Search for


TEXT SIZE

search for



CrossRef (0)
Anti-obesity Effects of Mulberry Leaf and Yacon Extract in Obese Rats
Biomed Sci Letters 2020;26:75-84
Published online June 30, 2020;  https://doi.org/10.15616/BSL.2020.26.2.75
© 2020 The Korean Society For Biomedical Laboratory Sciences.

Yong Lim1,*, Ji Hye Oh2,**, Un Kyu Park2,**, Man Kyu Huh3,* and Seock-Yeon Hwang2,,*

1Department of Clinical Laboratory Science, Dong-eui University, Busan 47340, Korea
2Department of Biomedical Laboratory Science, Daejeon University, Daejeon 34520, Korea
3Food Engineering and Technology Major, Dong-eui University, Busan 47340, Korea
Correspondence to: 쟔eock Yeon Hwang. Department of Biomedical Laboratory Science, Daejeon University 62 Daehak-ro, Dong-gu, Daejeon 34520, Korea.
Tel: +82-42-280-2802, Fax: +82-42-280-2904, e-mail: syhwang@dju.kr
*Professor, **Graduate student.
Received March 6, 2020; Revised May 10, 2020; Accepted May 12, 2020.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
We evaluated the effect of anti-obesitic activity of MYE (mulberry leaf + Yacon tuber) extracted from Morus alba as muberry leaf and Smallanthus sonchifolia as yacon. 1%, 3%, or 5% of MYE were treated to Sprague-Dawley rats exposed to a high-fat diet. MYE treated rats were suppressed weight during four weeks, and they lost weight significantly after six weeks. Common blood chemistry panels related to liver function revealed significant improvement in the MYE-treated groups. The expression of leptin as indicators for obesity was decreased in perirenal fat. Such results indicate that MYE could be a promising candidate for the improvement of obesity. In addition, MYE effected on deceased glucose metabolism, reducing the activities of glucose-6-phosphate dehydrogenase (G-6-PDH) and glucokinase related to glycogen synthesis. The fatty liver was observed in high-fat diet-treated rats, resulting from increased number of adipose cells and Ito cells. However, this pathologic change was significantly improved by administration of MYE. MYE have significant effects on antioxdative function and glycometabolism against high fat diet. Thereby, it seems that MYE prevent fatty liver by high-fat diet. Thus it is suggested that MYE would be worth being developed as an biofunctional food to prevent undesirable effects caused by obesity.
Keywords : Glucose-6-phosphate dehydrogenase (G-6-PDH), Leptin, Muberry leaf, Obesity, Yacon
꽌 濡

鍮꾨쭔 嫄닿컯뿉 쑀빐븳 쁺뼢쓣 誘몄튌 젙룄濡 泥대궡뿉 吏諛⑹씠 怨쇰떎븯寃 異뺤쟻릺뒗 寃껋쑝濡 젙쓽릺硫(Ogden et al., 2007), 洹 썝씤 쑀쟾쟻, 깮由ъ쟻, 슂씤怨 愿젴씠 엳떎(Prentice, 2001). 씪諛섏쟻쑝濡 鍮꾨쭔 씪李⑥꽦 鍮꾨쭔怨 씠李⑥꽦 鍮꾨쭔쑝濡 굹늻뼱吏뒗뜲, 씪李⑥꽦 鍮꾨쭔 뿉꼫吏 꽠痍⑤웾씠 뿉꼫吏 냼紐⑤웾蹂대떎 留롮 긽깭뿉꽌 泥댁諛⑹씠 利앷븯뿬 諛쒖깮븯硫, 씠李⑥꽦 鍮꾨쭔 쑀쟾, 궡遺꾨퉬 吏덊솚, 빟젣 벑뿉 쓽빐 諛쒖깮븳떎. 씠 以 씪李⑥꽦 鍮꾨쭔 쟾泥댁쓽 90% 씠긽쑝濡 떎닔쓽 鍮꾨쭔씠 씠뿉 빐떦맂떎. 꽭怨꾨낫嫄닿린援(World Health Organization, WHO)뒗 鍮꾨쭔쓽 쑀蹂묐쪧씠 1980뀈뿉 鍮꾪빐 2008뀈 쟾꽭怨꾩쟻쑝濡 嫄곗쓽 몢 諛 利앷븯怨, 쑀읇 뿬꽦쓽 23%, 궓꽦쓽 20%媛 鍮꾨쭔씠씪怨 諛쒗몴븯떎(Ogden et al., 2007). WHO뒗 鍮꾨쭔쓣 吏덈퀝쑝濡 꽑뼵븯怨, 硫吏븡븘 誘멸뎅 肉먮쭔 븘땲씪 븳援쓣 鍮꾨’븳 븘떆븘 援媛뱾뿉寃뚮룄 鍮꾨쭔뿉 吏곷㈃븷 寃껋씠씪怨 諛쒗몴븯쑝硫(WHO, 2000), 떎젣濡 븳援씤 꽦씤 鍮꾨쭔쑉 2017뀈뿉 25.9%씠뿀떎(Ministry of Health and Welfare, 2018).

鍮꾨쭔 룆由쎌쟻쑝濡, 샊 떦눊굹 떖삁愿 吏덊솚 벑 떎瑜 吏덊솚怨 뿰愿릺뼱 留롮 嫄닿컯愿젴 臾몄젣瑜 빞湲곗떆耳(Kopelman, 2007), 鍮꾨쭔쑝濡 씤븳 떦눊蹂, 떖삁愿 吏덊솚쓽 諛쒕퀝瑜좎 뿰졊, 꽦蹂, 씤醫낆뿉 愿怨꾩뾾씠 吏냽쟻쑝濡 利앷븯怨 엳떎(Kereiakes and Willerson, 2003; Jee et al., 2006). 鍮꾨쭔 븫, 뇤議몄쨷, 떖삁愿 吏덊솚, 怨좏삁븬, 떦눊蹂묒꽦 떦눊利(씤뒓由 쓽議댁꽦怨 鍮꾩씤뒓由 쓽議댁꽦) 벑 1李 吏덊솚怨 2李 吏덊솚룄 쑀諛쒗븷 닔 엳떎(Pi-Sunyer, 1993). 뵲씪꽌 鍮꾨쭔 솚옄뿉 빐 留뚯꽦 吏덊솚쓽 吏꾪뻾쓣 留됯린 쐞븳 媛곸쥌 泥섎갑怨 삁諛⑹“移섍 떆뻾릺怨 엳떎. 鍮꾨쭔쓣 쐞븳 떇씠슂踰뺢낵 삁諛⑸쾿쑝濡 鍮꾨쭔룄, 슫룞, 移쇰줈由 떇떒뿉 뵲씪 냼웾쓽 꽠痍⑥ 떇슃뼲젣젣 蹂듭슜웾씠 젣떆릺怨 엳쑝硫, 떖븳 寃쎌슦뿉뒗 냼옣쓽 쐞 슦쉶닔닠씠 룄엯릺怨 엳떎(Atkinson, 1997; Carmichael, 1999; Weledji, 2016). 洹몃윭굹 빟臾 移섎즺踰뺤 泥좊텇 寃고븤怨 洹몄뿉 뵲瑜 鍮덊삁쓣 쑀諛쒗븷 닔 엳쑝硫, 蹂댄넻 泥대궡쓽 泥좊텇씉닔 옣븷媛 썝씤씠 릺뒗 뿬윭 吏덈퀝씠 맆 닔 엳떎뒗 吏쟻씠 엳뿀쑝硫 媛곸쥌 誘몃꽕엫怨 鍮꾪誘, 蹂댁땐젣瑜 諛쏆 솚옄뿉룄 遺덇뎄븯怨 泥좊텇 遺議깆쓣 留됱쓣 닔 뾾뿀떎(Guallar et al., 2013). 씠 媛숈씠 빟臾 移섎즺 꽦怨듬쪧씠 궙떎뒗 젏怨 遺옉슜쓽 쐞뿕꽦씠 怨듭〈븳떎뒗 젏쓣 怨좊젮븷 븣 鍮꾨쭔쓣 媛먯냼떆궎湲 쐞빐 옄뿰 臾쇱쭏濡쒕꽣 솢꽦쟻씠怨 븞쟾븳 꽦遺꾩쓣 李얜뒗 寃껊룄 븳 諛⑹븞씠 맆 닔 엳떎.

