽젅李(SOP)쓽 뾼寃⑹꽦씠 깮臾쇳뀒윭 궗嫄댁씠굹 깮臾쇰쾾二꾩뿉꽌뒗 鍮꾪쁽떎쟻씪 닔 엳떎. 踰붿즲쁽옣씠 씪젙븳 삎깭굹 뿉 留욌뒗떎硫 利앷굅臾 梨꾩쭛 옉뾽씠 돺寃 꽕紐낅맆 寃껋씠吏留, 遺遺꾩쓽 誘몄깮臾쇰쾾二 궗嫄댁뿉꽌뒗 梨꾩쭛 踰붿쐞, 吏뿭, 蹂묒썝泥, 湲곗쭏, 蹂듯빀泥 벑 뼵젣굹 蹂솕맆 닔 엳떎. 紐⑤뱺 踰붿즲쁽옣 媛곴린 떎瑜닿퀬 媛곴컖쓽 蹂닔媛 留ㅼ슦 겕湲 븣臾몄뿉 利앷굅臾 梨꾩쭛怨쇱젙뿉꽌 뼱뒓 젙룄쓽 쑖넻꽦 븘슂븯떎. 뜑援곕떎굹 誘몄깮臾쇱씠굹 DNA뿉 븳 梨꾩쭛 議곌굔 二쇰 솚寃쎌쑝濡쒕꽣 삤뿼쓣 뵾븯뒗 利앷굅臾 梨꾩쭛 諛⑸쾿씠 以묒슂븯怨, 룆냼쓽 寃쎌슦 룆냼媛 룷븿릺뼱 엳쓣 媛뒫꽦씠 엳뒗 二쇰 利앷굅臾 紐⑤몢瑜 梨꾩쭛븯뒗 寃껋씠 슂援щ맂떎(Budowle et al., 2006).

利앷굅臾 梨꾩쭛 諛⑸쾿씠굹 룄援ъ뿉 愿빐꽌뒗 떎쓬쓽 꽭 媛吏 怨좊젮궗빆씠 엳떎. 泥 踰덉㎏뒗 利앷굅臾 梨꾩쭛 諛⑸쾿怨 룄援 以 씪遺뒗 셿踰쏀븯寃 寃利앸릺吏 븡븯떎뒗 젏씠떎. 몢 踰덉㎏뒗 씠誘 寃利 諛쏆 利앷굅臾 梨꾩쭛 諛⑸쾿쓽 寃쎌슦, 蹂댁븞긽쓽 씠쑀濡 寃궗 湲곌媛꾩쓽 怨듭쑀媛 썝솢븯吏 紐삵븯뿬 떎젣濡 씠寃껋씠 븘슂븳 寃쎌슦 諛⑸쾿쓣 뒿뱷븷 湲고쉶媛 留ㅼ슦 쟻떎뒗 젏씠떎. 꽭 踰덉㎏뒗 議곗궗옄湲 궗쟾뿉 遺꾩꽍긽怨 遺꾩꽍 寃곌낵뿉 빐 異⑸텇엳 씠빐븳 떎쓬 씠뿉 留욎텛뼱 쟻젅븳 諛⑸쾿씠 궗슜릺뼱빞 븳떎뒗 젏씠떎. 궗떎 媛곴컖쓽 궗嫄댁쓽 遺덊솗떎꽦, 뿬윭 誘몄깮臾쇰뱾쓽 떎뼇꽦, 遺꾩꽍臾쇱쓽 븞젙꽦 벑쑝濡 踰뺣몄깮臾쇳븰 醫낆궗옄뱾뿉寃 씠윭븳 寃껊뱾쓣 紐⑤몢 怨좊젮븯뒗 寃껋 돩슫 寃껋씠 븘땲떎. 뼱뼡 궛냼꽦 誘몄깮臾쇱뿉寃 怨듦린以 궛냼쓽 끂異쒖씠 뿀슜릺뒗 利앷굅臾 梨꾩쭛 諛⑸쾿씠 臾댁궛냼꽦 誘몄깮臾쇱뿉寃뚮뒗 쟻젅븯吏 븡쓣 닔룄 엳떎(Schutzer et al., 2005). 뵲씪꽌 뿬윭 媛吏 떎瑜 諛⑸쾿쓣 룞떆뿉 떆뻾븯뒗 寃껋씠 醫뗫떎(Budowle et al., 2006).

理쒖쟻쓽 利앷굅臾 梨꾩쭛 쟾왂 踰붿즲쁽옣 議곗궗뿉 빐 湲곗〈뿉 닔由쎈맂 媛씠뱶씪씤쓣 以닔븯怨 씠 뜑遺덉뼱 쟾臾멸 쓽寃, 誘몄깮臾쇳븰 諛 깮솕븰쟻 吏떇, 議곗궗옄쓽 寃쏀뿕 洹몃━怨 씪諛 긽떇 벑쓣 異붽븯뿬 醫낇빀쟻쑝濡 뙋떒븯뒗 寃껋씠떎. 뼱뼡 듅蹂꾪븳 寃쎌슦뿉뒗 湲곗〈쓽 利앷굅臾 梨꾩쭛踰뺤씠굹 룄援 뾾씠 깉濡쒖슫 諛⑸쾿씠굹 吏곴쟻 諛⑸쾿씠 떎뻾맆 닔 엳떎. 留뚯빟 씠븣 깉濡쒖슫 諛⑸쾿쓣 떆뻾븳떎硫 紐⑤뱺 怨쇱젙뱾 異뷀썑 李멸퀬 옄猷뚮굹 議곗궗瑜 쐞빐 諛섎뱶떆 湲곕줉빐빞 븳떎(Budowle et al., 2005b; Budowle et al., 2006).

利앷굅臾 梨꾩쭛 諛⑸쾿怨 룄援щ뒗 쟾 遺꾩꽍怨쇱젙怨 뜑遺덉뼱 寃利앹쓣 諛쏆븘빞 븳떎. 씠븣 寃利앹 梨꾩쭛뿉꽌 遺꾩꽍源뚯쓽 쟾 怨쇱젙쓣 룷븿빐빞 븳떎. 梨꾩쭛 떆뿉 궗슜릺뒗 뼱뼡 硫대큺쓽 寃쎌슦, 슜빐 臾쇱쭏(吏諛⑹궛)쓣 媛吏怨 엳뼱 꽭룷諛곗뼇뿉 룆꽦쓣 媛뽮굅굹 諛뺥뀒由ъ븘쓽 諛곗뼇쓣 빐븷 닔룄 엳뼱 Calcium alginate굹 Dacron 꽟쑀濡 留뚮뱺 寃껋씠 異붿쿇맂떎. 듅젙 蹂묒썝洹좎쓣 蹂댁〈븷 븣뿉 궗슜릺뒗 뼱뼡 臾쇱쭏(glycerol 삉뒗 skim milk) 異뷀썑 遺꾩꽍怨쇱젙뿉 빐瑜 븷 닔룄 엳떎(Baron and Thomson, 2011; Baron, 2015). 諛뺥뀒由ъ븘瑜 븿쑀븯뒗 利앷굅臾쇱 씪諛섏쟻쑝濡 슫넚諛곗濡 슫諛섎맂떎. 諛붿씠윭뒪쓽 寃쎌슦뿉룄 PBS (phosphate buffered saline) 諛곗굹 BSA (bovine serum albumin) 빆깮젣瑜 泥④븳 HBSS (Hanks balanced salt solution) 諛곗瑜 二쇰줈 궗슜븳떎. 뼱뼡 룞臾 諛붿씠윭뒪쓽 븞쟾꽦 듅蹂꾪엳 pH 씠삩 媛뺣룄뿉 쓽빐 쁺뼢쓣 諛쏄린 븣臾몄뿉 씪諛섏쟻쑝濡 쓷엳 궗슜릺뒗 諛곗뒗 buffered tryptose broth씠떎. 援젣쟻쑝濡 vesicular disease뿉 꼸由 궗슜릺뒗 buffered glycerin뒗 떎삩뿉꽌 蹂묒썝꽦 諛붿씠윭뒪瑜 옣떆媛 蹂댁〈븯뒗 寃껋쑝濡 諛앺議뚮떎. 洹몃윭굹 glycerol쓽 寃쎌슦 듅젙 냽룄뿉꽌 엫긽떆猷뚯뿉꽌 蹂댁〈븯뒗 룞븞 듅젙 諛붿씠윭뒪瑜 빐븷 닔룄 엳떎(van Baare, 1994; Marshall L, 1995; van Baare et al., 1998).

