Search for


TEXT SIZE

search for



CrossRef (0)
Microbial Forensics: Human Identification
Biomed Sci Letters 2018;24:292-304
Published online December 31, 2018;  https://doi.org/10.15616/BSL.2018.24.4.292
© 2018 The Korean Society For Biomedical Laboratory Sciences.

Yong-Bin Eom†,*

Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Korea
Correspondence to: Yong-Bin Eom. Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si, Chungcheongnam-do 31538, Korea. Tel: +82-41-530-3039, Fax: +82-41-530-3085, e-mail: omnibin@sch.ac.kr
Received October 13, 2018; Revised December 11, 2018; Accepted December 12, 2018.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract

Microbes is becoming increasingly forensic possibility as a consequence of advances in massive parallel sequencing (MPS) and bioinformatics. Human DNA typing is the best identifier, but it is not always possible to extract a full DNA profile namely its degradation and low copy number, and it may have limitations for identical twins. To overcome these unsatisfactory limitations, forensic potential for bacteria found in evidence could be used to differentiate individuals. Prokaryotic cells have a cell wall that better protects the bacterial nucleoid compared to the cell membrane of eukaryotic cells. Humans have an extremely diverse microbiome that may prove useful in determining human identity and may even be possible to link the microbes to the person responsible for them. Microbial composition within the human microbiome varies across individuals. Therefore, MPS of human microbiome could be used to identify biological samples from the different individuals, specifically for twins and other cases where standard DNA typing doses not provide satisfactory results due to degradation of human DNA. Microbial forensics is a new discipline combining forensic science and microbiology, which can not to replace current STR analysis methods used for human identification but to be complementary. Among the fields of microbial forensics, this paper will briefly describe information on the current status of microbiome research such as metagenomic code, salivary microbiome, pubic hair microbiome, microbes as indicators of body fluids, soils microbes as forensic indicator, and review microbial forensics as the feasibility of microbiome-based human identification.

Keywords : Human identification, Massive parallel sequencing, Microbes, Microbial forensics, Microbiome
꽌 濡

궗엺쓽 誘몄깮臾쇨뎔吏(microbiome) 떊泥댁쓽 遺쐞留덈떎 李⑥씠媛 엳怨 媛쒖씤 媛꾩뿉룄 李⑥씠媛 엳뒗 寃 蹂닿퀬릺뿀떎(Costello et al., 2009). 씠寃껋 궗엺留덈떎 怨좎쑀쓽 誘몄깮臾쇨뎔吏묒쓣 媛吏怨 엳뼱 媛쒖씤 떇蹂꾩쓽 닔떒쑝濡 궗슜 媛뒫꽦쓣 쓽誘명븳떎(Blaser, 2010). Fierer 벑 而댄벂꽣 궎蹂대뱶 留덉슦뒪뿉 궓븘 엳뒗 誘몄깮臾쇨낵 뵾遺 꽭洹좎쓣 遺꾩꽍븯뿬 洹 而댄벂꽣瑜 궗슜븳 궗엺쓣 솗씤븯뒗 寃껋씠 媛뒫븯떎怨 諛쒗몴븯떎(Fierer et al., 2010).

留롮 궗嫄대뱾뿉꽌 媛빐옄 삉뒗 뵾빐옄쓽 紐몄뿉 궓 援먰쓷(bite mark)쓣 踰뺢낵븰쟻 利앷굅濡 梨꾪깮븯뿬 媛 媛쒓컻씤留덈떎 룆듅븳 移섏븘 諛곗뿴쓣 踰뺤튂쓽븰쟻쑝濡 遺꾩꽍븯吏留, 洹 빐꽍 二쇨쟻씠硫 뼱젮씠 留롫떎(Sweet and Pretty, 2001). 뜑援곕떎굹 源⑤Т뒗(biting) 怨쇱젙뿉꽌 DNA媛 쟾떖릺吏留 븸 궡 議댁옱븯뒗 닔留롮 젙긽 洹좊Т由ъ 슚냼뱾濡 씤빐 DNA媛 遺꾪빐릺뼱 떆媛꾩씠 寃쎄낵븷 닔濡 DNA 봽濡쒗뙆씪 쟾泥대 솗蹂댄븯湲곌 뼱졄떎(Yaegaki et al., 1982; Sweet et al., 1997). 븸뿉뒗 1.4 × 108/mL쓽 빟 700뿬醫낆쓽 떎뼇븳 꽭洹좊뱾씠 議댁옱븳떎(Lazarevic et al., 2010). 븸쓽 誘몄깮臾쇨뎔吏묒 援ш컯쓽 쐞깮긽깭, 떇뒿愿 벑뿉 쓽빐 쁺뼢쓣 諛쏄린 븣臾몄뿉 援ш컯 誘몄깮臾쇱쓣 媛쒖씤 떇蹂꾩뿉 쟻슜븯湲곗뿉뒗 뼱젮씠 엳吏留, 궗嫄 諛쒖깮 24떆媛 썑源뚯룄 뵾遺 쓽瑜 긽쓽 援먰쓷뿉꽌 궡븘엳뒗 꽭洹좎씠 諛쒓껄릺뿀떎(Brown et al., 1984; Borgula et al., 2003; Rahimi et al., 2005). 洹몃윭굹 씠뱾 援ш컯 誘몄깮臾 遺遺꾩씠 in vitro뿉꽌 諛곗뼇릺吏 븡湲 븣臾몄뿉 븸쓽 誘몄깮臾쇨뎔吏묒쓣 踰뺢낵븰쟻쑝濡 궗슜븯湲 쐞빐꽌뒗 슜웾 뿼湲곗꽌뿴 寃곗젙踰 벑쓽 쟻슜씠 븘슂븯떎(Ahn et al., 2011).

뵾遺쓽 꽭洹좊뱾 꽭룷踰쎌쓣 媛吏怨 엳뒗 꽭洹 援ъ“쓽 듅꽦긽 쇅遺 솚寃 뒪듃젅뒪(뒿룄, 삩룄, 옄쇅꽑 끂異) 벑뿉 媛뺥븳 빆꽦쓣 媛吏怨 엳湲 븣臾몄뿉 젒珥됲븳 몴硫댁뿉 삤옖 湲곌컙 吏냽맆 닔 엳떎(Smith et al., 1996; Brooke et al., 2009). 뵲씪꽌 슦由ъ쓽 씪긽솢룞 룞븞뿉 젒珥됲븯뒗 臾쇱껜쓽 몴硫댁뿉 뵾遺 뿰愿맂 誘몄깮臾쇨뎔吏묒쓽 異붿쟻씠 踰뺣몄깮臾쇳븰쟻쑝濡 쓳슜맆 닔 엳떎. 몢 궗엺쓽 넀諛붾떏 몴硫 꽭洹좎쓽 怨꾪넻諛쒖깮삎씠 떒吏 13%留 쑀궗븯怨(Fierer et al., 2008), 떊泥 떎瑜 遺쐞쓽 뵾遺뿉꽌룄 궗엺媛 李⑥씠瑜 蹂댁떎(Costello et al., 2009; Grice et al., 2009). 삉븳 넀쓣 뵽 썑 紐뉗떆媛 븞뿉 넀諛붾떏 몴硫댁쓽 꽭洹좉뎔吏묒씠 蹂듦뎄릺怨, 닔媛쒖썡쓽 湲곌컙쓣 몢怨 떆猷뚮 梨꾩랬빐룄 궗엺媛 誘몄깮臾쇨뎔吏묒쓽 떎뼇꽦씠 愿李곕릺뿀떎(Fierer et al., 2008; Costello et al., 2009; Grice et al., 2009).

궗嫄 쁽옣 利앷굅臾쇱쓽 몴硫댁뿉 삁쓷, 젙븸, 븸 벑씠 諛쒓껄릺吏 븡쓣 寃쎌슦, STR 遺꾩꽍뿉 쓽븳 DNA 봽濡쒗뙆씪쓣 솗蹂댄븷 닔 뾾뒗 븣뿉뒗 뵾쓽옄 삉뒗 뵾빐옄쓽 뵾遺 몴硫댁뿉 뭾遺븯寃 議댁옱븯뒗 誘몄깮臾쇱쓣 踰뺣몄깮臾쇳븰쟻쑝濡 遺꾩꽍븯뒗 寃껋씠 젒珥 몴硫댁쓽 誘몄꽭 利앷굅씤 궗엺 DNA 遺꾩꽍蹂대떎 꽭洹 DNA瑜 솗蹂댄븯湲곌 슜씠븯떎(Fredricks, 2001). 삉븳 쓽瑜, 뼹猷⑹쭊 몴硫, 怨좊룄쓽 嫄곗튇 몴硫 媛숈씠 紐낇솗븳 吏臾몄쓣 쉷뱷븯湲 뼱젮슫 臾쇱껜쓽 寃쎌슦 踰뺣몄깮臾쇳븰쟻 遺꾩꽍踰뺤씠 쑀슜븷 寃껋씠떎. 洹몃━怨 湲곗〈 DNA 봽濡쒗뙆씪 遺꾩꽍쑝濡쒕뒗 媛쒖씤 떇蹂꾩씠 遺덇뒫뻽뜕 븳怨꾩젏씤 씪꽦 뙇뫁씠(identical twins)룄 꽌濡 떎瑜 誘몄깮臾쇨뎔吏묒쓣 媛吏怨 엳쑝誘濡 踰뺣몄깮臾쇳븰쟻 媛쒖씤 떇蹂꾩쓽 쟻슜 媛뒫꽦씠 엳떎(Turnbaugh et al., 2009).

쁽옱 궗슜릺怨 엳뒗 STR 봽濡쒗뙆씪 遺꾩꽍 븘二 쟻 (low copy number) 뼇쓽 DNA, 遺꾩젅맂 DNA, 샎빀 諛 遺遺 봽濡쒗뙆씪濡 씤빐 踰뺢낵븰쟻 媛쒖씤 떇蹂꾩씠 뼱젮슫 寃쎌슦媛 엳떎. 씠윭븳 寃쎌슦 泥 諛⑸쾿쑝濡 궗엺 誘몄깮臾쇨뎔吏묒 떎瑜 넂 蹂듭젣 닔 쑀쟾 留덉빱쓽 븳 삁씠硫, 誘몄깮臾 꽭룷뒗 씤媛 꽭룷뿉 1 : 1 (Sender et al., 2016) ~ 10 : 1 (Savage, 1977)쓽 鍮꾩쑉濡 議댁옱븯湲 븣臾몄뿉, 遺遺꾩쟻씠嫄곕굹 寃곕줎 궡由 닔 뾾뒗 STR 봽濡쒗뙆씪쓣 蹂댁셿븷 닔 엳뒗 옞옱쟻 몴쟻씠 맆 닔 엳떎.

蹂 由щ럭 끉臾몄뿉꽌뒗 씤媛 誘몄깮臾쇨뎔吏 봽濡쒖젥듃(human microbiome project)쓽 뿰援ш껐怨쇰Ъ씠 誘몄깮臾쇳븰怨 쓽븰 遺꾩빞뿉 湲곗뿬븷 肉먮쭔 븘땲씪(Turnbaugh et al., 2007), 踰뺢낵븰遺꾩빞뿉 쟻슜븿쑝濡쒖뜥 湲곗〈 DNA 봽濡쒗뙆씪 諛 吏臾 遺꾩꽍踰뺤쓽 蹂댁셿 諛 븞쑝濡쒖꽌 궗엺留덈떎 룆듅븯怨 븞젙쟻쑝濡 쟾떖 媛뒫븳 誘몄깮臾쇨뎔吏묒쓣 踰뺣몄깮臾쇳븰쟻 遺꾩꽍쓣 넻븳 媛쒖씤 떇蹂꾩쓽 媛뒫꽦뿉 빐 궡렣蹂닿퀬옄 븯떎.