戮뺣굹臾(Morus alba L.)뒗 戮뺣굹臾닿낵(Moraceae)뿉 냽븯뒗 愿紐⑹쑝濡 옂쓣 빟옱濡 궗슜븷 寃쎌슦뿉 븳빟옱紐낆 긽뿽(旅묋몛), 以꾧린쓽 빟옱뒗 긽吏(旅묉옗), 뿴留ㅻ뒗 긽떖옄(旅묉ㅉ耶), 肉뚮━猿띿쭏 긽諛깊뵾(旅묊쇋슢)씪怨 븳떎. 戮뺤옂뿉뒗 븘誘몃끂궛, 뵆씪蹂대끂씠뱶, 臾닿린뿼瑜, 鍮꾪誘 벑씠 븿쑀릺뼱 吏諛 怨쇱궛솕, 肄쒕젅뒪뀒濡, 룞留κ꼍솕, 怨좎삁利 벑쓽 궗 吏덊솚쓣 뼲젣븯뒗 寃껋쑝濡 븣젮졇 엳떎(Fujjmoto and Nomura, 1985). 빞肄(Smallanthus sonchifolius (Poepp & Endl) H. Robinson) 럹猷⑥쓽 븞뜲뒪 궛留μ뿉꽌 옄씪뒗 떎뀈깮 珥덈낯씠떎. 빞肄(yacon)쓽 肉뚮━뿉뒗 떎웾쓽 fructo-oligosaccharide媛 븿쑀릺뼱 엳뼱 빆궛솕, 怨좎삁利 빐옉슜씠 븣젮졇 엳怨(Russo et al., 2015), 蹂鍮꾨 삁諛 諛 셿솕, 삁븸 吏吏덇낵 삁떦쓣 以꾩뿬 떦눊蹂묒쓣 삁諛⑺븯뿬 솚옄 떇떒뿉 룄씠 릺硫(Chen et al., 2000), 鍮꾨쭔, 룞留κ꼍솕利 諛 떦눊濡 씤빐 鍮꾪씉닔꽦 諛 泥대궡 誘몄궗슜 臾쇱쭏쓣 젣嫄고븳떎(Kim, 2005).

蹂 뿰援ъ쓽 삁鍮꾩“궗 떎뿕뿉꽌 鍮꾨쭔뿉 誘몄튂뒗 戮뺤옂怨 빞肄섏쓽 쁺뼢쓣 뙋떒븯湲 쐞븳 媛곸쥌 二쇱슂 吏몴瑜 룊媛븳 寃곌낵 鍮꾨쭔뿉 븳 泥숇룄뿉꽌 湲띿젙쟻씤 쁺뼢쓣 굹궡뿀떎(Lim, 2015). 뵲씪꽌 蹂 뿰援ъ뿉꽌 긽뿽怨 빞肄 異붿텧臾쇱쓽 鍮꾩쑉뿉 뵲씪 伊먯쓽 鍮꾨쭔씠 寃쎄컧릺뒗 젙룄媛 쑀쓽誘명븳 吏 議곗궗븯떎. 蹂 뿰援 寃곌낵뒗 戮뺤옂怨 빞肄섏쓽 뿉깂삱 異붿텧臾쇱쓣 씠슜븳 鍮꾨쭔 떎뿕 吏몴뿉 룄씠 맆 닔 엳쓣 寃껋씠떎.

옱猷 諛 諛⑸쾿

異붿텧臾쇱쓽 以鍮

戮뺤옂怨 빞肄섏 援 빟졊떆옣뿉꽌 떆뿕 옱猷뚮줈 援ъ엯븯떎. 뒪뀒씤由ъ뒪 슜湲곗뿉 嫄댁“맂 떆뿕 臾쇱쭏(戮뺤옂怨 빞肄 媛곴컖 1 kg)怨 50% 뿉깂삱(10 L)쓣 꽔怨, 85꼦뿉꽌 8떆媛 룞븞 떆猷뚮 異붿텧븳 썑 깋媛곴쑝濡 닔吏묓븯떎. 븳렪, 룞씪 臾닿쾶쓽 嫄댁“ 떆猷뚯뿉 70% 뿉깂삱 6 L瑜 泥④븯뿬 24떆媛 援먮컲븳 썑 珥덉쓬뙆꽭泥숆린濡 1떆媛 泥섎━븯뿬 몢 踰덉㎏ 異붿텧臾쇱쓣 異붿텧뻽떎. 씠 몢 異붿텧臾쇱쓣 샎빀븳 썑 쉶쟾삎 媛먯븬냽異뺢린濡 냽異뺥븳 썑 룞寃곌굔議곌린濡 遺꾨쭚솕븯떎. 삁鍮꾩떆뿕뿉꽌 遺꾨쭚맂 戮뺤옂怨 빞肄 異붿텧臾쇱쓽 몢 媛吏 떎瑜 鍮꾩쑉쓣 샎빀븯뿬 鍮꾨쭔뿉 媛옣 슚怨쇱쟻씤 鍮꾩쑉쓣 궛異쒗븯怨, 戮뺤옂怨 빞肄섏쓣 7:3쓽 鍮꾩쑉濡 꽎 寃껋씠 떆꼫吏 슚怨쇨 넂븘 蹂 뿰援ъ뿉 궗슜븯떎.

