Search for


TEXT SIZE

search for



CrossRef (0)
The Expression of Corazonin Neurons in Pupa and Adult Stage of Scuttle Fly
Biomed Sci Letters 2021;27:239-247
Published online December 31, 2021;  https://doi.org/10.15616/BSL.2021.27.4.239
© 2021 The Korean Society For Biomedical Laboratory Sciences.

Hohyun Park†,*

Department of Biomedical Laboratory Science, Mokpo Science University, Mokpo-si, Jeollanam-do 58644, Korea
Correspondence to: *Professor.
Corresponding author: Hohyun Park. Department of Biomedical Laboratory Science, Mokpo Science University, Mokpo-si, Jeollanam-do 58644, Korea.
Tel: +82-61-270-2745, Fax: +82-61-270-2745, e-mail: phh7082@hanmail.net
Received November 8, 2021; Revised December 13, 2021; Accepted December 15, 2021.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
The scuttle fly is a fly species in the Phoridae family. Scuttle fly which moves abruptly after standing for a while and stop suddenly to rush off again. These characteristic behaviors of the scuttle fly seem to be related to muscular and nervous system or neurotransmitters. Thus, we focused at the neurotransmitter, corazonin (Crz) that is known to be related to resistance to stress and investigated the developmental process of the neurons in the scuttle fly. In a previous studies, we found that there are three groups of corazoninergic neurons in the larval CNS of the scuttle. Larva has 3 pairs of Crz neurons at the dorsolateral area of the brain, 1 pair at the dorsomedial brain and 8 pairs at the ventral nerve cord. In this studies, among these neurons, 1 pair of dorsomedial brain and 8 pairs of ventral nerve cord disappear in early pupal stage after metamorphosis. Only the 3 pairs of dorsolateral brain persist expression of Crz gene through all the period of pupa stage. This group of neurons converge gradually to frontal center of the brain and situated at the medial region. These pairs of corazoninergic neurons keep their number and location in adult stage. In the future, we expect further studies on the histological characteristics of corazonin-expressing cells and the expression of corazonin gene.
Keywords : Scuttle fly, Corazonin, Central nerve system, Pupa stage, Adult stage
꽌 濡

怨ㅼ땐씠 諛쒖깮릺뒗 룞븞 以묒텛떊寃쎄퀎뿉꽌뒗 떊寃쏀뙶떚뱶씤 corazonin (Crz)씠씪뒗 떊寃쎈궡遺꾨퉬 臾쇱쭏씠 遺꾨퉬媛 릺硫, 怨ㅼ땐瑜섏뿉꽌 뿬윭 媛吏 떎뼇븳 깮由ъ쟻 湲곕뒫怨 뻾룞 벑쓣 議곗젅븷 닔 엳뒗 以묒슂븳 뿭븷쓣 븯怨 엳떎怨 湲곗〈 뿰援щ 넻븯뿬 꽕紐낆쓣 븯떎. Corazonin (Crz) 씪諛섏쟻쑝濡 泥댁븸(hemolymph)씠 諛⑹텧릺怨 엳뒗 怨ㅼ땐쓽 以묒텛떊寃쎄퀎쓽 痢≪떖泥(corpora cardiaca)뿉꽌 異뺤궘(axon)쓣 媛뽮퀬 엳뒗 쟾뇤(protocelebrum) 遺遺꾩쓽 쇅痢〓(pars lateralis)履쎌뿉 議댁옱븯怨 쐞移섑븯뒗 겙 떊寃쎈궡遺꾨퉬꽭룷뿉 쓽빐 遺꾨퉬 諛 깮궛맂떎怨 븳떎(Nässel and Winther, 2010; Altstein and Nassel, 2010).

Corazonin 꽭 媛吏 룞삎(isoforms)씤 [Arg7], [His7], [Thr4, His7] corazonin씠 怨ㅼ땐뿉꽌 솗씤릺뿀떎. [Arg7] - corazonin뒗 珥덊뙆由(drosophila) (Veenstra, 1994), 굹諛(moths) (Hansen et al., 2001), 늻뿉(silkworm), 洹슌씪誘(crickets), 諛뷀대쾶젅(cockroach) (Hua et al., 2000)뿉꽌 蹂닿퀬릺뿀怨, [His7] - corazonin뒗 硫붾슌湲(locusts)뿉꽌 룞젙씠 릺뿀떎(Veenstra, 1991; Tawfik et al., 1999). 븯吏留 [Thr4, His7] 뒗 理쒓렐뿉 轅踰(honey bee)뿉꽌 corazonin 쑀쟾옄濡 삁痢≫빐꽌 蹂닿퀬媛 릺뿀떎(Verleyen et al., 2006; Predel et al., 2007).

떊寃쏀렔떚뱶 corazonin 諛 깮泥 븞 遺꾩꽍뿉꽌 留ㅼ슦 궙 냽룄濡 떖옣諛뺣룞쓣 媛냽떆궎뒗 湲곕뒫씠 엳뿀怨, 씠 寃곌낵濡 怨ㅼ땐뿉꽌 떖옣諛뺣룞쓣 議곗젅븯뒗 以묒슂븳 뿭븷쓣 븳떎怨 젣븞릺뿀떎. 븯吏留, 떎瑜 怨ㅼ땐 諛 떎瑜 諛뷀대쾶젅醫낆씤 Blattaria 벑뿉꽌 룞씪븳 寃곌낵媛 굹굹吏 븡븯湲 븣臾몄뿉 P. americana뿉꽌쓽 슚怨쇰쭔쑝濡쒕뒗 돺寃 씪諛섑솕 릺硫 븞 맂떎뒗 寃껋쑝濡 쓽寃ъ씠 紐⑥븘議뚮떎(Predel et al., 1994). 洹몃옒꽌, corazonin뿉 쓽븳 떖옣諛뺣룞 議곗젅 Periplaneta뿉꽌留 쑀슚븳 寃껋쑝濡 寃곕줎쓣 留븐뿀떎(Predel et al., 2001).

떖옣諛뺣룞쓣 議곗젅븯뒗 corazonin쓽 솢꽦 떆뿕愿蹂대떎 깮泥 븞뿉꽌 蹂대떎 留롮 솢꽦쓣 媛吏꾨떎怨 븯떎. Manduca sexta뿉꽌 10-7 M 씠븯쓽 닾뿬 냽룄濡쒕뒗 셿쟾븳 슚怨쇨 뾾떎뒗 寃껋씠 蹂닿퀬릺뿀怨, 뜑 넂 닾뿬 냽룄(留덉留 냽룄 10-6 M)濡 씤빐꽌 利됱떆 븘뱶젅궇由곌낵 媛숈 臾쇱쭏씠 利앷컯릺뼱 닚뻾꽦 떖옣諛뺣룞쓣 씪쑝耳곕떎(Slama, 2004). 洹몃옒꽌 corazonin 옞옱쟻 떖옣옄洹 솢꽦臾쇱쭏濡 遺꾨쪟릺뿀怨(Slama et al., 2006), 씠寃껋 吏곸젒쟻쑝濡 뒪듃젅뒪 샇瑜대が뿉 쓽빐 議곗젅맂떎怨 븯떎(Nikolarakis et al., 1986; Tellam et al., 1998; Li et al., 2004).

硫붾슌湲곗뿉꽌뒗 corazonin씠 留ㅼ슦 룆듅븳 湲곕뒫씤 援곗쭛 긽깭瑜 珥됱쭊떆궎뒗 샇瑜대が씠씪怨 諛쒗몴릺뿀떎(Tawfik et al., 1999). 援곗쭛꽦쓽 Locusta migratoria Schistocerca gregaria쓽 뵾遺뿉 硫쒕씪땶 깋냼媛 鍮꾩텞릺뿀뒗뜲, 엻寃뚮룄 씠 寃젙 깋냼瑜 쑀룄븯뒗 샇瑜대が씠 Periplaneta쓽 [Arg7]-corazonin怨 鍮꾧탳릺뒗 [His7]-corazonin怨 룞삎씠씪뒗 궗떎씠 諛앺議뚮떎(Veenstra, 1991; Tawfik et al., 1999).