蹂 濡

硫뷀쑀쟾泥 肄붾뱶(Metagenomic code)

理쒓렐쓽 씤媛 誘몄깮臾쇨뎔吏묒뿉 븳 洹쒕え 뿰援щ뱾 嫄닿컯븳 媛쒖껜瑜 긽쑝濡 떊泥 遺쐞 蹂꾨줈 듅蹂꾪븳 而ㅻㅻ땲떚 援ъ“ 誘몄깮臾쇱쓽 湲곕뒫뿉 겙 떎뼇꽦쓣 蹂댁뿬二쇱뿀떎(Qin et al., 2010; Human Microbiome Project, 2012). 삉븳, 씤媛 誘몄깮臾 援곗쭛쓽 듅吏뺤 긽떦븳 湲곌컙 룞븞 븞젙쟻쑝濡 媛쒖씤怨 뿰愿맆 닔 엳쓬씠 諛앺議뚮떎(Fierer et al., 2010; Faith et al., 2013; Schloissnig et al., 2013). 씠윭븳 뿰援ш껐怨쇰뒗 媛쒓컻씤씠 궡옱맂 誘몄깮臾쇨뎔吏묒뿉 湲곗큹븯뿬 씤援 吏묐떒 궡뿉꽌 쑀씪븯怨 븞젙쟻쑝濡 솗씤맆 닔 엳쓬쓣 떆궗븳떎(Fig. 1). 룞떆뿉 씤媛 誘몄깮臾쇨뎔吏묒 궗엺 媛쒖껜 옄떊쓽 쑀쟾泥대 꽆뼱꽌뒗 쑀쟾쟻 蹂씠쓽 옣냼濡쒕룄 蹂 닔 엳怨, 씤媛 誘몄깮臾쇨뎔吏묒쓽 떇蹂 媛뒫븳 젙룄뒗 踰뺤쑀쟾븰怨 쑀쟾泥 젙蹂댁 愿젴씠 엳떎. 궗엺뱾 씤援 吏묐떒쑝濡쒕꽣 援щ퀎맆 닔 엳뒗 룆듅븳 “誘몄깮臾 吏臾(microbial fingerprint)”쓣 媛吏怨 엳怨, 듅엳 옣궡 誘몄깮臾쇨뎔吏묒쓽 寃쎌슦 닔뀈씠 吏궃 썑源뚯룄 媛쒓컻씤留덈떎 룆듅븳 誘몄깮臾쇨뎔吏묒씠 쑀吏릺뼱 媛쒖씤 떇蹂꾩뿉 솢슜맆 닔 엳떎(Yatsunenko et al., 2012).

Fig. 1.

Microbial forensics and human identification. A simplified schema summarizing the forensic microbiome analysis pathway including: collecting samples from various reservoirs of microbiomes (Evidence Collection); the different sequencing targets available to analyze the microbiomes (Massive Parallel Sequencing); and data analysis and human identification (Microbiome Data Analysis and Forensic Human Identification).



궗엺 쑀쟾泥댁뿉 엳뒗 떒씪 돱겢젅삤씠뱶 떎삎꽦(SNPs) 떒湲 씪젴 諛섎났(STRs)怨 留덉갔媛吏濡 媛뺣젰븳 媛쒖씤 떇蹂꾨젰쓣 媛吏怨 엳뼱, 빟 30~80媛쒖쓽 SNPs쓣 遺꾩꽍븯硫 吏援ъ긽쓽 媛쒓컻씤쓣 媛쒖씤 떇蹂꾪븷 닔 엳떎(Lin et al., 2004). 삉븳 SNPs 遺꾩꽍 떊泥댁쟻 듅吏, 吏덈퀝쓽 쐞뿕룄, 씤援 룞깭 넻怨꾪븰, 媛議깅젰 벑뿉 愿븳 媛쒖껜쓽 듅꽦쓣 삁痢≫븯뒗뜲룄 씠슜맆 닔 엳떎(Lowrance and Collins, 2007; Greenbaum et al., 2011; Rodriguez et al., 2013). 궗엺 SNPs媛 媛쒖씤쓽 듅吏뺤쓣 遺꾩꽍븯뒗뜲 궗슜맆 닔 엳뒗 寃껉낵 媛숈씠, 씤媛 誘몄깮臾쇨뎔吏묐룄 떇뒿愿(Wu et al., 2011), 嫄닿컯긽깭(Greenblum et al., 2012), 굹씠 吏由ы븰쟻 쐞移(Yatsunenko et al., 2012) 벑 媛쒖껜쓽 떎뼇븳 듅吏뺢낵 뿰愿릺뼱 엳떎怨 蹂닿퀬릺뿀떎.

씤援 吏묐떒뿉꽌 듅젙 媛쒖씤쓣 떇蹂꾪븷 닔 엳뒗 硫뷀쑀쟾泥 肄붾뱶뒗 떆媛꾩씠 吏궃 뮘뿉룄 떎떆 寃異쒕맆 닔 엳뼱빞 븯怨, 떎닔濡 떎瑜 궗엺쓣 옒紐 떇蹂꾪븯吏 븡븘빞 븳떎. 媛쒓컻씤留덈떎 룆듅븯怨 理쒕濡 븞젙쟻씤 硫뷀쑀쟾泥댁쓽 듅吏뺤쑝濡쒕꽣 硫뷀쑀쟾泥 肄붾뱶瑜 援ъ꽦븯뿬 誘몄깮臾쇨뎔吏묒쓣 踰뺢낵븰쟻 媛쒖씤 떇蹂꾩뿉 씠슜 媛뒫븿씠 젣떆릺뿀떎(Franzosa et al., 2015). Franzosa 벑 媛쒖씤솕맂 硫뷀쑀쟾泥 肄붾뱶瑜 援ъ꽦븷 닔 엳뒗 꽕 媛吏 쑀삎쓽 硫뷀쑀쟾泥 湲곕뒫쓣 怨좊젮뻽뒗뜲, 16S 由щ낫醫 쑀쟾옄 뿼湲곗꽌뿴 寃곗젙踰뺤뿉 쓽븳 operational taxonomic unit (OUT) whole metagenome shotgun (WMS) 뿼湲곗꽌뿴 寃곗젙踰뺤쑝濡 遺꾩꽍맂 꽭洹 諛 怨좎꽭洹 醫낆쓽 뭾遺븿쓣 몢 媛쒖쓽 쑀삎쑝濡 遺꾨쪟援 닔以쑝濡 遺꾩꽍븯떎. 삉븳, MetaPhlAn 뜲씠꽣踰좎씠뒪濡쒕꽣 洹좎쥌 듅씠 留덉빱 쑀쟾옄 諛뺥뀒由ъ븘 李몄“ 쑀쟾泥댁쓽 겙 꽭듃뿉꽌 媛졇삩 kilobase windows (kbwindows) 몢 媛吏 쑀삎쓽 쑀쟾옄 닔以쑝濡쒕룄 遺꾩꽍븯떎(Segata et al., 2012). 씠윭븳 硫뷀쑀쟾泥 肄붾뱶瑜 솢슜빐꽌 듅젙 궗엺怨 뿰愿맂 誘몄깮臾쇨뎔吏묒씠 씤援 吏묐떒쑝濡쒕꽣 媛쒖씤쓣 떇蹂꾪븷 닔 엳뒗 洹좎< 젅踰⑥쓽 떎뼇꽦씠 異⑸텇엳 엳쓬쓣 솗씤븯怨, 떆媛꾩씠 寃쎄낵븯뜑씪룄 誘몄깮臾쇨뎔吏 遺꾩꽍쑝濡 媛쒖씤 떇蹂꾩씠 媛뒫븿쓣 蹂댁뿬二쇱뿀떎(Franzosa et al., 2015).

븸 誘몄깮臾쇨뎔吏(Salivary microbiome)

吏湲덇퉴吏 踰뺢낵븰쟻 媛쒖씤 떇蹂꾩 궗엺 DNA 봽濡쒗뙆씪 遺꾩꽍뿉 쓽議댄븯뿬 솕떎. 洹몃윭굹 궗엺 DNA 利앷굅臾쇱뿉뒗 뿬윭媛吏 젣븳젏뱾씠 엳뒗뜲, 궗嫄 쁽옣뿉꽌뒗 옄쇅꽑, 怨좎뿴, 뒿湲 벑뿉 쓽븳 遺뙣濡 씤빐 DNA媛 돺寃 遺꾪빐(degradation) 릺嫄곕굹 諛쒓껄릺뒗 DNA쓽 뼇씠 洹밸몃웾(low copy number)씠뼱꽌 쟾泥 STR 봽濡쒗뙆씪쓣 솗蹂댄븯湲 뼱졄떎뒗 븳怨꾩젏씠 엳떎. 삉븳 湲곗〈 DNA 봽濡쒗뙆씪 遺꾩꽍쑝濡쒕뒗 씪꽦 뙇뫁씠瑜 援щ퀎븷 닔 뾾떎뒗 臾몄젣젏씠 엳떎. 씠윭븳 븳怨꾩젏쓣 洹밸났븯湲 쐞빐 誘몄깮臾쇨뎔吏 遺꾩꽍씠 븞씠 맆 닔 엳뒗뜲, bacterial DNA뒗 human DNA뿉 蹂대떎 옒 蹂댁쟾릺怨 돺寃 遺꾪빐릺吏 븡怨, 誘몄깮臾쇨뎔吏 遺꾩꽍쓣 넻빐 씪꽦 뙇뫁씠瑜 떇蹂꾪븷 닔 엳떎뒗 옣젏씠 엳떎(Stahringer et al., 2012). 솚寃쎌뿉꽌 諛쒓껄릺뒗 誘몄깮臾쇱쓽 99%媛 諛곗뼇릺吏 븡뒗 寃껋쑝濡 異붿젙릺吏留(Handelsman, 2004), 슜웾 蹂묐젹 뿼湲곗꽌뿴 寃곗젙踰(massive parallel sequencing; MPS)쓣 궗슜븯뿬 誘몄깮臾쇨뎔吏묒쓣 遺꾩꽍븷 닔 엳湲 븣臾몄뿉 솚寃 誘몄깮臾쇱쓽 遺꾨━ 諛곗뼇 뾾씠룄 遺꾩꽍씠 媛뒫븯寃 릺뿀떎.

씠윭븳 슜웾 蹂묐젹 뿼湲곗꽌뿴 寃곗젙踰(MPS)쓣 궗슜븯뿬 븸쓽 誘몄깮臾쇨뎔吏묒쓣 뿰援ы븳 寃곌낵뱾씠 留롮씠 蹂닿퀬릺뿀떎 (Aas et al., 2005; Costello et al., 2009; Lazarevic et al., 2009; Zaura et al., 2009; Lazarevic et al., 2010; Caporaso et al., 2011; Stahringer et al., 2012). MPS뿉 쓽븳 誘몄깮臾쇨뎔吏 遺꾩꽍쓽 二쇱슂 몴쟻 쑀쟾옄뒗 16S rRNA씤뜲 씠寃껋 誘몄깮臾쇱쓽 깮紐 쁽긽 쑀吏뿉 븘닔 遺덇寃고븯怨 紐⑤뱺 誘몄깮臾쇰뱾씠 媛吏怨 엳湲 븣臾몄씠떎(Weisburg et al., 1991; Case et al., 2007). 洹몃윭굹 16S rRNA 몴쟻 쑀쟾옄뒗 쑀쟾泥 궡 씠吏덉꽦(intra-genomic heterogeneity), 紐⑥옄씠겕 쁽긽(mosaicism), 蹂댄렪쟻씤 뿼湲곗꽌뿴 떇蹂 媛믪쓽 遺議 벑쓽 븳怨꾩젏뱾씠 엳떎(Rajendhran and Gunasekaran, 2011). 씠윭븳 븳怨꾩젏쓣 洹밸났븯怨 蹂대떎 셿쟾븳 誘몄깮臾쇨뎔吏묒쓣 遺꾩꽍븯湲 쐞빐 誘몄깮臾쇱뿉꽌 怨좊룄濡 蹂댁쟾릺怨 媛옣 以묒슂븳 슚냼씤 RNA 以묓빀슚냼쓽 beta 븘떒쐞瑜 븫샇솕븯뒗 rpoB 쑀쟾옄瑜 몴쟻쑝濡 궗슜븯湲곕룄 븳떎(Boor et al., 1995). rpoB 쑀쟾옄쓽 珥덈씠 援ъ뿭 誘몄깮臾쇱쓣 醫(species)怨 븘醫(subspecies) 젅踰④퉴吏 룞젙븷 닔 엳떎뒗 옣젏씠 엳떎(Mollet et al., 1997; Adekambi et al., 2003; La Scola et al., 2006).