떎뿕룞臾쇨낵 癒뱀씠

蹂 떎뿕뿉 궗슜맂 伊먮뒗 100~150 g 닔而 Sprague-Dawley (SD)쑝濡 DBL Ltd(異⑹껌遺곷룄 쓬꽦)뿉꽌 援ъ엯뻽떎. 援ъ엯븳 伊먮뒗 7씪 룞븞 궗쑁 솚寃쎌뿉 닚移섏떆耳곌퀬, 떎뿕뿉뒗 嫄닿컯븳 룞臾쇰뱾留 궗슜븯떎. 룞臾쇰뱾 뿉뼱而④낵 삩뭾湲곕줈 삩룄 23 ± 2꼦, 媛뒿湲곕줈 긽 뒿룄(50 ± 5%) 諛 議곕챸옣移섎줈 12떆媛 紐/븫 二쇨린濡 궗쑁븯떎. 媛곴컖쓽 伊먮뱾 蹂꾨룄쓽 궗쑁긽옄뿉꽌 癒뱀씠瑜 꽠痍⑦븯룄濡 愿由ы븯떎. 癒뱀씠 쇅 닔遺꾩 利앸쪟닔濡 伊먯뿉寃 젣怨듬릺뿀떎.

伊먮뱾 뿬꽢 洹몃9쑝濡 굹늻怨, 媛 洹몃9떦 10留덈━뵫 諛곕텇븯떎: G1: 젙긽援(normal diet group), G2: 怨좎吏덇뎔(high fat diet group, HFD), G3: 뼇꽦議곌뎔(怨좎吏 + 0.5% 븯씠뱶濡앹떆떆듃由궛(high fat diet group with 0.5% hydroxycitric acid (HFD + HCA), G4: 1% 泥섎━援(high fat diet with 1% mulberry leaf and yacon diet group, HFD + 1% MYE), G5: 3% 泥섎━援(high fat diet with 3% mulberry leaf and yacon group, HFD + 3% MYE), G6: 5% 泥섎━援(high fat diet with 5% mulberry leaf and yacon group, HFD + 5% MYE).

伊먮뒗 泥댁쨷씠 젙긽 踰붿쐞쓽 30% 씠긽씠 맆 븣源뚯 4二 룞븞 怨좎諛 떇씠슂踰뺤쑝濡 鍮꾨쭔쓣 쑀룄븳 썑 媛 洹몃9蹂꾨줈 삷寃 4二 룞븞 떎뿕 臾쇱쭏쓣 癒뱀떎. 젙긽 洹몃9 諛 怨좎諛 癒뱀씠 洹몃9 紐⑹쟻쑝濡 븳 援ъ꽦臾(AIN 93-M)쓣 젣怨듯븯떎(Table 1). 떎뿕 洹몃9쓽 떇떒뿉꽌 젙긽 洹몃9쓽 珥 뿉꼫吏 븿웾 4.25 kcal/g씠硫 怨좎諛 洹몃9 珥 뿉꼫吏 븿웾 5.20 kcal/g씠떎. 뼇꽦議곌뎔 G3 洹몃9 0.5%쓽 닔궛솕吏吏덉궛쓣 닾뿬븯怨, G4~G6 洹몃9 1, 3, 5% MYE쓽 怨좎諛 떇떒쓣 젣怨듯븯떎.

Composition (g/kg) of the experimental diets for treatment groups

Constituent G1 G2 G3 G4 G5 G6
Casein 200 200 200 200 200 200
Maize starch 521 321 321 321 321 321
Sucrose 100 100 100 100 100 100
Maize oil 100 100 100 100 100 100
Lard - 200 200 200 200 200
Cellulose 30 30 30 30 30 30
DL-methionine 2 2 2 2 2 2
Mineral mixa 35 35 35 35 35 35
Vitamin mixb 10 10 10 10 10 10
Choline bitartrate 2 2 2 2 2 2
Gross energy content(kcal/g) 4.25 5.20 5.20 5.20 5.20 5.20

HFD, high-fat diet. HCA, hydroxycitric acid. MYE, Mulberry leaf+yacon.

a) AIN mineral mixture (g/kg): calcium phosphate dibasic 500, sodium chloride 74, potassium citrate 220, potassium sulfate 52, magnesium oxide 24, manganous carbonate 3,5, ferric citrate 6, zinc carbonate 1,6, cupric carbonate 0.3, potassium iodate 0.01, sodium selenate 0.01, chrominium potassium sulfate 0.55

b) AIN vitamin mixture (g/kg): thiamine HCl 0.6, rivof lavin 0.6, pyridoxine HCl 0.7, niacin 3, calcium pantothenate 1.6, folic acid0.2, biotin 0.02, vitamin B12 (0.1% trituration in mannitol) 1, dry vitamin A palmitate (500,000 U/g) 0.8 dry vitamin E acetate (500 U/g)10, vitamin D, trituration (400,000 U/g), 0.25, manadione sodium bisulfate complex 0.15



泥댁쨷, 쓬떇, 臾 냼鍮꾨웾 痢≪젙

伊먯쓽 泥댁쨷 泥섎━ 쟾뿉 1李⑤줈 痢≪젙븯怨, 泥섎━瑜 떆옉븳 썑 2二 룞븞 留ㅼ씪 꽭 踰덉뵫 痢≪젙븯쑝硫, 泥섏튂 떦씪뿉룄 痢≪젙븯떎. 2二 룞븞 留ㅼ씪 떇뭹怨 臾 냼鍮꾨웾쓣 痢≪젙븯쑝硫, 씪씪 룊洹 떇뭹 냼鍮꾨웾(g/룞臾/씪)룄 怨꾩궛븯떎.

遺쐞蹂 泥댁諛⑹“吏곸쓽 遺꾩꽍

蹂듦컯 궡 몴뵾 吏諛⑹“吏곸쓣 젣嫄고븳 썑 蹂듬쭑 吏諛⑹“吏곴낵 以묎컙 吏諛⑹“吏곸씠 遺꾨━븯뿬 臾닿쾶瑜 痢≪젙븯떎.

吏諛⑹“吏 궡 泥댁諛, 泥대떒諛깆쭏, DNA 븿웾 痢≪젙

떆猷 긽 룞臾쇱쓣 泥섏튂 썑 쐞옣愿(gastrocader)쓣 쟻異쒗븯怨 궡遺 궡슜臾쇱쓣 紐⑤몢 젣嫄고븯뿬 105꼦뿉꽌 嫄댁“떆궓 썑 誘뱀꽌湲곗뿉 洹좎쭏솕뻽떎. 떆猷뚮뒗 泥댁諛 諛 떒諛깆쭏 븿웾 痢≪젙뿉 궗슜븯쑝硫, 떆猷 빟 20 g쑝濡 Oxhlet 異붿텧踰뺤뿉 뵲옄떎. 泥대떒諛깆쭏 븿웾 Kjeldahl 諛⑸쾿뿉 쓽븳 臾댁吏 떆猷뚮줈 吏덉냼 븿웾쓣 痢≪젙븳 썑 吏덉냼 吏닔 6.25瑜 쟻슜빐 怨꾩궛뻽떎.

