Search for


TEXT SIZE

search for



CrossRef (0)
Genetic Variations of Trichophyton rubrum Clinical Isolates from Korea
Biomed Sci Letters 2018;24:221-229
Published online September 30, 2018;  https://doi.org/10.15616/BSL.2018.24.3.221
© 2018 The Korean Society For Biomedical Laboratory Sciences.

Nam-Sup Yoon1,2,§,*, Hyunjung Kim3,**, Sung-Bae Park4,5,***, Min Park6,****, Sunghyun Kim4,5,†,****, and Young-Kwon Kim2,†,****

1Department of Laboratory Medicine, Asan Medical Center, Seoul 05505, Korea,
2Department of Biomedical Laboratory Science, College of Medical Sciences, Konyang University, Daejeon 35365, Korea,
3QuantaMatrix, Inc., Seoul 03082, Korea,
4Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea,
5Clinical Trial Specialist Program for in vitro Diagnostics, Brain Busan 21 Plus Program, Graduate School, Catholic University of Pusan, Busan 46252, Korea,
6Department of Biomedical Laboratory Science, Daekyung University, Gyeongsan 38547, Korea
Correspondence to: Sunghyun Kim. Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea. Tel: +82-51-510-0560, Fax: +82-51-510-0568, e-mail: shkim0423@cup.ac.kr
Young-Kwon Kim. Department of Biomedical Laboratory Science, College of Medical Sciences, Konyang University, Daejeon 35365, Korea. Tel: +82-42-660-6371, Fax: +82-42-543-6370, e-mail: ykkim3245@konyang.ac.kr
Received August 17, 2018; Revised September 13, 2018; Accepted September 13, 2018.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract

Trichophyton rubrum is one of the well-known pathogenic fungi and causes dermatophytosis and cutaneous mycosis in human world widely. However, there are not an available sequence type (ST) classification methods and previous studies for T. rubrum until now. Therefore, currently, molecular biological tools using their DNA sequences are used for genotype identification and classification. In the present study, in order to characterize the genetic diversity and the phylogenetic relation of T. rubrum clinical isolates, five different housekeeping genes, such as actin (ACT), calmodulin (CAL), RNA polymerase II (RPB2), superoxide dismutase 2 (SOD2), and β-tubulin (BT2) were analyzed using by multilocus sequence typing (MLST). Also, DNA sequence analysis was performed to examine the differences between the sequences of Trichophyton strains and the identified genetic variations sequence. As a result, most of the sequences were shown to have highly matched rates in their housekeeping genes. However, genetic variations were found on three different positions of β-tubulin gene and were shown to have changed from C→G (1766), G→T (1876), and C→A (1886). To confirm the association with T. rubrum inheritance, a phylogenetic tree analysis was performed. It was classified as four clusters, but there was little significant correlation. Even so, MLST analysis is believed to be helpful for determining the genetic variations of T. rubrum in cases where there is more large-scale data accumulation. In conclusion, the present study demonstrated the first MLST analysis of T. rubrum in Korea and explored the possibility that MLST could be a useful tool for studying the epidemiology and evolution of T. rubrum through further studies.

Keywords : Trichophyton rubrum, Multi-locus sequence typing, Genetic variations, Clinical isolates
꽌濡

뵾遺 吏꾧퇏 媛먯뿼利앹 뵾遺, 癒몃━移대씫, 넀넲, 諛쒗넲쓽 媛곸쭏쓣 移⑥뒿븯뒗 뵾遺궗긽洹좎뿉 쓽빐 씪뼱굹뒗 二쇱슂 吏꾧퇏 媛먯뿼씠떎(Kwon-Chung and Bennett, 1992). 媛먯뿼 떆 썝삎쑝濡 솗궛릺뒗 엫긽利앹긽쑝濡 씤빐 ’Ringworm’쑝濡쒕룄 븣젮졇 엳쑝硫, 理쒓렐 ’Tinea’濡 넻씪븯뿬 궗슜븯怨 엳떎(Lee et al., 1995). Epidermophyton, Microsporum, Trichophyton쓽 꽭 媛吏 냽쑝濡 몴릺뒗 뵾遺궗긽洹(Dermatophyte) 뵾遺 吏꾧퇏利(Cutaneous mycosis)쓣 굹궡硫, 鍮꾧컧뿼꽦 議곌굔肉먮쭔 븘땲씪 떖媛곹븳 媛먯뿼쓣 젣뼱븯湲 쐞븳 硫댁뿭 뼲젣젣쓽 怨쇰떎 궗슜 븣臾몄뿉 뵾遺궗긽洹좎뿉 쓽븳 媛먯뿼쓽 以묒슂꽦씠 怨쇨굅蹂대떎 뜑 媛뺤“릺怨 엳뒗 긽솴씠떎(Atef et al., 2008; Kim and Kim, 2016). 씠 吏꾧퇏뱾 媛곸쭏(Keratin)쓣 遺꾪빐븯뒗 媛곸쭏 遺꾪빐슚냼(Keratinase)瑜 깮꽦븯硫댁꽌 몴硫댄뵾遺議곗쭅쓣 移⑥뒿븯뿬 씤媛꾧낵 룞臾쇱쓽 뵾遺 媛곹솕議곗쭅뿉 媛먯뿼릺뼱 Dermatophytosis, Tinea Trichophytosis씪 遺덈━뒗 뵾遺 吏꾧퇏利앹쓽 썝씤씠 릺뒗 寃껋쑝濡 蹂닿퀬릺뼱 엳떎(Atef et al., 2008; Vikesh and Prakash, 2014).

씤泥 移쒗솕꽦 뵾遺궗긽洹좎씤 Trichophyton rubrum 議깅諛깆꽑뿉꽌 媛먯뿼씠 떆옉븯뿬 닔遺 諛깆꽑, 꽌삙遺 諛깆꽑, 넀넲怨 諛쒗넲(議곌컩 諛깆꽑) 벑쓽 遺쐞濡 띁吏硫, 媛踰쇱슫 利앹긽씠吏留 留뚯꽦쑝濡 吏꾪뻾븯뿬 移섎즺媛 뼱젮슫 寃쏀뼢씠 엳뒗 寃껋쑝濡 븣젮졇 엳떎(Oh and Ahn, 2009). 쟾 꽭怨꾩쟻쑝濡 媛옣 鍮덈룄媛 넂 뵾遺 吏꾧퇏 醫낆 T. rubrum쑝濡, 1910뀈 Castellani뿉 쓽빐 泥섏쓬쑝濡 紐낅챸릺뿀쑝硫(Yang, 1949), 빟 30뀈 쟾뿉뒗 English 벑씠 T. rubrum 媛먯뿼쑝濡 씤븳 諛깆꽑利앹쓽 넂 쑀蹂묐쪧쓣 蹂닿퀬뻽떎(Judy et al., 1998).