븸뿉 議댁옱븯뒗 二쇱슂 誘몄깮臾쇰줈 Streptococcus 洹좎쥌(species)쓽 꽌濡 떎瑜 洹좎<(strains)뱾쓣 궗엺 媛吏怨 엳怨, 씠 洹좎<뱾 궗엺留덈떎 룆듅븯寃 議댁옱븳떎(Rudney and Larson, 1994; Wisplinghoff et al., 1999). 씠뱾쓣 遺꾩꽍븯湲 쐞빐꽌 16S rRNA留뚯쓣 몴쟻쑝濡 븷 寃쎌슦 씠윭븳 궗엺留덈떎 룆듅븳 誘몄깮臾 洹좎<뱾쓣 寃異쒗븷 닔 뾾吏留, rpoB 16S rRNA 몢 媛吏 쑀쟾옄瑜 몴쟻쑝濡 븷 寃쎌슦 씠윭븳 誘몄깮臾 洹좎< 紐⑤몢瑜 蹂대떎 떖룄 源딄쾶 룞젙븷 닔 엳떎. 듅엳, 16S rRNA, rpoB1, rpoB2 꽭 媛吏 쑀쟾옄瑜 몴쟻쑝濡 븳 슜웾 蹂묐젹 뿼湲곗꽌뿴 遺꾩꽍씠 洹좎쥌 諛 洹좎< 젅踰④퉴吏 援щ퀎븷 닔 엳뼱 媛쒖씤 떇蹂꾩쓽 媛뒫꽦쓣 젣떆븯떎(Leake et al., 2016).

踰붿즲쁽옣뿉꽌 諛쒓껄릺뒗 젙븸 諛 삁븸 벑怨 떖由 븸 1 mL 떦 빟 5뼲媛쒖쓽 誘몄깮臾쇰뱾씠 엳怨 쟻뼱룄 700媛쒖쓽 꽌濡 떎瑜 誘몄깮臾 洹좎쥌뱾씠 議댁옱븳떎(Paster et al., 2006). 媛 媛쒓컻씤 궗씠뿉 븸 誘몄깮臾쇨뎔吏묒쓽 李⑥씠媛 엳떎뒗 뿰援(Costello et al., 2009; Human Microbiome Project, 2012) 肉먮쭔 븘땲씪, 븸 誘몄깮臾쇨뎔吏묒 닔媛쒖썡 룞븞 븞젙꽦씠 쑀吏릺뒗 寃껋쓣 蹂댁뿬二쇱뿀떎(Lazarevic et al., 2010; Leake et al., 2016). 븸뿉꽌 諛쒓껄릺뒗 怨듯넻쟻씤 誘몄깮臾쇱 Firmicutes, Proteobacteria, Actinobacteria, Bacteroides, Fusobacteria 벑씠 뿀떎(Lazarevic et al., 2009; Lazarevic et al., 2010; Stahringer et al., 2012). 洹몃윭굹 븸 뿭룞쟻쑝濡 쓲瑜대뒗 듅꽦 븣臾몄뿉 븸 誘몄깮臾쇨뎔吏묒뿉뒗 옄뿰쟻씤 蹂씠媛 엳怨 紐뉖챺 誘몄깮臾쇰뱾 빆긽 씪젙븯寃 寃異쒕릺吏 븡쓣 닔룄 엳떎. 씠윭븳 젣븳젏쓣 洹밸났븯湲 쐞빐 떆떛 由щ뱶 20媛 씠븯뒗 遺꾩꽍 쟾뿉 젣嫄고븯怨, 16S rRNA rpoB 쑀쟾옄瑜 룞떆뿉 몴쟻쑝濡 븯뿬 遺꾩꽍븿쑝濡쒖뜥 媛쒖씤 궡 蹂씠瑜 理쒖냼솕븷 닔 엳떎.

Stahringer 벑 12~24꽭 궗씠쓽 씪꽦 뙇뫁씠 븸 誘몄깮臾쇨뎔吏묒씠 떎瑜 뙇怨 鍮꾧탳븯뿬 넻怨꾪븰쟻쑝濡 쑀궗븯吏 븡떎뒗 寃껋쓣 蹂댁뿬二쇱뿀뒗뜲, 씠寃껋 븸 誘몄깮臾쇨뎔吏묒뿉 쑀쟾쟻 쁺뼢씠 嫄곗쓽 뾾怨 솚寃쎌쟻 슂씤(떇뒿愿, 援ш컯 쐞깮긽깭, 씉뿰, 쓬二, 빟 蹂듭슜 뿬遺)뿉 쓽빐 李⑥씠媛 諛쒖깮븯뒗 寃껋쓣 쓽誘명븳떎(Stahringer et al., 2012). 뵲씪꽌 뼱뼡 궗엺쓽 븸 誘몄깮臾쇨뎔吏묒쓣 遺꾩꽍븿쑝濡쒖뜥 洹 궗엺쓽 깮솢뒿愿뿉 愿븳 젙蹂대 異붿젙븯뒗 寃껋씠 媛뒫븷 寃껋씠떎. 삉 떎瑜 솚寃 슂씤쑝濡 빆깮젣 蹂듭슜 뿬遺媛 븸 誘몄깮臾쇨뎔吏묒뿉 쁺뼢쓣 誘몄튌 닔 엳떎. Lazarevic 벑 湲됱꽦 以묒씠뿼 솚옄뿉寃 amoxicillin 移섎즺媛 븸 誘몄깮臾쇨뎔吏묒쓽 議곗꽦 蹂솕뿉 쁺뼢쓣 二쇱뼱 洹좎쥌쓽 뭾遺븿怨 떎뼇꽦뿉 蹂솕瑜 媛졇삱 닔 엳쓬쓣 솗씤븯떎(Lazarevic et al., 2013). 洹몃윭굹 빆깮젣 移섎즺媛 걹굹怨 3二 썑뿉뒗 誘몄깮臾쇨뎔吏 議곗꽦씠 移섎즺 쟾쓽 떎뼇꽦쑝濡 蹂듦맂떎. 洹몃윭誘濡 踰붿즲 쁽옣쓽 븸 利앷굅臾쇱뿉꽌 듅젙 빆깮젣 꽦遺꾩쓽 議댁옱 뿬遺瑜 遺꾩꽍븯뿬 빆깮젣 臾쇱쭏씠 솗씤릺硫, 씠 썑 슜쓽옄濡쒕꽣 븸 李몄“ 떆猷(reference sample)瑜 梨꾩랬븯湲 쟾뿉 媛숈 빆깮젣瑜 蹂듭슜떆궓 썑 븸 떆猷뚮 梨꾩랬븯뿬 誘몄깮臾쇨뎔吏묒쓣 遺꾩꽍븿쑝濡쒖뜥 媛쒖씤 떇蹂꾩쓽 媛뒫꽦쓣 넂씪 닔 엳쓣 寃껋씠떎. 삉븳 븸 利앷굅臾쇱뿉꽌 빆깮젣 꽦遺꾩씠 寃異쒕릺吏 븡븯뒗뜲, 슜쓽옄媛 빆깮젣瑜 蹂듭슜븯怨 엳뒗 寃쎌슦, 빆깮젣 移섎즺媛 걹굹怨 븸 誘몄깮臾쇨뎔吏묒쓽 떎뼇꽦씠 蹂듦맂 씠썑 李몄“ 떆猷뚮 梨꾩랬븷 븘슂꽦씠 엳떎(Leake et al., 2016).

쓬紐 誘몄깮臾쇨뎔吏(Pubic hair microbiome)

꽦룺젰 삉뒗 꽦異뷀뻾 궗嫄댁뿉꽌 뵾빐옄쓽 吏 룄留 벑쓽 利앷굅臾쇱뿉꽌 媛빐옄쓽 젙븸 寃異쒓낵 젙옄쓽 DNA 봽濡쒗뙆씪 遺꾩꽍쓣 넻빐 꽦踰붿즲 닔궗媛 씠猷⑥뼱졇 솕떎. 洹몃윭굹 떒닚 꽦異뷀뻾, 肄섎룘쓽 궗슜 삉뒗 泥댁쇅 궗젙, 臾댁젙옄利앹쓽 寃쎌슦 젙옄媛 諛쒓껄릺吏 븡븘꽌 꽦룺젰쓽 吏곸젒쟻씤 利앷굅瑜 솗蹂댄븯湲 뼱젮슫 寃쎌슦媛 醫낆쥌 엳떎(Bai et al., 2012; Mayntz-Press et al., 2008). Y-STR 寃궗뒗 뵾빐 뿬꽦 DNA媛 留롮씠 議댁옱븯뒗 利앷굅臾쇱뿉꽌 궓꽦 DNA쓽 議댁옱瑜 솗씤븷 닔 엳怨, 꽦援 썑 5~6씪씠 吏굹 빑 DNA 씠븨씠 遺덇뒫븳 寃쎌슦뿉룄 궓꽦 DNA瑜 寃異쒗븷 닔룄 엳떎(Mayntz-Press et al., 2008). 誘명넗肄섎뱶由ъ븘 DNA (mitochondria DNA; tuna)뒗 紐⑤컻뿉 빑 DNA媛 洹밸몃웾 議댁옱븯湲 븣臾몄뿉 빑 DNA 씠븨쑝濡 遺꾩꽍씠 릺吏 븡뒗 寃쎌슦뿉 紐④퀎 삁뿰愿怨꾨 遺꾩꽍븯뒗뜲 븘二 쑀슜븯떎(Pfeiffer et al., 1999; Budowle et al., 2003). Y-STR 遺怨 쑀쟾, mtDNA뒗 紐④퀎 쑀쟾뿉 愿젴맂 궗嫄 遺꾩꽍뿉 궗슜릺吏留, 샎빀 DNA쓽 寃쎌슦 빐꽍뿉 긽떦븳 뼱젮씠 엳떎.

몢紐(scalp hair) 쓬紐(pubic hair)쓽 誘몄깮臾쇨뎔吏묒쓣 遺꾩꽍븯뿬 7紐낆쓽 媛쒖씤뿉꽌 몢紐⑥ 쓬紐⑥쓽 李⑥씠 媛쒖씤 떇蹂꾩씠 媛뒫븯떎怨 蹂닿퀬릺뿀떎(Tridico et al., 2014). 쓬紐⑥쓽 誘몄깮臾쇨뎔吏묒 떆媛꾩씠 吏굹룄 븞젙븯怨 꽦蹂꾩뿉 븳 젙蹂대룄 젣怨듯븷 닔 엳쑝硫, 而ㅽ뵆 궗씠쓽 쓬紐 誘몄깮臾쇨뎔吏묒쓽 쑀궗꽦 而ㅽ뵆씠 룞嫄고븯硫 꽦젒珥됱쓣 넻빐 쓬紐⑥쓽 誘몄깮臾쇨뎔吏묒씠 긽샇 援먰솚맂 寃곌낵씪怨 븯떎(Tridico et al., 2014). 씠윭븳 誘몄깮臾쇨뎔吏묒쓽 봽濡쒗뙆씪 遺꾩꽍 꽦룺젰 궗嫄댁뿉꽌 뵾쓽옄 뵾빐옄 궗씠뿉 뼱뼡 利앷굅臾쇱쓽 쟾떖 뿬遺瑜 寃곗젙븯뒗 깉濡쒖슫 遺꾩꽍룄援щ줈꽌 궗슜맆 닔 엳쓣 寃껋씠떎(Williams and Gibson, 2017). 利앷굅臾쇱쓽 떎뼇븳 蹂닿 議곌굔(깋옣, 깋룞, 뿉깂삱뿉 떞湲, FTA 移대뱶뿉 蹂닿, RNAlater뿉 떞媛 蹂닿) 벑씠 蹂닿 떆媛꾨낫떎 쁺뼢쓣 留롮씠 誘몄튂吏留(Bai et al., 2012; Hale et al., 2015), 몢紐⑥쓽 誘몄깮臾쇨뎔吏 봽濡쒗뙆씪 蹂닿 삩룄 떆媛꾩뿉 쓽빐 겕寃 쁺뼢쓣 諛쏆 븡뒗떎怨 븯떎(Williams and Gibson, 2017). 뵲씪꽌 꽦룺젰 諛 꽦異뷀뻾 궗嫄댁뿉꽌 뵾쓽옄쓽 DNA媛 寃異쒕릺吏 븡쓣 寃쎌슦 쓬紐⑥쓽 誘몄깮臾쇨뎔吏 봽濡쒗뙆씪 遺꾩꽍씠 踰뺢낵븰쟻 議곗궗뿉 湲곗뿬븷 寃껋쑝濡 궗猷뚮맂떎. 떊泥 遺쐞 蹂 二쇱슂 誘몄깮臾 遺꾪룷瑜 씠슜븯뿬 踰뺣몄깮臾쇳븰쟻 遺꾩꽍뿉 솢슜븳 뿰援щ Table 1뿉 젙由ы븯떎(Table 1).

