Search for


TEXT SIZE

search for



CrossRef (0)
Effects of Houttuynia cordata Extracts of Different Aerial Parts on Antioxidants and Anti-inflammatory
Biomed Sci Letters 2018;24:87-93
Published online June 30, 2018;  https://doi.org/10.15616/BSL.2018.24.2.87
© 2018 The Korean Society For Biomedical Laboratory Sciences.

Sung-Gyu Lee, and Hyun Kang

Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
Correspondence to: Hyun Kang. Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si, Chungnam 31116, Korea. Tel: +82-41-550-3015, Fax: +82-41-559-7934, e-mail: hkang@dankook.ac.kr
Received May 3, 2018; Revised June 22, 2018; Accepted June 25, 2018.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract

The current study was carried out to determine the effects of the leaf and root of Houttuynia cordata Thunb on antioxidant and anti-inflammatory. Total polyphenol contents of leaf and root ethanol extracts were found to be 59.32 and 12.07 mg/g, respectively. Also, total flavonoid contents of leaf and root ethanol extracts were found to be 10.85 and 8.55 mg/g, respectively. The RC50 values of DPPH radical scavenging of leaf and root ethanol extracts were 23.51 and 154.72 μg/mL, respectively. The RC50 values of ABTS radical scavenging of leaf and root ethanol extracts were 35.42 and 233.89 μg/mL, respectively. The antioxidant activities in leaf ethanol extracts were higher in root. Also, to confirm anti-inflammatory activity of ethanol extract, we treat leaf and root of Houttuynia cordata Thunb extract on BV-2 cell with LPS. The NO inhibition effects in of Houttuynia cordata Thunb leaf ethanol extracts showed higher values compared with the root ethanol extracts. These results indicate that Houttuynia cordata Thunb ethanol extracts may play a positive role in antioxidant and anti-inflammatory.

Keywords : Houttuynia cordata, Leaf, Polyphenol, BV-2, Antioxidant
꽌濡

吏냽쟻씤 寃쎌젣 꽦옣怨 냼뱷쓽 利앸뿉 뵲씪 슦由щ굹씪 援誘쇰뱾쓽 룊洹 닔紐낆 1971뀈 62.3꽭뿉꽌 2015뀈 궓꽦씠 79꽭, 뿬꽦씠 86꽭濡 뿰옣릺뿀떎. 寃쎌젣 꽦옣 닔紐낅퓧留 븘땲씪 留뚯꽦吏덊솚씤 깮솢뒿愿蹂(lifestyle related disease) 삉븳 媛숈씠 利앷떆耳곗쑝硫(Tanaka et al., 2000), 留롮 怨좊졊痢듭뿉꽌 떖옣吏덊솚, 愿젅뿼, 슂넻 諛 떊寃쏀넻, 怨좏삁븬, 떦눊蹂, 쐞옣吏덊솚 벑怨 媛숈 留뚯꽦吏덊솚쓣 븪怨 엳뒗 寃껋쑝濡 븣젮졇 엳떎.

븳렪, 끂솕, 븫, 떖삁愿怨 吏덊솚 媛숈 留뚯꽦吏덊솚씠 깮泥댁쓽 궗怨쇱젙뿉꽌 諛쒖깮릺뒗 솢꽦궛냼瑜(reactive oxygen species, ROS)뿉 湲곗씤븳떎怨 븣젮議뚮떎(Wiseman, 1996; Bouayed and Bohn, 2010). ROS뒗 꽭룷 궡 DNA, RNA, 떒諛깆쭏 벑怨 諛섏쓳븯뿬 꽭룷 넀긽 諛 뙆愿 벑쓣 쑀諛쒗븯뿬(Aischer and Hess, 1993; Chen et al., 2012) 븫, 룞留κ꼍솕, 떦눊蹂묎낵 媛숈 떎뼇븳 吏덈퀝怨 끂솕瑜 씠걣怨 듅엳 떎瑜 옣湲곗뿉 鍮꾪빐 궛냼쓽 씠슜瑜좎씠 넂 뇤쓽 寃쎌슦, 떊寃쎌꽭룷쓽 궗硫몄쓣 쑀룄븯뿬 븣痢좏븯씠癒몃퀝, 뙆궓뒯蹂, 媛꾩쭏, 뇤議몄쨷 벑怨 媛숈 吏덊솚쓣 쑀諛쒖떆궓떎(Decker et al., 1992).

씠윭븳 솢꽦궛냼뒗 泥대궡뿉꽌 議댁옱븯뒗 Superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT), glutathione reductase, glutathione-S-transferase怨 媛숈 빆궛솕 슚냼뱾濡 씤븯뿬 옄뿰쟻쑝濡 뾾뼱吏湲 븯吏留, 궗怨쇱젙뿉 엳뼱 臾몄젣媛 諛쒖깮릺嫄곕굹 뿼利앷낵 愿젴맂 씤泥댁쭏솚씠 빞湲곕맂떎硫, 泥대궡뿉 議댁옱븯뒗 빆궛솕 臾쇱쭏씠 怨좉컝릺뼱 슚怨쇱쟻쑝濡 ROS瑜 젣嫄고븯뒗뜲 떎뙣븷 닔 엳湲 븣臾몄뿉 쇅遺濡쒕꽣 빆궛솕 臾쇱쭏쓣 꽠痍⑦븷 븘슂媛 엳떎(Aischer and Hess, 1993; Wiseman, 1996).