利앷굅臾쇱쓽 룷옣, 슫넚, 蹂닿(Packaging, transport, and preservation)

利앷굅臾쇱쓽 遺꾩꽍 寃곌낵뒗 떆猷뚭 룷옣, 슫넚, 蹂닿릺뒗 議곌굔뿉 쓽빐꽌 쁺뼢쓣 諛쏅뒗떎. 蹂닿 議곌굔 誘몄깮臾쇱뿉 뵲씪 떎瑜몃뜲, 臾댁궛냼꽦 誘몄깮臾쇱쓽 寃쎌슦뒗 蹂닿 룄以 怨듦린쓽 궛냼 냽룄瑜 젒븯寃 릺硫 異뷀썑 諛곗뼇씠 븞맆 닔룄 엳떎(Baron, 2015). 룷옣 삉뒗 蹂닿 議곌굔 떆猷뚯쓽 湲곗쭏씠굹 臾쇰━쟻 議곌굔뿉 뵲씪꽌룄 뿭떆 떎瑜대떎. 留ㅼ슦 냼웾쓽 利앷굅臾쇰쭔 엳떎硫 떒 븳踰덉쓽 梨꾩쭛留 媛뒫븷 寃껋씠怨 씠윴 솚寃쎌뿉꽌뒗 利앷굅臾쇱쓣 삩쟾븯寃 쑀吏븯뒗 寃껋씠 留ㅼ슦 以묒슂븯떎.

遺遺꾩쓽 諛뺥뀒由ъ븘瑜 쐞븳 룷옣슫넚踰뺤 諛붿씠윭뒪 蹂묒썝泥댁뿉뒗 遺쟻떦븯떎(Hosokawa-Muto et al., 2015). 슫諛 諛⑸쾿 쎕넀, 寃곗넀, 삤뿼쓣 理쒖냼솕븯怨 씤泥댁뿉쓽 끂異쒖쓣 李⑤떒빐빞 븳떎(Wegerhoff, 2006). 뼱뼡 떆猷뚮뒗 떎삩뿉꽌 슫諛섎맆 닔 엳吏留, 뼱뼡 寃껋 깋옣긽깭濡 슫諛섎릺뼱빞 븳떎(Wilson, 1996). 遺遺꾩쓽 엫긽 寃泥대뒗 깋옣 議곌굔뿉꽌 蹂닿븳떎. 슫諛섍낵 蹂닿怨쇱젙 以묒뿉 뙺李쎈릺뒗 寃껋쓣 留됯린 쐞빐 떆猷뚮 룞寃, 嫄댁“븯湲곕룄 븯뒗뜲, 뼱뼡 誘몄깮臾쇰뱾 룞寃곗뿉 쓽빐 쁺뼢쓣 諛쏆쓣 닔 엳湲 븣臾몄뿉 buffered glycerol쓣 궗슜빐꽌 룞寃, 빐룞쑝濡 씤븳 뵾빐瑜 理쒖냼솕 븳떎(Kotula et al., 1979). 洹몃윭굹 깮臾쇳뀒윭굹 깮臾쇰쾾二 궗嫄댄쁽옣뿉꽌 理쒖쟻쓽 슫諛 臾쇱쭏씠굹 怨쇱젙쓣 삁痢≫븯뒗 寃껋 뼱졄湲 븣臾몄뿉, 踰붿즲쁽옣 議곗궗옄뱾 떎뼇븳 蹂닿 議곌굔쓣 以鍮꾪븯怨, 룷옣 諛 슫넚쟾뿉 쟾臾멸쓽 議곗뼵쓣 援ы빐빞 븳떎.

깮臾쇳뀒윭 궗嫄댁씠 냽뾽쓣 긽濡 諛쒖깮븳떎硫, 옉臾쇨낵 솚寃 떆猷뚭 븘슂븷 寃껋씠떎(Kuiper, 2016). 利, 떇臾 議곗쭅 떆猷뚯 怨ㅼ땐, 꽑異, 넗뼇 삉뒗 臾쇨낵 媛숈 솚寃 떆猷뚮 吏곸젒 硫멸퇏 슜湲 궡濡 梨꾩쭛븳떎. 怨고뙜씠 洹좎궗굹 룷옄, 諛뺥뀒由ъ븘 벑쓽 洹좎껜뒗 떇臾쇱껜 몴硫댁씠굹 넗뼇쑝濡쒕꽣 異붿텧븯뿬 硫멸퇏닔 삉뒗 PBS, 70% 뿉깂삱 벑씠 뱾뼱엳뒗 슜湲곗뿉 蹂닿븳떎(Belser and Mays, 1980).

踰붿즲쁽옣 遺洹쇱쓽 솚寃쎌뿉꽌룄 留롮 떆猷뚮뱾씠 梨꾩쭛릺뒗 寃쎌슦媛 엳떎. 씠윭븳 寃쎌슦뿉 利앷굅臾쇱쓽 긽깭뿉 빐꽌룄 怨좊젮빐빞 븳떎(McBride and Gilpin, 2016). 媛졊, 嫄댁“ 臾쇱쭏쓣 깋媛곸떆궎뒗 寃껋 닔異뺤옉슜쑝濡 臾쇰━쟻 긽깭瑜 蹂삎떆耳 씠썑쓽 遺꾩꽍怨쇱젙쓣 諛⑺빐븷 닔 엳떎. 씪諛섏쟻쑝濡 梨꾩쭛맂 솚寃 떆猷뚮뒗 硫멸퇏 긽깭濡 젅씠釉붾쭅 릺뼱 엳뒗 吏띁떇 鍮꾨땺 遊됲닾뿉 꽔뼱 떎삩뿉 蹂닿븳떎. 깮臾쇰쾾二 利앷굅臾쇱쓽 寃쎌슦뿉뒗 떆猷뚮 썝긽깭 쑀吏媛 留ㅼ슦 以묒슂븯떎(Budowle et al., 2006).