Microorganisms as forensic indicators in the microbial forensics

 Specimens    Microorganisms    References
Saliva Streptococcus spp., Firmicutes spp., Proteobacteria spp., Actinobacteria spp., Bacteroides spp., Fusobacteria spp. Rudney and Larson, 1994; Wisplinghoff et al., 1999; Nakanishi et al., 2009; Lazarevic et al., 2010; Stahringer et al., 2012
Vaginal secretions Lactobacillus crispatus, Lactobacillus gasseri Akutsu et al., 2012; Fleming and Harbison, 2010
Pubic hairs Lactobacillus iners, Prevotella spp., Aggregibacter segnis Tridico et al., 2014


踰뺤쓽븰 吏몴濡쒖꽌 誘몄깮臾(Microbes as forensic indicator)

誘몄깮臾쇱뿉뒗 꽭洹, 怨고뙜씠, 議곕쪟, 湲곗깮異, 諛붿씠윭뒪, 봽由ъ삩 벑쓣 룷븿븳떎. 씠윭븳 誘몄깮臾쇱 吏긽 諛 닔以 솚寃 벑쓽 룄泥섏뿉 뭾遺븯寃 議댁옱븳떎. 룄泥섏뿉 議댁옱븯怨 떎뼇꽦씠 뭾遺븯떎뒗 쓽誘몃뒗 誘몄깮臾쇱씠 踰뺢낵븰쟻 利앷굅濡쒖꽌 쑀슜꽦씠 엳떎뒗 쓽誘몄씠떎(Budowle et al., 2010). 궗엺쓽 泥대궡 泥댄몴硫댁뿉뒗 궗엺쓽 꽭룷蹂대떎 10諛 씠긽 留롮 誘몄깮臾쇱씠 궡怨 엳떎(Turnbaugh et al., 2009). 誘몄깮臾쇱 쓽븰, 깮깭븰, 諛쒗슚 怨쇳븰 遺꾩빞뿉꽌뒗 洹 以묒슂꽦씠 씤吏릺뼱 솕吏留, 踰뺢낵븰옄뱾뿉寃뚮뒗 洹몃━ 以묒슂븯寃 씤떇릺吏 븡븯뿀떎. 洹몃윭굹 2001뀈뿉 誘멸뎅뿉꽌 諛쒖깮븳 911 뀒윭 씠썑 깂洹 븘룷 렪吏遊됲닾瑜 씠슜븳 l깮臾쇳뀒윭 怨듦꺽쑝濡 22紐낆쓽 臾닿퀬븳 떆誘쇰뱾씠 媛먯뿼릺뿀怨, 11紐낆 뵾遺 깂蹂묒뿉 삉 떎瑜 11紐낆 룓깂蹂묒쑝濡 怨좏넻諛쏅떎媛 洹 以 5紐낆씠 궗留앺븯寃 릺硫댁꽌遺꽣 踰뺣몄깮臾쇳븰(microbial forensics)쓽 븘슂꽦씠 젣湲곕릺뿀떎(Jernigan et al., 2002; Read et al., 2002). 슜웾 뿼湲곗꽌뿴 遺꾩꽍踰뺢낵 깮臾 젙蹂댄븰 벑쓽 諛쒖쟾뿉 옒엯뼱 誘몄깮臾쇨뎔吏묒뿉 븳 踰뺢낵븰쟻 遺꾩꽍씠 媛뒫븯寃 릺뿀떎(Li et al., 2012; Segata et al., 2012). 씠젣뒗 誘몄깮臾쇱쓣 룞젙븯湲 쐞빐꽌 뜑 씠긽 諛곗뼇븷 븘슂媛 뾾쑝硫 硫뷀쑀쟾泥댄븰(metagenomics)쑝濡 닔諛 닔泥쒖쥌쓽 誘몄깮臾 듅꽦쓣 遺꾩꽍븷 닔 엳寃 릺뿀떎(Human Microbiome Project, 2012; Yatsunenko et al., 2012). 삉븳, 듅젙 洹좎쥌怨 뵆씪뒪誘몃뱶쓽 뿰뇙 쟾떖쓣 슚쑉쟻쑝濡 뿰援ы븯뒗 寃껋씠 媛뒫븯寃 릺뿀떎(MacConaill and Meyerson, 2008; Nakamura et al., 2008; Pallen and Loman, 2011).

踰뺣몄깮臾쇳븰 誘몄깮臾쇱쓣 씠슜븯뿬 踰뺢낵븰쟻 議곗궗瑜 븯뒗 寃껋쑝濡 듅젙 誘몄깮臾쇨뎔吏묒쓽 議댁옱 뿬遺瑜 넻빐 뼱뼡 媛쒖씤, 쑀湲곗껜, 臾닿린泥, 쐞移 벑쓣 뙆븙븯뒗뜲 궗슜맆 닔 엳寃 릺뿀떎(Harmon, 2005). 誘몄깮臾쇱 臾대え븯寃 삉뒗 븙쓽쟻쑝濡 쟾뙆맆 닔 엳湲 븣臾몄뿉 뵾怨좎씤怨 썝怨좊 듅젙 洹좎쥌怨 뿰寃곗떆耳쒕뒗 寃껋씠 븘슂븷 븣媛 엳떎. 誘몄깮臾 궗 뒫젰쓽 떎뼇꽦쑝濡 씤빐 遺遺꾩쓽 쑀湲곗쭏怨 臾닿린吏덉씠 誘몄깮臾쇱쓽 솢룞쑝濡 蹂寃쎈맆 닔 엳怨 씠寃껋 踰뺢낵븰쟻 利앷굅臾쇱쓽 蹂댁〈뿉룄 쁺뼢쓣 誘몄튌 닔룄 엳떎. 궗嫄 쁽옣쓽 蹂떆泥대뒗 媛먯뿼꽦 誘몄깮臾쇱쓽 洹쇱썝씠 맆 닔 엳湲 븣臾몄뿉 踰뺢낵븰쟻 議곗궗瑜 븯뒗 쁽옣 怨쇳븰닔궗슂썝뱾 빆긽 媛먯뿼쓽 쐞뿕꽦쓣 씤吏빐꽌 깮臾 븞쟾뿉 留뚯쟾쓣 湲고빐빞 븳떎(Malik and Singh, 2011).

泥댁븸 吏몴濡쒖꽌 誘몄깮臾(Microbes as indicators of body fluids)

踰뺢낵븰 利앷굅臾쇱뿉꽌 吏덉븸, 븸, 젙븸, 삁븸怨 媛숈 泥댁븸쓽 寃異쒖쓣 쐞븳 寃궗踰뺣뱾씠 媛쒕컻릺뼱 엳쑝굹 젙솗룄媛 洹몃━ 넂吏 븡 렪씠떎(Gunn, 2018). 씠뱾 湲곗〈쓽 寃궗踰뺣뱾 吏덉븸怨 븸쓣 솗떎븯寃 援щ퀎븷 닔 뾾뒗 寃쎌슦媛 엳뒗뜲, 씠뒗 꽦룺뻾 궗嫄댁씠 씪뼱궃 닚꽌쓽 삉쓽瑜 뮮諛쏆묠븯뒗 以묒슂븳 怨좊젮 궗빆씪 맆 닔 엳湲 븣臾몄뿉 궗嫄댁쓣 諛앺엳뒗뜲 뼱젮쓣 珥덈옒븷 닔 엳떎. 삁瑜 뱾뼱 젙븸怨 吏덉븸 몮떎 뼇꽦씤 寃궗寃곌낵뒗 吏덈궡 궫엯쓽 꽦룺젰쓣 쓽誘명븳떎(Gunn and Pitt, 2012).

吏덈궡 誘몄깮臾쇰Т由(microflora)뒗 떎뼇븳 꽭洹좊뱾濡 援ъ꽦릺뼱 엳吏留 Lactobacillus 洹좎냽뿉 냽븯뒗 紐뉖챺 洹좎쥌씠 슦꽭븯寃 議댁옱븳떎(Jespers et al., 2012). 븳븣 紐⑤뱺 뿬꽦 쑀씪븯怨 룆듅븳 洹좊Т由щ 媛吏꾨떎怨 젣떆릺뿀吏留(Redondo-Lopez et al., 1990), 吏湲덉 洹몃젃吏 븡떎怨 깮媛곷릺怨 엳떎(Lamont et al., 2011). 븯吏留, 吏덈궡 誘몄깮臾쇨뎔吏묒씠 씤醫 吏묐떒 궗씠뿉 李⑥씠媛 엳떎뒗 寃껋씠 諛앺議뚮떎(Ravel et al., 2011). 삉븳 Lactobacillus crispatus濡쒕꽣 쑀쟾옄 留덉빱瑜 寃異쒗븯뒗 寃껋씠 吏덉븸쓣 솗씤븯뒗 떊猶고븷 留뚰븳 몴吏옄媛 맆 닔뒗 엳吏留 떎瑜 洹좎쥌뿉꽌뒗 쟻빀븯吏 븡떎뒗 뿰援ш껐怨쇨 엳떎(Fleming and Harbison, 2010; Akutsu et al., 2012). 諛섎㈃뿉 넀, 궗援щ땲, 쓬寃쎌뿉꽌룄 Lactobacillus crispatus DNA媛 寃異쒕맆 닔 엳湲 븣臾몄뿉 떒씪 洹좎쥌留뚯쑝濡 吏덉븸쓣 솗씤븯뒗 寃껊낫떎 닔留롮 洹좎쥌뱾쓣 寃異쒗븯湲 쐞븳 留덊겕濡쒖뼱젅씠 遺꾩꽍쓣 궗슜븯뒗 寃껋씠 쟻빀븯떎怨 二쇱옣븯떎(Benschop et al., 2012).

援ш컯 궡 궗뒳 븣洹좊뱾쓣 寃異쒗븯뿬 븸쓣 솗씤븯뒗 諛⑸쾿씠 젣떆릺뿀뒗뜲, PCR 湲곕쾿쓣 궗슜븯뿬 Streptococcus salivarius Streptococcus mutans 洹좎쥌뱾쓣 븸뿉꽌뒗 솗씤븯吏留 吏덉븸뿉꽌뒗 씠 몢 洹좎쥌 紐⑤몢 諛쒓껄릺吏 븡븯떎怨 븯떎(Nakanishi et al., 2009). 洹몃윭굹 씠뱾 몢 洹좎쥌씠 鍮꾨줉 궙 鍮꾩쑉濡 議댁옱븯吏留 吏덈궡뿉꽌룄 吏묐씫쓣 삎꽦븯뒗 寃껋쑝濡 諛앺議뚮떎(Rabe et al., 1988).

異⑷꺽뿉 쓽빐 씓肉뚮젮吏 옉 삁쓷怨 닲쓣 궡돱 븣 븿猿 굹삩 삁쓷쓣 援щ퀎븯뒗 寃껋 留ㅼ슦 뼱졄吏留, 씠寃껋 二쎌뼱媛뒗 쇅긽쓣 엯 씗깮옄瑜 룙湲 쐞븳 궗엺쓽 쓽瑜섏뿉 씗깮옄媛 닲쓣 궡돱 븣 븿猿 굹삤뒗 誘몄꽭븳 遺꾨Т 삁쓷씠 臾살쓣 닔 엳怨, 삉븳 媛빐옄媛 룺뻾븯뒗 룞븞뿉룄 鍮꾩듂븳 삁쓷씠 臾살쓣 닔 엳湲 븣臾몄뿉 씠寃껋쓣 援щ퀎븯뒗 寃껋 留ㅼ슦 以묒슂븯떎(James et al., 2005; Gardner, 2012). 닲쓣 궡돱 븣 굹삤뒗 삁쓷 怨듦린諛⑹슱쓣 룷븿븯怨 엳吏留 異⑷꺽뿉 쓽빐 씓肉뚮젮吏 삁쓷뿉꽌뒗 怨듦린諛⑹슱씠 룷븿릺뼱 엳吏 븡떎. 븯吏留 硫댁옱吏덉쓽 쓽瑜섍컳씠 씉닔꽦 몴硫댁뿉 삁븸씠 뼥뼱吏硫 씠寃껋쓣 援щ퀎븯湲 돺吏 븡떎. 닲쓣 궡돱 븣 븿猿 굹삩 삁쓷뿉뒗 븸씠 샎빀릺뼱 엳湲 븣臾몄뿉 븸쓽 꽭洹좊뱾씠 삤뿼릺뼱 엳쓣 닔 엳떎(Donaldson et al., 2010). 援ш컯 궡 誘몄깮臾쇨뎔吏 以묒뿉꽌 궗뒳 븣洹좎씠 슦꽭븳 洹좎쥌씠吏留 솚寃쎌뿉 끂異쒕릺硫 삤옖 湲곌컙 깮議댄븷 닔 뾾떎(Tagg and Ragland 1991). 븯吏留, 씠뱾 洹좎쥌쑝濡쒕꽣쓽 DNA瑜 룷븿븯뒗 삁븸쓣 씉닔꽦 꽟쑀뿉 臾삵엳怨 굹꽌 2~3媛쒖썡 썑뿉룄 援ш컯 궡 궗뒳 븣洹 DNA媛 寃異 媛뒫븯떎뒗 蹂닿퀬媛 엳떎(Donaldson et al., 2010; Power et al., 2010). 옱梨꾧린瑜 븯뒗 룞븞 븿猿 씓肉뚮젮吏 삁쓷쓽 寃쎌슦 븸怨 떎瑜 肄붿뿉 룷븿맂 삉떎瑜 誘몄깮臾쇨뎔吏묒씠 議댁옱븯湲 븣臾몄뿉 뿬윭 媛吏 꽭듃쓽 primers 궗슜씠 븘슂븯떎(Lemon et al., 2010).