뿼利앹 깮泥 뵾遺 벑쓽 뿬윭 議곗쭅뿉 媛뺥븳 뿴씠굹 媛뺤븣移쇰━, 媛뺤궛 벑쓽 쇅遺 옄洹뱀썝씠굹 議곗쭅쓽 넀긽, 媛먯뿼꽦 蹂묒썝泥댁쓽 移⑥엯 벑쓽 떎뼇븳 썝씤뿉 쓽븯뿬 쑀諛쒕릺硫 씠윭븳 뿼利앹쑝濡쒕꽣 씤泥대 蹂댄샇븯뒗 湲곗쟾 以묒쓽 븯굹媛 뿼利앸컲쓳씠떎(Kim et al., 2014; Seo et al., 2015). 뼱꽦珥덉쓽 異붿텧臾쇱 궗엺쓽 B 由쇳봽援 諛 T 由쇳봽援ъ쓽 솢꽦쓣 利앷떆궎硫(Chun, 1997), insulin-like growth factor (IGF)-γ lipopolysaccharide (LPS) 媛숈 硫댁뿭議곗젅젣뿉 쓽빐 떇꽭룷媛 옄洹뱀씠 릺뿀쓣 寃쎌슦 떆넗移댁씤쓽 遺꾨퉬웾쓣 利앷떆궡쑝濡쒖꽌 硫댁뿭諛섏쓳쓣 뼢긽떆궓떎뒗 蹂닿퀬媛 엳떎(Kim et al., 2005).

뼱꽦珥덈뒗 궪諛깆큹怨(Saururaceae)濡쒖꽌 븰紐낆 Houttuynia cordata Thunb씠硫 떎뀈깮 珥덈낯쓽 빞깮빟珥덈줈꽌 洹몃뒛吏怨 臾쇨린媛 留롮 怨녹뿉꽌 옒 옄씪硫, 븳援뿉꽌뒗 뼱꽦珥 삉뒗 빟紐⑤濡 遺덈━뼱吏꾨떎. 썝궛吏뒗 븳援, 以묎뎅, 씪蹂몄씠硫, 옂怨 以꾧린뿉꽌 깮꽑鍮꾨┛궡媛 궃떎怨 븯뿬 뼱꽦珥덈씪怨 遺덈윭吏寃 릺뿀떎(Kwun, 1998). 뼱꽦珥덉쓽 깮由ы솢꽦 꽦遺꾩 뵆씪蹂대끂씠뱶 쑀룄泥댁씤 quercetin, quercitrin, isoquercitrin, reynoutrin, hyperin, rutin 벑怨 젙쑀 꽦遺꾩쑝濡 decanoyl acetaldehyde, methyl nonylketone, laurinaldehyde, myrcene 벑씠 븿쑀릺뼱 엳떎(Hong and Kim, 2004). 뼱꽦珥덉뿉 븳 빆궛솕 諛 빆뿼利앹뿉 븳 뿰援щ뒗 留롮씠 븣젮졇 엳吏留, 씠뒗 뼱꽦珥 옂뿉 븳 뿰援ш 떎닔씠硫, 肉뚮━뿉 愿븳 뿰援щ뒗 겕寃 븣젮吏吏 븡 긽솴씠떎.

씠뿉 蹂 뿰援ъ뿉꽌뒗 깮由ы솢꽦 슚뒫 寃利앹쓽 씪솚쑝濡 in vitro뿉꽌 뼱꽦珥 옂怨 肉뚮━쓽 뿉깂삱 異붿텧臾쇱쓽 슚쑉怨 빆궛솕 諛 빆뿼利앹뿉 븳 슚怨쇰 鍮꾧탳 寃利앺븯湲 쐞빐 뿰援щ 吏꾪뻾븯떎.

옱猷 諛 諛⑸쾿

뼱꽦珥 遺쐞蹂 異붿텧臾 젣議

뼱꽦珥덈뒗 寃쎈룞떆옣뿉꽌 援ъ엯븯뿬 옂怨 肉뚮━瑜 遺꾨━븯뿬 20 mesh 씠븯濡 議곕텇뇙븯쑝硫 떆猷 100 g뿉 빐 10諛곗쓽 70% 뿉깂삱쓣 꽔뼱 異붿텧븳 썑, 뿬怨(Whatman No3, Maidstone, England)븯떎. 뿬怨쇳븳 뿉깂삱 異붿텧븸쓣 媛먯븬 냽異(N-1000S-WD, Eyela Co., Tokyo, Japan) 썑 룞寃곌굔議 (FDU-1100, Eyela Co., Tokyo, Japan)븯뿬 뿉깂삱 異붿텧臾쇱쓣 젣議고븯떎.