寃됰낫湲곗뿉 愿젴씠 뾾뒗 湲곕뒫뱾씠 떎뼇븳 怨ㅼ땐 洹몃9뿉꽌 corazonin怨 愿젴씠 엳뒗 寃껋쑝濡 蹂닿퀬릺뿀떎(Boerjan et al., 2010). P. americana 踰뚮젅(stick insect)뿉꽌 洹쇱닔異 솢룞(Veenstra, 1989; Predel et al., 1999), 硫붾슌湲(locusts & grasshoppers)뿉꽌 걧떚겢깋(Tawfik et al., 1999; Tanaka, 2001; Tanaka et al., 2002a), 珥됯컖媛먭컖湲(antennal sensilla)쓽 씪遺뿉꽌 긽 愿젴맂 蹂솕(Maeno & Tanaka, 2004), 굹諛(moth)씤 Manduca sexta뿉꽌 踰덈뜲湲 쑕癒 떆湲곗쓽 愿 二쇨린 議곗젅怨 깉뵾 뻾룞 쑀룄(Wise et al., 2002; Shiga et al., 2003; Kim et al., 2004; Choi et al., 2005), 늻뿉(silkworm)쓽 씪醫낆씤 Bombyx mori쓽 쉶쟾냽룄 議곗젅(Tanaka et al., 2002b), 媛옱(crayfish) 뵾遺뿉꽌 깋냼泥(chromatophore) 씠룞, Procambarus clarkii쓽 뵾遺뿉꽌 쇅뵾 깋냼 씠룞 벑씠 洹 삁씠떎(Porras et al., 2003). [His7]-corazonin씠 諛깆깋냼룷 깋냼 怨쇰┰쓽 遺꾩궛怨 쟻삁援 깋냼 怨쇰┰쓽 닔異뺤쓣 쑀룄븳떎怨 븯떎. 洹몃옒꽌 씠寃껋 깋냼솗궛씤옄(pigment dispersing factor, PDF)뿉 쓽빐 "諛ㅼ쓣 쐞븳 以鍮" 삉뒗 諛섎濡 "궙쓣 쐞븳 以鍮"쓽 긽솴쓣 젣怨듯븳떎怨좊룄 鍮꾩쑀븯떎(Saifullah and Tomioka, 2003). 삉븳, 泥숈텛룞臾쇱뿉꽌뒗 솉梨(iris)쓽 솢꽦쓣 넻빐 留앸쭑(retina)뿉 룄떖븯뒗 鍮쏆쓽 뼇쓣 議곗젅븳떎怨 븯떎(Hoste et al., 2003).

怨ㅼ땐뿉꽌 corazonin 돱윴쓽 諛쒖깮 怨쇱젙 珥덊뙆由щ 룷븿븳 뙇떆瑜(Diptera) 삉뒗 諛뷀대쾶젅, 굹諛, 뵳젙踰뚮젅 벑뿉꽌 옒 뿰援щ릺뼱 엳떎. 誘멸뎅 諛뷀대쾶젅뿉꽌뒗 媛숈 履쎌쓽 痢≪떖泥(corpus cardiacum)뿉꽌 遺꾨퉬릺嫄곕굹 쟾뇤(procerebrum) 痢〓㈃뿉꽌 吏묓빀맂 뿴 媛쒖쓽 떊寃쎈궡遺꾨퉬꽭룷뿉꽌 corazonin 硫댁뿭諛섏쓳씠 씪뼱궃떎怨 뻽떎. 怨좎꽦뒫븸泥댄겕濡쒕쭏넗洹몃옒뵾(high-performanced liquid chromatography, HPLC) 遺꾩꽍쓣 넻븯뿬 蹂듬 떊寃쎌젅(abdominal ganglia)怨 痢≪떖泥(corpora cardiaca)뿉꽌쓽 硫댁뿭뼇꽦 臾쇱쭏씠 corazonin 씠씪뒗 궗떎씠 솗씤릺뿀떎. 삉븳 꽌濡 떎瑜 떆뿽쓽 돱윴怨 以묐뇤(deutocerebrum) 썑뇤(tritocerebrum)뿉꽌 뙇쓣 씠猷⑥ 븡뒗 媛쒖옱돱윴(interneuron)씠 떇룄븯떊寃쎌젅(subesophageal ganglion)쓽 벑履(dorsal) 以묒븰뿉꽌쓽 븯굹쓽 돱윴怨 븿猿 紐낇솗븯寃 뿼깋씠 릺뿀쑝굹, 뼇꽦쑝濡 뿼깋맂 떇룄븯떊寃쎌젅 醫 듅씠쟻 씤怨듭궛臾쇱씪 寃껋씠씪怨 깮媛곹븯떎(Veenstra and Davis, 1993; Baggerman and Schoofs, 2002). 븯吏留 硫붾슌湲 醫낆씤 L. migratoria S. gregaria쓽 떇룄븯떊寃쎌젅뿉꽌뒗 corazonin 돱윴씠 굹굹吏 븡뒗 寃껋쓣 愿李고븯떎(Schoofs et al., 2000).

몴쟻씤 뿬꽢 媛 怨ㅼ땐 醫낅쪟(紐)쓽 以묒텛떊寃쎄퀎쓽 꽭룷뿉꽌 corazonin 돱윴 硫댁뿭諛섏쓳씠 씪뼱궗쑝硫, albino mutant씤 L. migratoria 뵳젙踰뚮젅(beetle) 몮 떎 corazonin 돱윴씠 寃곗뿬릺뼱 엳떎뒗 寃껋쓣 젣쇅븯怨좊뒗 뿰援щ맂 紐⑤뱺 怨ㅼ땐쓽 蹂듭륫 떊寃쎌젅(ventral ganglia)怨 뇤쓽 쇅痢〓뿉꽌 硫댁뿭諛섏쓳 뼇꽦 꽭룷쓽 寃異쒖씠 蹂닿퀬릺뿀떎(Roller et al., 2003).

굹諛 醫낆씤 G. mellonella뿉꽌 corazonin 돱윴 쑀쟾옄媛 꽦異⑷낵 踰덈뜲湲 肉먮쭔 븘땲씪 留덉留 졊쓽 븷踰뚮젅쓽 뇤쓽 꽕 뙇쓽 痢〓㈃ 떊寃쎈궡遺꾨퉬꽭룷뿉꽌 紐낇솗븯寃 諛쒗쁽맂떎怨 蹂닿퀬릺뿀떎(Hansen et al., 2001). 삉븳, 쑀궗븳 돱윴씠 삤吏 M. sexta쓽 닔而 꽦異⑹뿉留 議댁옱븳떎怨 븯떎(Lee et al., 2008). Corazonin 떊寃쏀뙶떚뱶쓽 二쇰맂 諛⑹텧 遺쐞씤 痢≪떖泥(corpus cardiacum) 썑몢 蹂듯빀泥댁뿉꽌 諛쒗쁽릺怨 꽌濡 떎瑜 痢〓㈃ 諛섍뎄(hemisphere) 떆뿽 遺遺꾩뿉 2~5媛쒖쓽 떊寃 뙇씠 corazonin 돱윴 硫댁뿭諛섏쓳 諛쒗쁽 遺쐞濡 遺遺 紐⑤뱺 醫낆뿉꽌 議곗궗뻽쓣 븣 怨듯넻쟻쑝濡 議댁옱븯떎(Predel et al., 2003).