踰뺤쓽븰 吏몴濡쒖꽌 넗뼇 誘몄깮臾(Soils microbes as forensic indicator)

넗뼇 뼱뼡 궗엺, 룞臾 삉뒗 떇臾쇱쓣 듅젙 吏由ъ쟻 쐞移섏 뿰寃고븷 닔 엳뒗 쑀슜븳 踰뺤쓽븰쟻 吏몴씠떎(Tibbett and Carter, 2008; Ruffell, 2010; Nikhil et al., 2014). 넗뼇쓽 愿묐Ъ吏덇낵 솕븰쟻 援ъ꽦 꽦遺꾩쓽 遺꾩꽍 븣뿉 뵲씪 긽떦엳 留롮 뼇쓽 넗뼇씠 븘슂븯嫄곕굹 넗뼇 뜲씠꽣踰좎씠뒪媛 뾾뒗 寃쎌슦 젣븳젏씠 맂떎(Zala, 2007).

紐⑤뱺 넗뼇 洹밸룄濡 떎뼇븳 誘몄깮臾쇨뎔吏묒쓣 룷븿븯怨 엳吏留 遺遺꾩쓽 洹좎쥌뱾 떎뿕떎뿉꽌 諛곗뼇릺吏 븡뒗떎. 遺꾩옄깮臾쇳븰 湲곕쾿쓽 諛쒕떖濡 씠윭븳 鍮꾨같뼇 臾몄젣뒗 뜑 씠긽 臾몄젣媛 릺吏 븡怨 踰뺤쓽븰 吏몴濡쒖꽌 넗뼇 誘몄깮臾쇱쓽 옞옱꽦쓣 뿰援ы븯뒗 닔留롮 뿰援ш 엳뿀떎(Giovannoni et al., 1990; Torsvik et al., 1990; Li et al., 2012; Segata et al., 2012; Lee and Eom, 2016). 留먮떒 젣븳 슚냼 湲몄씠 떎삎꽦(terminal restriction fragment length polymorphism; T-RFLP)瑜 솢슜븳 16S ribosomal RNA 쑀쟾옄 뿼湲곗꽌뿴 遺꾩꽍踰뺤씠 궗슜릺嫄곕굹(Smalla et al., 2007; Macdonald et al., 2011; Quaak and Kuiper, 2011), 利앺룺궛臾 湲몄씠 씠吏덉꽦-떎以 以묓빀슚냼 뿰뇙諛섏쓳(amplicon length heterogeneity-polymerase chain reaction; ALH-PCR) 湲곕쾿씠 궗슜릺뿀떎(Moreno et al., 2006; Moreno et al., 2011). 넗뼇 誘몄깮臾쇱쓽 뭾遺븿 留ㅼ슦 쟻 뼇쓽 넗뼇 利앷굅臾쇰쭔 븘슂븯떎뒗 寃껋쓣 쓽誘명븯怨, 遺꾩꽍 湲곕쾿뱾씠 긽쟻쑝濡 졃븯怨 옄룞솕 맆 닔 엳떎뒗 옣젏씠 엳떎. 洹몃윭굹 넗뼇 誘몄깮臾쇱쓣 遺꾩꽍븯뒗 寃껋 吏㏃ 嫄곕━쓽 吏뿭怨 怨꾩젅뿉 嫄몄퀜 넗뼇 誘몄깮臾쇨뎔吏묒뿉 二쇱슂 蹂솕媛 엳쓣 寃쎌슦 씠윴 遺꾩꽍踰뺤쓽 떊猶곗꽦 쁺뼢쓣 諛쏆쓣 닔 엳떎뒗 븳怨꾩젏씠 엳떎(Ritz et al., 2009). 씠윭븳 븳怨꾩젏쓣 洹밸났븯湲 쐞빐 吏덉냼 怨좎젙 洹쇰쪟洹 (rhizobia) 媛숈 넗뼇 誘몄깮臾쇱쓣 몴쟻쑝濡 븯젮뒗 뿰援ш 떆룄릺뿀떎(Lenz and Foran, 2010).

誘몄깮臾 吏臾몄쓣 씠슜븳 媛쒖씤 떇蹂

긽떦엳 삤옖 湲곌컙씠 吏궗쓬뿉룄 遺덇뎄븯怨 誘몄깮臾 吏臾(microbial fingerprints)쑝濡 겙 씤援 吏묐떒뿉꽌 듅젙 媛쒖씤쓣 떇蹂꾪븷 닔 엳뒗 媛뒫꽦씠 蹂닿퀬릺뿀떎(Franzosa et al., 2015; Leake et al., 2016). 뵾遺 諛뺥뀒由ъ븘 봽濡쒗뙆씪씠 닔媛쒖썡씠 吏궃 썑뿉룄 듅젙븳 媛쒖씤怨 洹멸쾬쓣 젒珥됲뻽뜕 臾쇱껜 궗씠쓽 뿰愿꽦쓣 諛앺엳뒗뜲 궗슜맆 닔룄 엳떎(Wilkins et al., 2017). 듅젙 誘몄깮臾쇨뎔吏 떆洹몃꼸뿉 湲곗큹븯뿬 솕옣떎, 臾몄넀옟씠, 솕옣떎 諛붾떏怨 媛숈씠 꽌濡 떎瑜 긽뿉꽌 궗엺쓽 옣愿, 뵾遺 諛 넗뼇 꽭洹 봽濡쒗뙆씪쓽 듅씠 깮臾쇱由ы븰쟻 뙣꽩쓣 젙쓽븯뒗 寃껊룄 媛뒫븯떎(Flores et al., 2011). 듅젙 떊泥 遺쐞뿉 쓽븳 뼱뼡 궗엺쓽 誘몄깮臾쇨뎔吏 媛쒕퀎솕뒗 踰뺢낵븰쟻 닔궗 利앷굅濡 쑀슜븷 닔 엳떎. 삁瑜 뱾뼱, 씗깮옄뿉寃 뵾쓽옄뿉 쓽빐 궓寃⑥쭊 誘몄깮臾쇨뎔吏묒 듅젙 떊泥 遺쐞 꽦룺젰 踰붿즲쓽 뿰愿꽦쓣 諛앺옄 닔 엳寃 븳떎. DNA 利앷굅媛 뾾뒗 寃쎌슦, 誘몄깮臾 吏臾몄 듅젙 떊泥 遺쐞 踰붿즲쓽 뿰愿꽦肉먮쭔 븘땲씪 듅젙 媛쒖씤쓽 踰붿즲 愿젴꽦쓣 諛앺엳뒗뜲룄 쑀슜븯떎.

媛쒖씤 떇蹂 紐⑹쟻쓽 誘몄깮臾 吏臾몄쓽 뿭웾 誘쇱” 吏묐떒쓣 異붿젙븯뒗뜲 源뚯 쟻슜맆 닔룄 엳떎. 誘명넗肄섎뱶由ъ븘 DNA (mtDNA) 씪諛곗껜삎怨 誘명넗肄섎뱶由ъ븘 떒씪 돱겢젅삤씠뱶 떎삎꽦(mtSNPs)쓣 寃고빀떆궓 뿰援щ뒗 룞씪븳 遺꾨 諛 吏 깦뵆濡쒕꽣쓽 誘몄깮臾쇨뎔吏 봽濡쒗뙆씪留 遺꾩꽍怨 븿猿 誘몄깮臾쇨뎔吏 뙣꽩씠 닕二쇱쓽 議곗긽 쑀쟾泥 諛곌꼍怨 뿰愿맆 닔 엳쓬쓣 蹂댁뿬二쇱뿀떎(Ma et al., 2014). 씠윭븳 뿰援щ뱾 踰뺤쓽븰 愿젴 떆猷뚯쓽 誘몄깮臾 諛 떖吏뼱 鍮-誘몄깮臾 DNA 吏臾몃룄 떒씪 媛쒖껜 諛 븯쐞 媛쒖껜瑜 젙솗븯寃 援щ퀎븷 닔 엳쑝硫 옞옱쟻씤 臾쇰━쟻 利앷굅쓽 異쒖쿂(긽) 뿰寃고븷 닔 엳쓬쓣 젣떆븯뒗 寃껋씠떎. 踰뺢낵븰 臾명뿄뱾씠 誘몄깮臾 쑀옒 뜲씠꽣(Damann et al., 2015), 듅쑀쓽 떆洹몃땲泥(Can et al., 2014) 諛 踰뺤쓽븰 吏몴(Alan and Sarah, 2012)쓽 옞옱쟻씤 쑀슜꽦뿉 愿빐 蹂닿퀬븯怨 엳떎. 踰뺤쓽븰 吏몴쓽 삁濡쒕뒗 떊썝 솗씤, 異쒖떊 援媛 諛 궗留 떆媛 異붿젙 벑씠 엳떎.

理쒓렐 Schmedes 벑 踰뺢낵븰쟻 媛쒖씤 떇蹂꾩쓣 쐞빐 뵾遺 誘몄깮臾쇨뎔吏묒쑝濡쒕꽣 怨꾪넻 遺꾧린 듅씠 留덉빱쓽 뿼湲곗꽌뿴쓣 遺꾩꽍븯뿬 286媛쒖쓽 誘몄깮臾 怨, 냽, 醫 諛 븘醫 닔以쓽 留덉빱濡 援ъ꽦맂 hidSkinPlex瑜 媛쒕컻븯뿬 94% 젙솗룄濡 媛쒖씤 떇蹂꾩씠 媛뒫븯硫, 룊洹 86% 젙솗룄濡 듅젙 떊泥 遺쐞瑜 삁痢≫븷 닔 엳쓬쓣 蹂닿퀬븯떎(Schmedes et al., 2018). 삉븳 洹몃뱾 hidSkinPlex뿉꽌 Propionibacterium acnes, Propionibacterium granulosum, Propionibacterium humerusii, Propionibacterium phage P1 1, Propionibacterium phage P100 A, Propionibacterium phage PAD20, Propionibacterium phage PAS50, Propionibacterium sp. 434 HC2, Propionibacterium sp. 5 U 42AFAA, Propionibacterium sp. HGH0353, Propionibacterium sp. KPL1844, Propionibacterium sp. KPL1854, Propionibacterium sp. KPL2008, Rothia dentocariosa, Corynebacterium jeikeium, Corynebacterium pseudogenitalium, Corynebacterium tuberculostearicum, Corynebactrium sp. HFH0082, Corynebactrium sp. KPL1818, Corynebactrium sp. KPL1824 벑쓽 誘몄깮臾 留덉빱瑜 遺꾩꽍븯뿬 넀뿉꽌뒗 95.8~100%(룊洹 97.9%, 몴以렪李 2.1%), 諛쒖뿉꽌뒗 54.2~83.2%(룊洹 73.22%, 몴以렪李 7.5%), 蹂듭옣堉 옄猷⑦뵾遺뿉꽌뒗 70.8~95.8%(룊洹 86.3%, 몴以렪李 6.9%) 젙솗룄濡 媛곴컖쓽 떊泥 遺쐞瑜 援щ텇븷 닔 엳뿀떎(Table 2).