쁽옱 뵾遺 吏꾧퇏 媛먯뿼利앹 씤泥 媛먯뿼 遺쐞 삉뒗 利앹긽뿉 뵲씪 遺꾨쪟 諛 吏꾨떒 썑 빆吏꾧퇏젣쓽 泥섎갑씠 씠猷⑥뼱 吏怨 엳쑝硫, 썝씤 吏꾧퇏쓽 씪諛섏쟻씤 룞젙 삎깭븰쟻, 깮솕븰쟻 듅꽦쓣 湲곕컲쑝濡 븯怨 엳떎(Kim et al., 2011). Trichophyton 냽쓽 寃쎌슦 옒 諛쒕떖맂 遺꾩깮옄(Macroconidia) 냼遺꾩깮옄(Microconidia)瑜 깮꽦븯硫 빟 20뿬 醫낆씠 븣젮졇 엳쑝굹 ,냼遺꾩깮옄瑜 紐⑤몢 깮꽦븯뒗 洹좎쥌怨 遺꾩깮옄瑜 깮꽦븯吏 븡뒗 洹좎쥌 벑 떎뼇븳 듅꽦쓣 媛吏怨 엳뼱, 떎뿕떎 궡뿉꽌쓽 삎깭븰쟻 吏꾨떒씠 뼱젮슫 寃껋쑝濡 븣젮졇 엳떎(Weitzman and Summerbell, 1995). 삉븳 洹좎쥌 媛 떎뼇꽦씠 쟻嫄곕굹 룞씪븳 遺遺꾩씠 留롮븘 젙솗븳 룞젙쓣 쐞빐 삎깭븰쟻 吏꾨떒 쇅 떎瑜 룞젙踰뺤씠 슂援щ릺怨 엳떎. 理쒓렐 떎硫 젮 쟾湲곗쁺룞踰(Pulsed field gel electrophoresis, PFGE), Random amplified polymorphic DNA analysis (RAPD), NTS Internal transcribed spacer (ITS) primer瑜 씠슜븳 以묓빀슚냼 뿰뇙諛섏쓳踰(Polymerase chain reaction, PCR), Nested-PCR, PCR쓣 씠슜븳 젣븳슚냼 떒렪 떎삎꽦 遺꾩꽍踰(PCR-restriction fragment length polymorphism, PCR-RFLP), Arbitrary primer PCR, ITS region sequence analysis瑜 룷븿븳 遺꾩옄쑀쟾븰쟻 湲곕쾿뱾씠 뵾遺궗긽洹 醫 諛 洹좎<쓽 룞젙쓣 쐞빐 궗슜릺뼱 솕떎(Anderson et al., 1996; Semighini et al., 2001; Dodgson et al., 2003; Balajee et al., 2006; Litvintseva et al., 2006; Anne et al., 2010; Kim et al., 2011; Jin et al., 2014).

씠윭븳 遺꾩옄깮臾쇳븰쟻 遺꾩꽍諛⑸쾿 以 吏꾧퇏쓽 쑀쟾옄뿉 議댁옱븯뒗 留ㅼ슦 媛蹂쟻씤 Microsatellite씤 떒닚 諛섎났 돱겢젅삤떚뱶(GACA)瑜 씠슜븳 쑀쟾옄 利앺룺踰뺤 뵾遺 諛깆꽑 媛먯뿼怨 蹂묒썝꽦 Candida 醫낆쓽 슚쑉쟻씤 룞젙쓣 鍮꾨’븳 씤泥 蹂묒썝꽦 吏꾧퇏 遺꾨쪟 룞젙쓣 쐞빐 씠슜릺怨 엳쑝硫(Atef et al., 2008; Guofang et al., 2014), 삉 떎瑜 遺꾩옄깮臾쇳븰쟻 遺꾩꽍 湲곕쾿씤 Multi-locus sequence typing (MLST) 꽭洹 諛 吏꾧퇏쓽 룞젙쓣 쐞빐 紐 媛쒖쓽 쑀쟾옄 뿼湲곗꽌뿴쓣 씠슜븯뿬 뿼湲곗꽌뿴 遺꾩꽍쓣 넻빐 뼸뼱吏 젙蹂대 넻빐 醫(Species) 떒怨꾩쓽 吏꾧퇏 룞젙 臾쇰줎 떒씪 겢濡좎씤吏, 삉뒗 샎빀맂 겢濡좎씤吏瑜 솗씤븷 닔 엳뼱 젙솗븳 룞젙쓣 븷 닔 엳뒗 옣젏씠 엳뒗 寃껋쑝濡 蹂닿퀬릺뼱 엳떎(Bongnoux et al., 2003; John and Matthew, 2003; Anne et al., 2010). MLST뿉꽌 二쇰줈 궗슜릺뒗 쑀쟾옄뒗 쑀쟾옄 떎삎꽦(Polymorphism)怨 microsatellite媛 議댁옱븯뒗 쑀쟾옄뱾濡 빟 10媛 젙룄쓽 Housekeeping 쑀쟾옄瑜 긽쑝濡 遺꾩꽍븯硫, 빐떦 쑀쟾옄 遺쐞 빟 200~500 bp 젙룄 쁺뿭쓣 Typing뿉 씠슜븯怨 엳떎. 湲곗〈뿉 留롮씠 궗슜릺뿀뜕 Multi-locus enzyme electrophoresis (MLEE)뒗 遺꾩꽍뿉 留롮 닔쓽 洹좎<媛 븘슂븯怨, 닲寃⑥쭊 蹂씠(Variation)瑜 遺꾩꽍븷 닔 뾾뿀뜕 젏怨 Phenotyping씠굹 Mating test瑜 넻빐꽌 룞젙븯吏 紐삵뻽뜕 遺遺꾧퉴吏룄 MLST뒗 遺꾩꽍씠 媛뒫븳 옣젏씠 엳뒗 寃껋쑝濡 븣젮졇 엳떎.

MLST 遺꾩꽍쓣 넻븳 吏꾧퇏 遺꾩꽍뿉 엳뼱꽌 理쒖큹濡 Candida albicans 룞젙뿉 씠슜맂 썑 Coccidioides immitis, Histoplasma capsulatum, Cryptococcus neoformans, Fusarium oxysporum怨 媛숈 쟾떊꽦 吏꾧퇏利 諛 떇臾 蹂묒썝꽦 吏꾧퇏 벑뿉 쟻슜릺뼱 씠誘 洹 寃곌낵媛 蹂닿퀬릺뼱 엳떎(Dodgson et al., 2003; Bougnoux et al., 2003; Litvintseva et al., 2006).