씠쟾 뿰援ъ뿉꽌 scuttle fly쓽 븷踰뚮젅 떆湲곕 긽쑝濡 以묒텛떊寃쎄퀎뿉꽌 諛쒗쁽맂 corazonin 돱윴뿉 빐 愿李곗쓣 븯떎. 2졊 븷踰뚮젅 떆湲곗뿉꽌 以묒텛떊寃쎄퀎 議곗쭅뿉 corazonin쓣 遺꾨퉬븯怨 깮궛븯뒗 돱윴씠 겙 踰붿쐞뿉꽌 꽭 媛쒖쓽 洹몃9쑝濡 愿李곕릺뿀떎. 以묒텛떊寃쎄퀎 뇤 議곗쭅뿉꽌 쟾뇤(procerebrum) 뼇履 떆뿽(optic lobe, OL) 遺遺꾩뿉 쐞移섑븯뒗 벑痢〓㈃(dorsolateral, DL) 媛옣옄由 遺쐞뿉꽌 꽭 媛쒖쓽 뙇쑝濡 諛쒗쁽릺뒗 corazonin 돱윴뱾씠 媛뺥븯怨 슌졆븯寃 愿李곕릺뿀떎. 洹몃━怨 뇤 뼇履 議곗쭅 遺遺꾩뿉꽌 留 以묒븰 븵履쎄낵 洹쇱젒븳 遺遺꾩쓽 벑以묒븰(dorsomedial, DM) 遺쐞뿉꽌룄 븳 媛쒖쓽 뙇쑝濡 릺뼱엳뒗 corazonin 돱윴씠 뜑슧 媛뺥븯寃 諛쒗쁽릺뒗 寃껋쓣 愿李고븷 닔 엳뿀떎. 삉븳 以묒텛떊寃쎄퀎 蹂듭떊寃쎌깋 議곗쭅 遺遺꾩뿉꽌뒗 醫뚯슦媛 긽샇 移쑝濡 珥 뿬뜜 媛쒖쓽 뙇쑝濡 릺뼱엳뒗 corazonin 돱윴씠 媛뺥븯怨 슌졆븯寃 諛쒗쁽릺뒗 寃껋쓣 愿李고븯떎. 以묒텛떊寃쎄퀎쓽 蹂듭떊寃쎌깋 議곗쭅뿉꽌 諛쒗쁽릺뒗 뿬뜜 媛쒖쓽 뙇쑝濡 씠猷⑥뼱吏 corazonin 깮궛 돱윴 醫뚯륫怨 슦痢≪쓽 媛옣옄由ъ뿉꽌 移쑝濡 諛쒗쁽릺뿀떎. 뿬뜜 媛쒖쓽 뙇쑝濡 씠猷⑥뼱吏 돱윴뿉꽌 媛옣 媛뺥븯寃 諛쒗쁽릺뒗 돱윴씠 愿李곕릺뿀뒗뜲, 븵履 遺遺 몢 媛쒖쓽 뙇씠 돱윴 以묒뿉꽌 媛옣 媛뺥븯寃 corazonin씠 諛쒗쁽씠 릺뒗 寃껋쓣 愿李고븷 닔 엳뿀떎. 以묒텛떊寃쎄퀎쓽 蹂듭떊寃쎌깋 議곗쭅쓣 痢〓㈃ 履쎌뿉꽌 愿李고뻽쓣 븣 씠 몢 媛쒖쓽 뙇쑝濡 援ъ꽦릺뼱 엳뒗 돱윴 삉 떎瑜 돱윴뱾쓽 뙇 蹂대떎 뜑슧뜑 벑 履쎌쑝濡 媛源뚯씠 쐞移섑븯怨 엳뒗 寃 듅吏뺤씠뿀떎. 꽭 踰덉㎏ 遺遺꾩쓽 돱윴 뙇쓣 룷븿븳 씠썑쓽 corazonin 돱윴 뙇뱾 嫄곗쓽 룞씪븯寃 쐞移섑븯뿬 룊硫 긽쑝濡 醫뚯륫怨 슦痢≪씠 꽌濡 移쑝濡 쐞移섑븯怨 엳뿀怨, 媛옣 諛쒗쁽 媛뺣룄媛 궙 돱윴 留덉留 媛옣 븘옒履쎌뿉 엳뒗 뙇뿉꽌 愿李곕릺뿀떎. Scuttle fly쓽 3졊 븷踰뚮젅 떆湲곗뿉꽌 以묒텛떊寃쎄퀎쓽 corazonin 遺꾨퉬 돱윴씠 諛쒗쁽릺뒗 寃껉낵 鍮꾧탳뻽쓣 븣 븷踰뚮젅 2졊 떆湲곗 嫄곗쓽 룞씪븯寃 愿李곕릺뿀떎. 븯吏留 뇤 븵履쎌쓽 벑履 痢〓㈃(DL) 遺遺꾩뿉꽌쓽 corazonin 遺꾨퉬 돱윴 蹂대떎 뇤 븵履쎌쓽 벑履 以묒븰(DM) 遺遺꾩뿉꽌 븳 媛쒖쓽 뙇쑝濡 릺뼱엳뒗 돱윴쓽 諛쒗쁽씠 젏젏 빟빐吏怨 븷踰뚮젅 3졊 썑湲곗뿉꽌 씠윭븳 돱윴쓽 뙇씠 嫄곗쓽 諛쒗쁽씠 릺吏 븡嫄곕굹 愿李곕릺吏 븡쓣 븣룄 엳뿀떎. 以묒텛떊寃쎄퀎쓽 蹂듭떊寃쎌깋 議곗쭅뿉꽌룄 醫뚯륫怨 슦痢≪씠 꽌濡 移쑝濡 뿬뜜 媛쒖쓽 뙇쑝濡 援ъ꽦릺뼱 엳뒗 corazonin 돱윴뱾 以묒뿉꽌 泥 踰덉㎏ 몢 踰덉㎏ 뙇 遺遺꾩뿉꽌 corazonin 遺꾨퉬 돱윴씠 媛뺥븯怨 슌졆븯寃 諛쒗쁽릺怨 엳뿀吏留, 꽭 踰덉㎏ 뙇 遺遺 遺꽣뒗 corazonin 遺꾨퉬 돱윴씠 젏젏 븘옒履 걹 遺遺꾩쑝濡 媛덉닔濡 corazonin씠 諛쒗쁽릺뒗 젙룄媛 젏젏 빟빐吏怨 엳뒗 듅吏뺤쓣 愿李고븷 닔 엳뿀떎(Park, 2020).

蹂 뿰援ъ뿉꽌뒗 씠쟾 뿰援ъ쓽 寃곌낵濡 뼸뼱吏 scuttle fly 븷踰뚮젅 떆湲곗쓽 以묒텛떊寃쎄퀎뿉꽌 諛쒗쁽릺뒗 corazonin 돱윴怨 鍮꾧탳븯湲 쐞빐 踰덈뜲湲곗 꽦異 떆湲곗뿉꽌 諛쒗쁽맂 corazonin 돱윴쓣 뿰援ы븯뿬 씠誘 뿰援щ릺뼱吏 룞씪 珥덊뙆由 醫낆씤 Drosophila melanogaster쓽 寃곌낵瑜 넗濡 鍮꾧탳빐꽌 뿰援ы빐 蹂닿퀬옄 븳떎.