Microbial markers present on the hand, foot, manubrium for body site classification

 Body site   Microbial markers Accuracy (%) References
Hand Propionibacterium acnes 95.8~100% Schmedes et al., 2018
Propionibacterium granulosum
Propionibacterium humerusii
Propionibacterium phage P1 1

Propionibacterium phage P100 A
Foot Propionibacterium phage PAD20 54.2~83.2% Schmedes et al., 2018
Propionibacterium phage PAS50
Propionibacterium sp. 434 HC2
Propionibacterium sp. 5 U 42AFAA

Propionibacterium sp. HGH0353
Manubrium Propionibacterium sp. KPL1844 70.8~95.8% Schmedes et al., 2018
Propionibacterium sp. KPL1854
Propionibacterium sp. KPL2008
Rothia dentocariosa
Corynebacterium jeikeium
Corynebacterium pseudogenitalium
Corynebacterium tuberculostearicum
Corynebactrium sp. HFH0082
Corynebactrium sp. KPL1818
Corynebactrium sp. KPL1824

寃 濡

궗엺쓽 誘몄깮臾쇨뎔吏묒 嫄닿컯, 떊泥 궗, 硫댁뿭諛섏쓳뿉꽌 以묒슂븳 뿭븷쓣 븯怨(Cho and Blaser, 2012), 씤泥댁쓽 쑀쟾쟻 援ъ꽦뿉룄 겕寃 湲곗뿬븳떎. 씤泥댁뿉 誘몄깮臾쇨뎔吏묒쓽 吏묐씫 삎꽦 異쒖깮怨 븿猿 떆옉릺뼱 꽦옣븯뒗 룞븞 吏냽쟻쑝濡 蹂솕븯寃 맂떎(Capone et al., 2011; Bokulich et al., 2016). 媛쒓컻씤 留덈떎 룆듅븳 쑀쟾쟻 諛 솚寃쎌쟻 슂냼뒗 誘몄깮臾쇨뎔吏묒쓣 삎꽦븯뒗뜲 룄쓣 二쇰ʼn, 뵲씪꽌 誘몄깮臾쇨뎔吏묒 媛쒓컻씤留덈떎 쑀씪븷 닔 엳떎. 떆媛꾩씠 吏궓뿉 뵲씪 븞젙솕맆 닔 엳뒗 洹좎< 듅씠 꽌紐낃낵 媛숈 媛쒖씤 誘몄깮臾쇱쓽 듅吏뺤 誘몄깮臾쇨뎔吏 듅꽦쓣 옞옱쟻쑝濡 踰뺤쓽븰 媛쒖씤 떇蹂꾩뿉 쟻슜 媛뒫븯寃 븳떎(Franzosa et al., 2015; Oh et al., 2016; Brandwein et al., 2018).

洹몃윭굹, 踰뺣몄깮臾쇳븰쟻 遺꾩꽍 湲곕쾿쓽 媛쒖씤 떇蹂꾩뿉 쟻슜 븘吏 珥덇린 떒怨꾩씠怨, 씤醫 吏묐떒媛 誘몄깮臾쇨뎔吏묒쓽 李⑥씠媛 엳湲 븯吏留 뼱뼡 媛쒖씤쓽 誘몄깮臾쇨뎔吏묒씠 쑀쟾(Turnbaugh et al., 2009), 굹씠 諛 嫄곗< 옣냼(Yatsunenko et al., 2012), 媛議(Song et al., 2013), 븷셿룞臾(Misic et al., 2015), 떇뒿愿(David et al., 2014), 씉뿰 뿬遺(Bizzarro et al., 2013; Moon et al., 2015), 궎뒪(Kort et al., 2014), 嫄닿컯(Casarin et al., 2013) 諛 쐞깮(Fierer et al., 2008) 긽깭 벑뿉 쓽빐 떎뼇븷 닔 엳湲 븣臾몄뿉 蹂대떎 留롮 젙蹂대 븘슂濡 븳떎. 삉븳 媛쒖씤 떇蹂꾧낵 吏由ы븰쟻 쐞移 異붿젙쓽 踰뺤쓽븰쟻 吏몴濡쒖꽌 誘몄깮臾쇨뎔吏묒쓽 쑀슚꽦뿉 愿븳 뿰援ш 븘슂븯떎. 踰뺣몄깮臾쇳븰 遺꾩빞뒗 깮臾 踰붿즲 諛 깮臾 뀒윭 벑쓽 쐞빐꽦 誘몄깮臾 遺꾩꽍뿉 珥덉젏쓣 몢뿀떎媛 씠젣뒗 떎뼇븳 誘몄깮臾쇨뎔吏 쓳슜 遺꾩빞濡 솗옣릺뿀쑝硫(Schmedes et al., 2016), 뼢썑 뿰援ъ뿉꽌뒗 誘몄깮臾쇨뎔吏 봽濡쒗뙆씪留곸씠 踰뺢낵븰쟻 議곗궗 諛⑸쾿쑝濡 쟻洹뱀쟻쑝濡 궗슜릺湲 씠쟾뿉 쑀슚꽦 솗씤 湲곗쓣 솗由쏀븯怨, 誘몄깮臾쇨뎔吏 뜲씠꽣瑜 蹂대떎 젙솗븯寃 빐꽍븯怨 몴以쓣 솗由쏀븯湲 쐞븳 諛⑸쾿 媛쒕컻 諛 깉濡쒖슫 넻怨 紐⑤뜽쓣 怨좊젮빐빞 븳떎.

誘몄깮臾쇨뎔吏 봽濡쒗뙆씪 遺꾩꽍뿉뒗 쁽옱 2媛吏 二쇱슂 諛⑸쾿씠 엳뒗뜲, 媛옣 씪諛섏쟻쑝濡 궗슜릺뼱삩 諛⑸쾿 16S ribosomal RNA 떒씪 留덉빱쓽 뿼湲곗꽌뿴 遺꾩꽍踰뺤씠뿀쑝굹 洹쇰옒뿉뒗 쟾泥 誘몄깮臾쇨뎔吏(whole microbiome)쓽 shotgun sequencing 湲곕쾿씠 꼸由 궗슜릺怨 엳떎(Haft and Tovchigrechko, 2012). 媛먯뿼꽦 吏덈퀝 吏꾨떒쓣 쐞빐꽌뒗 蹂묒썝洹좎쓽 듅젙 洹좎쥌쓣 룞젙븯怨 쑀쟾쟻 蹂씠 洹좎<쓽 議댁옱 벑쓣 寃궗븯吏留, 踰뺣몄깮臾쇳븰 遺꾩꽍 湲곕쾿 誘몄깮臾쇨뎔吏묒쓽 봽濡쒗뙆씪쓣 議곗궗븯寃 맂떎. 媛옣 쑀씡븳 誘몄깮臾쇨뎔吏 留덉빱 뙣꼸쓣 궗슜븯뿬 몴쟻솕맂 利앷퇏 諛 뿼湲곗꽌뿴 寃곗젙 遺꾩꽍踰뺤 誘몄깮臾쇨뎔吏 봽濡쒗뙆씪留곸쓣 넻빐 踰뺤쓽븰쟻 媛쒖씤 떇蹂꾩쓣 쐞븳 씠긽쟻씤 넄猷⑥뀡쓣 젣怨듯븯뿬 븞젙쟻씤 젙蹂 궗씠듃뿉꽌 넂 쟻슜 踰붿쐞瑜 뼸쓣 닔 엳쓣 寃껋씠떎.

踰뺤젙뿉꽌 踰뺣몄깮臾쇳븰 利앷굅媛 梨꾪깮릺젮硫, 誘몄깮臾 떆猷뚯쓽 梨꾩랬, 遺꾩꽍 諛 寃곌낵 빐꽍쓣 쐞븳 몴以 옉뾽 젅李 (standard operating procedures; SOPs)쓽 媛쒕컻씠 븘슂븯떎. 삉븳 꽭洹좏븰쟻 遺꾩꽍寃곌낵쓽 젙솗꽦쓣 利앸챸븯湲 쐞빐 吏꾨떒寃궗 떎뿕떎뿉꽌 梨꾪깮븯怨 엳뒗 젙룄 愿由(QC) 뭹吏 蹂댁쬆(QA)룄 븘슂븷 寃껋씠떎(Pitt and Cunningham, 2009). 踰뺤썝뿉꽌 踰뺣몄깮臾쇳븰 利앷굅쓽 뿀슜 媛뒫꽦 愿젴 援媛쓽 踰뺤쟻 뿉 뵲瑜 寃껋씠떎. 삁瑜 뱾뼱, 誘멸뎅뿉꽌뒗 ‘Daubert 몴以’씠 踰뺤젙뿉꽌 怨쇳븰쟻 利앷굅쓽 뿀슜 媛뒫꽦쓣 愿由ы븳떎. Daubert 몴以쓣 異⑹”떆궎湲 쐞빐꽌뒗 븣젮吏 삤瑜섏쑉쓣 媛뽯뒗 몴以솕릺怨 寃利앸맂 봽濡쒗넗肄쒖쓣 궗슜븯뿬 利앷굅臾쇱쓣 梨꾩랬븯뿬빞 븳떎. 삉븳 젅李⑤뒗 룞猷 룊媛瑜 嫄곗튇 썑뿉 異쒗뙋릺뼱빞 븯硫 쟻젅븳 怨쇳븰 怨듬룞泥닿 ‘씪諛섏쟻쑝濡 諛쏆븘뱾씪 닔 엳뒗’ 寃껋쑝濡 媛꾩<릺뼱빞 븳떎(Harmon, 2005).

踰뺣몄깮臾쇳븰쟻 遺꾩꽍 湲곕쾿쓣 怨쇳븰닔궗 쁽옣뿉 쟻슜븯湲 쟾뿉 긽떦븳 쑀슚꽦 룊媛 삤옖 湲곌컙쓽 媛쒖꽑 怨쇱젙쓣 븘슂濡 븳떎. 삉븳 踰뺣몄깮臾쇳븰쟻 遺꾩꽍 湲곕쾿씠 湲곗〈쓽 몴以솕릺뼱 꼸由 궗슜릺怨 엳뒗 怨쇳븰닔궗 湲곕쾿蹂대떎 뼹留덈굹 젙솗븳吏 鍮꾧탳븯뒗 뿰援ш 븘슂븯硫, 뵾遺 뿰愿 誘몄깮臾쇨뎔吏묒쓽 愿묐쾾쐞븳 쑀쟾泥 遺꾩꽍 뜲씠꽣踰좎씠뒪 諛 利앷굅臾쇱뿉꽌 異⑸텇엳 留롮 닔쓽 誘몄깮臾쇨뎔吏 遺꾩꽍, 洹몃━怨 떒닚 젒珥 利앷굅臾쇱뿉꽌 誘몄깮臾쇨뎔吏 遺꾩꽍留뚯쑝濡쒕룄 媛쒖씤 떇蹂꾩씠 媛뒫븯룄濡 異붽쟻씤 뿰援ш 븘슂븯떎. 踰뺣몄깮臾쇳븰 떎뼇븳 踰붿즲 닔궗뿉 뾼泥궃 옞옱젰쓣 젣怨듯븯吏留, 빀由ъ쟻씤 異⑸텇븳 떆媛 媛꾧꺽쑝濡 닔吏묐맂 깦뵆뿉 빐 넂 遺꾨쪟 젙솗룄瑜 깮꽦븯뒗 뵾遺 誘몄깮臾쇨뎔吏묒쓽 븞젙맂 듅吏뺤쓣 솗씤븯뒗 뿰援ш 븘슂븯떎. 誘몄깮臾쇨뎔吏묒쓽 봽濡쒗뙆씪 遺꾩꽍쓣 踰뺢낵븰쟻쑝濡 쟻슜븯뒗 옞옱꽦쓣 諛앺궡怨 씠瑜 떎쁽븯湲 쐞빐꽌뒗 留롮 湲곗큹 뿰援ш 異붽쟻쑝濡 븘슂븷 寃껋쑝濡 궗猷뚮맂떎. 긽湲고븳 諛붿 媛숈씠 踰뺣몄깮臾쇳븰쟻 遺꾩꽍湲곕쾿 븘吏곴퉴吏 異붽쟻씤 뿰援ъ 쑀슚꽦 룊媛媛 븘슂븿뿉룄 遺덇뎄븯怨, 踰붿즲쓽 吏뒫솕 泥⑤떒솕濡 씤빐 踰붿씤뱾씠 뜑 씠긽 궗嫄 쁽옣뿉 吏臾몃퓧留 븘땲씪 DNA 떆猷뚭 맆 留뚰븳 삁븸, 븸, 젙븸, 湲고 泥댁븸 벑쓣 궓湲곗 븡쑝젮뒗 긽솴뿉꽌 誘몄꽭 利앷굅臾쇱씠 맆 닔 엳뒗 誘몄깮臾쇱쓽 踰뺣몄깮臾쇳븰쟻 遺꾩꽍 븘닔 遺덇寃고븯떎. 誘명빐寃 怨쇱젣쓽 諛⑹ 씤沅뚮낫옣, 利앷굅옱뙋二쇱쓽뿉 뵲瑜 빀由ъ쟻 쓽떖쓽 뿬吏媛 뾾뒗 利앷굅 遺꾩꽍쓣 쐞븳 踰뺣몄깮臾쇳븰쓽 以묒슂꽦怨 븘슂꽦 利앸맆 寃껋쑝濡 궗猷뚮맂떎.