諛깆꽑利(Dermatophytosis, tinea, ringworm, trichophytosis) 닔쓽븰 諛 怨듭쨷 蹂닿굔怨 愿젴꽦쓣 媛吏怨 엳怨, 吏由ъ쟻 遺꾪룷 湲고 뿭븰쟻 씤옄뱾씤 뿰졊, 꽦蹂꾧낵 怨꾩젅 벑뿉 쓽빐 쁺뼢쓣 諛쏅뒗 寃껋쑝濡 蹂닿퀬릺뼱 엳떎(Lee et al., 1995; Kim et al., 2001). 씠윭븳 씠쑀濡 MLST 遺꾩꽍踰뺤 룞씪 洹좎< 媛꾩뿉룄 쑀쟾븰쟻 諛 삎깭븰쟻 듅꽦씠 떎瑜 뼇긽쑝濡 遺꾩꽍맆 닔 엳뼱, 洹좎< 媛 援щ텇쓣 넻빐 洹좎쓽 媛먯뿼 寃쎈줈 異붿쟻씠 媛뒫븯뿬 옱媛먯뿼, 옱諛 諛 깉濡쒖슫 蹂씠 洹좎<쓽 媛먯뿼씠 留뚯꽦媛먯뿼뿉 쓽븳 寃껋씤吏 遺꾩꽍씠 媛뒫븳 寃껋쑝濡 蹂닿퀬릺뼱 엳떎(Bernhardt et al., 2013).

븘吏곴퉴吏 媛옣 쓷븯寃 굹굹뒗 씤泥 吏꾧퇏 媛먯뿼利앹쓽 썝씤泥댁씤 T. rubrum쓣 긽쑝濡 MLST瑜 닔뻾븳 뿰援щ뒗 蹂닿퀬맂 諛 뾾뿀떎. 뵲씪꽌, 蹂 뿰援ъ뿉꽌뒗 엫긽 寃泥댁뿉꽌 遺꾨━맂 T. rubrum 洹좎<뱾뿉 빐 삎깭븰쟻 遺꾩꽍怨 遺꾩옄쑀쟾븰쟻 遺꾩꽍씤 MLST瑜 떎떆븯뿬, MLST 湲곕쾿씠 T. rubrum쓽 遺꾩옄쑀쟾븰쟻 듅꽦 遺꾩꽍 諛 뿭븰쟻 議곗궗瑜 떎떆븯뒗뜲 솢슜맆 닔 엳쓣 吏 씠瑜 씠슜빐 諛깆꽑利 썝씤洹좎쓽 젙솗븳 룞젙쓣 쐞븳 쟻슜 媛뒫꽦쓣 遺꾩꽍빐 蹂닿퀬옄 븯떎.

옱猷 諛 諛⑸쾿

뿰援 洹좎<

援궡 3李 쓽猷뚭린愿쓽 궡썝 솚옄濡쒕꽣 遺꾨━, 諛곗뼇 썑 삎깭븰쟻 룞젙 諛 遺꾩옄깮臾쇳븰쟻 룞젙씠 셿猷뚮릺뼱 븳援쓽 吏꾧퇏옄썝뻾(Korean Collection of Medical Fungi, KCMF)뿉 湲고긽릺뼱 蹂닿以묒씤 쓽吏꾧퇏옄썝 以 T. rubrum 30二쇰 遺꾩뼇諛쏆븘 蹂 뿰援ъ뿉 궗슜븯떎. 遺꾩뼇 諛쏆 엫긽遺꾨━ 洹좎< 媛꾩쓽 엫긽 뿭븰쟻 듅꽦쓣 遺꾩꽍븯湲 쐞빐 솚옄쓽 꽦蹂, 뿰졊, 遺꾨━맂 寃泥댁쓽 醫낅쪟 諛 二 吏덊솚 벑쓽 씪諛섏쟻씤 솚옄쓽 엫긽젙蹂 삉븳 KCMF濡쒕꽣 젣怨듬컺븘 궗슜븯떎(Table 1).

Fungal strains and clinical data for this study

Strain No.Clinical data

 SpecimenSexAge Diagnosis
1Skin swabM60Seborrhoeic keratosis
2Forearm (Rt.)F70Tinea corporis
3TissueM60Nummular dermatitis
4OthersM30Tinea corporis
5Toe nail (Lt. 2nd)F52Tinea unguium
6Toe nail (Lt. 1st)M63Tinea unguium
7Toe nail (Lt. 2nd)M58Tinea unguium
8OthersM40Cellulitis
9Toe nail (Rt. 5th)F67Other rosacea
10Finger nail (Lt. 1st)F64Other prurigo
11TissueM62Irritant contact dermatitis
12Toe nail (Lt. 4th)M59Onychomycosis
13Toe nail (Lt. 4th)M54Tinea unguium
14OthersM76Atopic dermatitis
15Toe nail (Lt. 1st)F10Tinea unguium
16TissueF65Onychomycosis
17OthersF85Tinea unguium
18Toe nail (Rt. 4th)M85Contact dermatitis
19Toe nail (Lt. 1st)M19Vitiligo
20Toe nail (Rt. 1st)F5Tinea unguium
21GroinM35Tinea corporis
22Toe nail (Rt. 1st)M30Tinea unguium
23Toe nail (Rt. 1st)M59Tinea unguium
24TissueF63Tinea corporis
25Finger nailM53Tinea unguium
26Toe nail (Rt. 1st)M82Tinea unguium
27OthersM59Tinea unguium
28Toe nail (Lt. 2nd)M54Tinea cruris
29FootF77Tinea pedis
30ArmM56Psoriasis (unspecified)

Genomic DNA (gDNA) 異붿텧

20~30 mL쓽 Sabouraud dextrose 븸泥 諛곗瑜 씠슜븯뿬 25°C뿉꽌 3~4씪媛 120 RPM쑝濡 援먮컲븯硫댁꽌 諛곗뼇쓣 떎떆븯떎. 洹좎궗泥닿 異⑸텇엳 옄 썑 硫멸퇏맂 嫄곗쫰濡 嫄몃윭궡怨 硫멸퇏 利앸쪟닔濡 3쉶 꽭泥숉븯떎. 洹좎궗泥대뒗 닔遺꾩쓣 셿쟾엳 젣嫄고븯怨, 1.5 mL tube濡 삷湲 썑 Deep freezer뿉꽌 湲됱냽룞寃곗떆궓 썑 룞寃 嫄댁“湲곕 씠슜븯뿬 洹좎궗泥대뒗 5 mmTorr 씠븯쓽 븬젰뿉꽌 셿쟾엳 룞寃 嫄댁“떆耳곕떎. 嫄댁“맂 洹좎궗泥 20~300 mg쓣 Sea sand (15~20 mesh, Sigma, USA) 냼웾쓣 泥④븳 썑 븸泥댁쭏냼瑜 씠슜빐 鍮좊Ⅴ怨 媛뺥븯寃 遺꾩뇙븯떎. 洹좎궗泥 遺꾨쭚쓽 쟻떦웾쓣 깉 1.5 mL tube濡 삷湲 썑 CTAB(Cetyltrimethyllammonium bromide) 諛⑸쾿쓣 湲곗쑝濡 Genomic DNA (gDNA)瑜 異붿텧븯떎. 400 μL쓽 Lysis buffer (200 mM Tris-Cl, pH 8.0), 200 mM NaCl, 30 mM EDTA, 0.5% SDS, Proteinase K 5 μL瑜 泥④븯뿬 37°C뿉꽌 1떆媛 Incubation븳 썑 400 μL 2 × CTAB solution (2% CTAB, pH 8.0 1 mM EDTA)쓣 泥④븯怨 Inverting븯뿬 泥쒖쿇엳 꽎뼱二쇱뿀떎. 씠썑 700 μL쓽 Chloroform : Isoamylalcohol (24:1)쓣 泥④븯怨, 12,000 x g뿉꽌 10遺꾧컙 썝떖遺꾨━븯怨 긽痢듭븸 600 μL瑜 깉濡쒖슫 1.5 mL tube濡 삷湲 썑 0.7 × Volume (420 μL)쓽 Isopropanol쓣 泥④븯怨 -20°C 깋룞怨좎뿉꽌 30遺꾧컙 諛⑹튂븳 썑 떎떆 12,000 x g濡 썝떖遺꾨━븯떎. 긽痢듭븸쓣 젣嫄고븳 썑 궓븘 엳뒗 DNA pellet 70% EtOH 500 μL濡 꽭泥숉븳 뮘 Vacuum pump瑜 씠슜빐 15遺꾧컙 嫄댁“떆궓 썑 Tris-EDTA buffer뿉 DNA瑜 끃떎. 留덉留됱쑝濡 RNase (10 mg/mL) 2 μL瑜 泥④븯뿬 RNA瑜 젣嫄고븳 썑 궗슜 쟾源뚯 깋룞蹂닿븯떎.