珥 뤃由ы럹 븿웾 痢≪젙

뼱꽦珥덉쓽 遺쐞蹂 異붿텧臾쇱쓽 珥 뤃由ы럹 솕빀臾쇱쓽 븿웾 鍮꾧탳瑜 쐞빐 Folin-Denis踰(Folin and Denis, 1912)쓣 쓳슜븯떎. 媛 異붿텧臾쇱쓣 냽룄蹂꾨줈 씗꽍븳 슜븸怨 2諛 씗꽍맂 Folin 떆빟(Sigma Co., St. Louis, MO, USA)쓣 룞웾 泥④븯뿬 샎빀븯떎. 샎빀븸쓣 3遺꾧컙 諛⑹튂븳 떎쓬 10% Na2CO3 (Sigma Co.)쓣 룞웾 꽔怨 1떆媛 諛섏쓳떆궓 썑 UV/Visible spectrophotometer (UVIKON 922, Kontran Co., Milan, Italy) 700 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯뿬 옉꽦븳 몴以怨≪꽑쑝濡쒕꽣 븿웾쓣 援ы븯떎. 씠 븣 gallic acid (Sigma Co.)瑜 씠슜븳 몴以怨≪꽑 gallic acid쓽 理쒖쥌냽룄媛 10, 25, 50, 75, 100 μg/mL媛 릺룄濡 븯뿬 쐞 媛숈 諛⑸쾿쑝濡 700 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯뿬 援ы븯떎.

珥 뵆씪蹂대끂씠뱶 븿웾 痢≪젙

뼱꽦珥 遺쐞蹂 珥 뵆씪蹂대끂씠뱶 븿웾 Nieva Moreno 벑(Nieva et al., 2000)쓽 諛⑸쾿쓣 쓳슜븯뿬 痢≪젙븯떎. 媛 깦뵆 100 μL 80% 뿉깂삱 860 μL쓣 샎빀븳 샎빀臾쇱뿉 10% aluminium nitrate (Sigma Co.) 200 μL 1 M potassium acetate (Sigma Co.) 200 μL쓣 샎빀븯怨 떎삩뿉 40遺 諛⑹튂븳 뮘 415 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 씠븣 珥 뵆씪蹂대끂씠뱶 븿웾 quercetin (Sigma Co.)쓣 씠슜븯뿬 옉꽦븳 몴以怨≪꽑쑝濡쒕꽣 븿웾쓣 援ы븯떎.

1,1-diphenyl-2-picryl hydrazyl (DPPH) radical 냼嫄고솢꽦 痢≪젙

뼱꽦珥 遺쐞蹂 뿉깂삱 異붿텧臾쇱쓽 free radical 냼嫄고솢꽦 stable radical씤 DPPH (Sigma Co.)뿉 븳 솚썝젰쓣 痢≪젙븳 寃껋쑝濡 99% 硫뷀깂삱뿉 媛 떆猷뚮 씗꽍븳 씗꽍븸 160 μL 硫뷀깂삱뿉 끃씤 0.15 mM DPPH 슜븸 40 μL瑜 媛븯뿬 떎삩뿉 30遺 諛⑹튂븳 썑 517 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. DPPH radical 냼嫄고솢꽦 떎쓬 떇뿉 뵲씪 냼嫄고솢꽦쓣 怨꾩궛븯떎.

DPPHradicalscavengingactivity(%)=[100(S/C×100)]

S : 떆猷뚭뎔 諛섏쓳 썑 씉愿묐룄 - 떆猷뚭뎔 諛섏쓳 쟾 씉愿묐룄

C : 議곌뎔 諛섏쓳 썑 씉愿묐룄 - 議곌뎔 諛섏쓳 쟾 씉愿묐룄

2,2-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical 냼嫄고솢꽦

ABTS radical쓣 씠슜븳 빆궛솕젰 痢≪젙 ABTS+· cation decolorization assay 諛⑸쾿(Re et al., 1999)뿉 쓽븯뿬 떆뻾븯떎. 7 mM ABTS (Sigma Co.) 2.45 mM potassium persulfate (Sigma Co.)瑜 理쒖쥌냽룄濡 룞웾 샎빀븯뿬 떎삩씤 븫떎뿉꽌 24떆媛 룞븞 諛⑹튂븯뿬 ABTS+·쓣 삎꽦떆궓 썑 732 nm뿉꽌 씉愿묐룄 媛믪씠 0.70 (±0.02)씠 릺寃 phosphate buffered saline (PBS, pH7.4)濡 씗꽍븯떎. 씗꽍맂 슜븸 20 μL뿉 sample 180 μL瑜 媛븯뿬 젙솗엳 1遺 룞븞 諛⑹튂븳 썑 씉愿묐룄瑜 痢≪젙븯떎.