옱猷 諛 諛⑸쾿

궗쑁

떎뿕뿉 씠슜븳 scuttle fly뒗 Megaselia scalaris씪뒗 븰紐낆쓣 媛吏 fly씠硫, 珥덊뙆由ъ 룞씪븳 癒뱀씠瑜 씠슜븯뿬 궗슜븯떎. 궗쑁쓣 쐞븯뿬 利앸쪟닔 250 mL뿉 dextrose 16 g, yeast flakes 6.5 g, cornmeal 20 g, agar 2.25 g쓣 援먮컲湲곕 씠슜븯뿬 샎빀븯怨 쟾옄젋吏뿉꽌 10遺 젙룄 걪뼱 꽆移섏 븡쓣 젙룄濡 媛뿴븯떎. 洹몃━怨 methylparaben 6.25 mL瑜 泥쒖쿇엳 뼥뼱쑉젮꽌 샎빀븯怨 諛곗 넻뿉 遺 썑 떇엺 떎쓬 꽦異⑹쓣 씠룞떆耳 궗쑁쓣 븯떎. 궗쑁 1二쇱씪 媛꾧꺽쑝濡 떎瑜 諛곗뿉 꽦異⑹쓣 삷寃⑥꽌 吏냽쟻쑝濡 떆뻾븯떎. 젣옉맂 궗쑁 諛곗뒗 4℃ 깋옣怨좎뿉 蹂닿븯쑝硫 궗슜 쟾 떎삩뿉 留욎텛湲 쐞빐 誘몃━ 爰쇰궡 넃 썑 궗슜븯떎.

以묒텛떊寃쎄퀎 梨꾩랬

Scuttle fly쓣 踰덈뜲湲(pupae) 떆湲 1~3씪, 4~6씪, 7~9씪, 10~12씪, 13~15씪 洹몃━怨 꽦異(adult) 떆湲곕퀎濡 媛곴컖 5媛 씠긽쓽 媛쒖껜瑜 궗슜븯떎. 0.1% tween 20씠 룷븿릺뼱 엳뒗 PBS (phosphate buffer solution, pH 7.0)媛 梨꾩썙졇 엳뒗 솃씠 뙆씤 뒳씪씠뱶뿉 媛쒖껜瑜 떞洹 긽깭濡 떎泥댄쁽誘멸꼍(stereomicroscopy) 긽뿉꽌 媛뒛怨 젙諛븳 뀑쓣 씠슜븯뿬 踰덈뜲湲, 꽦異⑹쓽 猿띿쭏 遺遺꾩쓣 李뼱媛硫댁꽌 梨꾩랬븯怨, 以묒텛떊寃쎄퀎 議곗쭅씤 뇤 蹂듭떊寃쎌깋 議곗쭅쓣 쟻異쒗븯뿬 洹 삎깭瑜 愿李고븯떎. 諛쒖깮 떒怨꾨퀎濡 梨꾩랬맂 以묒텛떊寃쎄퀎 議곗쭅쓣 4% paraformaldehyde 슜븸뿉 꽔 썑 4℃ 깋옣怨좎뿉 1떆媛 씠긽 怨좎젙븯뿬 蹂닿븯떎.

Probe 젣옉

젣옄由ы샎꽦솕踰(ISH)쑝濡 corazonin쓣 寃異쒗븯湲 쐞빐 RNA probe瑜 젣옉븯떎. 癒쇱 scuttle fly쓽 DNA瑜 phenol /chloroform 踰뺤쑝濡 異붿텧븯떎. Primer뒗 corazonin gene쓽 듅씠븳 뿼湲곗꽌뿴쓣 꽑깮븯怨 primer쓽 븵 遺遺꾩뿉뒗 subcloning뿉 븘슂븳 젣븳슚냼 遺쐞瑜 異붽븯뿬 二쇰Ц 젣옉븯뿬 PCR쓣 떆뻾븯떎(Table 1). PCR쓽 議곗꽦 10X PCR buffer 2 μL, 10 mM Scutt 5' Crz HindIII primer 1 μL, 10 mM Scutt 3' Crz XbaI primer 1 μL (Kim et al., 2013; Genbank KF318884.1), 2.5 mM dNTP 1.6 μL, DNA Taq polymerase 1 unit (Elpis, Korea), template DNA 1~10 ng, 洹몃━怨 利앸쪟닔瑜 異붽븯뿬 理쒖쥌 遺뵾 20 μL媛 릺룄濡 븯떎(Fig. 1). PCR 쟾蹂꽦(pre-denature) 94℃ 2遺, 蹂꽦(denature) 94℃ 1遺, 寃고빀(annealing) 56℃ 1遺, 떊옣(extension) 72℃ 1遺 怨쇱젙쓣 30쉶 諛섎났 닔뻾븯怨 썑떊옣(post-extension) 72℃뿉꽌 5遺꾧컙 吏꾪뻾븯떎. PCR 利앺룺 궛臾쇱 EtBr (ethidium bromide)濡 뿼깋븳 썑 1.6% agarose gel뿉꽌 쟾湲곗쁺룞(RunOne Electrophoresis Cell, Embi Tec, USA) 븯뿬 UV transilluminator 긽뿉꽌 諛대뱶瑜 솗씤븯떎.

Base sequences of primers used for PCR amplification in scuttle fly of corazonin gene

Name of primers Sequences (5' → 3')
Scut5' Crz_HindIII 5'-cgaagcttGAGTCGTATTCCGATATTC
Scut3' Crz_XbaI 5'-ggtctagaCTTCAAATGCGAAACCACA


Fig. 1. Structure of Crz gene in scuttle fly. A; map for the Crz coding region. B; sequences of the genomic Crz gene. The coding sequences are shown in capital letters and 5'-UT, intron, 3'-UT sequences are shown in lower case.

利앺룺 PCR 궛臾쇱쓣 pGEM-T Easy vector (Promega Corporation, Madison, WI, USA)뿉 궫엯븯뿬 T7 봽濡쒕え꽣瑜 뿰寃고븯떎. 씠 諛깊꽣瑜 二쇳삎쑝濡 in vitro transcription쓣 떆뻾븯뿬 RNA 깘移⑥쓣 留뚮뱾뿀떎. Digoxygenin쑝濡 몴吏맂 깘移⑥쓣 留뚮뱾湲 쐞빐 10X T7 RNA polymerase buffer 2 μL, 50 mM DTT 2 μL, 20 mM쓽 NTP mixture 1 μL, 10 mM Dig-11-UTP 1 μL, RNase inhibitor 20 unit, template DNA 20~1 μg, T7 RNA polymerase 50 unit, 洹몃━怨 RNase free 利앸쪟닔瑜 꽔뼱 理쒖쥌 遺뵾 20 μL瑜 留뚮뱾뼱 42℃뿉꽌 2떆媛 諛섏쓳븯怨 1.6% agarose gel뿉 쟾湲곗쁺룞 븯뿬 Dig labeling쓽 뿬遺瑜 솗씤븯떎.

젣옉맂 corazonin RNA Dig-probe쓽 議곗쭅 移⑦닾 슚쑉꽦쓣 넂씠湲 쐞빐꽌 fragmentation 怨쇱젙쓣 떎떆븯떎. 癒쇱 Dig-labeling 맂 in vitro transcription 궛臾쇱뿉 2 μL쓽 DNase I쓣 꽔怨 37℃뿉꽌 15遺꾧컙 incubation 븯뿬 二쇳삎 DNA瑜 젅떒븯怨 DNase I쓽 솢꽦쓣 硫덉텛湲 쐞븯뿬 0.2 M EDTA (RNase free) 2 μL瑜 꽔뿀떎.

洹 떎쓬쑝濡 nucleotide 議곌컖쓣 젣嫄고븯怨 RNA쓽 냽異뺤쓣 쐞빐꽌 0.1 volume쓽 5 M LiCl 2.5 volume쓽 100% Ethanol쓣 꽔怨 -70℃뿉꽌 30遺꾧컙 移⑥쟾 썑 4℃뿉꽌 15遺꾧컙 12,000 g濡 썝떖遺꾨━ 븯怨 70% ethanol瑜 씠슜븯뿬 닔꽭瑜 떎떆븯떎. 移⑥쟾맂 RNA뒗 5遺 룞븞 怨듦린 以 긽깭뿉꽌 留먮┛ 썑 hydrolysis buffer (40 mM NaHCO3/60 mM Na2CO3, pH 9.2~10.2)뿉 꽔怨 60℃뿉꽌 10遺꾧컙 fragmentation쓣 떎떆븯떎. 留덉留됱쑝濡 10 μL쓽 1 M Tris (pH 7.5), 300 μL쓽 in situ hybrix buffer, 洹몃━怨 1 μL쓽 RNase inhibitor瑜 꽔怨 -20℃ 蹂닿븯뿬 궗슜븯떎.