T. rubrum 엫긽遺꾨━ 洹좎<쓽 Multi locus sequence typing (MLST) 遺꾩꽍

T. rubrum 洹좎<瑜 긽쑝濡 MLST 遺꾩꽍쓣 넻빐 Sequence type (ST) 遺꾩꽍쓣 떎떆븳 湲곗〈 뿰援ш 뾾뿀湲 븣臾몄뿉, 뵾遺궗긽洹좉낵 듅꽦씠 쑀궗븳 궗긽洹좎뿉 냽븯뒗 Scedosporium apiospermum쓣 湲곗쑝濡 븯뿬 ST 遺꾩꽍뿉 궗슜릺怨 엳뒗 Housekeeping gene 떎꽢 醫낅쪟瑜 MLST 遺꾩꽍쓣 쐞븳 寃잛쑝濡 꽕젙븯怨, National Center for Biotechnology Information (NCBI) GenBank쓽 쑀쟾옄 Database뿉꽌 T. rubrum쓽 떎꽢媛吏 쑀쟾옄쓽 gDNA 뿼湲곗꽌뿴쓣 李멸퀬濡 븯뿬 Oligonucleotide primer set쓣 뵒옄씤 諛 젣옉븯떎(Table 2).

Specific oligonucleotide primer sets for T. rubrum MLST analysis

Target gene Locus Sequences (5’ to 3’)Amplicon size (bp)
ACTActinForward primer : TGG GAC GAT ATG GAI AAI ATC TGG CA750
Reverse primer : TCI TCG TAT TCT TGC TTI GAI ATC CAC AT

CALCalmodulinForward primer : GAC TAT TCA CTA ACA ACG CTG TG500
Reverse primer : GTC TAG TAT AAT CAA ATC GTT AGA G

RPB2RNA polymerase IIForward primer : GAY GAY MGW GAT CAY TTY GG850
Reverse primer : CCC ATR GCT TGY TIR CCC AT

SOD2Superoxide dismutase IIForward primer : TCA CCA CGA TAA ACA CCA CC1,300
Reverse primer : CGT CGA TAC CCA AGA GAG GA

BT2Beta-tubulinForward primer : GGT AAC CAA ATC GGT GCT GCT TTC550
Reverse primer : ACC CTC AGT GTA GTG ACC CTT GGC

*I=, Y=T or C, M=A or C, W=A or T, R=G or A.


遺꾩꽍 긽 쑀쟾옄쓽 뿼湲곗꽌뿴 遺꾩꽍씠 셿猷뚮맂 썑 쑀쟾옄쓽 뿼湲곗꽌뿴 李⑥씠瑜 遺꾩꽍븯湲 쐞빐 쑀쟾옄쓽 씪遺 뿼湲곗꽌뿴쓣 뵲濡 遺꾨━븯뿬 뿬윭 媛쒖쓽 쑀쟾옄瑜 븯굹쓽 뙆씪濡 寃고빀븯怨, 寃고빀맂 뿼湲곗꽌뿴 젙蹂대 씠슜븯뿬 뿼湲곗꽌뿴쓽 李⑥씠瑜 遺꾩꽍븯떎(Fig. 1). T. rubrum쓽 寃쎌슦 Allele type 씠굹 ST씠 븘吏 젙쓽릺뼱 엳吏 븡븘 ST 遺꾩꽍 깮왂븯떎. T. rubrum 엫긽遺꾨━ 洹좎<뱾쓽 쑀쟾븰쟻 뿰愿꽦 遺꾩꽍쓣 쐞빐 Phylogenetic tree 遺꾩꽍쓣 異붽쟻쑝濡 닔뻾븯떎. 떎꽢 媛吏 몴쟻 쑀쟾옄 媛곴컖쓽 뿼湲곗꽌뿴쓣 Molecular Evolutionary Genetics Analysis (MEGA) v. 7.0 봽濡쒓렇옩쓣 넻빐 븯굹쓽 뙆씪濡 寃고빀븯怨, 寃고빀맂 뿼湲곗꽌뿴 젙蹂대 씠슜빐 1,000 bootstrap replication 議곌굔쑝濡 unweighted pair group method using arithmetic average (UPGMA) dendrogram쓣 깮꽦븯怨, 쑀쟾쟻 Cluster 諛 뿰愿꽦쓣 援щ텇 吏볤린 쐞빐 Cutoff limit쓣 0.05 Generic distance濡 꽕젙븯뿬 遺꾩꽍븯떎.

Fig. 1.

Nucleotide substitutions in BT2 gene of T. rubrum clinical isolates. Genetic variations of T. rubrum clinical isolates were found on three different positions of β-tubulin gene and were shown to have changed from C→G (1766), G→T (1876), and C→A (1886).


寃곌낵

二 吏덊솚蹂 솚옄 諛 寃泥대퀎 遺꾩꽍

二 吏덊솚뿉 뵲瑜 솚옄 遺꾪룷뿉꽌뒗 議곌컩 吏꾧퇏利(Tinea unguium)씠 12嫄(40%)쑝濡 媛옣 留롮 鍮꾩쨷쓣 李⑥뻽怨, 떎쓬쑝濡쒕뒗 뵾遺뿼(Dermatitis)씠 4嫄(13.3%)씠뿀쑝硫, T. rubrum씠 遺꾨━맂 엫긽 寃泥댁쓽 醫낅쪟뒗 넀넲, 諛쒗넲 寃泥닿 17嫄(56.7%)쑝濡 媛옣 留롮븯怨, 떎쓬쑝濡 뵾遺 諛 議곗쭅 寃泥닿 13嫄(43.3%)쑝濡 留롮븯떎.