꽭룷二 諛곗뼇

蹂 떎뿕뿉 궗슜맂 microglia cell line BV-2 꽭룷뒗 誘멸뎅 븯踰꾨뱶쓽 떎굹뙆踰 븫꽱꽣뿉꽌 遺꾩뼇諛쏆븘 궗슜븯떎. BV-2 꽭룷뒗 10% fetal bovine serum (FBS; Gibco, BRL, USA), 100 μg/mL penicillin (Gibco, BRL, USA) 洹몃━怨 100 μg/mL streptomycin (Gibco, BRL, USA)쓣 泥④븳 RPMI1640 諛곗 (Gibco, BRL, USA)瑜 씠슜븯뿬 5% CO2媛 議댁옱븯뒗 37°C 諛곗뼇湲곗뿉꽌 2~3씪뿉 븳 踰덉뵫 怨꾨 諛곗뼇븯떎.

꽭룷깮議댁쑉 痢≪젙

LPS濡 옄洹밸맂 BV-2 꽭룷뿉꽌 LPS 諛 뼱꽦珥 遺쐞蹂 異붿텧臾쇱씠 꽭룷 깮議댁뿉 誘몄튂뒗 쁺뼢쓣 솗씤븯湲 쐞빐 cell viability瑜 3-[4,5-Dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium bromide (MTT) 遺꾩꽍踰뺤쑝濡 痢≪젙븯떎. 꽭룷(4 × 104 cell/mL)瑜 96-well plate뿉 100 μL뵫 遺꾩<븯뿬 12떆媛 씠긽 CO2 諛곗뼇湲곗뿉꽌 諛곗뼇븳 떎쓬, 떆猷뚮 媛곴컖쓽 議곌굔뿉 뵲씪 泥섎━븯뿬 24떆媛 諛곗뼇븯떎. 諛곗뼇븳 썑 諛곗뼇븸쓣 젣嫄고븯怨 0.25 mg/mL MTT媛 븿쑀릺뼱 엳뒗 諛곗 100 μL瑜 泥④븳 떎쓬 4떆媛 룞븞 諛곗뼇븯뿬 MTT媛 솚썝릺룄濡 븯떎. 洹 썑 諛곗뼇븸쓣 젣嫄고븯怨 dimethylsulfoxide (DMSO) 100 μL 泥④븯뿬 깮꽦맂 formazone 寃곗젙쓣 슜빐떆궓 썑, ELISA reader瑜 씠슜븯뿬 540 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 꽭룷깮議댁쑉 議곌뎔怨 鍮꾧탳븯뿬 諛깅텇쑉(%)濡 굹궡뿀떎.

LPS濡 솢꽦솕맂 떊寃쎄탳꽭룷뿉꽌 NO 깮꽦빐 옉슜

뼱꽦珥 遺쐞蹂 異붿텧臾쇱쓽 빆뿼利 슚뒫쓣 遺꾩꽍븯湲 쐞븯뿬 蹂 뿰援ъ뿉꽌뒗 뿼利 쑀諛 씤옄씤 LPS瑜 媛 냽룄蹂꾨줈 옄洹밸맂 떊寃쎄탳꽭룷뿉꽌 깮궛릺뒗 NO 냽룄瑜 쓽議댁쟻쑝濡 슚뒫쓣 엳뒗吏 솗씤븯떎. NO 痢≪젙 24 well plate뿉 꽭룷瑜 4 × 104 cell/쓣 seeding븳 썑, LPS 異붿텧臾쇱쓣 냽룄李⑤ 몢뼱 泥④븳 썑, 24 h incubator뿉꽌 諛섏쓳떆궓 썑, 媛곴컖 50 μL뵫 Griess reagent (1% sulfanilamide/0.1% N-(1-naphthyl)-ethylenediamine dihydrochloride/2.5% H3PO4) 諛섏쓳떆궓 썑, 뙆옣씠 540 nm씤 ELISA reader瑜 궗슜븯뿬 媛믪쓣 痢≪젙븯떎.

寃곌낵

異붿텧닔쑉

뼱꽦珥덉쓽 遺쐞蹂 빆궛솕 諛 빆뿼利 슚怨쇰 寃넗븯湲 쐞븯뿬 옂怨 肉뚮━瑜 遺꾨━븯뿬 70% 뿉깂삱濡 異붿텧븳 썑 닔쑉쓣 援ы븯뒗뜲, 뼱꽦珥 옂怨 肉뚮━쓽 뿉깂삱 異붿텧 닔쑉 媛곴컖 10.08, 9.40%濡 뼱꽦珥 옂 異붿텧臾쇱뿉꽌 異붿텧 닔쑉씠 醫 뜑 넂寃 痢≪젙릺뿀떎(Table 1).