젣옄由ы샎꽦솕(ISH) 諛⑸쾿

4% paraformaldehyde 슜븸뿉 怨좎젙맂 以묒텛떊寃쎄퀎 議곗쭅쓣 癒쇱 PBTw (0.1% tween 20 in phosphate buffer solution, pH 7.0)濡 異⑸텇엳 닔꽭븯뿬 怨좎젙븸쓣 셿쟾엳 젣嫄고븯떎. 怨좎젙븸씠 젣嫄곕맂 떎쓬 룊삎 삎꽦(equilibration)쓣 떆궎湲 쐞빐 떎삩뿉꽌 PBTw : hybrix (1:1)濡 諛섏쓳떆궓 떎쓬 60℃뿉꽌 3~4떆媛 젙룄 hybrix 슜븸(50% deionised formamide 50 mL, 5X SSC 25 mL, 100 μg/mL tRNA 0.5 mL, 100 μg/mL ssDNA 1 mL, 50 μg/mL Heparin 45 μL, 0.1% Tween-20, 1 mL, dH2O 22.5 mL)뿉 쟾샎꽦솕(prehybridization) 떆耳곕떎.

쟾샎꽦솕媛 걹굹湲 쟾뿉 誘몃━ 깘移(probe)쓣 100℃뿉꽌 10遺 젙룄 蹂꽦(denature)떆궓 썑 諛붾줈 뼹쓬臾쇱뿉 3遺 씠긽 떞媛꽌 떎떆 쉶蹂듬릺吏 紐삵븯寃 븯怨 60℃뿉 諛섏쓳떆궓 쟾샎꽦솕 슜湲곗뿉 깘移(probe)瑜 샎빀븯뿬 12~14떆媛 젙룄 諛섏쓳떆耳 샎꽦솕(hybridization) 떆耳곕떎. 샎꽦솕媛 걹굹硫 hybrix PBTw쓽 鍮꾩쑉쓣 tube뿉 5:0, 4:1, 3:2, 2:3, 1:4, 0:5濡 誘몃━ 留뚮뱾뼱 60℃濡 떞媛몦 썑 떒怨꾨퀎濡 10遺 룞븞 60℃ 삩룄 긽깭뿉꽌 諛섏쓳쓣 떆궓 썑, 떎삩뿉꽌 PBTw濡 源⑤걮씠 떎떆 븳踰 닔꽭瑜 븯떎. 鍮꾪듅씠쟻씤 諛섏쓳쓣 李⑤떒븯湲 쐞븯뿬 젙긽 룞臾 삁泥씤 BSA (bovine serum albumin) NSS (normal sheep serum)瑜 PBTw뿉 씪젙웾쓣 씗꽍븯뿬 2떆媛 룞븞 blocking 떒怨꾨 떆뻾븯怨, 諛섏쓳씠 걹궃 썑 blocking 떆빟쓣 젣嫄고븳 썑 PBTw뿉 빆泥(anti-digoxigenin-AP Fab fragments, Roche Diagnostic, Germany)瑜 1:000쑝濡 씗꽍븯뿬 2떆媛 룞븞 諛섏쓳떆耳곕떎.

빆泥대컲쓳씠 걹궃 썑 PBTw뿉 뿬윭 踰 닔꽭븯怨 寃異 셿異⑹븸(detection buffer, pH 9.5)瑜 諛섏쓳 떆궓 썑 alkaline phosphate (AP) 湲곗쭏(substrate)씤 NBT/BCIP 옣 슜븸(Roche Diagnostics, Germany)怨 寃異 셿異⑹븸쓣 1:100 씗꽍븯뿬 20遺 媛꾧꺽쑝濡 諛쒖깋릺뒗 寃껋쓣 떎泥댄쁽誘멸꼍쑝濡 愿李고븯怨, 諛쒖깋씠 셿猷뚮릺뿀쓣 븣 PBTw쑝濡 諛섏쓳쓣 젙吏떆궎怨 泥좎븯寃 닔꽭瑜 븯떎.

젣옄由ы샎꽦솕踰뺤씠 셿猷뚮맂 以묒텛떊寃쎄퀎쓽 議곗쭅 glycerin쓣 PBTw뿉 媛곴컖 50%, 70% 냽룄 떒怨꾨 嫄곗퀜꽌 以묒텛떊寃쎄퀎 議곗쭅쓣 삱諛붾Ⅸ 諛⑺뼢쑝濡 뒳씪씠뱶뿉 쐞移섏떆궓 썑 cover glass濡 遊됱엯븳 썑 愿묓븰쁽誘멸꼍(light microscopy, LEICA ICC50 HD, Germany) 긽뿉꽌 愿李고븯뿬 궗吏꾩쓣 珥ъ쁺븯떎.

寃 怨

踰덈뜲湲(pupae) 떆湲곗뿉꽌 以묒텛떊寃쎄퀎 議곗쭅쓽 corazonin 깮궛 돱윴쓽 諛쒕떖 븷踰뚮젅뿉꽌 踰덈뜲湲곕줈 蹂깭媛 씠猷⑥뼱吏硫댁꽌, 以묒텛떊寃쎄퀎 議곗쭅뿉꽌 corazonin 돱윴 몢 媛쒖쓽 洹몃9씠 궗씪吏怨 븳 媛쒖쓽 洹몃9뿉꽌留 怨꾩냽빐꽌 corazonin쓣 諛쒗쁽븯떎. 븷踰뚮젅 떆湲곗뿉꽌 corazonin쓣 諛쒗쁽븯뜕 쟾뇤 벑以묒븰(DM) 뼇履 븳 뙇怨 蹂듭떊寃쎌깋뿉 議댁옱븯뒗 뿬뜜 뙇쓽 corazonin 돱윴씠 踰덈뜲湲곕줈 蹂깭媛 씠猷⑥뼱吏먭낵 룞떆뿉 궗씪졇 踰꾨━뒗 寃껋쓣 蹂 닔 엳뿀떎. 諛섎㈃ 떆뿽 洹쇱쿂쓽 쟾뇤 벑痢〓㈃(DL) 遺遺꾩뿉 corazonin 돱윴 꽭 뙇 뿬쟾엳 슌졆븯寃 corazonin쓣 諛쒗쁽븯怨 엳뿀떎(Fig. 2). 씠 꽭 뙇쓽 corazonin 돱윴 踰덈뜲湲 떆湲 궡궡 洹 諛쒗쁽 뼇긽쓣 쑀吏븯쑝硫 떆뿽씠 諛쒕떖븷닔濡 以묒븰쑝濡 닔졃릺뼱 踰덈뜲湲 留먭린뿉뒗 嫄곗쓽 以묒븰 遺쐞뿉 쐞移섑븯떎. 궗씪吏 벑以묒븰(DM) 돱윴 뙇怨 蹂듭떊寃쎌깋쓽 돱윴 뿬뜜 뙇 踰덈뜲湲 떆湲곗쓽 뼱뒓 떒怨꾩뿉꽌룄 떎떆 굹굹吏 븡븯떎(Fig. 3-6).

Fig. 2. Identification of corazoninergic neurons in CNS of scuttle fly pupa at 1~3 days period by in situ hybridization. A; whole sample (×100). B, C, D; partial enlargement of CNS (×400). Br; brain, DL; dorsolateral, DM; dorsomedial, VNC; ventral nerve cord, OL; optic lobe.

Fig. 3. Identification of corazoninergic neurons in CNS of scuttle fly pupa at 4∼6 days period by in situ hybridization. A, B; whole sample (×100). C, D; partial enlargement of CNS (×400). Br; brain, DL; dorsolateral, VNC; ventral nerve cord, OL; optic lobe, SOG; subesophagus ganglion.