MLST 遺꾩꽍쓣 쐞븳 쑀쟾옄 利앺룺 諛 Nucleotide substitution 遺꾩꽍

T. rubrum 엫긽遺꾨━ 洹좎< 30二쇱뿉 븳 MLST 遺꾩꽍쓣 쐞빐 Actin (ACT, 750 bp), Calmodulin (CAL, 500 bp), RNA polymerase II (RPB2, 850 bp), Superoxide dismutase 2 (SOD2, 1,300 bp), β-tubulin (BT2, 550 bp)쓣 룷븿븳 5媛쒖쓽 Housekeeping gene쓣 긽쑝濡 PCR쓣 닔뻾븯떎. 利앺룺맂 PCR 궛臾쇱쓣 긽쑝濡 뿼湲곗꽌뿴 遺꾩꽍쓣 떎떆븳 寃곌낵, T. rubrum 엫긽遺꾨━ 洹좎<뱾쓽 遺遺꾩쓽 Housekeeping 쑀쟾옄뿉꽌뒗 뿼湲곗꽌뿴씠 紐⑤몢 씪移섑븯뒗 寃곌낵瑜 蹂댁떎. 洹몃윭굹, β-tubulin 쑀쟾옄(BT2)뿉꽌 3媛쒖쓽 쐞移섏뿉꽌 뿼湲곗꽌뿴쓽 蹂씠媛 떎뼇븯寃 굹궓쓣 솗씤븯떎(Fig. 1). 蹂씠媛 굹궃 꽭 뿼湲곕뒗 二쇰줈 C→G (1766), G→T (1876), 洹몃━怨 C→A (1886)濡 移섑솚씠 諛쒖깮븳 寃껋쓣 솗씤븯떎.

Phylogenetic tree 긽愿꽦 遺꾩꽍

T. rubrum 엫긽遺꾨━ 洹좎<뱾쓽 遺꾩옄쑀쟾븰쟻 뿰愿꽦쓣 뙆븙븯湲 쐞빐 Phylogenetic tree 遺꾩꽍쓣 닔뻾븯떎. Cluster 遺꾨쪟瑜 쐞븳 Cut-off limit쓣 0.05 Generic distance濡 꽕젙븯怨, 洹 寃곌낵 Cluster 1遺꽣 Cluster 4源뚯 珥 4媛쒖쓽 Cluster濡 援щ텇릺뿀떎(Fig. 2). T. rubrum 엫긽遺꾨━ 洹좎< 媛 遺꾩옄쑀쟾븰쟻 뿰愿꽦 李⑥씠瑜 遺꾩꽍븳 寃곌낵, Cluster 1쓽 寃쎌슦 Tinea unguium 솚옄媛 4紐낆쑝濡 媛옣 留롮 遺꾪룷瑜 蹂댁怨(Table 3), Cluster 2쓽 寃쎌슦 吏덈퀝뿉꽌쓽 李⑥씠뒗 뾾뿀쑝굹 遺遺꾩씠 궓옄 솚옄뿉꽌 留롮씠 굹궓쓣 솗씤븷 닔 엳뿀떎. 븯吏留, 洹좎씠 遺꾨━맂 솚옄 꽦蹂 媛꾩쓽 넻怨꾪븰쟻씤 쑀쓽꽦 굹궡吏 븡븯떎. Cluster 3쓽 寃쎌슦뒗 二 吏덊솚씠 Tinea unguium씤 솚옄媛 5紐낆씠뿀쑝硫, 遺遺 넀, 諛쒗넲뿉꽌 遺꾨━맂 洹좎<뱾濡 솗씤릺뿀떎. Cluster 4뿉꽌뒗 洹좎< 媛꾩쓽 슌졆븳 李⑥씠瑜 蹂댁씠吏 븡븯떎.

Fig. 2.

Dendrogram of a total of 30 T. rubrum clinical isolates determined by MLST with five housekeeping genes. It was classified as four clusters, however there was little significant correlation.


Type of dermatophytosis and clinical specimen sources according to the molecular genetic cluster of T. rubrum clinical isolates

Clusters DiagnosisNo. of casesSpecimensNo. of casesSex (M/F)
I (N=10)Tinea unguium4Nail46/4
Others3Others4
Cruris1Skin2
Pedis1
Corporis1

II (N=8)Tinea unguium2Nail37/1
Dermatitis2Tissue3
Cellulitis1Skin2
Tinea corporis1
Seborrhoeic keratosis1
Onychomycosis1

III (N=9)Tinea unguium5Nail76/3
Tinea corporis2Arm1
Vitiligo1Others1
Onychomycosis1

IV (N=3)Tinea unguium1Nail21/2
Dermatitis1Tissue1
Rosacea1

怨좎같

2006뀈遺꽣 2010뀈源뚯 援궡 吏꾧퇏 媛먯뿼利 嫄닿컯蹂댄뿕 泥援 옄猷뚮 遺꾩꽍븳 寃곌낵뿉 뵲瑜대㈃, 뿰룊洹 씤援ъ쓽 9.4%媛 吏꾧퇏利앹쑝濡 移섎즺瑜 諛쏄퀬 엳쑝硫, 씠 以 諛깆꽑利앹뿉 쓽븳 媛먯뿼씠 6.5%瑜 李⑥븯떎. 2010뀈 븳 빐 룞븞 諛깆꽑利앹뿉 쓽븳 슂뼇湲됱뿬 鍮꾩슜 3,205뼲쓣 궗슜븯뿬 留ㅼ슦 넂 寃껋쑝濡 븣젮졇 엳떎(Yoon et al., 2014). 理쒓렐 蹂닿퀬뿉 쓽븯硫, 쁽옱 븳援쓽 寃쎌슦 빟 40뿬 醫낆쓽 뵾遺궗긽洹좎씠 룞젙릺뿀쑝硫, 二쇰줈 T. rubrum, T. mentagrophytes, M. canis, E. floccosum 벑씠 몴 洹좎쥌씠떎. 븯吏留 삁쟾뿉 二쇰줈 룞젙릺뜕 M. ferrugineum, T. schoenleinii 벑 쁽옱 嫄곗쓽 궗씪吏 寃껋쑝濡 蹂닿퀬릺怨 엳떎. 쁽옱 援궡뿉꽌 媛옣 넂 鍮덈룄濡 諛쒖깮븯怨 엳뒗 洹좎쥌 뿭떆 T. rubrum쑝濡 蹂닿퀬옄뿉 뵲씪 떎뼇븳 닔移섎 蹂댁씠굹 媛 80~92% 젙룄쓽 諛쒖깮 鍮덈룄瑜 蹂댁씠怨 엳쑝硫, T. mentagrophytes M. canis 벑 10% 씠븯濡 媛먯냼븯뒗 異붿꽭瑜 蹂댁씠怨 엳떎. 1979뀈뿉꽌 2013뀈源뚯 援궡쓽 T. rubrum뿉 쓽븳 吏꾧퇏 媛먯뿼 솚옄 닔뒗 留ㅻ뀈 1,436紐낆뿉꽌 5,565紐 닔以쑝濡 룊洹 3,310紐낆씠 諛쒖깮븯쑝硫, 1979뀈 씠썑 袁몄븳 利앷 異붿꽭瑜 蹂댁씠怨 엳떎(Lee et al., 2015).