踰붿즲닔궗쓽 떆猷 梨꾩쭛 쟾왂(Forensic sampling strategy)

踰붿즲닔궗뿉꽌 臾댁옉쐞 떆猷 梨꾩쭛踰뺤 쟻젅移 븡떎. 媛졊 蹂묒썝洹좎쓣 룞젙븯湲 쐞빐꽌 쟾泥 吏묐떒 以 뵾빐 利앹긽쓣 蹂댁씠뒗 媛쒖껜뿉꽌留 梨꾩쭛븯뒗 寃껋씠 슚怨쇱쟻씠떎. 삉븳 踰붿즲닔궗뿉꽌 궗嫄댁쓽 궗쟾 젙蹂대 뙆븙븯怨 媛뒫븳 븳 넂 媛뒫꽦쓣 蹂댁씠뒗 諛⑸쾿뿉 슦꽑 닚쐞瑜 二쇱뼱빞 븳떎(Budowle et al., 2008). 넻怨꾩쟻 梨꾩쭛씠굹 臾댁옉쐞 떆猷 梨꾩쭛씠 踰붿즲닔궗뿉꽌뒗 쓷엳 벐씠뒗 諛⑸쾿 븘땲吏留, 紐뉖챺쓽 궗嫄댁뿉꽌뒗 븘슂븷 닔룄 엳떎. 삁瑜 뱾뼱 떎瑜 솚寃 슂씤쓣 鍮꾧탳븷 븣 떆猷 媛 蹂씠 젙룄瑜 뙆븙븯湲 쐞빐꽌 넻怨꾩쟻 諛⑸쾿씠 슂援щ맂떎(McBride and Gilpin, 2016). 뿬윭 吏뿭씠굹 留롮 떆猷뚮웾씠 梨꾩쭛릺뿀쓣 븣룄 吏뿭 듅씠꽦쓣 寃곗젙吏볥뒗 議곌뎔 떆猷뚮 梨꾩쭛븷 븘슂媛 엳떎. 씠윴 젏뿉꽌 誘몄깮臾 蹂묒썝泥댁쓽 깮臾쇱由ы븰쟻(biogeographic) 怨좊젮媛 以묒슂븯떎. 깮臾 吏由ы븰뿉 愿븳 寃쏀뿕쟻 愿李곗 吏뿭 듅씠꽦씠굹 듅젙 蹂묒썝泥댁쓽 쑀엯뿉 愿븳 以묒슂븳 떒꽌瑜 젣怨듯븳떎(Martiny et al., 2006). 利앷굅臾 梨꾩쭛 쟾웾 踰붿즲 긽솴뿉 빐꽌 궗쟾 젙蹂, 梨꾩쭛맂 蹂묒썝泥댁쓽 듅꽦, 옱깮 슚怨, 梨꾩쭛삁긽 誘몄깮臾쇱쓽 諛곗뼇 媛뒫 뿬遺, 깮臾쇱껜쓽 깮由ы븰쟻 떒怨, 湲고 떎瑜 듅꽦 벑룄 怨좊젮빐빞 븳떎(Javan et al., 2016). 誘몄깮臾쇰쾾二 議곗궗쓽 꽦怨 뿬遺뒗 쁽옣닔궗쓽 珥덇린 떒怨꾩뿉 떖젮 엳뒗뜲, 씠寃껋 梨꾩쭛, 泥섎━, 蹂댁〈뿉 쓽議댄븳떎. 뵲씪꽌, 깮臾쇰Т湲곌 愿젴맂 踰붿즲쓽 닔궗瑜 쐞븳 誘몄깮臾 利앷굅臾쇱쓽 梨꾩쭛怨꾪쉷, 寃利, 떊猶곗꽦 벑쓣 넂씠湲 쐞븳 떎뼇븳 끂젰뱾씠 떆뻾릺뼱빞 븷 寃껋씠떎(Budowle et al., 2006).

깮臾쇳뀒윭 깮臾쇰쾾二꾩뿉꽌 궗슜맆 媛뒫꽦 엳뒗 誘몄깮臾 (Potential pathogens for bioterrorism and biocrime)

誘멸뎅 吏덈퀝넻젣삁諛⑹꽱꽣(CDC)뿉꽌 怨듭쨷蹂닿굔뿉 誘몄튂뒗 쁺뼢, 誘몄깮臾 쟾뙆 諛 쟾뿼쓽 슜씠꽦, 怨듭쨷蹂닿굔 鍮꾩뿉 븳 슂援ъ궗빆, 궗쉶쟻 샎뿉 誘몄튂뒗 젙룄뿉 뵲씪 3媛吏 移댄뀒怨좊━濡 遺꾨쪟븳 깮臾쇳뀒윭뿉꽌 궗슜맆 媛뒫꽦씠 엳뒗 誘몄깮臾쇱쓽 醫낅쪟뒗 Table 1怨 媛숇떎(CDC, 2017).

CDC Emergency preparedness and response for bioterrorism

CategoryAgentsDiseases
ABacillus anthracisAnthrax
Clostridium botulinum toxinBotulism
Yersinia pestisPlague
Variola majorSmallpox
Francisella tularensisTularemia
Filoviruses (Ebola, Marburg)Viral hemorrhagic fever
Arenaviruses (Lassa, Machupo)
BBrucella spp.Brucellosis
Epsilon toxin of Clostridium perfringens
Salmonella spp.Food safety threats
Shigella spp.
Escherichia coli O157:H7
Burkholderia malleiGlanders
Burkholderia pseudomalleiMelioidosis
Chlamydia psittaciPsittacosis
Coxiella burnetiiQ fever
Ricin toxin from Ricinus communis (castor bean)
Staphylococcal enterotoxin B
Rickettsia prowazekiiTyphus fever
Alphaviruses (such as Eastern equine encephalitis, Venezuelan equine encephalitis, Western equine encephalitis)Viral encephalitis
Vibrio cholerae, Cryptosporidium parvumWater safety threats
CNipah virus and HantavirusEmerging infectious diseases