Fig. 4. Identification of corazoninergic neurons in CNS of scuttle fly pupa at 7∼9 days period by in situ hybridization. A; whole sample (×100). B, C, D; partial enlargement of CNS (×400). DL; dorsolateral.

Fig. 5. Identification of corazoninergic neurons in CNS of scuttle fly pupa at 10∼12 days period by in situ hybridization. A; whole sample (×100). B, C; partial enlargement of CNS (×400).

Fig. 6. Identification of corazoninergic neurons in CNS of scuttle fly pupa at 13∼15 days period by in situ hybridization. A; whole sample (×100). B; partial enlargement of CNS (×400).

꽦異(adult fly) 떆湲곗뿉꽌 以묒텛떊寃쎄퀎 議곗쭅쓽 corazonin 깮궛 돱윴쓽 諛쒕떖 뇤 以묒븰쑝濡 씠룞븳 꽭 뙇쓽 벑痢〓㈃(DL) corazonin 돱윴뱾 꽦泥댁뿉꽌 嫄곗쓽 젙以묒븰뿉 醫뚯슦濡 諛곗튂릺뿀떎(Fig. 7A, B). 븯吏留 꽦異 떆湲곗쓽 以묒텛떊寃쎄퀎뿉꽌쓽 諛쒗쁽맂 corazonin 돱윴쓣 궡렣蹂댁븯쓣 븣, 뇤 議곗쭅쓽 벑痢〓㈃(DL)뿉꽌 諛쒗쁽맂 corazonin 돱윴 꽭 뙇씠 쟾뇤 븵履 以묒븰 뇤媛꾨 (pars intercerebralis)뿉 吏묓빀릺뼱 議댁옱븯뒗 寃껋쓣 愿李고븷 닔 엳뿀떎(Fig. 7C, D). 洹몃━怨 踰덈뜲湲 떆湲곗 留덉갔媛吏濡 븷踰뚮젅 떆湲곗뿉 corazonin 돱윴씠 諛쒗쁽릺뿀뜕 쟾뇤 벑以묒븰(DM) 뼇履 媛옣옄由 遺遺꾩쓽 븳 뙇怨 蹂듭떊寃쎌깋쓽 뿬뜜 뙇씠 議댁옱븯吏 븡뒗 寃껊룄 솗씤븯떎. 븷踰뚮젅굹 踰덈뜲湲 떆湲곗뿉 鍮꾪빐꽌 以묒텛떊寃쎄퀎 議곗쭅뿉 떊寃쎌꽟쑀媛 留롮씠 利앷릺뼱 엳뼱꽌 諛곌꼍 源⑤걮븯吏뒗 븡븯떎(Fig. 7).

Fig. 7. Identification of corazoninergic neurons in CNS of scuttle fly adult period by in situ hybridization. A, B; whole sample (×100). C, D; partial enlargement of CNS (×400).

珥덊뙆由ъ뒗 떖由 꽦泥댁쓽 뇤뿉꽌 corazonin 돱윴쓽 닔뒗 뜑 씠긽 뒛뼱굹吏 븡븯떎. 泥섏쓬遺꽣 corazonin쓣 깮궛븯뜕 꽭 뙇쓽 돱윴뱾留뚯씠 꽦泥댁뿉꽌룄 corazonin쓣 諛쒗쁽븯硫댁꽌 洹 湲곕뒫쓣 쑀吏븯떎(Fig. 7).

怨 李

Scuttle fly쓽 븷踰뚮젅 2, 3졊 떆湲곗뿉꽌 以묒텛떊寃쎄퀎 뇤 議곗쭅怨 蹂듭떊寃쎌깋 議곗쭅쓣 梨꾩쭛빐꽌 젣옄由ы샎꽦솕(ISH) 寃궗 諛⑸쾿쓣 넻븯뿬 corazonin 遺꾨퉬 돱윴 쑀쟾옄쓽 諛쒗쁽 쑀臾 젙룄瑜 愿李고븯뿬 솗씤븯떎. Corazonin 돱윴 븷踰뚮젅 2, 3졊 떆湲곗쓽 以묒텛떊寃쎄퀎 뇤 議곗쭅뿉꽌 벑履 以묒븰(DM) 븳 媛쒖쓽 뙇, 벑履 痢〓㈃(DL) 꽭 媛쒖쓽 뙇, 蹂듬떊寃쎌깋 議곗쭅뿉꽌 醫뚯륫怨 슦痢 移씤 뿬뜜 媛쒖쓽 뙇쑝濡 議댁옱븯뒗 寃껋쓣 愿李고븿쑝濡쒖뜥, 以묒텛떊寃쎄퀎뿉꽌 corazonin쓣 遺꾨퉬븯뒗 돱윴씠 뇤 蹂듭떊寃쎌깋 議곗쭅뿉꽌 겕寃 꽭 媛쒖쓽 洹몃9뿉꽌 諛쒗쁽릺怨 엳뒗 寃껋쓣 솗씤븯떎(Park, 2020). 븯吏留 븷踰뚮젅뿉꽌 踰덈뜲湲곕줈 蹂깭媛 릺뒗 룞븞뿉, corazonin 諛쒗쁽 뙣꽩뿉 겕寃 蹂솕媛 씠猷⑥뼱吏꾨떎.

D. melanogaster쓽 븷踰뚮젅 떆湲곗뿉 蹂듬떊寃쎌깋(VNC)쓽 뿬뜜 뙇쑝濡 릺뼱 엳뒗 corazonin 諛쒗쁽 돱윴씠 珥덇린 踰덈뜲湲곕줈 蹂깭릺뒗 룞븞뿉 젣嫄곌 릺뿀怨, 씠寃껋 踰덈뜲湲 삎꽦 썑 0~3떆媛 룞븞 蹂듭떊寃쎌깋(VNC)뿉 쑀吏媛 릺怨 엳吏留 4~6떆媛꾩씠 릺硫 뾾뼱吏湲 떆옉븯뿬 7떆媛 젙룄媛 릺硫 셿쟾엳 냼떎맂떎怨 븯떎. 삉븳 썑湲 踰덈뜲湲 諛쒖깮 룞븞뿉 뇤 븵履(protocerebrum)뿉꽌 쟾몢뿽(frontal lobe)쓽 벑履 以묒븰(DM)履쎌뿉 쐞移섑빐꽌 諛쒗쁽릺뒗 corazonin 돱윴쓽 븳 媛쒖쓽 뙇씠 젣嫄곌 맂떎怨 븯떎. 洹몃━怨 뇤뿉 議댁옱븯뒗 벑履 痢〓㈃(DL)履쎌뿉꽌 諛쒗쁽릺뒗 꽭 媛쒖쓽 뙇쑝濡 援ъ꽦릺뼱 엳뒗 corazonin 돱윴 꽦異 떆湲곗뿉룄 吏냽쟻쑝濡 媛숈 쐞移섏뿉 議댁옱븯怨 엳쑝硫댁꽌 깉濡쒖슫 떊깮 corazonin 돱윴怨 吏묓빀릺뼱 議댁옱븳떎怨 蹂닿퀬릺뿀떎(Choi et al., 2005; Choi et al., 2006; Choi, 2009; Lee et al., 2008; Lee et al., 2011).