理쒓렐 吏꾧퇏 醫낆쓽 젙솗븳 룞젙怨 쑀쟾옄삎 遺꾩꽍 諛 遺꾩옄쑀쟾븰쟻 蹂씠 쑀삎쓣 뿰援ы븯湲 쐞빐 냼媛쒕릺怨 엳뒗 떎뼇븳 遺꾩옄깮臾쇳븰쟻 遺꾩꽍踰뺣뱾 듅젙 몴쟻 쑀쟾옄瑜 利앺룺븯뿬 遺꾩꽍븯뒗 諛⑸쾿쓣 湲곕낯쟻쑝濡 궗슜븯怨 엳쑝硫, 몴쟻쑝濡 援먯옟踰(Hybridization), PFGE, RFLP, AFLP, RAPD, 뿼湲곗꽌뿴 遺꾩꽍踰 벑씠 議댁옱븳떎(Anderson et al., 1996; Semighini et al., 2001; Dodgson et al., 2003; Balajee et al., 2006; Litvintseva et al., 2006; Anne et al., 2010; Kim et al., 2011; Jin et al., 2014). 븯吏留, 쑀쟾쟻 蹂씠媛 留롮씠 諛쒖깮븯뒗 吏꾧퇏 醫낆쓽 寃쎌슦 遺꾩꽍뿉 븳怨꾧 엳쑝硫, PCR 利앺룺臾쇱쓽 諛대뱶 뙣꽩 遺꾩꽍(Polymorphism)뿉 엳뼱꽌 뿰援ъ옄 삉뒗 떎뿕떎留덈떎 寃곌낵媛 씪젙移 븡븘 궗슜뿉 젣븳쟻씠硫, 몴以솕媛 뼱젮슫 떒젏씠 엳뒗 寃껋쑝濡 蹂닿퀬맂 諛 엳떎(Bidet et al., 2000). 듅엳, PFGE 踰뺤 遺꾩꽍떆媛꾩씠 4~5씪濡 끂룞 吏묒빟쟻씠硫, 寃곌낵 遺꾩꽍뿉 옄쓽쟻씤 寃ы빐媛 媛쒖엯맆 닔 엳뒗 떒젏씠 엳뒗 寃껋쑝濡 븣젮졇 엳떎. 理쒓렐 씠슜씠 릺怨 엳뒗 MLST 湲곕쾿 吏꾧퇏쓽 쑀쟾옄 以 4~10媛쒖쓽 Housekeeping gene쓣 꽑젙븯뿬 뿼湲 꽌뿴 遺꾩꽍쓣 넻빐 洹좎쥌, 洹좎< 蹂 삉뒗 쑀쟾옄삎 援щ퀎씠 媛뒫븳 룞떆뿉 쑀쟾옄 蹂씠 遺꾩꽍씠 媛뒫븯뿬 쟾 꽭怨꾩쟻쑝濡 吏꾧퇏쓽 遺꾪룷, 샇諛 썝씤洹 벑 遺꾩옄뿭븰쟻 遺꾩꽍씠 媛뒫븯떎뒗 옣젏씠 엳뒗 寃껋쑝濡 蹂닿퀬릺怨 엳떎(Byun et al., 2012).

吏꾧퇏쓣 긽쑝濡 븳 MLST 遺꾩꽍쓣 씠슜븳 뿭븰쟻 뿰援щ뒗 理쒖큹濡 Candida albicans쓽 쑀쟾옄삎 遺꾩꽍뿉 씠슜맂 씠썑, Coccidioides immitis, Histoplasma capsulatum, Cryptococcus neoformans, Fusarium oxysporum怨 媛숈 씤泥 쟾떊 媛먯뿼꽦 吏꾧퇏 諛 떇臾 蹂묒썝꽦 吏꾧퇏 벑뿉 쟻슜릺뼱 씠誘 洹 寃곌낵媛 蹂닿퀬릺뼱 엳떎(Dodgson et al., 2003; Bougnoux et al., 2003; Litvintseva et al., 2006). 룞씪 洹좎< 媛꾩뿉룄 쑀쟾븰쟻 諛 삎깭븰쟻 듅꽦씠 꽌濡 떎瑜 뼇긽쑝濡 遺꾩꽍맆 닔 엳湲 븣臾몄뿉, 洹좎< 媛 援щ텇쓣 넻빐 吏꾧퇏쓽 媛먯뿼 寃쎈줈 異붿쟻씠 媛뒫븯뿬 옱媛먯뿼, 옱諛 諛 깉濡쒖슫 蹂씠 洹좎<쓽 媛먯뿼씠 留뚯꽦 媛먯뿼뿉 쓽븳 寃껋씤吏 遺꾩꽍씠 媛뒫븳 寃껋쑝濡 蹂닿퀬릺뼱 엳떎 (John and Matthew, 2003). 씠뒗 쁽옱 愿묐쾾쐞 빆吏꾧퇏젣쓽 泥섎갑蹂대떎 쟻젅븳 빆洹좎젣쓽 泥섎갑 諛 移섎즺뿉 룄쓣 以 닔 엳怨 빆吏꾧퇏젣 궡꽦洹좎쓽 異쒗쁽쓣 媛먯떆븷 닔 엳쑝硫 뜑遺덉뼱 吏由ъ쟻, 떆媛꾩쟻씤 뿭븰 議곗궗쓽 諛⑸쾿쑝濡 쟻슜맆 닔 엳쓣 寃껋쑝濡 뿬寃⑥怨 엳떎.