移댄뀒怨좊━ A뒗 궗엺뱾 궗씠뿉 돺寃 쟾뙆 諛 쟾뿼씠 릺怨 넂 移섏궗쑉쓣 빞湲고븯硫 怨듭쨷蹂닿굔뿉 떖媛곹븳 쁺뼢쓣 誘몄퀜 以묒쓣 怨듯솴 긽깭뿉 鍮좏듃由ш퀬 궗쉶쟻 遺뺢눼瑜 빞湲곗떆궗 媛뒫꽦씠 엳뼱 怨듭쨷蹂닿굔 鍮꾨 쐞빐 듅蹂꾪븳 솢룞쓣 슂援ы븯뒗 媛옣 쐞뿕꽦씠 넂 蹂묒썝泥대뱾씠떎. 移댄뀒怨좊━ B뒗 쟾뙆媛 以묐벑룄濡 돺怨, 以묎컙 젙룄쓽 쑀蹂묒쑉怨 궙 移섏궗쑉쓣 蹂댁씠硫 吏덈퀝쓽 媛먯떆 吏꾨떒 뒫젰쓣 뼢긽떆궗 븘슂꽦씠 엳뒗 몢 踰덉㎏濡 쐞뿕꽦씠 넂 寃쎌슦씠떎. 移댄뀒怨좊━ C뒗 뼢썑 웾 쟾뙆瑜 쐞빐 쑀쟾옄 議곗옉맆 媛뒫꽦씠 엳뒗 깉濡寃 異쒗쁽븯뒗 蹂묒썝泥대 룷븿븯뒗 꽭 踰덉㎏濡 쐞뿕꽦씠 넂 寃쎌슦濡, 깮궛怨 쟾뙆媛 슜씠븯怨, 넂 쑀蹂묒쑉怨 移섏궗쑉쓽 옞옱젰쓣 媛吏怨 엳뼱 怨듭쨷蹂닿굔뿉 二쇱슂븳 쁺뼢쓣 誘몄튌 紐⑹쟻쑝濡 궗슜媛뒫꽦씠 엳뒗 寃쎌슦씠떎(CDC, 2017). 삉븳 떎젣 깮臾쇳뀒윭 깮臾쇰쾾二꾩뿉꽌 깮臾쇳븰쟻 臾닿린媛 궗슜맂 궗濡뒗 Table 2 媛숇떎.

Examples of microbial forensic cases using bioweapons in bioterrorism and biocrime

 Year Location  Pathogen/toxin  Introduction route  Diseases
1990AustraliaHIV-tainted bloodInjectionAIDS
1992MissouriHIV-tainted bloodInjectionAIDS
1994LouisianaHIV-tainted bloodInjectionAIDS
1994HollandHIV-tainted bloodInjectionAIDS
1995MissouriRicinFood contaminationPoisoning symptoms
1996TexasShigella dysenteriae type 2Food contaminationShigellosis
1997New ZealandRabbit hemorrhagic fever virusInjection, food contaminationHemorrhagic disease
1990sJapanBacillus anthracis, botulinum toxinAerosolAnthrax, spasticity
2001USABacillus anthracisLettersAntrax

留ㅽ듃由뒪-蹂댁“ 젅씠 깉李 씠삩솕-鍮꾪뻾 떆媛 吏덈웾遺꾩꽍湲(Matrix-assisted laser desorption ionization-time of flight mass spectrometry; MALDI-TOF MS)

湲곗〈쓽 誘몄깮臾 洹좎쥌 룞젙 쟾넻쟻 몴쁽삎 떆뿕(二쇰줈 諛곗뼇뿉 쓽븳 깮솕븰쟻 떆뿕)씠 삤옯룞븞 씠슜릺뼱 솕吏留, 寃궗떆媛꾩씠 湲멸퀬 씪遺 洹좎쥌쓽 룞젙 젙솗븯吏 紐삵븯떎. MALDI-TOF MS踰뺤쑝濡쒕뒗 鍮좊Ⅴ怨 젙솗븳 洹좎쥌 룞젙씠 媛뒫븯怨 닠떇씠 媛꾨떒븯硫 븘슂븳 옣鍮꾩쓽 媛寃⑹씠 젏李 궡젮媛誘濡 뿬윭 誘몄깮臾 寃궗떎뿉꽌룄 씠슜릺怨 엳떎(Jung et al., 2017).

MALDI-TOF MS踰뺤뿉 쓽븳 洹좎쥌 룞젙 썝由щ 궡렣 蹂대㈃, 꽭洹좎씠굹 吏꾧퇏 吏묐씫쓣 matrix씪怨 遺瑜대뒗 궙 吏덈웾(mass)씤 쑀湲고솕빀臾쇨낵 꽎뼱꽌 湲덉냽뙋(metal target plate)뿉 븳 諛⑹슱 넃뒗떎(Ho et al., 2009). 嫄댁“릺硫 寃泥댁 matrix媛 븿猿 寃곗젙쓣 씠猷⑤ʼn matrix뒗 寃泥댁쓽 씠삩솕뿉 븘슂븯떎. 湲덉냽뙋 쐞뿉 넃씤 寃泥-matrix쓽 寃곗젙泥댁뿉 UV 젅씠 愿묒꽑(뙆옣 337 nm씤 N2 젅씠媛 媛 벐엫)쓣 뙆룞꽦쑝濡 履쇱씠硫 젅씠 愿묒쓽 뿉꼫吏瑜 씉닔븯뿬 젅씠쓽 愿묒옄(photon)뱾怨 matrix 遺꾩옄뱾씠 긽샇옉슜쓣 씪쑝궎怨 matrix媛 湲곗껜 긽깭濡 듅솕(sublimation)릺怨 씠뼱꽌 寃泥 以묒쓽 떒諛깆쭏씠 씠삩솕 맂떎. 씠삩솕맂 떒諛깆쭏 time of flight (TOF) 愿쓣 넻怨쇳븯뿬 寃異쒓린뿉 룄떖븳떎. 씠삩솕맂 떒諛깆쭏씠 TOF 愿쓣 넻怨쇳븯뒗뜲 嫄몃━뒗 떆媛꾩 吏덈웾씠 옉쑝硫 吏㏐퀬 겕硫 湲몃떎(Fenselau and Demirev, 2001; Petersen et al., 2009). 寃異쒓린뒗 吏덈웾(mass)怨 븯쟾(charge)쓽 鍮꾩쑉(m/z) 利 씠삩솕맂 떒諛깆쭏씠 TOF뿉 룄떖븯뒗 냽룄瑜 痢≪젙븳떎. 씠 寃곌낵瑜 몴以怨 鍮꾧탳븯뿬 洹좎쥌쓣 룞젙븯뒗뜲 洹좎쥌뿉 뵲씪꽌 떒諛깆쭏쓽 援ъ꽦씠 떎瑜대濡 洹좎쥌 룞젙씠 媛뒫븯寃 맂떎(Clark et al., 2013).

MALDI-TOF MS踰뺤 떊냽븳 洹좎쥌 룞젙 諛 븘醫낆쓽 솗씤, 寃泥댁뿉꽌 biomarker쓽 吏곸젒 寃異, 떊냽븳 遺꾩꽍 벑쓽 옣젏씠 엳湲 븣臾몄뿉 踰뺣몄깮臾쇳븰뿉꽌 깮臾쇰Т湲곗쓽 遺꾩꽍, 븣젮吏吏 븡 떒諛깆쭏쓽 寃異 諛 듅吏 遺꾩꽍, 꽭洹좎쓣 냽, 醫, 洹좎< 젅踰④퉴吏 듅꽦쓣 솗씤븯뒗뜲 쟻슜븷 닔 엳쓣 寃껋씠떎(Ho et al., 2009). 븯吏留, 깮臾쇰Т湲곕줈 궗슜맆 媛뒫꽦씠 엳뒗 誘몄깮臾 遺遺꾩쓽 솕븰遺꾨쪟쟻 듅吏(chemotaxonomic signatures)쓽 愿묐쾾쐞븳 뜲씠꽣踰좎씠뒪 援ъ텞씠 븘닔遺덇寃고븯떎.