ACKNOWLEDGEMENT

This research was supported by the Soonchunhyang University Research Fund and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032960).

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

References
  1. Aas JA, Paster BJ, Stokes LN, Olsen I, and Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005;43:5721-5732.
    Pubmed KoreaMed CrossRef
  2. Adekambi T, Colson P, and Drancourt M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol 2003;41:5699-5708.
    Pubmed KoreaMed CrossRef
  3. Ahn J, Yang L, Paster BJ, Ganly I, Morris L, Pei Z, and Hayes RB. Oral microbiome profiles: 16S rRNA pyrosequencing and microarray assay comparison. PLoS One 2011;6:e22788.
    Pubmed KoreaMed CrossRef
  4. Akutsu T, Motani H, Watanabe K, Iwase H, and Sakurada K. Detection of bacterial 16S ribosomal RNA genes for forensic identification of vaginal fluid. Leg Med (Tokyo) 2012;14:160-162.
    Pubmed CrossRef
  5. Alan G, and Sarah JP. Microbes as forensic indicators. Trop Biomed 2012;29:311-330.
    Pubmed
  6. Bai G, Gajer P, Nandy M, Ma B, Yang H, Sakamoto J, Blanchard MH, Ravel J, and Brotman RM. Comparison of storage conditions for human vaginal microbiome studies. PLoS One 2012;7:e36934.
    Pubmed KoreaMed CrossRef
  7. Benschop CC, Quaak FC, Boon ME, Sijen T, and Kuiper I. Vaginal microbial flora analysis by next generation sequencing and microarrays;can microbes indicate vaginal origin in a forensic context?. Int J Legal Med 2012;126:303-310.
    Pubmed CrossRef
  8. Bizzarro S, Loos BG, Laine ML, Crielaard W, and Zaura E. Subgingival microbiome in smokers and non-smokers in periodontitis: An exploratory study using traditional targeted techniques and a next-generation sequencing. J Clin Periodontol 2013;40:483-492.
    Pubmed CrossRef
  9. Blaser MJ. Harnessing the power of the human microbiome. Proc Natl Acad Sci U S A 2010;107:6125-6126.
    Pubmed KoreaMed CrossRef
  10. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, A DL, Wu F, Perez-Perez GI, Chen Y, Schweizer W, Zheng X, Contreras M, Dominguez-Bello MG, and Blaser MJ. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 2016;8:343ra382.
    Pubmed KoreaMed CrossRef
  11. Boor KJ, Duncan ML, and Price CW. Genetic and transcriptional organization of the region encoding the beta subunit of Bacillus subtilis RNA polymerase. J Biol Chem 1995;270:20329-20336.
    Pubmed CrossRef
  12. Borgula LM, Robinson FG, Rahimi M, Chew KE, Birchmeier KR, Owens SG, Kieser JA, and Tompkins GR. Isolation and genotypic comparison of oral streptococci from experimental bitemarks. J Forensic Odontostomatol 2003;21:23-30.
    Pubmed
  13. Brandwein M, Fuks G, Israel A, Al-Ashhab A, Nejman D, Straussman R, Hodak E, Harari M, Steinberg D, Bentwich Z, Shental N, and Meshner S. Temporal stability of the healthy human skin microbiome following dead sea climatotherapy. Acta Derm Venereol 2018;98:256-261.
    Pubmed CrossRef
  14. Brooke JS, Annand JW, Hammer A, Dembkowski K, and Shulman ST. Investigation of bacterial pathogens on 70 frequently used environmental surfaces in a large urban U.S. university. J Environ Health 2009;71:17-22.
    Pubmed
  15. Brown KA, Elliot TR, Rogers AH, and Thonard JC. The survival of oral streptococci on human skin and its implication in bitemark investigation. Forensic Sci Int 1984;26:193-197.
    Pubmed CrossRef
  16. Budowle B, Allard MW, Wilson MR, and Chakraborty R. Forensics and mitochondrial DNA: Applications, debates, and foundations. Annu Rev Genomics Hum Genet 2003;4:119-141.
    Pubmed CrossRef
  17. Budowle B, Schutzer S, Breeze R, Keim P, and Morse S. Microbial Forensic. Amsterdam, Holland: Elsevier; 2010 p. 561-580.
  18. Can I, Javan GT, Pozhitkov AE, and Noble PA. Distinctive thanatomicrobiome signatures found in the blood and internal organs of humans. J Microbiol Methods 2014;106:1-7.
    Pubmed CrossRef
  19. Capone KA, Dowd SE, Stamatas GN, and Nikolovski J. Diversity of the human skin microbiome early in life. J Invest Dermatol 2011;131:2026-2032.
    Pubmed KoreaMed CrossRef
  20. Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, Knights D, Gajer P, Ravel J, Fierer N, Gordon JI, and Knight R. Moving pictures of the human microbiome. Genome Biol 2011;12:R50.
    Pubmed KoreaMed CrossRef
  21. Casarin RC, Barbagallo A, Meulman T, Santos VR, Sallum EA, Nociti FH, Duarte PM, Casati MZ, and Goncalves RB. Subgingival biodiversity in subjects with uncontrolled type-2 diabetes and chronic periodontitis. J Periodontal Res 2013;48:30-36.
    Pubmed CrossRef
  22. Case RJ, Boucher Y, Dahllof I, Holmstrom C, Doolittle WF, and Kjelleberg S. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 2007;73:278-288.
    Pubmed KoreaMed CrossRef
  23. Cho I, and Blaser MJ. The human microbiome: At the interface of health and disease. Nat Rev Genet 2012;13:260-270.
    Pubmed KoreaMed CrossRef
  24. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, and Knight R. Bacterial community variation in human body habitats across space and time. Science 2009;326:1694-1697.
    Pubmed KoreaMed CrossRef
  25. Damann FE, Williams DE, and Layton AC. Potential use of bacterial community succession in decaying human bone for estimating postmortem interval. J Forensic Sci 2015;60:844-850.
    Pubmed CrossRef
  26. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, and Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505:559-563.
    Pubmed KoreaMed CrossRef
  27. Donaldson AE, Taylor MC, Cordiner SJ, and Lamont IL. Using oral microbial DNA analysis to identify expirated bloodspatter. Int J Legal Med 2010;124:569-576.
    Pubmed CrossRef
  28. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, Rosenbaum M, and Gordon JI. The long-term stability of the human gut microbiota. Science 2013;341:1237439.
    Pubmed KoreaMed CrossRef
  29. Fierer N, Hamady M, Lauber CL, and Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A 2008;105:17994-17999.
    Pubmed KoreaMed CrossRef
  30. Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, and Knight R. Forensic identification using skin bacterial communities. Proc Natl Acad Sci U S A 2010;107:6477-6481.
    Pubmed KoreaMed CrossRef
  31. Fleming RI, and Harbison S. The use of bacteria for the identification of vaginal secretions. Forensic Sci Int Genet 2010;4:311-315.
    Pubmed CrossRef
  32. Flores GE, Bates ST, Knights D, Lauber CL, Stombaugh J, Knight R, and Fierer N. Microbial biogeography of public restroom surfaces. PLoS One 2011;6:e28132.
    Pubmed KoreaMed CrossRef
  33. Franzosa EA, Huang K, Meadow JF, Gevers D, Lemon KP, Bohannan BJ, and Huttenhower C. Identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci U S A 2015;112:E2930-2938.
    Pubmed KoreaMed CrossRef
  34. Fredricks DN. Microbial ecology of human skin in health and disease. J Investig Dermatol Symp Proc 2001;6:167-169.
    Pubmed CrossRef
  35. Gardner RM. Practical crime scene processing and investigation. Boca Raton, FL: CRC Press; 2012.
  36. Giovannoni SJ, Britschgi TB, Moyer CL, and Field KG. Genetic diversity in Sargasso Sea bacterioplankton. Nature 1990;345:60-63.
    Pubmed CrossRef
  37. Greenbaum D, Sboner A, Mu XJ, and Gerstein M. Genomics and privacy: Implications of the new reality of closed data for the field. PLoS Comput Biol 2011;7:e1002278.
    Pubmed KoreaMed CrossRef
  38. Greenblum S, Turnbaugh PJ, and Borenstein E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 2012;109:594-599.
    Pubmed KoreaMed CrossRef
  39. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Program NCS, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, and Segre JA. Topographical and temporal diversity of the human skin microbiome. Science 2009;324:1190-1192.
    Pubmed KoreaMed CrossRef
  40. Gunn A. Essential forensic biology. Hoboken, NJ: John Wiley &Sons; 2018.
  41. Gunn A, and Pitt SJ. Microbes as forensic indicators. Trop Biomed 2012;29:311-330.
  42. Haft DH, and Tovchigrechko A. High-speed microbial community profiling. Nat Methods 2012;9:793-794.
    Pubmed CrossRef
  43. Hale VL, Tan CL, Knight R, and Amato KR. Effect of preservation method on spider monkey (Ateles geoffroyi) fecal microbiota over 8 weeks. J Microbiol Methods 2015;113:16-26.
    Pubmed CrossRef
  44. Handelsman J. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 2004;68:669-685.
    Pubmed KoreaMed CrossRef
  45. Harmon R. Microbial forensics. Amsterdam; Boston: Elsevier/Academic Press; 2005 p. 382-392.
  46. Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207-214.
    Pubmed KoreaMed CrossRef
  47. James SH, Kish PE, and Sutton TP. Principles of bloodstain pattern analysis: Theory and practice. Boca Raton, Fla: CRC; 2005.
    CrossRef
  48. Jernigan DB, Raghunathan PL, Bell BP, Brechner R, Bresnitz EA, Butler JC, Cetron M, Cohen M, Doyle T, Fischer M, Greene C, Griffith KS, Guarner J, Hadler JL, Hayslett JA, Meyer R, Petersen LR, Phillips M, Pinner R, and Popovic T et al. Investigation of bioterrorism-related anthrax, United States, 2001: Epidemiologic findings. Emerg Infect Dis 2002;8:1019-1028.
    Pubmed KoreaMed CrossRef
  49. Jespers V, Menten J, Smet H, Poradosu S, Abdellati S, Verhelst R, Hardy L, Buve A, and Crucitti T. Quantification of bacterial species of the vaginal microbiome in different groups of women, using nucleic acid amplification tests. BMC Microbiol 2012;12:83.
    Pubmed KoreaMed CrossRef
  50. Kort R, Caspers M, van de Graaf A, van Egmond W, Keijser B, and Roeselers G. Shaping the oral microbiota through intimate kissing. Microbiome 2014;2:41.
    Pubmed KoreaMed CrossRef
  51. La Scola B, Bui LT, Baranton G, Khamis A, and Raoult D. Partial rpoB gene sequencing for identification of Leptospira species. FEMS Microbiol Lett 2006;263:142-147.
    Pubmed CrossRef
  52. Lamont RF, Sobel JD, Akins RA, Hassan SS, Chaiworapongsa T, Kusanovic JP, and Romero R. The vaginal microbiome: New information about genital tract flora using molecular based techniques. BJOG 2011;118:533-549.
    Pubmed KoreaMed CrossRef
  53. Lazarevic V, Manzano S, Gaia N, Girard M, Whiteson K, Hibbs J, Francois P, Gervaix A, and Schrenzel J. Effects of amoxicillin treatment on the salivary microbiota in children with acute otitis media. Clin Microbiol Infect 2013;19:E335-342.
    Pubmed CrossRef
  54. Lazarevic V, Whiteson K, Hernandez D, Francois P, and Schrenzel J. Study of inter- and intra-individual variations in the salivary microbiota. BMC Genomics 2010;11:523.
    Pubmed KoreaMed CrossRef
  55. Lazarevic V, Whiteson K, Huse S, Hernandez D, Farinelli L, Osteras M, Schrenzel J, and Francois P. Metagenomic study of the oral microbiota by illumina high-throughput sequencing. J Microbiol Methods 2009;79:266-271.
    Pubmed KoreaMed CrossRef
  56. Leake SL, Pagni M, Falquet L, Taroni F, and Greub G. The salivary microbiome for differentiating individuals: Proof of principle. Microbes Infect 2016;18:399-405.
    Pubmed CrossRef
  57. Lee SY, and Eom YB. Analysis of microbial composition associtated with freshwater and seawater. Biomed Sci Let 2016;22:150-159.
    CrossRef
  58. Lemon KP, Klepac-Ceraj V, Schiffer HK, Brodie EL, Lynch SV, and Kolter R. Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. MBio 2010;1:e00129-10.
    Pubmed KoreaMed CrossRef
  59. Lenz EJ, and Foran DR. Bacterial profiling of soil using genus-specific markers and multidimensional scaling. J Forensic Sci 2010;55:1437-1442.
    Pubmed CrossRef
  60. Li K, Bihan M, Yooseph S, and Methe BA. Analyses of the microbial diversity across the human microbiome. PLoS One 2012;7:e32118.