痢↔컙 媛덉깋 吏諛⑹“吏(interscapular brown adipose tissue)쓽 떒諛깆쭏 븿웾 洹좎쭏솕湲곗뿉 0.3 N NaOH瑜 泥④븯뿬 룞吏덉꽦뿉꽌 痢≪젙븳 썑 45꼦뿉꽌 1떆媛 룞븞 슜빐븯떎. 떒諛깆쭏쓽 븿웾 Lowry et al. (1951) 諛⑸쾿쑝濡 궛異쒗븯떎. 8% perchloric acid濡 DNA瑜 異붿텧븯뒗 뜲 궗슜븯떎. Diphenylamine 븿웾 Burtion뿉 湲곗닠맂 諛⑸쾿쓣 궗슜븯뿬 痢≪젙뻽떎.

떦깮꽦 痢≪젙

湲由ъ퐫寃먭낵 룷룄떦 궗쓽 븿웾쓣 痢≪젙븯湲 쐞빐 媛 2 g쓣 0.1 M citrate butter (pH 4.2) 6 mL濡 洹좎쭏솕떆궎怨, 3,000 rpm쑝濡 10遺꾧컙 썝떖遺꾨━븯떎. 湲由ъ퐫寃 븿웾怨 룷룄떦-6-씤궛뿼 깉닔냼슚냼(Glucose-6-Phosphate Dehydrogenase, G-6-PDH) 솢꽦 媛곴컖 Murat (1974) Hara (1986) 諛⑸쾿쑝濡 痢≪젙븯떎.

룷룄떦-6-씤궛뿼(Glucose-6-phosphate dehydrogenase, G-6-PD) 솢꽦 Baginski (1983) 諛⑸쾿뿉 쓽빐 땲肄뷀떞븘留덉씠뱶 븘뜲땶 떎씠돱겢젅삤씠뱶 씤궛(Nicotinamide adenine dinucleotide phosphate, NADP)濡쒕꽣 룷룄떦-6-씤궛뿼쓽 궛솕濡 깮꽦맂 NADPH 뼇쓣 遺꾩꽍븯떎. 媛 2 g 0.25 M 옄떦 15 mL 0.5 M EDTA濡 泥섎━븯怨, Teflon Potter Elvehjem쓣 궗슜븯뿬 洹좎쭏솕븯떎. 洹좎쭏븸쓣 4꼦, 20,000 × g뿉꽌 10遺꾧컙 썝떖遺꾨━븯뿬, 誘명넗肄섎뱶由ъ븘 긽벑븸 궡 G-6-PDH쓽 솢꽦룄瑜 痢≪젙븯떎.

Glucokinase 솢꽦 DeMoss (1968) 諛⑸쾿뿉 뵲씪 踰꾪꽣 샎빀臾 6 mL濡 泥섎━맂 媛 2 g쓣 1 mM EDTA濡 洹좎쭏솕븯뿬 12,000 × g뿉꽌 1떆媛 룞븞 썝떖遺꾨━븳 썑 긽벑븸쑝濡 glucokinase 솢꽦쓣 痢≪젙븯떎.

삁泥 궡 젟떞 遺꾩꽍

삁泥 궡 젟떞 븿웾 젟떞 吏꾨떒 궎듃(Animal Leptin RIA Kit, LINCO Research, Inc.)瑜 궗슜븯뿬 Radioimmunoassay 諛⑸쾿쑝濡 痢≪젙븯떎.

議곗쭅븰쟻 룊媛

蹂묐━븰쟻 寃궗瑜 쐞빐 癒쇱 룞臾쇱쓣 泥섏튂븯뿬 옣湲곕 遺꾨━븯怨 臾닿쾶瑜 痢≪젙븯떎. 쟻異쒕맂 옣湲곕뒗 10%쓽 以묒꽦 셿異 룷瑜대쭚由곗쑝濡 怨좎젙븳 썑 뙆씪쑝濡 룷留룻븯뿬 4 μm 몢猿섎줈 젅솕븯怨, 뿤留덊넚떎由곗뿉삤떊(H & E)쑝濡 뿼깋븯뿬 議곗쭅쓣 쁽誘멸꼍쑝濡 寃寃쏀븯떎.

넻怨꾨텇꽍

뜲씠꽣쓽 紐⑤뱺 닽옄뒗 룊洹 ± 몴以 렪李⑤줈 몴떆븯떎. 넻怨꾩쟻 쑀쓽꽦 Duncan쓽 떎以 踰붿쐞 寃궗뿉 씠뼱 씪썝 遺꾩궛 遺꾩꽍(ANOVA)濡 遺꾩꽍븯떎. 쑀쓽꽦 P<0.05 닔以뿉꽌 뙋젙븯떎. 넻怨꾩쟻 遺꾩꽍 SPSS (Statistical Package for Social Sciences) 20.0 봽濡쒓렇옩쓣 궗슜븯떎.

寃 怨

怨좎諛 떇씠슂踰 伊먯쓽 MYE媛 떊泥 諛 옣湲 泥댁쨷 蹂솕뿉 誘몄튂뒗 쁺뼢

떆猷 룞臾 洹몃9蹂 궗쑁 썑 4二 룞븞 떇씠슂踰뺣쭔 떎떆븯뿬 泥댁쨷씠 嫄곗쓽 씪젙븯寃 利앷븯떎. 듅엳 6二 룞븞 怨좎諛 癒뱀씠 꽠痍 洹몃9쓽 泥댁쨷 젙긽 議곌뎔(G1)뿉 鍮꾪빐 11% 利앷뻽떎(P<0.05) (Fig. 1). HCA濡 2二 泥섎━븳 쟾泥 6二쇱뿉꽌 G3쓽 泥댁쨷씠 겕寃 利앷븯吏 븡븯떎(P>0.05). 洹몃윭굹 MYE 泥섎━ 썑 2二 寃쎄낵븳 6二쇱뿉뒗 1%,3%, 5% MYE濡 泥섎━븳 꽭 洹몃9쓽 泥댁쨷 移섎즺 썑 6二, 8二 룞븞 G1뿉 鍮꾪빐 겕寃 以꾩뿀떎(P<0.05~0.01). 븳렪, 媛, 룓, 떊옣, 怨좏솚쓣 룷븿븳 옣湲 臾닿쾶뿉 엳뼱꽌 洹몃9媛 李⑥씠媛 엳뿀떎(Table 2). G1뿉 鍮꾪빐 G2쓽 5媛 옣湲 臾닿쾶뒗 紐⑤몢 媛먯냼븯떎. G2뿉 鍮꾪빐 G3 諛 1%, 3%, 5% MYE 泥섎━援곗 利앷븯怨, 듅엳 G6洹몃9 G1怨 쑀궗븯떎.

Fig. 1. Effect of MYE (mulberry leaf + yacon tuber) on body weight changes in high-fat diet-fed rats.