DNA 留덊겕濡쒖뼱젅씠(DNA microarray)

DNA 留덊겕濡쒖뼱젅씠뒗 biochip, DNA chip, gene array 벑쑝濡 遺덈━湲곕룄 븯硫, 쑀쟾옄/쑀쟾옄 룎뿰蹂씠(gene/gene mutation) 뿼湲곗꽌뿴쓽 솗씤怨 쑀쟾옄쓽 諛쒗쁽 젙룄瑜 솗씤븯뒗뜲 궗슜맂떎(Kim et al., 2015). DNA 留덊겕濡쒖뼱젅씠뒗 븯굹쓽 移 긽뿉꽌 쟾泥 쑀쟾泥대 紐⑤땲꽣留곹븿쑝濡쒖뜥 뿰援ъ옄媛 닔泥쒓컻쓽 쑀쟾옄瑜 룞떆뿉 솗씤븷 닔 엳뒗 湲곕쾿씠떎(Heller, 2002; Walsh, 2004).

湲곗〈뿉 諛곗뼇뿉 湲곕컲븳 誘몄깮臾쇱쓽 寃異쒓낵 룞젙 湲곕쾿 웾쓽 寃궗瑜 닔뻾븯湲곗뿉뒗 꼫臾 떆媛꾩씠 삤옒 嫄몃━怨, 뿬윭 媛쒖쓽 誘몄깮臾쇱씠 룷븿맂 寃泥대 遺꾩꽍븯湲곗뿉뒗 源뚮떎濡쒖썱떎. DNA 留덊겕濡쒖뼱젅씠 湲곕쾿 닔留롮 誘몄깮臾쇱쓽 DNA 꽌뿴쓣 룞떆뿉 遺꾩꽍븷 닔 엳怨 뿬윭 蹂묒썝泥대 遺꾩옄쟻 닔以뿉꽌 룞젙怨 듅꽦쓣 遺꾩꽍븷 닔 엳떎뒗 옣젏씠 엳湲 븣臾몄뿉 踰뺣몄깮臾쇳븰 遺꾩빞뿉 쟻슜븷 닔 엳쓣 寃껋씠떎(Budowle et al., 2005a; Lents, 2011).

떒諛깆쭏 留덊겕濡쒖뼱젅씠(Protein microarray)

떒諛깆쭏 留덊겕濡쒖뼱젅씠뒗 留ㅼ슦 쟻 뼇쓽 꽌濡 떎瑜 젙젣맂 떒諛깆쭏쓣 뒳씪씠뱶뿉 뿴怨 뻾쓣 留욎떠 넃 寃껋쑝濡 씠븣 떒諛깆쭏 留ㅼ슦 닚닔븯怨 긽떦엳 냽異뺣맂 솢꽦쓣 씍 삎깭씠뼱빞 븳떎. 깮臾쇳뀒윭굹 깮臾쇰쾾二꾩 뿰愿맂 吏덈퀝뿉꽌 듅젙 떒諛깆쭏쓣 솗씤븿쑝濡쒖뜥 젙솗븯寃 吏덈퀝쓣 吏꾨떒븯怨 솗씤븯뒗뜲 떒諛깆쭏 留덊겕濡쒖뼱젅씠媛 씠슜맆 닔 엳쓣 寃껋씠떎(Benschop et al., 2012). 利 닔泥쒓컻쓽 떒諛깆쭏-떒諛깆쭏 긽샇옉슜(protein-protein interactions)쓣 솗씤븯怨 듅씠 洹좎쥌(species), 삁泥삎(serotype), 蹂묒썝삎(pathotype), 깮臾쇳삎(biotype) 벑쓣 솗씤븯뒗 듅젙 떒諛깆쭏 留덉빱瑜 솢슜븷 닔 엳떎(Campbell and Ghazal, 2004; Naistat and Leblanc, 2004; Panicker et al., 2004).

떒씪 돱겢젅삤씠뱶 떎삎꽦(Single Nucleotide Polymorphism; SNPs)

SNPs뒗 뼱뼡 깮紐낆껜쓽 DNA뿉 엳뒗 듅젙 쐞移섏뿉꽌 媛숈 醫낆쓽 꽌濡 떎瑜 쑀湲곗껜媛 떎瑜 DNA 꽌뿴쓣 媛吏뒗 寃껋쓣 쓽誘명븳떎. 쑀쟾泥 궡뿉 SNPs쓽 鍮덈룄, 븞쟾꽦, 긽쟻 遺꾪룷 벑쓣 遺꾩꽍븿쑝濡쒖뜥 쑀쟾 留덉빱濡쒖꽌 媛移섎 媛吏寃 맂떎. 쑀쟾泥 긽쓽 SNP 쐞移섎 몴떆븳 怨좊룄 SNP 吏룄媛 洹좎쥌쓽 쑀쟾쟻 듅꽦怨 醫낅텇솕(speciation)瑜 遺꾩꽍븯뒗뜲 씠슜맆 닔 엳떎. 씠윭븳 SNPs瑜 遺꾩꽍븿쑝濡쒖뜥 뼱뼡 洹좎쥌쓣 듅蹂꾪엳 룞젙븯怨 듅吏뺤쓣 솗씤븯뒗 쑀쟾 留덉빱濡쒖꽌 踰뺣몄깮臾쇳븰 遺꾩빞뿉꽌룄 솢슜맆 닔 엳쓣 寃껋씠떎(Budowle et al., 2007; Gua et al., 2017).

깮臾쇳뀒윭굹 깮臾쇰쾾二 쁽옣뿉꽌 梨꾩쭛맂 誘몄깮臾쇱쓣 떎뿕떎 議곌굔뿉꽌 삤옖 湲곌컙 쑀吏 諛 蹂닿븯硫 洹좎<쓽 돱겢젅삤씠뱶 떎삎꽦 옄뿰 긽깭뿉꽌쓽 떎삎꽦怨 떎瑜 닔 엳떎. 利 떎뿕떎뿉꽌 諛곗뼇怨쇱젙씠 誘몄깮臾쇱뿉 꽑깮쟻 븬젰쓣 媛븯뿬 옄뿰 솚寃쎌뿉꽌 諛쒖깮븯뒗 떎삎꽦怨 떎瑜 룎뿰蹂씠瑜 쑀룄븷 媛뒫꽦씠 엳湲 븣臾몄뿉 쑀쟾泥 뿼湲곗꽌뿴 떎삎꽦쓣 遺꾩꽍븷 븣뒗 씠윴 젏쓣 빆긽 怨좊젮븷 븘슂媛 엳떎(Cummings and Relman, 2002).