Scuttle fly뿉꽌룄 D. melanogaster 留덉갔媛吏濡 븷踰뚮젅媛 踰덈뜲湲곕줈 蹂깭븯뒗 룞븞뿉 踰덈뜲湲곌 떆옉릺뒗 떆젏遺꽣 諛붾줈 蹂듭떊寃쎌깋 議곗쭅뿉꽌 諛쒗쁽릺뒗 뿬뜜 뙇쓽 corazonin 돱윴씠 諛쒗쁽릺吏 븡뒗 寃껋쓣 솗씤븯떎. 븯吏留 쟾몢뿽쓽 벑以묒븰(dorsomedial, DM)뿉 議댁옱븯뒗 corazonin 諛쒗쁽 돱윴 븳 뙇씠 D. melanogaster 떎瑜닿쾶 踰덈뜲湲곌 諛쒖깮븯옄留덉옄 蹂듭떊寃쎌깋 議곗쭅怨 븿猿 젣嫄곌 릺뼱 뾾뼱吏꾨떎뒗 寃껋쓣 븣븘깉떎.

븳렪, scuttle fly뿉꽌 쟾뇤 뼇履 벑痢〓㈃(DL) 遺遺꾩뿉꽌 꽭 뙇쓽 諛쒗쁽릺뒗 corazonin 돱윴 D. melanogaster 媛숈씠 븷踰뚮젅뿉꽌 꽦異 떆湲곌퉴吏 吏냽쟻쑝濡 議댁옱븯뒗 寃껋쓣 솗씤븯떎. 洹몃윭굹 D. melanogaster뿉꽌 떖由 scuttle fly뿉꽌뒗 corazonin 諛쒗쁽 돱윴씠 븷踰뚮젅遺꽣 踰덈뜲湲 떆湲곌퉴吏 쟾뇤 遺遺꾩쓽 떆뿽履(optic lobe) 媛옣옄由ъ씤 벑痢〓㈃(DL)뿉 쐞移섑빐 엳떎媛 젏젏 뇤 븵履 以묒븰 遺遺꾩쑝濡 씠룞븯뒗 듅吏뺤쓣 솗씤븯怨, 꽦異 떆湲곌 릺硫댁꽌 뇤 議곗쭅쓽 醫뚯륫怨 슦痢 벑痢〓㈃(DL)뿉꽌 諛쒗쁽맂 꽭 뙇쓽 corazonin 돱윴씠 뇤 븵履 以묒븰 遺遺꾩뿉 吏묓빀릺뼱 諛쒗쁽릺뒗 寃껋쓣 븣븘깉떎.

Scuttle fly瑜 鍮꾨’빐꽌 듅엳 셿쟾蹂깭쓽 怨ㅼ땐뿉꽌 以묒텛떊寃쎄퀎(CNS)쓽 닔留롮 돱윴怨 븿猿 遺遺꾩쓽 븷踰뚮젅 議곗쭅 꽭룷쓽 二쎌쓬 봽濡쒓렇옩(programmed cell death, PCD)뿉 쓽빐 젣嫄곕릺뒗 룞븞 洹뱀쟻쑝濡 꽦異 듅젙 議곗쭅怨 돱윴뿉 쓽빐 떊깮맂 議곗쭅怨 떊寃쎌꽭룷瑜 깉濡쒖씠 삎꽦븯寃 맂떎怨 蹂닿퀬릺뿀떎(Riddiford, 1993; Truman et al., 1993; Truman et al., 1994). 씠윭븳 諛쒖깮븰쟻씤 쁽긽뿉 쓽빐꽌 議곗쭅씠 꽭룷遺꾩뿴 븯뿬 깉濡쒖씠 留뚮뱾뼱吏嫄곕굹 삉뒗 깮由ъ쟻씤 쁽긽뿉 쓽빐 꽭룷옄뿰궗뿉 쓽빐꽌 뾾뼱吏湲곕룄 븳떎怨 븯떎. 씠윭븳 쁽긽 諛쒖깮븰쟻쑝濡 議곗젅븯뒗 뼱뼚븳 臾쇱쭏뱾씠 솢꽦솕 릺嫄곕굹 뼲젣릺硫댁꽌 씠猷⑥뼱吏꾨떎怨 蹂닿퀬媛 엳뿀떎(Shi, 2002; Hay and Guo, 2006). 洹몃옒꽌 corazonin 諛쒗쁽 돱윴씠 洹뱀쟻씤 諛쒖깮 怨쇱젙 以묒뿉꽌 젣嫄곌 릺怨 깮꽦씠 릺뒗 寃껋 꽭룷옄뿰궗뿉 쓽븳 깮由ъ쟻씤 쁽긽씠씪怨 異붿륫븷 닔 엳뿀떎.

ACKNOWLEDGEMENT

This study was supported by reserch fund Mokpo Science University, 2021.

CONFLICT OF INTEREST

The authors affirm that they have no academic, financial or rights interests.