Total polyphenols and flavonoids contents in Leaves of Houttuynia cordata Thunb and root of Houttuynia cordata Thunb

SampleExtraction yield (%, dry basis)Total polyphenols1) (μg/mg)Total flavonoids2) (μg/mg)
Leaf10.0859.32±2.113)10.85±0.45
Root9.4012.07±1.038.55±0.17

1)Milligrams of total polyphenol content/g of samples based on gallic acid as standard.

2)Milligrams of total flavonoid content/g of samples based on quercetin as standard.

3)Each value is mean ± S.D. (n=3).


뤃由ы럹 諛 뵆씪蹂대끂씠뱶 븿웾 鍮꾧탳

뼱꽦珥 諛 솕궛넚씠 蹂듯빀 諛쒗슚븸뿉 議댁옱븯뒗 珥 뤃由ы럹 諛 뵆씪蹂대끂씠뱶 븿웾 媛곴컖 gallic acid, quercetin쓣 湲곗臾쇱쭏濡 븯뿬 痢≪젙븯떎(Table 1). 洹 寃곌낵, 뼱꽦珥 옂쓽 珥 뤃由ы럹 븿웾 59.32 μg/mg, 뼱꽦珥 肉뚮━뒗 12.07 μg/mg쑝濡 굹굹, 옂뿉꽌 넂 뤃由ы럹 븿웾쓣 蹂댁떎. 珥 뵆씪蹂대끂씠뱶 븿웾 옂怨 肉뚮━뿉꽌 媛곴컖 10.85, 8.55 μg/mg쑝濡 뤃由ы럹 븿웾 寃쏀뼢怨 쑀궗븯寃 굹궗떎.

뼱꽦珥 옂 諛 肉뚮━ 異붿텧臾쇱쓽 DPPH 諛 ABTS free radical 냼嫄고솢꽦

뼱꽦珥 옂怨 肉뚮━쓽 빆궛솕뒫쓣 痢≪젙븯湲 쐞빐 DPPH 냼嫄고솢꽦쓣 痢≪젙븳 寃곌낵뒗 Fig. 1A 媛숇떎. 媛 異붿텧臾쇱쓽 DPPH 씪뵒移 냼嫄고솢꽦쓽 RC50 媛믪 뼱꽦珥 옂怨 肉뚮━뿉꽌 媛곴컖 23.51, 154.72 μg/mL쓽 냽룄濡 뼱꽦珥 옂 異붿텧臾쇱씠 빟 7諛 뜑 넂 빆궛솕 슚뒫쓣 蹂댁떎. ABTS+· 냼嫄고솢꽦 뿭떆 DPPH 냼嫄고솢꽦怨 쑀궗븯寃 옂怨 肉뚮━ 異붿텧臾쇱쓽 RC50 媛믪씠 媛곴컖 35.42, 233.89 μg/mL쓽 냽룄濡 뼱꽦珥 옂 異붿텧臾쇱뿉꽌 넂 빆궛솕 슚怨쇰 굹븘깉떎(Fig. 1B).

Fig. 1.

DPPH (A) and ABTS (B) radical scavenging effects of Houttuynia cordata Thunb leaf and root. RC50; Extract concentrations, which show 50% activity of free radical scavenging, were determined by interpolation.


꽭룷깮議댁쑉 痢≪젙

뼱꽦珥 옂怨 肉뚮━쓽 꽭룷 깮議댁뿉 겮移섎뒗 쁺뼢쓣 솗씤븯湲 쐞빐 BV-2 cell뿉 LPS, 뼱꽦珥 옂 洹몃━怨 뼱꽦珥 肉뚮━ 異붿텧臾쇱쓣 냽룄蹂꾨줈 泥섎━븯떎. 癒쇱, LPS 100 ng/mL瑜 떒룆쑝濡 泥섎━븯쓣 븣, 議곌뎔怨 鍮꾧탳빐꽌 겙 李⑥씠媛 뾾뿀떎. 삉븳, LPS 뼱꽦珥 옂 異붿텧臾쇱쓣 媛숈씠 泥섎━븯쓣 븣뿉룄 cell viability媛 紐⑤뱺 냽룄뿉꽌 95% 씠긽쑝濡 꽭룷 깮議댁뿉 겮移섎뒗 쁺뼢씠 뾾뿀吏留 뼱꽦珥 肉뚮━ 異붿텧臾쇱뿉꽌뒗 500 μg/mL쓽 냽룄뿉꽌遺꽣 꽭룷뿉 룆꽦쓣 굹궡뒗 寃껋쓣 솗씤븯떎(Fig. 2).

Fig. 2.

Effect of Houttuynia cordata Thunb leaf and root on cytotoxicity in BV-2 cells. Houttuynia cordata Thunb leaf and root was treated with various concentrations in BV-2 cells for 24 h. Values are expressed as the mean ± SD (n=3) of determinations made in triplicate experiments.