Effect of MYE on absolute organ weights in normal and high-fat diet-fed rats

Treatmentgroup Organ weight (g)

Liver Lung Kidney Spleen Testis
G1 7.81±0.3 1.80±0.5 1.92±0.3 0.78±0.12 3.31±0.2
G2 7.46±0.2 1.69±0.2 1.89±0.2 0.71±0.11 3.22±0.3
G3 7.71±0.4 1.67±0.3 1.94±0.3 0.71±0.11 3.33±0.4
G4 7.85±0.5 1.79±0.3 1.88±0.3 0.77±0.11 3.33±0.2
G5 7.71±0.7 1.84±0.6 1.95±0.5 0.85±0.15 3.36±0.5
G6 7.85±0.8 1.83±0.7 1.93±0.5 0.86±0.15 3.41±0.5

 

怨좎諛 떇씠 泥섎━ 伊먯쓽 MYE媛 泥댁諛, 떒諛깆쭏, 뿉꼫吏 냼鍮꾩뿉 誘몄튂뒗 쁺뼢

G2쓽 쐞 吏諛⑹“吏곸 G1뿉 鍮꾪빐 52.4% 利앷븯떎(P< 0.01) (Table 3). 洹몃윭굹 G2뿉 鍮꾪빐 1%, 3%, 5% MYE 泥섎━ 洹몃9 17.2%, 22.1%, 21.2% 媛먯냼븯떎. 뼇꽦議곌뎔(G3) G2뿉 鍮꾪빐 25.3% 媛먯냼븯떎(P<0.01). G2쓽 떊옣 吏諛⑹“吏곸 G1뿉 鍮꾪빐 14.0% 利앷븯떎(P<0.05). 洹몃윭굹 G2뿉 鍮꾪빐 3%, 5% MYE 洹몃9 8.7%, 8.5%媛 媛먯냼븯떎(P<0.05). G2쓽 遺젙냼 吏諛⑹“吏곸 G1뿉 鍮꾪빐 38.5% 利앷븯떎(P<0.05). 洹몃윭굹 G2뿉 鍮꾪빐 3% MYE 洹몃9怨 5% MYE 洹몃9뿉꽌뒗 媛곴컖 20.3%, 22.6% 媛먯냼븯떎(P<0.05). 옣궡 吏諛⑹“吏곸쓽 寃곌낵뒗 遺젙냼 吏諛⑹“吏(P<0.05)怨 쑀궗븯떎. G2쓽 媛덉깋 吏諛⑹“吏(BAT) G1蹂대떎 1.3諛(31.3%) 利앷븯떎(P<0.05). 듅엳, G6 洹몃9 G2怨 鍮꾧탳븯뿬 7.9%濡 媛먯냼븯떎.

Effect of MLYE (mulberry leaf + yacon tuber) on organ fats in normal and high-fat diet-fed rats (unit: g)

Treatment group Stomach fat Perirenal fat Epididymal fat Visceral fat BAT
G1 8.13±1.26 7.65±1.14 5.54±1.19 5.26±0.90 1.12±0.12
G2 12.39±1.35b 8.72±1.10a 7.67±2.36a 6.88±0.65a 1.47±0.10a
G3 9.25±1.12d 8.01±2.23 6.84±1.72 5.39±0.87 1.25±0.10
G4 10.26±2.63b 8.11±2.36 6.62±1.54 5.86±0.88 1.34±0.13
G5 9.65±1.65d 7.96±1.92c 6.11±1.86c 5.16±0.68c 1.31±0.27
G6 9.76±1.38d 7.98±1.29c 5.97±1.93c 4.95±0.83c 1.16±0.17c

BAT, brown adipose tissue; G1, Normal; G2, High-fat diet (HFD) alone; G3, HFD+HCA(hydroxycitric acid); G4, HFD + 1% MYE(Mulberry leaf + yacon); G5, HFD + 3% MYE (mulberry leaf + yacon); G6, HFD + 5% MYE (mulberry leaf + yacon). Each value represents the mean ± S.D. (n = 10 per group)

a,bSignificantly different from normal (P<0.05, 0.01). c,dSignificantly different from HFD alone (P<0.05, 0.01)



泥댁諛⑹뿉 빐 G2뒗 55.1 g쑝濡 G1쓽 39.6 g뿉 鍮꾪빐 41.8% 利앷븯떎(Table 4). 泥섎━援(G4~G6) 怨좎諛⑷뎔뿉 鍮꾪빐 11.0~27.4% 媛먯냼븯떎. 洹몃윭굹 泥대떒諛깆쭏 쑀쓽誘명븳 蹂솕媛 愿李곕릺吏 븡븯떎. DNA 냽룄뒗 젙긽援곗뿉 鍮꾪빐 怨좎吏덇뎔, 泥섎━援 紐⑤몢 利앷븯떎.

Effect of MYE (mulberry leaf + yacon tuber) on total body fat, protein and DNA concentration in normal and high-fat diet-fed rats

Treatment group Body fat (g) Body protein (mg/dL) DNA conc. (μg)
G1 39.0±6.4 68.7±3.4 396.6±34
G2 55.3±5.1a 67.5±3.3 427.3±67
G3 45.2±5.8c 65.3±6.41 451.3±71a
G4 49.2±5.9 66.3±3.4 449.3±49
G5 40.5±2.6c 67.9±2.5 469.1±48a
G6 40.1±1.9c 65.3±3.3 463.2±65a

BAT, brown adipose tissue; G1, Normal; G2, High-fat diet (HFD) alone; G3, HFD+HCA (hydroxycitric acid); G4, HFD + 1% MYE (mulberry leaf + yacon); G5, HFD + 3% MYE(mulberry leaf + yacon); G6, HFD + 5% MYE (mulberry leaf + yacon). Each value represents the mean ± S.D. (n = 10 per group)

aSignificantly different from normal (P<0.05). cSignificantly different from HFD alone (P<0.05).



怨좎諛 泥섎━ 伊먯쓽 떦깮꽦뿉 誘몄튂뒗 MYE쓽 쁺뼢

G2쓽 湲由ъ퐫寃먯 G1蹂대떎 17.2% 쑀쓽誘명븯寃 媛먯냼븯떎(P<0.05) (Fig. 2). 洹몃윭굹 3% MYE 洹몃9 G2뿉 鍮꾪빐 13.3% 利앷븯떎(P<0.05). G2쓽 G-6-P뒗 G1蹂대떎 38.1% 利앷븯떎(P<0.05). 洹몃윭굹 G2뿉 鍮꾪빐 1%, 3%, 5% MYE 泥섎━援 諛 G3 19.2%, 26.8%, 26.1%, 23.0% 媛먯냼븯떎(P<0.05). G2쓽 G-6-PDH뒗 G1蹂대떎 29.1% 궙븘 쑀쓽꽦쓣 굹궡뿀떎(P<0.05). 洹몃윭굹 G2 鍮꾧탳븯뿬 G3뿉꽌뒗 겙 李⑥씠媛 뾾뿀떎. 洹몃윭굹 G2뿉 鍮꾪빐 1%, 3%, 5% MYE 洹몃9 21.3%, 27.9%, 24.6% 利앷븯떎(P<0.05). G2쓽 Glucokinase뒗 G1蹂대떎 47.3% 쑀쓽誘명븯寃 媛먯냼븯떎(P<0.05). 洹몃윭굹 G2뿉 鍮꾪빐 1%, 3%, 5% MYE 洹몃9怨 G3 70.7%, 65.3%, 71.4%, 48.5% 利앷븯떎(P<0.05).