떎以-쑀쟾옄옄由 蹂씠닔 씪젹諛섎났 遺꾩꽍(Multiple-Locus Variable Number Tandem Repeat Analysis; MLVA)

씪젹諛섎났 DNA 꽌뿴쓽 꽌濡 떎瑜 닽옄瑜 씪젹諛섎났 蹂씠닔(variable number tandem repeat; VNTRs)씠씪怨 븯硫 씠寃껋 媛쒕퀎 誘몄깮臾쇱쓽 쑀쟾泥댁뿉 嫄몄퀜 議댁옱븳떎. 利 씪젹諛섎났 蹂씠닔뒗 듅젙 誘몄깮臾쇱쓽 쑀쟾泥 븞뿉꽌 쐞移섎쭏떎 떎뼇븯寃 굹굹怨 誘몄깮臾 洹좎쥌留덈떎 떎瑜대떎. 씠윭븳 뙣꽩쓣 寃異쒗븯湲 쐞빐 몴쟻 誘몄깮臾쇱쓽 쑀쟾泥 DNA瑜 젣븳슚냼濡 옄瑜대㈃ 媛 洹좎쥌留덈떎 룆듅븳 뙣꽩쓽 듅吏뺤쓣 蹂댁씤떎. 씠윴 듅젙 뙣꽩쓣 遺꾩꽍빐꽌 뼱뼡 洹좎쥌쓣 솗젙 룞젙븯寃 맂떎(van Belkum, 2007).

諛뺥뀒由ъ븘쓽 뿼깋泥댁긽뿉 떎닔쓽 쑀쟾옄옄由ъ뿉 씪젹諛섎났닔 李⑥씠瑜 遺꾩꽍븯뒗 寃껋쓣 떎以-쑀쟾옄옄由 蹂씠닔 씪젹諛섎났 遺꾩꽍(MLVA)씪怨 븳떎. MLVA뒗 떊냽븯怨 닔뻾븯湲 슜씠븯硫 옱쁽꽦씠 쎇뼱궃 遺꾩꽍踰뺤씠떎(James et al., 2014). MLVA뒗 蹂꾧컻쓽 씪젹諛섎났쓣 쉷뱷 삉뒗 냼떎맖뿉 쓽빐 援щ퀎릺湲 븣臾몄뿉 쑀쟾삎쓽 紐낇솗븳 紐낆묶쓣 젣怨듯븳떎. 삉븳 MLVA뒗 諛젒븯寃 뿰愿맂 洹좎<瑜 援щ퀎븷 닔룄 엳怨, 솚寃쎌뿉꽌 遺꾨━맂 誘몄깮臾쇰뱾 궗씠쓽 紐낇솗븯寃 援щ퀎븷 닔 엳湲 븣臾몄뿉 踰뺣몄깮臾쇳븰 遺꾩꽍뿉룄 솢슜맆 닔 엳쓣 寃껋씠떎(Ciammaruconi, 2012).

寃곕줎

誘몄깮臾쇱 떒씪 꽭룷濡쒕꽣 諛곗뼇릺怨 젙援먰븳 옣移섎굹 닕젴맂 쟾臾멸 뾾씠룄 옉 떆꽕뿉꽌 鍮꾩슜쑝濡 웾깮궛씠 媛뒫븯湲 븣臾몄뿉 깮臾쇰Т湲곕줈꽌 븘二 醫뗭 옣젏쓣 媛吏怨 엳떎. 깮臾쇳뀒윭굹 깮臾쇰쾾二 쁽옣뿉꽌 諛쒓껄맂 뼱뼡 誘몄깮臾쇱쓽 湲곗썝쓣 李얠븘궡怨 쟾뙆 寃쎈줈瑜 諛앺 궡硫 꽌濡 떎瑜 洹좎< 궗씠쓽 遺꾩옄깮臾쇳븰쟻 蹂씠瑜 痢≪젙븯湲 쐞빐꽌 떎뼇븳 踰뺣몄깮臾쇳븰 湲곕쾿쓣 솢슜븷 닔 엳떎(Schutzer et al., 2005).

洹몃룞븞 踰뺣몄깮臾쇳븰 諛쒖쟾쓽 二쇱슂 궃愿 깮臾쇳뀒윭 깮臾쇰쾾二 쁽옣뿉꽌 利앷굅臾 梨꾩쭛怨 룷옣, 슫넚, 蹂닿, 깮臾쇰Т湲 遺꾩꽍 봽濡쒗넗肄쒖쓽 몴以솕, 닔留롮 깉濡쒖슫 遺꾩꽍 湲곕쾿 寃곌낵쓽 빐꽍 벑씠뿀떎. 珥덉갹湲곗뿉뒗 뿼湲곗꽌뿴 寃곗젙踰뺤씠굹 뿼湲곗꽌뿴 떎삎꽦쓣 鍮꾧탳 룊媛븯뒗 諛⑸쾿씠 誘몄깮臾 洹좎<쓽 蹂씠 꽌뿴쓣 寃곗젙븯뒗뜲 궗슜릺뿀떎(Budowle et al., 2014). 洹몃윭굹 DNA 留덉씠겕濡쒖뼱젅씠 媛숈 넂 泥섎━웾 湲곕쾿쑝濡 웾쓽 誘몄깮臾 씪씠釉뚮윭由щ 뒪겕由щ떇 븯嫄곕굹 쑀쟾옄 蹂씠 뙣꽩쓣 떊냽븯寃 솗씤븷 닔 엳寃 릺뿀떎. MADLI-TOF, GC-MS, LS-MS-MS 湲곕쾿뱾룄 븘二 옉 遺꾩옄굹 떒諛깆쭏쓽 李⑥씠瑜 寃異쒗븯뒗뜲 궗슜릺湲 븣臾몄뿉 踰뺣몄깮臾쇳븰 遺꾩꽍踰뺤쑝濡쒕룄 솢슜꽦씠 넂떎(Motley et al., 2013). 깮臾쇰Т湲곕줈 궗슜릺뒗 留롮 誘몄깮臾 洹좎<뱾씠 몴쁽삎 삉뒗 깮由ы븰쟻 룊媛뿉꽌 留ㅼ슦 넂 쑀궗꽦쓣 蹂댁씠湲 븣臾몄뿉, 洹좎쥌 궗씠쓽 쑀쟾옄 蹂씠瑜 遺꾩꽍빐꽌 洹몃뱾쓽 李⑥씠瑜 援щ퀎빐궡뒗 鍮꾧탳 쑀쟾泥 뿼湲곗꽌뿴 寃곗젙踰(comparative genome sequencing)씠 蹂묒썝泥댁쓽 遺꾩옄怨꾪넻諛쒖깮븰쟻 젙蹂대 젣怨듯븯뒗뜲 쑀슜븯떎(Massey, 2016).