洹몃윭굹 諛깆꽑利앹쓽 썝씤 吏꾧퇏쑝濡쒖꽌 T. rubrum뿉 븳 MLST瑜 씠슜븳 遺꾩꽍 븘吏 蹂닿퀬맂 諛 뾾뼱 蹂 뿰援ъ뿉꽌뒗 MLST 湲곕쾿씠 T. rubrum쓽 遺꾩꽍뿉 씠슜맆 닔 엳뒗 吏 씠瑜 씠슜븯뿬 諛깆꽑利앹쓽 썝씤洹 룞젙뿉 愿븳 媛뒫꽦쓣 遺꾩꽍븯떎. MLST 遺꾩꽍뿉 엳뼱꽌 T. rubrum 30寃泥댁뿉 빐 actin (ACT), calmodulin (CAL), RNA polymerase II (RPB2), superoxide dusmutase 2 (SOD2) 諛 β-tubulin (BT2)瑜 룷븿븳 5媛쒖쓽 Housekeeping gene쓣 긽쑝濡 뿼湲곗꽌뿴뿉꽌쓽 蹂솕瑜 遺꾩꽍븳 寃곌낵, 遺遺꾩쓽 쑀쟾옄뿉꽌 썝씤洹 룞젙 寃곌낵媛 T. rubrum쑝濡 紐⑤몢 씪移섑븯뒗 寃곌낵瑜 蹂댁떎. 洹몃윭굹, β-tubulin 쑀쟾옄(BT2)뿉꽌 3媛쒖쓽 뿼湲 쐞移섏뿉꽌 蹂씠媛 떎뼇븯寃 굹궓쓣 솗씤븯쑝硫 蹂씠媛 굹궃 꽭 뿼湲곕뒗 二쇰줈 C→G (1766), G→T (1876), 洹몃━怨 C→A (1886)濡 移섑솚쓣 蹂댁떎.

T. rubrum쓽 遺꾩옄쑀쟾븰쟻 뿰愿꽦 遺꾩꽍쓣 쐞빐 Phylogenetic tree 遺꾩꽍쓣 닔뻾븳 寃곌낵, 겕寃 4媛쒖쓽 Cluster濡 援щ텇릺뿀쑝굹 媛 Cluster 留덈떎쓽 뿰愿꽦 꽌濡 겕吏 븡 寃껋쑝濡 굹궗떎. 蹂 뿰援ъ뿉꽌 MLST 遺꾩꽍쓽 몴쟻쑝濡 궗슜맂 5媛吏 醫낅쪟쓽 Housekeeping gene 以 BT2뿉꽌留 Nucleotide substitution씠 솗씤릺뿀湲 븣臾몄뿉, BT2뿉꽌쓽 쑀쟾쟻 蹂씠媛 4媛吏 Cluster濡쒖쓽 援щ텇뿉 겙 쁺뼢쓣 以 寃껋쑝濡 궗猷뚮릺硫, 씠썑 T. rubrum쓽 ST 遺꾩꽍쓣 쐞븳 븯굹쓽 吏몴濡 솢슜씠 媛뒫븷 寃껋쑝濡 궗猷뚮맂떎. 븯吏留, 異뷀썑 BT2뿉 쓽빐 援щ텇맂 Cluster 媛꾩쓽 몴쁽삎쑝濡 굹굹뒗 듅꽦 李⑥씠瑜 洹쒕챸븯湲 쐞빐꽌뒗 異붽쟻씤 뿰援ш 븘슂븷 寃껋쑝濡 궗猷뚮맂떎. T. rubrum 洹좎< 媛 엫긽쟻 뿰愿꽦 遺꾩꽍뿉꽌뒗 Cluster 1쓽 寃쎌슦 Tinea unguium 솚옄媛 4紐낆쑝濡 媛옣 留롮 遺꾪룷瑜 蹂댁怨, Cluster 2쓽 寃쎌슦 吏덈퀝뿉꽌쓽 李⑥씠뒗 뾾뿀쑝굹 遺遺꾩씠 궓옄 솚옄떎. Cluster 3쓽 寃쎌슦뒗 二 吏덊솚씠 Tinea unguium씤 솚옄媛 5紐낆씠쑝硫, 遺遺 넀, 諛쒗넲뿉꽌 遺꾨━맂 洹좎<떎. Cluster 4뿉꽌뒗 슌졆븳 李⑥씠瑜 蹂댁씠吏 븡븯떎.

蹂 뿰援ъ뿉꽌 궗슜븳 寃泥댁쓽 닔媛 젣븳쟻씠湲 븯굹, 吏湲덇퉴吏 吏꾧퇏 醫낆뿉꽌쓽 MLST 遺꾩꽍 Coccidioides immitis, Histoplasma capsulatum, Fusarium oxysporum 벑 듅젙 궗긽洹좎뿉 빐꽌留 븳젙쟻쑝濡 씠猷⑥뼱 議뚯留, 蹂 뿰援ъ뿉꽌 T. rubrum瑜 긽쑝濡 쑀쟾쟻 蹂씠 諛 遺꾩옄뿭븰쟻 遺꾩꽍쓣 쐞빐 MLST踰뺤쓽 쟻슜 媛뒫꽦쓣 깘깋븯떎뒗 젏뿉꽌 쓽誘멸 엳떎怨 븷 닔 엳떎. 뼢썑 異붽쟻씤 뿰援щ 넻빐 쟾援 떒쐞쓽 遺꾨━ 洹좎<瑜 긽쑝濡 븳 뿰援 寃곌낵瑜 뜲씠꽣踰좎씠뒪솕 븳떎硫 T. rubrum쓽 寃泥 蹂 쑀쟾쟻 蹂씠 뙣꽩, 빆吏꾧퇏젣 궡꽦 뙣꽩, 吏뿭쟻, 떆媛꾩쟻 蹂씠 벑뿉 븳 援궡 뵾遺 吏꾧퇏利 몴 썝씤洹좎뿉 愿븳 젙솗븳 遺꾩옄뿭븰쟻 遺꾩꽍씠 媛뒫븷 寃껋쑝濡 깮媛곷맂떎.

蹂 뿰援щ 넻빐 T. rubrum뿉 븳 MLST 遺꾩꽍쓽 媛뒫꽦쓣 솗씤븿쑝濡쒖뜥 씠瑜 湲곕컲쑝濡 븳 쟾 꽭怨꾩쓽 洹좎< 媛 遺꾩옄쑀쟾븰쟻 떎뼇꽦씠굹 遺꾩옄뿭븰쟻 듅꽦 뙆븙씠 媛뒫븷 닔 엳쓣 寃껋쑝濡 궗猷뚮릺硫, 젙솗븳 뜲씠꽣踰좎씠뒪媛 異뺤쟻맂떎硫 엫긽쟻쑝濡 떎諛⑸㈃뿉꽌 씠슜맆 닔 엳쓣 寃껋쑝濡 삁긽맂떎. 삉븳, 援궡肉먮쭔 븘땲씪 꽭怨꾩쟻쑝濡쒕룄 뵾遺 吏꾧퇏利앹쓽 쑀蹂묐쪧씠 쟾 꽭怨 씤援ъ쓽 빟 20%뿉 떖븯怨 엳怨, 洹 以 뵾遺 吏꾧퇏利앹쓽 80~90%媛 T. rubrum씠 썝씤씠 릺怨 엳湲 븣臾몄뿉, T. rubrum뿉 븳 젙솗븳 吏꾨떒怨 遺꾩옄뿭븰쟻 遺꾩꽍뿉 愿븳 寃곌낵뱾씠 씠썑 媛먯뿼利앹쓽 議곌린 移섎즺 媛먯뿼 쟾뙆 삁諛⑹뿉 룄쓣 以 肉먮쭔 븘땲씪 뿭븰쟻 媛먯떆泥닿퀎瑜 援ъ텞븯뒗뜲 겙 湲곗뿬瑜 븷 닔 엳쓣 寃껋쑝濡 궗猷뚮맂떎.