Fig. 2. Effect of MYE (mulberry leaf + yacon) on glycogenesis activities in high-fat diet-fed rats. (A) Glycogen; (B) G-6-P, glucose-6-phosphatase; (C) G-6-PDH, glucose-6-phosphate dehydrogenase; (D) Glucokinase; aSignificantly different from normal (P<0.05). cSignificantly different from HFD alone (P<0.05).

젟떞뿉 誘몄튂뒗 쁺뼢

젟떞쓽 寃쎌슦 G2媛 씪諛 洹몃9蹂대떎 4諛(305.6%)굹 겕寃 利앷븯떎(P<0.01) (Fig. 3). G3 諛 紐⑤뱺 MYE 泥섎━ 洹몃9씠 G1뿉 鍮꾪빐 155.6~250.0% 利앷븯떎(P<0.05~0.01).洹몃윭굹 G2뿉 鍮꾪빐 1%, 3%, 5% MYE 泥섎━援 諛 G3媛곴컖 13.7%, 16.4%, 17.8%, 37.0%濡 媛먯냼븯떎(P<0.05) (Fig. 3).

Fig. 3. Effect of MYE (Mulberry leaf + yacon) on leptin content in high-fat diet-fed rats. G1, Normal; G2, High-fat diet (HFD) alone; G3, HFD+HCA (hydroxycitric acid); G4, HFD + 1% MYE (mulberry leaf + yacon); G5, HFD + 3% MYE (mulberry leaf + yacon); G6, HFD + 5% MYE (mulberry leaf + yacon). Each value represents the mean ± S.D. (n = 10 per group). bSignificantly different from normal (P<0.01). c,dSignificantly different from HFD alone (P<0.05, P<0.01).

怨좎諛 泥섎━ 伊먯쓽 媛꾩뿉 븳 蹂묐━븰쟻 룊媛

G1쓽 媛 議곗쭅씠 젙긽쟻씤 紐⑥뒿쓣 굹궦 諛섎㈃, G2 吏諛 蹂솕, 媛꾩뿽쓽 愿댁궗, Ito 꽭룷쓽 떎닔, 媛 넀긽 벑쓣 굹궡뿀떎(Fig. 4). G2뿉꽌 媛 넀긽씠 9.4濡 젙웾솕릺뿀쑝硫 G1뿉 鍮꾪빐 G2媛 쁽븯寃 넀긽쓣 굹궡뿀떎. 諛섎㈃ 媛 넀긽 G2뿉 鍮꾪빐 G3뿉꽌 媛쒖꽑릺뿀떎. 媛 넀긽 G3뿉꽌 3.4濡 젙웾솕릺뿀떎. 泥섎━ 洹몃9쓽 媛 넀긽 1%, 3%, 5% MYE 泥섎━援, 議곌뎔뿉꽌 媛곴컖 2.0, 0.8, 1.2, 0.2%濡 젙웾솕릺뿀떎. 듅엳 3% MYE 泥섎━援곗 怨좎諛 泥섎━援곗뿉 鍮꾪빐 吏吏 쑀쟻, 吏諛 蹂솕, Ito 꽭룷媛 겕寃 以꾩뿀떎. 젙웾쟻 遺꾩꽍쓽 寃곌낵 MYE 泥섎━ 洹몃9 以묒뿉꽌 3% MYE媛 媛옣 슚怨쇱쟻씤 寃껋쑝濡 굹궗떎(Fig. 3, Table 5).

Liver pathology scores of 8-week oral repeated dose MYE

group Cell necrosis Destruction of lobular structure Fatty change Ito cell Lesions (maximum score) Total
G1 0 0 0.2 0 0 0.2
G2 0 0.5 3.0 2.9 3.0 9.4
G3 0 0.1 0.7 1.2 1.4 3.4
G4 0 0.1 0.4 0.9 0.6 2.0
G5 0 0 0.2 0.3 0.3 0.8
G6 0 0 0.3 0.5 0.4 1.2

Fig. 4. Representative microscopic findings of the liver in rats. Fed normal diet (A), high-cholesterol diet alone (B), high-cholesterol diet containing 0.5% Hydroxycitric acid (C) 3% MYE (Mulberry leaf + yacon) (D), 5% MYE (mulberry leaf + yacon) (E). Note foamy hepatocytes distributed in centribolular region in B and more extensive hepatocytic change and congestion in C, in comparison with minimal lesions in D, E. H&E stain (× 200).
怨 李

臾 諛 궗猷 꽠痍⑤웾 遺꾩꽍쓣 넻빐 1%, 3%, 5% MYE 泥섎━援곗 G1뿉 鍮꾪빐 泥댁쨷씠 媛먯냼븯떎. 씠寃껋 吏諛⑸궗쓽 媛쒖꽑怨 삁븸, 媛꾩쓽 泥댁諛⑹쓽 媛쒖꽑怨 媛숈 슚怨쇱뿉꽌 吏諛 遺꾪빐濡 씤빐 泥댁쨷쑝濡 쟾씠릺뒗 寃껋쓣 뼲젣븳 寃껋쑝濡 媛꾩<맂떎. 씠윴 泥댁쨷쓽 媛먯냼뒗 씠쟾뿉 戮뺤옂쑝濡 떎뿕븳 寃곌낵 쑀궗븯떎(Kim et al., 1998, 1999). 1%, 3%, 5% MYE 泥섎━ 닾뿬援곗 G1뿉 鍮꾪빐 泥댁쨷쓽 蹂솕뒗 떖由 臾쇨낵 궗猷 꽠痍⑤웾 諛 옣湲 泥댁쨷뿉 쑀쓽誘명븳 蹂솕媛 愿李곕릺吏 븡븯떎. 떎뿕 湲곌컙 룞븞뿉 뿉꼫吏 洹좏삎 蹂솕瑜 痢≪젙븯湲 쐞빐꽌 떎뿕 떆옉씪怨 醫낅즺씪뿉 떎뿕援곗쓽 泥댁諛⑷낵 泥대떒諛깆쭏쓽 궡슜臾쇱씠 以묒슂븯떎. 떎뿕 醫낅즺씪뿉 떊泥 援ъ꽦쓽 궡슜 誘뱀꽌瑜 궗슜븳 嫄댁“ 씗깮 깮伊먯쓽 洹좎쭏솕 諛⑸쾿쑝濡 痢≪젙븷 닔 엳吏留 떎뿕 떆옉씪뿉꽌뒗 遺덇뒫븯떎. 씠젏쓣 怨좊젮븯뿬 떎뿕 떆옉씪뿉 쑀궗븳 泥댁쨷쓽 깮伊 10留덈━濡쒕꽣 뼸 뜲씠꽣 鍮꾧탳븯뿬 떎뿕 떆옉씪뿉 泥댁諛⑷낵 떒諛깆쭏쓽 븿웾쓣 怨꾩궛븯뿬 泥댁꽦遺 븿웾쓣 룊媛븯怨 엳떎(Kawada et al., 1986; Cho and Shin, 1999, 2000). 伊먯쓽 泥댁쨷怨 븿猿 泥닿뎄꽦쓽 궡슜뿉뒗 李⑥씠媛 엳떎. 蹂 뿰援ъ뿉꽌뒗 泥댁쨷 李⑥씠瑜 以꾩씠湲 쐞빐 鍮꾩듂븳 臾닿쾶쓽 깮伊먮 궗슜뻽떎. 떎뿕뿉꽌뒗 寃쎈쭑 吏諛⑹“吏, 泥댁諛⑹뿉 븳 吏諛 슚怨, 泥대궡 떒諛깆쭏 벑 쟾뿼꽦 吏諛⑹“吏곸씠 愿李곕릺뿀떎.