    Pubmed KoreaMed CrossRef
  61. Lin Z, Owen AB, and Altman RB. Genetics. Genomic research and human subject privacy. Science 2004;305:183.
    Pubmed CrossRef
  62. Lowrance WW, and Collins FS. Ethics. Identifiability in genomic research. Science 2007;317:600-602.
    Pubmed CrossRef
  63. Ma J, Coarfa C, Qin X, Bonnen PE, Milosavljevic A, Versalovic J, and Aagaard K. mtDNA haplogroup and single nucleotide polymorphisms structure human microbiome communities. BMC Genomics 2014;15:257.
    Pubmed KoreaMed CrossRef
  64. MacConaill L, and Meyerson M. Adding pathogens by genomic subtraction. Nat Genet 2008;40:380-382.
    Pubmed CrossRef
  65. Macdonald CA, Ang R, Cordiner SJ, and Horswell J. Discrimination of soils at regional and local levels using bacterial and fungal T-RFLP profiling. J Forensic Sci 2011;56:61-69.
    Pubmed CrossRef
  66. Malik P, and Singh G. Health considerations for forensic professionals: A review. Forensic Science Policy &Management. An International Journal 2011;2:1-4.
  67. Mayntz-Press KA, Sims LM, Hall A, and Ballantyne J. Y-STR profiling in extended interval (>or =3 days) postcoital cervicovaginal samples. J Forensic Sci 2008;53:342-348.
    Pubmed CrossRef
  68. Misic AM, Davis MF, Tyldsley AS, Hodkinson BP, Tolomeo P, Hu B, Nachamkin I, Lautenbach E, Morris DO, and Grice EA. The shared microbiota of humans and companion animals as evaluated from Staphylococcus carriage sites. Microbiome 2015;3:2.
    Pubmed KoreaMed CrossRef
  69. Mollet C, Drancourt M, and Raoult D. rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 1997;26:1005-1011.
    Pubmed CrossRef
  70. Moon JH, Lee JH, and Lee JY. Subgingival microbiome in smokers and non-smokers in korean chronic periodontitis patients. Mol Oral Microbiol 2015;30:227-241.
    Pubmed CrossRef
  71. Moreno LI, Mills D, Fetscher J, John-Williams K, Meadows-Jantz L, and McCord B. The application of amplicon length heterogeneity PCR (LH-PCR) for monitoring the dynamics of soil microbial communities associated with cadaver decomposition. J Microbiol Methods 2011;84:388-393.
    Pubmed CrossRef
  72. Moreno LI, Mills DK, Entry J, Sautter RT, and Mathee K. Microbial metagenome profiling using amplicon length heterogeneitypolymerase chain reaction proves more effective than elemental analysis in discriminating soil specimens. J Forensic Sci 2006;51:1315-1322.
    Pubmed CrossRef
  73. Nakamura S, Maeda N, Miron IM, Yoh M, Izutsu K, Kataoka C, Honda T, Yasunaga T, Nakaya T, Kawai J, Hayashizaki Y, Horii T, and Iida T. Metagenomic diagnosis of bacterial infections. Emerg Infect Dis 2008;14:1784-1786.
    Pubmed KoreaMed CrossRef
  74. Nakanishi H, Kido A, Ohmori T, Takada A, Hara M, Adachi N, and Saito K. A novel method for the identification of saliva by detecting oral streptococci using PCR. Forensic Sci Int 2009;183:20-23.
    Pubmed CrossRef
  75. Nikhil GN, Venkata Mohan S, and Swamy YV. Systematic approach to assess biohydrogen potential of anaerobic sludge and soil rhizobia as biocatalysts: Influence of crucial factors affecting acidogenic fermentation. Bioresour Technol 2014;165:323-331.
    Pubmed CrossRef
  76. Oh J, Byrd AL, Park M, Program NCS, Kong HH, and Segre JA. Temporal stability of the human skin microbiome. Cell 2016;165:854-866.
    Pubmed KoreaMed CrossRef
  77. Pallen MJ, and Loman NJ. Are diagnostic and public health bacteriology ready to become branches of genomic medicine?. Genome Med 2011;3:53.
    Pubmed KoreaMed CrossRef
  78. Paster BJ, Olsen I, Aas JA, and Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000 2006;42:80-87.
    Pubmed CrossRef
  79. Pfeiffer H, Huhne J, Ortmann C, Waterkamp K, and Brinkmann B. Mitochondrial DNA typing from human axillary, pubic and head hair shafts - success rates and sequence comparisons. Int J Legal Med 1999;112:287-290.
    Pubmed CrossRef
  80. Pitt SJ, and Cunningham JM. An Introduction to Biomedical Science in Clinical and Professional Practice. Chichester, UK: Wiley-Blackwell; 2009 p. 88-97.
  81. Power DA, Cordiner SJ, Kieser JA, Tompkins GR, and Horswell J. PCR-based detection of salivary bacteria as a marker of expirated blood. Sci Justice 2010;50:59-63.
    Pubmed CrossRef
  82. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, and Xie Y et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59-65.
    Pubmed KoreaMed CrossRef
  83. Quaak FC, and Kuiper I. Statistical data analysis of bacterial T-RFLP profiles in forensic soil comparisons. Forensic Sci Int 2011;210:96-101.
    Pubmed CrossRef
  84. Rabe LK, Winterscheid KK, and Hillier SL. Association of viridans group streptococci from pregnant women with bacterial vaginosis and upper genital tract infection. J Clin Microbiol 1988;26:1156-1160.
    Pubmed KoreaMed
  85. Rahimi M, Heng NC, Kieser JA, and Tompkins GR. Genotypic comparison of bacteria recovered from human bite marks and teeth using arbitrarily primed PCR. J Appl Microbiol 2005;99:1265-1270.
    Pubmed CrossRef
  86. Rajendhran J, and Gunasekaran P. Microbial phylogeny and diversity: Small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res 2011;166:99-110.
    Pubmed CrossRef
  87. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO, Brotman RM, Davis CC, Ault K, Peralta L, and Forney LJ. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 2011;108:4680-4687.
    Pubmed KoreaMed CrossRef
  88. Read TD, Salzberg SL, Pop M, Shumway M, Umayam L, Jiang L, Holtzapple E, Busch JD, Smith KL, Schupp JM, Solomon D, Keim P, and Fraser CM. Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 2002;296:2028-2033.
    Pubmed CrossRef
  89. Redondo-Lopez V, Cook RL, and Sobel JD. Emerging role of lactobacilli in the control and maintenance of the vaginal bacterial microflora. Rev Infect Dis 1990;12:856-872.
    Pubmed CrossRef
  90. Ritz K, Dawson L, and Miller D. Criminal and environmental soil forensics. Berlin; New York: Springer; 2009.
    CrossRef
  91. Rodriguez LL, Brooks LD, Greenberg JH, and Green ED. Research ethics. The complexities of genomic identifiability. Science 2013;339:275-276.
    Pubmed CrossRef
  92. Rudney JD, and Larson CJ. Use of restriction fragment polymorphism analysis of rRNA genes to assign species to unknown clinical isolates of oral viridans streptococci. J Clin Microbiol 1994;32:437-443.
    Pubmed KoreaMed
  93. Ruffell A. Forensic pedology, forensic geology, forensic geoscience, geoforensics and soil forensics. Forensic Sci Int 2010;202:9-12.
    Pubmed CrossRef
  94. Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 1977;31:107-133.
    Pubmed CrossRef
  95. Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, Waller A, Mende DR, Kultima JR, Martin J, Kota K, Sunyaev SR, Weinstock GM, and Bork P. Genomic variation landscape of the human gut microbiome. Nature 2013;493:45-50.
    Pubmed KoreaMed CrossRef
  96. Schmedes SE, Woerner AE, Novroski NMM, Wendt FR, King JL, Stephens KM, and Budowle B. Targeted sequencing of cladespecific markers from skin microbiomes for forensic human identification. Forensic Sci Int Gent 2018;32:50-61.
    Pubmed CrossRef
  97. Schmedes SE, Sajantila A, and Budowle B. Expansion of microbial forensics. J Clin Microbiol 2016;54:1964-1974.
    Pubmed KoreaMed CrossRef
  98. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, and Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 2012;9:811-814.
    Pubmed KoreaMed CrossRef
  99. Sender R, Fuchs S, and Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016;14:e1002533.
    Pubmed KoreaMed CrossRef
  100. Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, and Tebbe CC. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: Do the different methods provide similar results?. J Microbiol Methods 2007;69:470-479.
    Pubmed CrossRef
  101. Smith SM, Eng RH, and Padberg FT. Survival of nosocomial pathogenic bacteria at ambient temperature. J Med 1996;27:293-302.
    Pubmed
  102. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, Caporaso JG, Knights D, Clemente JC, Nakielny S, Gordon JI, Fierer N, and Knight R. Cohabiting family members share microbiota with one another and with their dogs. Elife 2013;2:e00458.
    Pubmed KoreaMed CrossRef
  103. Stahringer SS, Clemente JC, Corley RP, Hewitt J, Knights D, Walters WA, Knight R, and Krauter KS. Nurture trumps nature in a longitudinal survey of salivary bacterial communities in twins from early adolescence to early adulthood. Genome Res 2012;22:2146-2152.
    Pubmed KoreaMed CrossRef
  104. Sweet D, Lorente JA, Valenzuela A, Lorente M, and Villanueva E. PCRbased DNA typing of saliva stains recovered from human skin. J Forensic Sci 1997;42:447-451.
    Pubmed CrossRef
  105. Sweet D, and Pretty IA. A look at forensic dentistry--part 2: Teeth as weapons of violence--identification of bitemark perpetrators. Br Dent J 2001;190:415-418.
    Pubmed CrossRef
  106. Tagg JR, and Ragland NL. Application of BLIS typing to studies of the survival on surfaces of salivary streptococci and staphyloccci. J Appl Bacteriol 1991;71:339-42.
    Pubmed CrossRef
  107. Tibbett M, and Carter DO. Soil analysis in forensic taphonomy: Chemical and biological effects of buried human remains. Boca Raton: CRC Press; 2008.
    CrossRef
  108. Torsvik V, Goksøyr J, and Daae FL. High diversity in DNA of soil bacteria. Applied and environmental microbiology 1990;56:782-787.
    Pubmed KoreaMed
  109. Tridico SR, Murray DC, Addison J, Kirkbride KP, and Bunce M. Metagenomic analyses of bacteria on human hairs: A qualitative assessment for applications in forensic science. Investig Genet 2014;5:16.
    Pubmed KoreaMed CrossRef
  110. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, and Gordon JI. A core gut microbiome in obese and lean twins. Nature 2009;457:480-484.
    Pubmed KoreaMed CrossRef
  111. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, and Gordon JI. The human microbiome project. Nature 2007;449:804-810.
    Pubmed KoreaMed CrossRef
  112. Weisburg WG, Barns SM, Pelletier DA, and Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697-703.
    Pubmed KoreaMed CrossRef
  113. Wilkins D, Leung MH, and Lee PK. Microbiota fingerprints lose individually identifying features over time. Microbiome 2017;5:1.
    Pubmed KoreaMed CrossRef
  114. Williams DW, and Gibson G. Individualization of pubic hair bacterial communities and the effects of storage time and temperature. Forensic Sci Int Genet 2017;26:12-20.
    Pubmed CrossRef
  115. Wisplinghoff H, Reinert RR, Cornely O, and Seifert H. Molecular relationships and antimicrobial susceptibilities of viridans group streptococci isolated from blood of neutropenic cancer patients. J Clin Microbiol 1999;37:1876-1880.
    Pubmed KoreaMed
  116. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, and Lewis JD. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334:105-108.
    Pubmed KoreaMed CrossRef
  117. Yaegaki K, Sakata T, Ogura R, Kameyama T, and Sujaku C. Influence of aging on DNase activity in human parotid saliva. J Dent Res 1982;61:1222-1224.
    Pubmed CrossRef
  118. Yasunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, and Knight R et al. Human gut microbiome viewed across age and geography. Nature 2012;486:222-227.
    Pubmed KoreaMed CrossRef
  119. Zala K. Forensic science. Dirty science: Soil forensics digs into new techniques. Science 2007;318:386-387.
    Pubmed CrossRef
  120. Zaura E, Keijser BJ, Huse SM, and Crielaard W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 2009;9:259.
    Pubmed KoreaMed CrossRef