ACKNOWLEDGEMENTS

None.

CONFLICT OF INTEREST

No conflict of interests exists for any of the authors.

References
  1. Anderson MJ, Gull K, and Denning DW. Molecular typing by random amplification of polymorphic DNA and M13 Southern hybridization of related paired isolates of Aspergillus fumigatus. Journal of Clinical Microbiology 1996;34:87-93.
    Pubmed KoreaMed
  2. Anne D, Cecile G, Christophe H, Nelly CA, Sybren de H, and Marie M. Development of a new MLST scheme for differentiation of Fusarium solani species complex (FSSC) isolates. Journal of Microbiological Methods 2010;82:319-323.
    Pubmed CrossRef
  3. Atef SS, Pranab KM, Hassan NA, Atef I, El A, Said HA, and Mahmoud AG. Single-Step PCR Using (GACA) 4 Primer:Utility for Rapid Identification of Dermatophyte Species and Strains. Journal of Clinical Microbiology 2008;46:2641-2645.
    Pubmed KoreaMed CrossRef
  4. Balajee SA, Nickle D, Varga J, and Marr KA. Molecular studies reveal frequent misidentification of Aspergillus fumigatus by morphotyping. Eukaryotic Cell 2006;5:1705-1712.
    Pubmed KoreaMed CrossRef
  5. Bernhardt A, Sedlacek L, Wagner S, Schwarz C, W체rstl B, and Tintelnot K. Multi locus sequence typing of Scedosporium apiospermum and Pseudallescheria boydii isolates from cystic fibrosis patients. Journal of Cystic Fibrosis 2013;12:592-598.
    Pubmed CrossRef
  6. Bidet P, Lalande V, Salauze B, Burghoffer B, Avesani V, and Delm챕e M et al. Comparison of PCR-ribotyping, arbitrarily primed PCR, and pulsed-field gel electrophoresis for typing Clostridium difficile. Journal of Clinical Microbiology 2000;38:2484-2487.
    Pubmed KoreaMed
  7. Bougnoux ME, Tavanti A, Bouchier C, Gow NAR, Magnier A, and Davidson AD et al. Collaborative consensus for optimized multilocus sequence typing of Candida albicans. Journal of Clinical Microbiology 2003;41:5265-5266.
    Pubmed KoreaMed CrossRef
  8. Byun JH, Yoo JH, Park CM, Lee Dg, Park SH, and Choi SM. Molecular epidemiologic analysis of community-onset extended spectrum beta-lactamase (ESBL) producing Escherichia coli using infrequent-restriction site polymerase chain reaction (IRS-PCR) with comparison by pulsed-field gel electrophoresis (PFGE). Infect Chemotherapy 2012;44:5-10.
    CrossRef
  9. Dodgson AR, Pujol C, Denning DW, Soll DR, and Fox AJ. Multilocus sequence typing of Candida glabrata reveals geographically enriched clades. Journal of Clinical Microbiology 2003;41:5709-5717.
    Pubmed KoreaMed CrossRef
  10. Guofang L, Chenghua HE, and Haibin Z. Identification and characterization of dermatophyte species and strains with PCR amplification. Experimental and Therrapeutic Medicine 2014;8:545-550.
    Pubmed KoreaMed CrossRef
  11. Jin H, Kim H, Kim S, Choi Y, Bang H, Park S, Wang H, Lee JH, Jang IH, Kim YK, and Lee H. Evaluation of a PCR-Reverse Blot Hybridization Assay to Identify Six Dermatophytes Predominant in the Republic of Korea. Biomedical Science Letters 2014;20:139-146.
    CrossRef
  12. John WT, and Matthew CF. Fungal multilocus sequence typing-it's not just for bacteria. Current Opinion Microbiology 2003;6:351-356.
    CrossRef
  13. Judy RR, Robert WP, Rana AH, Mary EB, and Arthur LR. The epidemiological features of invasive mycotic infections in the San Francisco bay area, 1992-1993:Results of population-based laboratory activity surveillance. Clinical Infectious Diseases 1998;27:1138-1147.
    CrossRef
  14. Kim KH, Jun JB, and Yoo HJ. Superficial and cutaneous mycoses. Dermatology revised. Seoul: Ryo Moon Gak; 2001 p. 310-340.
  15. Kim H, Jin H, Kim S, Wang H, Choi Y, Bang H, Park JS, Lee JH, Won YH, Ahn KJ, Kim YK, and Lee H. PCR-reverse Blot Hybridization Assay for Species Identification of Dermatophytes. Korean Journal of Medical Mycology 2011;16:86-98.
    CrossRef
  16. Kim SJ, and Kim SJ. A Distribution of Keratinophilic Fungi Isolated from the Soil of Haeundae Beach in Korea. Korean Journal of Clinical Laboratory Science 2016;48:343-347.
    CrossRef
  17. Kwon-Chung KJ, and Bennett JE. Philadelphia:Lea &Febigger. Medical mycology 1992:105-161.
  18. Lee SK, Choi JS, and Kim KH. A clinical and mycological Study of Tinea Pedis. Annals of Dermatology 1995;33:1029-1037.
  19. Lee WJ, Kim SL, Jang YH, Lee SJ, Kim DW, and Bang YJ et al. Increasing Prevalence of Trichophyton rubrum Identified through an Analysis of 115,846 Cases over the Last 37 Years. Journal of Korean Medical Science 2015;30:639-643.
    Pubmed KoreaMed CrossRef
  20. Litvintseva AP, Thakur R, Vilgalys R, and Mitchell TG. Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (serotype A), including a unique population in Botswana. Genetics 2006;172:2223-2238.
    Pubmed KoreaMed CrossRef
  21. Oh BH, and Ahn KJ. Drug Therapy of Dermatophytosis. Journal of the Korean Medical Association 2009;52:1109-1114.
    CrossRef
  22. Semighini CP, Delmas G, Park S, Amstrong D, Perlin D, and Goldman GH. New restriction fragment length polymorphism (RFLP) markers for Aspergillus fumigatus. FEMS Immunology and Medical Microbiology 2001;31:15-19.
    Pubmed CrossRef
  23. Vikesh KB, and Prakash CS. Epidemiological studies on Dermatophytosis in human patients in Himachal Pradesh. India: Springer-Plus; 2014 p. 134.
  24. Weitzman I, and Summerbell RC. The dermatophytes. Clinical Microbiology Reviews 1995;8:240-259.
    Pubmed KoreaMed CrossRef
  25. Yang JH. Statistical observation of skin fungal disease for last 10 years. Korean Dermatology & Urology Society Newsletter 1949;1:10-78.
  26. Yoon HJ, Choi HY, Kim YK, Song YJ, and Ki Moran. Prevalence of fungal infections using National Health Insurance data from 2009-2013. Epidemiology and Health 2014:36.