媛꾩뿉꽌 湲由ъ퐫寃먯쓽 븿웾 G1, G3 諛 MYE 洹몃9怨 鍮꾧탳뻽쓣 븣 G2뿉꽌 긽떦븳 媛먯냼瑜 蹂댁씤 諛섎㈃ MYE 洹몃9怨 3% MYE 鍮꾧탳뻽쓣 븣 3% MYE뿉꽌 쁽븯寃 利앷뻽떎(P<0.05). 씠윭븳 寃곌낵뒗 G2쓽 怨좎吏덉뿉 쓽븳 B 꽭룷쓽 뙆愿닿 씤뒓由곗쓽 諛곗꽕쓣 媛먯냼떆耳 媛꾩뿉꽌 湲由ъ퐫寃 利앹긽쓽 솢꽦솕瑜 媛먯냼떆궎怨, 湲由ъ퐫寃먯쓣 遺꾪빐븯뒗 슚냼씤 湲由ъ퐫寃 씤궛솕 슚냼쓽 솢꽦솕瑜 利앷떆耳곗쓬쓣 굹궦떎(Wilcox, 2005). 씠寃껋 媛꾩뿉꽌 湲由ъ퐫寃먯쓽 븿웾쓣 以꾩씠뒗 洹쇨굅媛 맆 닔 엳떎. 삁떦 븿웾씠 3% MYE 泥섎━ 洹몃9뿉꽌 쁽엳 媛먯냼맂 寃껋 媛꾩뿉꽌 湲由ъ퐫寃 븿웾씠 利앷濡 蹂댁뿬吏꾨떎. G-6-P뒗 湲由ъ퐫寃먯쓽 遺꾪빐 룷룄떦 깮꽦쓣 쐞븳 珥됰ℓ 슚냼濡 湲猷⑥퐫瑜댄떚肄붿씠뱶, 룷룄떦, 吏諛⑹궛 벑쓣 利앷떆궎硫 씤뒓由, 醫낆뼇 愿댁궗 씤옄(TNF), 씤꽣猷⑦궓-6뿉 뿼利앹씠 엳쓣 寃쎌슦뿉뒗 洹 옉슜씠 뼲젣맂떎. 듅엳 怨좎諛 떇떒뿉 쓽븳 젣2삎 떦눊蹂묒쓽 寃쎌슦 G-6-P mRNA媛 젏李 諛쒕떖븯뿬 떦눊 G-6-P쓽 솢꽦솕媛 利앷븯怨 떒諛깆쭏 궎

굹븘젣 諛 씤뒓由 냽룄媛 怨좎삁利앷낵 븿猿 媛먯냼븯떎(Fu et al., 2013). 뵲씪꽌 MYE 泥섎━ 洹몃9뿉꽌 G-6-P瑜 뼲젣븯뒗 寃껋씠 洹몃윭븳 寃곌낵瑜 뮮諛쏆묠븳떎怨 異붿젙맂떎. G-6-PDH뒗 룷룄떦 떊吏꾨궗쓽 5깂떦 씤궛뿼쓽 珥덇린 怨쇱젙뿉 愿뿬븯뒗 슚냼濡쒖꽌 떊泥댁쓽 紐⑤뱺 꽭룷뿉 議댁옱븯硫 glutathione peroxidase (GSH-Px)뿉꽌 glutathione disulfide (GSSG)瑜 glutathione (GSH)濡 쟾솚븯뒗 뜲 븘슂븳 NADPH瑜 깮궛븯뒗 슚냼씠湲곕룄 븯떎. 떦눊蹂묎낵 怨좎吏덉쓽 珥됰컻젣씤 streptojotocin뿉 쓽븳 젣2삎 떦눊蹂묒쓽 寃쎌슦, G-6-PDH쓽 솢꽦솕 媛먯냼뒗 NADPH쓽 깮궛쓣 뼲젣븯뒗 寃껋쑝濡 븣젮졇 엳떎. 蹂 뿰援ъ뿉꽌뒗 G2뿉 鍮꾪빐 MYE 泥섎━援곗뿉꽌 G-6-PDH쓽 쁽븳 利앷媛 愿李곕릺뿀떎. Glucokinase (GK) 솢꽦솕룄 쐞뿉꽌 끉쓽븳 G-6-P G-6-PDH 媛숈 寃곌낵瑜 蹂댁떎. 듅엳 떦눊蹂묒쓽 寃쎌슦 GK쓽 솢꽦솕媛 쁽븯寃 媛먯냼븯뒗뜲, 씠 뿰援ъ뿉꽌룄 씠瑜 뮮諛쏆묠븯怨 엳떎. 쐞뿉꽌 끉쓽맂 떦吏덇낵 愿젴맂 吏닔쓽 寃곌낵뿉 洹쇨굅븯뿬, 뀒뒪듃 臾쇱쭏씠 떦吏덉꽦뿉 겙 쁺뼢쓣 誘몄튇 寃껋쑝濡 媛젙븳떎. 洹몃윭굹 떆뿕 臾쇱쭏쓽 슜웾 쓽議댁꽦 愿李곕릺吏 븡븯떎. 듅엳 떦눊蹂묒쓽 寃쎌슦 GK쓽 솢꽦솕뒗 쁽븯寃 媛먯냼빐 떦궗 씠슜뿉 吏옣쓣 二쇨퀬 엳뒗뜲, 씠 뿰援ъ뿉꽌룄 씠瑜 뮮諛쏆묠븯怨 엳떎. 쐞뿉꽌 끉쓽맂 떦吏덇낵 愿젴맂 吏닔쓽 寃곌낵뿉 洹쇨굅븯뿬, MYE 泥섎━ 臾쇱쭏씠 떦궗뿉 겙 쁺뼢쓣 誘몄튇 寃껋쑝濡 뙋떒맂떎. 洹몃윭굹 떆뿕 臾쇱쭏쓽 슜웾 쓽議댁꽦 愿李곕릺吏 븡븯떎.