뼱꽦珥 옂 諛 肉뚮━ 異붿텧臾쇱쓽 NO 깮꽦빐 슚怨

뼱꽦珥 옂怨 肉뚮━ 異붿텧臾쇱쓽 빆뿼 슚怨쇰 솗씤븯湲 쐞븯뿬 LPS濡 옄洹뱁븯뿬 뿼利앸컲쓳쓣 쑀룄븳 BV-2 cell뿉 뼱꽦珥 옂怨 肉뚮━ 異붿텧臾쇱쓣 0~2,500 μg/mL쓽 냽룄蹂꾨줈 泥섎━븳 썑, NO쓽 깮꽦냽룄瑜 솗씤븯떎. 癒쇱 뼱꽦珥 옂 異붿텧臾쇱쓣 泥섎━븯쓣 븣, BV-2 cell뿉꽌 깮꽦븯뒗 NO쓽 냽룄뒗 200 μg/mL쓽 냽룄뿉꽌遺꽣 냽룄쓽議댁쟻쑝濡 利앷맂 NO 냽룄媛 媛먯냼릺뒗 寃껋쓣 솗씤븷 닔 엳뿀떎. 諛섎㈃, 肉뚮━ 異붿텧臾쇱쓽 泥섎━븯쓣 寃쎌슦 NO 빐 슚怨쇨 굹굹吏 븡쓬쓣 솗씤븯떎(Fig. 3).

Fig. 3.

Effect of Houttuynia cordata Thunb leaf and root on NO production in BV-2 cells. Houttuynia cordata Thunb leaf and root was treated with various concentrations in BV-2 cells for 24 h. Values are expressed as the mean ± SD (n=3) of determinations made in triplicate experiments.


怨좎같

蹂 뿰援ъ뿉꽌뒗 뼱꽦珥 옂怨 肉뚮━쓽 빆궛솕 諛 빆뿼 슚怨쇰 痢≪젙븯뿬 뼱꽦珥 遺쐞蹂 湲곕뒫쓣 鍮꾧탳 遺꾩꽍븯怨좎옄 떎떆븯떎. 泥쒖뿰 異붿텧臾쇱씠 깮由ы솢꽦씠 슦닔븯뿬룄 洹 異붿텧 닔쑉씠 궙쓣 寃쎌슦뿉뒗 寃쎌젣꽦씠 뾾湲 븣臾몄뿉 궛뾽솕뿉 씠슜븯湲 뼱젮슫 遺遺꾩씠 엳뼱 泥쒖뿰臾쇱쓽 異붿텧 닔쑉 異뷀썑 湲곕뒫꽦 냼옱 媛쒕컻떆 怨좊젮릺뼱빞 븷 以묒슂븳 슂씤쑝濡 옉슜븳떎. 泥쒖뿰 異붿텧臾쇱쓽 닔쑉씠 10% 씠긽씪 寃쎌슦 궛뾽솕떆 寃쎌젣꽦씠 엳뒗 寃껋쑝濡 蹂닿퀬(Park et al., 2003)릺뿀뒗뜲, 蹂 뿰援 寃곌낵 뼱꽦珥 옂 異붿텧臾쇱뿉꽌 10% 씠긽쓽 닔쑉쓣 蹂댁뿬 異뷀썑 궛뾽솕 냼옱濡 쟻빀븳 냼옱씪 븷 닔 엳떎.

빆궛솕 슚怨쇱 媛숈 깮由ы솢꽦쓣 굹궪 닔 엳뒗 꽦遺꾩쑝濡쒕뒗 鍮꾪誘 諛 뤃由ы럹瑜섎 뱾 닔 엳쑝硫, 씠윭븳 뤃由ы럹瑜섎뒗 泥쒖뿰뿉 議댁옱븯뒗 뿬윭 떇슜 諛 빟슜떇臾쇱뿉 遺꾪룷릺뼱 엳떎. 뤃由ы럹瑜섎뱾 닔슜꽦쑝濡 뵆씪蹂대끂씠뱶瑜섍 遺遺꾩쓣 李⑥븯怨 엳떎(Huang et al., 1992). 듅엳 뵆씪蹂대끂씠뱶瑜섎뒗 븫꽭룷쓽 DNA, RNA, protein쓽 빀꽦쓣 뼲젣 삉뒗 cAMP쓽 냽룄瑜 利앷떆궡쑝濡쒖뜥 醫낆뼇꽭룷쓽 遺꾩뿴쓣 뼲젣븯嫄곕굹 apoptosis瑜 쑀룄븯뒗 벑쓽 떎媛곸쟻 湲곗쟾쓣 넻빐 빆븫 슚怨쇰 諛쒗쐶븯뒗 寃껋쑝濡 븣젮졇 엳떎(Suolinna et al., 1975; Gerriten, 1995). 泥쒖뿰빆궛솕젣쓽 뿭븷쓣 븯뒗 뤃由ы럹怨 뵆씪蹂대끂씠뱶 뼚옉쓣 痢≪젙븳 寃곌낵, 뼱꽦珥 옂 異붿텧臾쇱뿉꽌 肉뚮━蹂대떎 넂 븿웾쓣 굹깉떎(Table 1).