References
  1. Altstein M, Nassel DR. Neuropeptide signaling in insects In: Gross E, Meienhofer J, editorsGeary T. G., Maule A. G., editors. Neuropeptide Systems as Targets for Parasite and Pest Control. 2010. pp. 155-165.
    Pubmed CrossRef
  2. Baggerman G, Schoofs L. The use of mass spectrometry and capillary chromatography in the identification and quantification of neuropeptides in insects, 2002. pp. 44.
  3. Boerjan B, Verleyen P, Huybrechts J, Schoofs L, De Loof A. In search for a common denominator for the diverse functions of arthropod corazonin; a role in the physiology of stress? Gen Comp Endocrinol. 2010. 166: 222-233.
    Pubmed CrossRef
  4. Choi SH. "The Regulation of Neuropeptide Corazonin and Its Functional Analyses in Drosophila melanogaster." PhD diss., University of Tennessee. 2009.
  5. Choi YJ, Lee G, Park JH. Programmed cell death mechanisms of identifiable peptidergic neurons in Drosophila melanogaster. Development. 2006. 133: 2223-2232.
    Pubmed CrossRef
  6. Choi YJ, Lee G, Hall JC, Park JH. Comparative analysis of Corazonin-encoding genes (Crz's) in Drosophila species and functional insights into Crz-expressing neurons. J Comp Neurol. 2005. 482: 372-385.
    Pubmed CrossRef
  7. Hansen IA, Sehnal F, Meyer SR, Scheller K. Corazonin gene expression in the waxmoth Galleria mellonella. Insect Mol Biol. 2001. 10: 341-346.
    Pubmed CrossRef
  8. Hay BA, Guo M. Caspase-dependent cell death in Drosophila. Annu Rev Cell Dev Biol. 2006. 22: 623-650.
    Pubmed CrossRef
  9. Hoste B, Simpson SJ, De Loof A, Breuer M. Behavioral differences in Locusta migratoria associated with albinism and their relation to [His(7)]-corazonin. Physiol Entomol. 2003. 28: 32-38.
    CrossRef
  10. Hua YJ, Ishibashi J, Saito H, Tawfik A, Sakakibara M, Tanaka Y, Derua R, Waelkens E, Baggerman G, De Loof A, Schoofs L, Tanaka S. Identification of [Arg7] corazonin in the silkworm, Bombyx mori and the cricket, Gryllus bimaculatus, as a factor inducing dark color in an albino strain of the locust, Locusta migratoria.. J Insect Physiol. 2000. 46: 853-860.
    CrossRef
  11. Kim J, Kim JW, Park JH. Characterization and expression of corazonin gene in the scuttle fly. Megaselia scalaris. 2013. KF318884.1.
  12. Kim YJ, Spalovska-Valachova I, Cho KH, Zitnanova I, Park Y. Corazonin receptor signaling in ecdysis initiation. Proc Natl Acad Sci U S A. 2004. 101: 6704-6709.
    Pubmed KoreaMed CrossRef
  13. Lee G, Kim KM, Kikuno K, Wang Z, Choi YJ, Park JH. Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster. Cell Tissue Res. 2008. 331: 659-673.
    Pubmed CrossRef
  14. Lee G, Wang Z, Sehgal R, Chen CH, Kikuno K, Hay B, Park JH. Drosophila caspases involved in developmentally regulated programmed cell death of peptidergic neurons during early metamorphosis. J Comp Neurol. 2011. 519: 34-48.
    Pubmed CrossRef
  15. Li XF, Bowe JE, Mitchell JC, Brain SD, Lightman SL, O'Byrne KT. Stress-induced suppression of the gonadotropin-releasing hormone pulse generator in the female rat: a novel neural action for calcitonin gene-related peptide. Endocrinology. 2004. 145: 1556-1563.
    Pubmed CrossRef
  16. Maeno K, Tanaka S. Hormonal control of phase-related changes in the number of antennal sensilla in the desert locust, Schistocerca gregaria: possible involvement of [His7]-corazonin. J Insect Physiol. 2004. 50: 855-865.
    Pubmed CrossRef
  17. N?ssel DR, Winther AM. Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol. 2010. 92: 42-104.
    Pubmed CrossRef
  18. Nikolarakis KE, Almeida OF, Herz A. Corticotropin-releasing factor (CRF) inhibits gonadotropin-releasing hormone (GnRH) release from superfused rat hypothalami in vitro. Brain Res. 1986. 377: 388-390.
    Pubmed CrossRef
  19. Park HH. The Expression of Corazonin Neurons in Larvae Stage of Scuttle Fly. Biomedical Laboratory Sciences. 2020. 26: 1-9.
    CrossRef
  20. Porras MG, De Loof A, Breuer M, Arechiga H. Corazonin promotes tegumentary pigment migration in the crayfish Procambarus clarkii. Peptides. 2003. 24: 1581-1589.
    Pubmed CrossRef
  21. Predel R, Agricola H, Linde D, Wollweber L, Veenstra JA, Penzlin H. The insect neuropeptide corazonin: physiological and immunocytochemical studies in Blattariae. Zoology (ZACS). 1994. 98: 35-49.
  22. Predel R, Herbert Z, Eckert M. Neuropeptides in perisympathetic organs of Manduca sexta; specific composition and changes during development. Peptides. 2003. 24: 1457-1464.
    Pubmed CrossRef
  23. Predel R, Kellner R, Gade G. Myotropic neuropiptides from the retrocerebral complex of the stick insect, Carausius morosus (Phasmatodea: Lonchodidae). Eur. J. Entomol. 1999. 96: 275-278.
  24. Predel R, Nachman RJ, Gade G. Myostimulatory neuropeptides in cockroaches: structures, distribution, pharmacological activities, and mimetic analogs. J Insect Physiol. 2001. 47: 311-324.
    Pubmed CrossRef
  25. Predel R, Neupert S, Russell WK, Scheibner O, Nachman RJ. Corazonin in insects. Peptides. 2007. 28: 3-10.
    Pubmed CrossRef
  26. Riddiford LM. Hormones and Drosophila development In: Gross E, Meienhofer J, editorsGeary T. G., Maule A. G., editorsBate M, Arias A. M, editors. The development of Drosophila melanogaster. 1993. pp. 899-939. Cold Spring Harbor Press. Cold Spring Harbor, NY.
  27. Roller L, Tanaka Y, Tanaka S. Corazonin and corazonin-like substances in the central nervous system of the Pterygote and Apterygote insects. Cell Tissue Tes. 2003. 312: 393-406.
    Pubmed CrossRef
  28. Saifullah ASM, Tomioka K. Pigment-dispersing factor sets the night state of the medulla bilateral neurons in the potic lobe of the cricket, Gryllus bimaculatus. J Insect Physiol. 2003. 49: 231-239.
    CrossRef
  29. Schoofs L, Baggerman G, Veelaert D, Breuer M, Tanaka S, De Loof A. The pigmentotropic hormone [His7]-corazonin, absent in a Locusta igratoria albino strain, occurs in an albino strain of Schistocerca gregaria. Mol Cell Endocrinol. 2000. 168: 101-109.
    CrossRef
  30. Shiga S, Davis NT, Hildebrand JG. Role of neurosecretory cells in the photoperiodic induction of pupal diapause of the tobacco hornworm Manduca sexta. J Comp Neurol. 2003. 462: 275-285.
    Pubmed CrossRef
  31. Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell. 2002. 9: 459-470.
    Pubmed CrossRef
  32. Slama K. The effect of corazonin on heartbeat reversal in pupae of the tobacco hornworm, Manduca sexta (Lepidoptera: Sphingidae). Eur J Entomol. 2004. 101: 513-521.
    CrossRef
  33. Slama K, Sakai T, Takeda M. Effect of corazonin and cardioactive peptide on heartbeat in the adult American cockroach (Periplaneta americana). Arch Insect Biochem Physiol. 2006. 62: 91-103.
    Pubmed CrossRef
  34. Tanaka S. Endocrine mechanism of controlling body-color poly -morphism in locusts. Arch Insect Biochem Physiol. 2001. 47: 139-149.
    Pubmed CrossRef
  35. Tanaka S, Zhu DH, Hoste B, Breuer M. The dark-color inducing neuropoptide, His7-corazonin, causes a shift in morphometric characteristics towards the gregarious phase in isolated-reared (solitarious) Locusta migratoria. J Insect Physiol. 2002a. 48: 1065-1074.
    CrossRef
  36. Tanaka Y, Hua Y, Roller L, Tanaka S. Corazonin reduces the spinning rate in the silk worm, Bombyx mori. J Insect Physiol. 2002b. 48: 707-714.
    Pubmed CrossRef
  37. Tawfik AI, Tanaka S, De Loof A, Schoofs L, Baggerman G, Waelkens E, Derua R, Milner Y, Yerushalmi Y, Pener MP. Identification of the gregarization - associated dark - pigmentotropin in locusts through an albino mutant. Proc Natl Acad Sci U S A. 1999. 96: 7083-7087.
    Pubmed KoreaMed CrossRef
  38. Tellam DJ, Perone MJ, Dunn IC, Radovick S, Brennand J, Rivier JE, Castro MG, Lovejoy DA. Direct regulation of GnRH transcription by CRF-like peptides in an immortalized neuronal cell line. Neuroreport. 1998. 9: 3135-3140.
    Pubmed CrossRef
  39. Truman JW, Talbot WS, Fahrbach SE, Hogness DS. Ecdysone receptor expression in the CNS correlates with stage-specific responses to ecdysteroids during Drosophila and Manduca development. Development. 1994. 120: 219-234.
    Pubmed CrossRef
  40. Truman JW, Taylor BJ, Awad TA. Formation of the adult nervous system In: Gross E, Meienhofer J, editorsGeary T. G., Maule A. G., editorsBate M, Arias A. M, editorsBate M, Arias A. M, editors. The development of Drosophila melanogaster. 1993. pp. 1245-1275. Cold Spring Harbor Press. Cold Spring Harbor, NY.
  41. Veenstra JA. Isolation and structure of corazonin, a cardio-active peptide from the America cockroach. FEBS Lett. 1989. 250: 231-234.
    CrossRef
  42. Veenstra JA. Presence of corazonin in three insect species, and isolation and identification of [His7] corazonin from Schistocerca americana. Peptides. 1991. 12: 1285-1289.
    CrossRef
  43. Veenstra JA. Isolation and structure of the Drosophila corazonin gene. Biochem. Biophys Res Commun. 1994. 204: 292-296.
    Pubmed CrossRef
  44. Veenstra JA, Davis NT. Localization of corazonin in the nervous system of the cockroach Periplaneta americana. Cell Tissue Res. 1993. 274: 57-64.
    Pubmed CrossRef
  45. Verleyen P, Baggerman G, Mertens I, Vandersmissen T, Huybrechts J, Van Lommel A, De Loof A, Schoofs L. Cloning and characterization of a third isoform of corazonin in the honey bee Apis mellifera. Peptides. 2006. 27: 493-499.
    Pubmed CrossRef
  46. Wise S, Davis NT, Tyndale E, Noveral J, Folwell MG. Neuroanatomical studies of period gene expression in the hawkmoth, Manduca sexta. J Comp Neurol. 2002. 447: 366-380.
    Pubmed CrossRef