洹좎쥌(species) 젅踰④퉴吏 룞젙븯뒗 寃껋 뿭븰쟻 怨듭쨷蹂닿굔 議곗궗뿉꽌뒗 異⑸텇븷 닔 엳吏留, 踰뺣몄깮臾쇳븰쟻 議곗궗뿉꽌뒗 蹂대떎 젙諛븳 洹좎< 솗씤怨 븿猿 븣뿉 뵲씪꽌뒗 븯쐞 洹좎<(substrain) 젅踰④퉴吏 젙솗븯寃 遺꾩꽍븯뒗 寃껋씠 슂援щ릺湲곕룄 븳떎. 利 깮臾쇳뀒윭굹 깮臾쇰쾾二꾧 쓽떖맆 븣뒗 떒닚엳 洹좎< 씠븨뿉 뜑븯뿬 利앷굅臾쇱쓣 깮由ы븰쟻 遺꾩꽍怨 븿猿 쑀쟾泥 젙蹂닿퉴吏 젙諛븯寃 遺꾩꽍븯뒗 寃껋씠 븘닔쟻씠떎. 삉븳 삤뿼맂 븘룷굹 苑껉猷, 떖吏뼱 誘몄깮臾 諛곗뼇슜 諛곗쓽 꽦遺꾧퉴吏 遺꾩꽍븯뒗 寃껋씠 踰붿즲빐寃곗쓽 떎留덈━瑜 젣怨듯븯뒗뜲 룄씠 맆 寃껋씠떎. 깮臾 諛 誘몄깮臾 솚寃쎌씤옄 젙蹂, 誘몄깮臾 쑀쟾븰, 吏꾪솕븰, 깮由ы븰, 깮깭븰쟻 怨쇳븰쟻 젙蹂닿 異⑸텇엳 젣怨듬맆 븣 踰뺣몄깮臾쇳븰쟻 遺꾩꽍 媛옣 슚怨쇱쟻씪 寃껋씠떎. 쟾泥 寃뚮냸 뿼湲곗꽌뿴 遺꾩꽍踰(whole genome sequencing)씠 踰뺣몄깮臾쇳븰쟻 湲곕쾿쑝濡쒖쓽 媛移섍 뜑빐吏 寃껋쑝濡 궗猷뚮맂떎(Broomall et al., 2015). 떊猶곗꽦, 옱쁽꽦, 븞젙꽦쓣 媛吏 몴以솕맂 遺꾩꽍 湲곕쾿, 媛 吏뿭蹂 誘몄깮臾쇨뎔吏(microbiome) 遺꾩꽍怨 븿猿 쟾꽭怨꾩쟻쑝濡 蹂댄렪쟻씤 遺꾩꽍 봽濡쒗넗肄쒓낵 뭾遺븳 踰뺣몄깮臾 뜲씠꽣踰좎씠뒪 援ъ텞씠 踰뺣몄깮臾쇳븰쓽 諛쒖쟾뿉 湲곗뿬븷 寃껋씠떎.

ACKNOWLEDGEMENTS

This research was supported by the Soonchunhyang University Research Fund and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032960).

CONFLICT OF INTEREST

The authors have no conflicts of interest to disclose.