DPPH뒗 泥쒖뿰 異붿텧臾쇱쓽 빆궛솕 솢꽦 痢≪젙뿉 씠슜릺怨 엳뒗 몴쟻씤 radical濡 吏숈 옄깋쓣 쓣뒗 鍮꾧탳쟻 븞젙븳 free radical濡쒖꽌 빆궛솕젣, 諛⑺뼢議 븘誘쇰쪟 벑뿉 쓽빐 솚썝릺뼱 깋씠 깉깋릺뒗 寃껋쓣 씠슜븯뿬 빆궛솕 臾쇱쭏쓣 寃깋븯뒗뜲 씠슜릺怨 엳떎. 삉븳, ABTS+· 냼嫄고솢꽦 泥濡앹깋쑝濡 깉깋맂 free radical쓽 젣嫄 젙룄瑜 씉愿묐룄 媛믪쑝濡 굹궡뼱 ABTS+·쓽 냼嫄 솢꽦뒫쓣 痢≪젙븷 닔 엳怨 깉깋諛섏쓳씠 1遺 븞뿉 醫낅즺릺뼱 떒떆媛꾩뿉 痢≪젙 媛뒫븯떎. 뼱꽦珥 옂怨 肉뚮━ 異붿텧臾쇱쓽 DPPH ABTS 씪뵒移 냼嫄곕뒫 뤃由ы럹 諛 뵆씪蹂대끂씠뱶 븿웾쓽 寃쏀뼢怨 쑀궗븯뿬 옂 異붿텧臾쇱뿉꽌 肉뚮━ 異붿텧臾쇰낫떎 넂 씪뵒移 냼嫄곕뒫쓣 굹궡뒗 寃껋쓣 솗씤븯떎(Fig. 1).

NO뒗 NOS뿉 쓽빐 L-arginine쑝濡쒕꽣 깮꽦맂떎. iNOS뒗 꽭洹좎쓽 궡룆냼 諛 뿼利앹꽦 궗씠넗移댁씤뿉 쓽빐 媛뺥븯寃 쑀룄맂떎(Guha and Mackman, 2001). 蹂묐━쟻씤 議곌굔 븯뿉꽌 iNOS뿉 쓽븳 NO쓽 쁽븳 利앷뒗 떎瑜 뿼利앹꽦 留ㅺ컻泥대뱾怨 븿猿 怨쇰룄븳 뿼利앹쓣 쑀諛쒗븯寃 릺怨 議곗쭅쓽 넀긽쓣 쑀諛쒗븯뒗 寃껋쑝濡 븣젮졇 엳뼱 뿼利앹꽦 넀긽쓽 二쇱슂 留ㅺ컻泥댁씠떎(Nathan, 1992). 뵲씪꽌 iNOS쓽 諛쒗쁽 삉뒗 솢꽦쓣 뼲젣븿쑝濡쒖뜥 NO쓽 깮꽦쓣 뼲젣븷 닔 엳뒗 솕빀臾쇱 빆뿼利 臾쇱쭏濡 씠슜맆 닔 엳쓣 寃껋씠떎. 씠뿉 뼱꽦珥 옂怨 肉뚮━ 異붿텧臾쇱씠 NO쓽 깮꽦쓣 빐븷 닔 엳뒗吏瑜 븣븘蹂 寃곌낵 Fig. 3怨 媛숈씠 굹궗떎. NO 깮꽦빐 슚怨쇰 痢≪젙븯湲 쟾뿉 뼱꽦珥 옂怨 肉뚮━ 異붿텧臾쇱씠 꽭룷뿉 룆꽦쓣 굹궡뒗吏瑜 MTT assay瑜 씠슜븯뿬 痢≪젙븯쓣 븣, 뼱꽦珥 肉뚮━ 異붿텧臾쇱쓽 500 μg/mL 냽룄뿉꽌遺꽣 꽭룷룆꽦쓣 솗씤븯떎(Fig. 2). LPS留 泥섎━븳 援곗뿉꽌뒗 NO媛 빟 48.2 μM濡 泥섎━븯吏 븡 援곕낫떎 빟 23諛 씠긽쓽 NO瑜 깮꽦븯怨 뿬湲곗뿉 뼱꽦珥 옂怨 肉뚮━ 異붿텧臾쇱쓣 泥섎━븳 援곗쓽 寃쎌슦 옂 異붿텧臾 泥섎━援곗뿉꽌 냽룄뿉 뵲씪 NO 깮꽦씠 媛먯냼릺뒗 寃껋쓣 솗씤븯떎(Fig. 3). 씠뒗 뤃由ы럹 諛 뵆씪蹂대끂씠뱶 븿웾怨 씪뵒移 냼嫄곕뒫씠 뼱꽦珥 옂 異붿텧臾쇱뿉꽌 뜑 슦닔븯寃 굹궃 寃곌낵 씪移섑븯뒗 寃곌낵瑜 蹂댁뿬 二쇱뿀떎.

씠긽쓽 寃곌낵濡 뼱꽦珥덉쓽 遺쐞 以 옂 遺遺꾩씠 떎웾쓽 湲곕뒫꽦 꽦遺꾩쓣 븿쑀븯怨 엳쓬쓣 솗씤븯怨, 씠뿉 슦닔븳 빆궛솕 諛 빆뿼利 슚뒫쓣 굹궡뒗 寃껋쑝濡 깮媛곷릺硫 씠윭븳 寃곌낵瑜 諛뷀깢쑝濡 뼱꽦珥 옂 異붿텧臾쇱쓽 뿬윭 깮由ы솢꽦臾쇱쭏 諛 湲곕뒫뱾뿉 愿븳 뿰援щ 넻빐 湲곕뒫꽦 떇뭹 냼옱濡 솢슜맆 닔 엳쓣 寃껋쑝濡 湲곕맂떎.

ACKNOWLEDGEMENTS

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MOE) (No. NRF-2016R1A6A3A11935472).

CONFLICT OF INTEREST

The authors have no conflicts of interest to disclose.

References
  1. Aischer RG, and Hess JL. Antioxidants in higher plants. Boca Raton: CRC Press; 1993 p. 1-17.
  2. Bouayed J, and Bohn T. Exogenous antioxidants-Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Medicine and Cellular Longevity 2010;3:228-237.
    Pubmed KoreaMed CrossRef
  3. Chen L, Hu JU, and Wang SQ. The role of antioxdants in photoprotection: A critical review. Journal of the American Academy of Dermatology 2012;67:1013-1024.
    Pubmed CrossRef
  4. Chun EY. Partial purification of Houttuynia cordata Thunb extract and characterization of its immunological activities in human. MS Thesis, Seoul National University; 1997.
  5. Decker EA, Crum AD, and Calvert JT. Differences in the antioxidant mechanism of carmosine in the prescence of copper and iron. Journal Of Agricultural And Food Chemistry 1992;40:756-759.
    CrossRef
  6. Folin O, and Denis W. On phosphotungstic-phosphomolybdic compounds as color reagents. The Journal of Biological Chemistry 1912;12:239-249.
  7. Gerriten ME. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression. American Journal of Pathology 1995;147:278-292.
  8. Guha M, and Mackman N. LPS induction of gene expression in human monocytes. Cell signal 2001;13:85-94.
    CrossRef
  9. Huang MT, Ho CT, and Lee CY. Phenolic compounds in food. In phenolic compounds in food and their effects on health II. New York: Maple Press; 1992 p. 2-7.
    CrossRef
  10. Hong ND, and Kim NJ. Quality control of herbal medicines. Seoul, Korea: Shinil Books; 2004 p. 476-477.
  11. Kim B, Kim JI, Kim HR, and Byun DS. Anti-inflammatory effect of an ethyl acetate fraction from Myagropsis yendoi on lipopolysaccharides-stimulated RAW 264.7 cells. Korean Journal of Fisheries and Aquatic Sciences 2014;47:527-536.
    CrossRef
  12. Kim J, Ryu HS, Shin JH, and Kim HS. In vitro and ex vivo supplementation of Houttuynia cordata extract and immunomodulating effect in mice. Journal of the Korean Society of Food Science and Nutrition 2005;34:167-175.
    CrossRef
  13. Kwun JA. About Houttuynia cordata Thunb. Korean Oriental Drug 1998;2:218-221.
  14. Nathan C. Nitric oxide as a secretory product of mammalian cells. The FASEB Journal 1992;6:3051-3064.
    Pubmed CrossRef
  15. Nieva Moreno MI, Isla MI, Sampietro AR, and Vattuone MA. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. Journal of Ethnopharmacology 2000;71:109-114.
    CrossRef
  16. Park SH, Lim HY, and Han JH. A study of medicinal herbs for func0 tional food application (I) Nutritional composition and scopolectin analysis of Artemisia capilaries. The East Asian Society Of Dietary Life 2003;13:552-560.
  17. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, and Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 1999;26:1231-1237.
    CrossRef
  18. Seo DW, Yi YJ, Lee MS, Yun BS, and Lee SM. Differential modulation of lipopolysaccharide nduced inflammatory cytokine production by and antioxidant activity of fomentariol in RAW264.7 cells. Mycobiology 2015;43:450-457.
    Pubmed KoreaMed CrossRef
  19. Suolinna EM, Buchsbaum RN, and Racker E. The effect of flavonoids on aerobic glycolysis and growth of tumor cells. Cancer Research 1975;35:1865-1872.
    Pubmed
  20. Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, and Seals DR. Aging, habitual exercise, and dynamic arterial compliance. Circulation 2000;102:1270-1275.
    Pubmed CrossRef
  21. Wiseman H. Dietary influences on membrane function: impotent in protection against oxidative damage and disease. The Journal of Nutritional Biochemistry 1996;7:2-15.
    CrossRef