References
  1. Baron E. Specimen Collection, Transport, and Processing: Bacteriology, in Manual of Clinical Microbiology, Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, and Warnock D. Washington, DC, USA: ASM Press; 2015 p. 270-315.
    CrossRef
  2. Specimen Collection, Transport, and Processing: Bacteriology, in Manual of Clinical Microbiology 2011:228-271. doi:10.1128/9781555-816728.ch16
  3. Belser LW, and Mays EL. Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments. Applied and Environmental Microbiology 1980;39:505-510.
    Pubmed KoreaMed
  4. Benschop CC, Quaak FC, Boon ME, Sijen T, and Kuiper I. Vaginal microbial flora analysis by next generation sequencing and microarrays;can microbes indicate vaginal origin in a forensic context?International Journal of Legal Medicine. 2012;126:303-310.
    Pubmed CrossRef
  5. Broomall SM, Ait Ichou M, Krepps MD, Johnsky LA, Karavis MA, Hubbard KS, Insalaco JM, Betters JL, Redmond BW, Rivers BA, Liem AT, Hill JM, Fochler ET, Roth PA, Rosenzweig CN, Skowronski EW, and Gibbons HS. Whole-genome sequencing in microbial forensic analysis of gamma-irradiated microbial materials. Applied and Environmental Microbiology 2015;82:596-607.
    Pubmed KoreaMed CrossRef
  6. Budowle B, Beaudry JA, Barnaby NG, Giusti AM, Bannan JD, and Keim P. Role of law enforcement response and microbial forensics in investigation of bioterrorism. Croatian Medical Journal 2007;48:437-449.
    Pubmed KoreaMed
  7. Budowle B, Connell ND, Bielecka-Oder A, Colwell RR, Corbett CR, Fletcher J, Forsman M, Kadavy DR, Markotic A, Morse SA, Murch RS, Sajantila A, Schmedes SE, Ternus KL, Turner SD, and Minot S. Validation of high throughput sequencing and microbial forensics applications. Investigative Genetics 2014;5:9-26.
    Pubmed KoreaMed CrossRef
  8. Budowle B, Johnson MD, Fraser CM, Leighton TJ, Murch RS, and Chakraborty R. Genetic analysis and attribution of microbial forensics evidence. Critical Reviews in Microbiology 2005a;31:233-254.
    Pubmed CrossRef
  9. Budowle B, Schutzer SE, Ascher MS, Atlas RM, Burans JP, Chakraborty R, Dunn JJ, Fraser CM, Franz DR, Leighton TJ, Morse SA, Murch RS, Ravel J, Rock DL, Slezak TR, Velsko SP, Walsh AC, and Walters RA. Toward a system of microbial forensics: From sample collection to interpretation of evidence. Applied and Environmental Microbiology 2005b;71:2209-2213.
    Pubmed KoreaMed CrossRef
  10. Budowle B, Schutzer SE, Burans JP, Beecher DJ, Cebula TA, Chakraborty R, Cobb WT, Fletcher J, Hale ML, Harris RB, Heitkamp MA, Keller FP, Kuske C, Leclerc JE, Marrone BL, McKenna TS, Morse SA, Rodriguez LL, Valentine NB, and Yadev J. Quality sample collection, handling, and preservation for an effective microbial forensics program. Applied and Environmental Microbiology 2006;72:6431-6438.
    Pubmed KoreaMed CrossRef
  11. Budowle B, Schutzer SE, Morse SA, Martinez KF, Chakraborty R, Marrone BL, Messenger SL, Murch RS, Jackson PJ, Williamson P, Harmon R, and Velsko SP. Criteria for validation of methods in microbial forensics. Applied and Environmental Microbiology 2008;74:5599-5607.
    Pubmed KoreaMed CrossRef
  12. Campbell CJ, and Ghazal P. Molecular signatures for diagnosis of infection: Application of microarray technology. Journal of Applied Microbiology 2004;96:18-23.
    Pubmed CrossRef
  13. Ciammaruconi A. Microchip capillary electrophoresis of multilocus vntr analysis for genotyping of bacillus anthracis and yersinia pestis in microbial forensic cases. Methods in Molecular Biology 2012;830:381-390.
    Pubmed CrossRef
  14. Clark AE, Kaleta EJ, Arora A, and Wolk DM. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: A fundamental shift in the routine practice of clinical microbiology. Clinical Microbiology Reviews 2013;26:547-603.
    Pubmed KoreaMed CrossRef
  15. Cummings CA, and Relman DA. Genomics and microbiology. Microbial forensics--쐁ross-examining pathogens. Science 2002;296:1976-1979.
    Pubmed CrossRef
  16. Fenselau C, and Demirev PA. Characterization of intact microorganisms by maldi mass spectrometry. Mass Spectrometry Reviews 2001;20:157-171.
    Pubmed CrossRef
  17. Gua Y, Zhab L, and Yuna L. Potential usefulness of snp in the 16s rrna gene serving as informative microbial marker for forensic attribution. Forensic Science International: Genetics Supplement Series 2017;6:e451-e452.
    CrossRef
  18. Heller MJ. DNA microarray technology: Devices, systems, and applications. Annual Review of Biomedical Engineering 2002;4:129-153.
    Pubmed CrossRef
  19. Ho YP, Reddy PM, Chen CT, and Lo AA. Mass spectrometry in microbial forensics. Forensic Science Review 2009;21:25-50.
    Pubmed
  20. Hosokawa-Muto J, Fujinami Y, and Mizuno N. Evaluation of the universal viral transport system for long-term storage of virus specimens for microbial forensics. Journal of Forensic and Legal Medicine 2015;34:29-33.
    Pubmed CrossRef
  21. James M, Melcher U, and Fletcher J. Evaluating the impacts of stressors of pseudomonas syringae pathovar tomato on the effectiveness of multi-locus variable number tandem repeat analysis and multi-locus sequence typing in microbial forensic investigations. Investigative Genetics 2014;5:10-18.
    Pubmed KoreaMed CrossRef
  22. Javan GT, Finley SJ, Abidin Z, and Mulle JG. The thanatomicrobiome: A missing piece of the microbial puzzle of death. Frontiers in Microbiology 2016;7:225-231.
    Pubmed KoreaMed CrossRef
  23. Jung YS, Lee KW, Kim HS, Kim SM, Shin JH, Jung SH, and Yong DE. Identification of Microorganisms, in Diagnostic Microbiology. Seoul, Korea: Seoheung Press; 2017 p. 148-149.
    Pubmed
  24. Kim M, Zorraquino V, and Tagkopoulos I. Microbial forensics: Predicting phenotypic characteristics and environmental conditions from large-scale gene expression profiles. PLoS Computational Biology 2015;11:e1004127.
    Pubmed KoreaMed CrossRef
  25. Kotula AW, Pierson MD, Emswiler BS, and Guilfoyle JR. Effect of sample transport systems on survival of bacteria in ground beef. Applied and Environmental Microbiology 1979;38:789-794.
    Pubmed KoreaMed
  26. Kuiper I. Microbial forensics: Next-generation sequencing as catalyst. EMBO reports 2016;17:1085-1087.
    Pubmed KoreaMed CrossRef
  27. Lederberg J. Infectious history. Science 2000;288:287-293.
    Pubmed CrossRef
  28. Lents NH. Current and Future Uses of DNA Microarrays in Forensic Science, in Forensic Chemistry Handbook, Kobilinsky L. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2011.
    CrossRef
  29. Marshall LGM, Boyce SG, MacNeil S, Freedlander E, and Kudesia G. Effect of glycerol on intracellular virus survival: Implications for the clinical use of glycerol-preserved cadaver skin. Burns 1995;21:356-361.
    CrossRef
  30. Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach AL, Smith VH, and Staley JT. Microbial biogeography: Putting microorganisms on the map. Nature Reviews Microbiology 2006;4:102-112.
    Pubmed CrossRef
  31. Massey SE. Comparative microbial genomics and forensics. Microbiology Spectrum 2016;4:EMF-0001-2013.
  32. McBride G, and Gilpin B. Statistical considerations in environmental microbial forensics. Microbiology Spectrum 2016;4:EMF-0005-2015.
  33. Motley ST, Redden CL, Sannes-Lowery KA, Eshoo MW, Hofstadler SA, Burans JP, and Rosovitz MJ. Differentiating microbial forensic qpcr target and control products by electrospray ionization mass spectrometry. Biosecurity and Bioterrorism 2013;11:107-117.
    Pubmed KoreaMed CrossRef
  34. Naistat DM, and Leblanc R. Proteomics. Journal of Environmental Pathology, Toxicology and Oncology 2004;23:161-178.
    Pubmed CrossRef
  35. Panicker RC, Huang X, and Yao SQ. Recent advances in peptide-based microarray technologies. Combinatorial Chemistry & High Throughput Screening 2004;7:547-556.
    Pubmed CrossRef
  36. Petersen CE, Valentine NB, and Wahl KL. Characterization of microorganisms by maldi mass spectrometry. Methods in Molecular Biology 2009;492:367-379.
    Pubmed CrossRef
  37. Rasko DA, Worsham PL, Abshire TG, Stanley ST, Bannan JD, Wilson MR, Langham RJ, Decker RS, Jiang L, Read TD, Phillippy AM, Salzberg SL, Pop M, Van Ert MN, Kenefic LJ, Keim PS, Fraser-Liggett CM, and Ravel J. Bacillus anthracis comparative genome analysis in support of the amerithrax investigation. Proceedings of the National Academy of Sciences of the United States of America 2011;108:5027-5032.
    Pubmed KoreaMed CrossRef
  38. Read TD, Salzberg SL, Pop M, Shumway M, Umayam L, Jiang L, Holtzapple E, Busch JD, Smith KL, Schupp JM, Solomon D, Keim P, and Fraser CM. Comparative genome sequencing for discovery of novel polymorphisms in bacillus anthracis. Science 2002;296:2028-2033.
    Pubmed CrossRef
  39. Schmedes SE, Sajantila A, and Budowle B. Expansion of microbial forensics. J Clin Microbiol 2016;54:1964-1974.
    Pubmed KoreaMed CrossRef
  40. Schutzer SE, Budowle B, and Atlas RM. Biocrimes, microbial forensics, and the physician. PLoS Medicin 2005;2:e337.
    Pubmed KoreaMed CrossRef
  41. Taylor LH, Latham SM, and Woolhouse ME. Risk factors for human disease emergence. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 2001;356:983-989.
    Pubmed KoreaMed CrossRef
  42. United States Center for Disease Control and Prevention. Emergency Preparedness and Response. Bioterrorism Agents/Disease. [Online.] 2017. https://emergency.cdc.gov/agent/agentlistcategory.asp
  43. United States Federal Bureau of Investigation. F. B. I. handbook of forensic services. [Online.] 2013. https://www.fbi.gov/filerepository/handbook-of-forensic-services-pdf.pdf/view
  44. van Baare J, Buitenwerf J, Hoekstra MJ, and du Pont JS. Virucidal effect of glycerol as used in donor skin preservation. Burns 1994;20:S77-80.
    CrossRef
  45. van Baare J, Cameron PU, Vardaxis N, Pagnon J, Reece J, Middelkoop E, and Crowe SM. The 1998 lindberg award. Comparison of glycerol preservation with cryopreservation methods on hiv-1 inactivation. The Journal of Burn Care & Rehabilitation 1998;19:494-500.
    Pubmed CrossRef
  46. van Belkum A. Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (mlva). FEMS Immunology and Medical Microbiology 2007;49:22-27.
    Pubmed CrossRef
  47. Walsh SJ. Recent advances in forensic genetics. Expert Review of Molecular Diagnostics 2004;4:31-40.
    Pubmed CrossRef
  48. Wegerhoff F. It's a bug's life봲pecimen collection, transport, and viability. Micobe 2006;1:180-184.
    CrossRef
  49. Wilson ML. General principles of specimen collection and transport. Clinical Infectious Diseases 1996;22:766-777.
    Pubmed CrossRef