GST뒗 G1뿉 鍮꾪빐 G2뿉꽌 겕寃 利앷븳 諛섎㈃, G3쓣 룷븿븳 紐⑤뱺 MYE 洹몃9뿉꽌 쁽븯寃 媛먯냼뻽떎(P<0.05). GST뒗 湲猷⑦떚삩쓽 떚삱쓣 泥대궡뿉꽌 깮궛릺뒗 쟾湲곗쟻 룆꽦 臾쇱쭏濡 룷李⑺빐 씠 媛숈 룆꽦 臾쇱쭏쓣 怨좉컝떆궎뒗 寃껋쑝濡 븣젮議뚮떎. 쐞뿉꽌 愿李곕맂 GST 媛먯냼뒗 GSH瑜 룆꽦 臾쇱쭏濡 룷쉷븯怨 鍮꾨쭔쑝濡 씤븳 넀긽怨 뿼利앹쑝濡쒕꽣 媛꾩쓣 蹂댄샇븯뒗 異붿텧臾쇱뿉꽌 鍮꾨’릺뿀떎怨 蹂 닔 엳떎.

Adipocytokine쓽 씪醫낆씤 젟떞 泥댁쨷怨 泥댁諛 븿웾怨 愿젴씠 엳쑝硫, 듅엳 蹂듬吏諛⑷낵 뜑 諛젒븯寃 뿰愿릺뼱 엳떎(Considine et al., 1996). 泥댁諛, 泥댄삎쓽 利앷뿉 뵲씪 吏諛⑹“吏곸뿉꽌 遺꾨퉬릺뒗 젟떞뿉 留롮 珥덉젏씠 留욎떠졇 엳쑝硫 떇깮솢 뿰援ъ쓽 蹂솕룄 젟떞怨 뿰愿떆궎怨 엳떎(Havel et al., 1996). 洹 寃곌낵 젟떞씠 떇씠 꽠痍⑤ 以꾩씠怨 뿉꼫吏 냼鍮꾨 利앷떆궎뒗 遺遺꾩쓣 媛吏怨 엳떎뒗 寃껋씠 蹂닿퀬릺뿀떎(Pellymounter et al., 1995). 洹몃윴뜲 罹섎━룷땲븘 二 Thousand Oaks뿉 엳뒗 깮紐낃났븰 쉶궗씤 븫寃먯궗(Amgen Inc.)뒗 鍮꾨쭔쓣 移섎즺븯뒗 빟씤 젟떞쓣 媛쒕컻뻽吏留, 鍮꾨쭔 솚옄뿉寃 20%뿉 슚怨쇰 굹궡뒗뜲 洹몄낀떎(Singhal et al., 2002). 理쒓렐 룞留κ꼍솕利 諛쒖깮쓽 젟떞 뿭븷뿉 빐 蹂닿퀬릺뿀쑝硫, 젟떞 떖삁愿 吏덊솚쓽 쐞뿕슂냼씪뒗 쓽寃ъ씠 엳떎(Cooke and Oka, 2002). 蹂 뿰援ъ뿉꽌 삁븸 궡 젟떞 냽룄뒗 怨쇱궛솕臾 삎꽦쓣 쐞븳 吏몴뿉꽌 뼇쓽 愿怨꾨 蹂댁뿬二쇱뿀쑝硫 삁븸 궡 吏吏 냽룄룄 留ㅼ슦 愿젴씠 엳뿀떎. 뵲씪꽌 삁븸 냽쓽 젟떞쓽 냽룄뒗 鍮꾨쭔쓽 젙룄瑜 媛앷쟻쑝濡 蹂댁뿬二쇰뒗 留ㅼ슦 以묒슂븳 吏닔濡 뿬寃⑥쭊떎. 삁瑜 궡 젟떞 泥댁諛 븿웾怨 泥댁쭏웾 吏닔쓽 슌졆븳 뼇쓽 긽愿愿怨꾨 굹궡뿀湲 븣臾몄뿉 鍮꾨쭔援곗 삁泥 젟떞 닔以뿉꽌 젙긽援곕낫떎 쁽엳 넂寃 굹궃떎(Considine et al., 1996; Kim and Sung, 2000). 씠뒗 蹂 뿰援ъ쓽 寃곌낵瑜 뮮諛쏆묠븯吏留, MYE媛 젟떞쓽 닔以쓣 뼱뼸寃 뼢긽떆궎뒗吏 젙솗엳 븣젮吏吏 븡븯떎. 吏吏덈궗 媛쒖꽑씠굹 뵆씪蹂대끂씠뱶뿉 쓽븳 빆궛솕 슚怨 븣臾몄씪 닔 엳쑝굹 젙솗븳 硫붿빱땲利섏뿉 븳 뿰援ш 븘슂븯떎.

吏吏 蹂솕뒗 蹂댄넻 룞臾쇱쓽 빟 10~15%뿉꽌 愿李곕맂떎. 諛섎濡 怨좊냽異뺤꽦 빑씠 엳뒗 媛꾩꽭룷, 꽭룷吏덉쓽 蹂솕, 以묒꽦吏諛⑹쓽 吏諛 蹂솕 벑 怨좎諛 떇떒援곗뿉꽌 二쇰ぉ릺뿀떎. 듅엳 留롮 Ito 꽭룷媛 愿李곕릺뿀떎. 씠뿉 븳 젙웾쟻 룊媛뒗 媛꾩뿽쓽 뙆愿 븣臾몄뿉 0.5濡 룊媛릺뿀떎. 吏諛 蹂솕, Ito 꽭룷, 洹몃━怨 紐⑤뱺 蹂묐씠 룊媛맂 9.4쓽 媛옣 넂 젏닔瑜 諛쏆 紐⑤뱺 룞臾쇱뿉꽌 愿李곕릺뿀떎. 삉 G2뒗 꽭룷쓽 遺덇퇋移숉븳 겕湲곗 삎깭, 꽭룷 겕湲곗쓽 떎뼇꽦, 떒빑援 移⑦닾 벑 쟾삎쟻씤 議곗쭅븰쟻 蹂솕瑜 蹂댁뿬二쇱뿀떎. 1% 5%쓽 MYE 臾쇱쭏뿉 븳 젙웾쟻 룊媛뒗 媛곴컖 2.0怨 1.2濡, MYE 泥섎━ 洹몃9씠 G2肉먮쭔 븘땲씪 G3怨 鍮꾧탳빐 쁽엳 媛쒖꽑맂 寃껋쑝濡 굹궗떎. 듅엳 3%쓽 MYE 泥섎━ 洹몃9 吏諛⑹꽭룷 Ito 꽭룷쓽 쁽븳 媛먯냼瑜 蹂댁떎. 媛꾨룄 G1怨 鍮꾩듂븯寃 媛쒖꽑릺뿀떎. 씠뒗 怨좎諛⑹떇씠瑜 뻽湲곕븣臾몄뿉 媛꾩쓽 寃쎌슦 吏諛⑹씠 留롮씠 異뺤쟻릺뼱 媛 臾닿쾶 利앷븯뒗 寃껋씠 씪諛섏쟻씤 쁽긽엫뿉룄 遺덇뎄븯怨 媛 吏諛⑹쓽 利앷媛 뒛뼱굹吏 븡뒗 寃껋 媛 議곗쭅쓽 誘명넗肄섎뱶由ъ븘뿉꽌 踰좏-궛솕濡 吏吏덉쓽 遺꾪빐媛 솢諛쒗뻽쓣 寃껋쑝濡 뙋떒맂떎(Nassir et al., 2015). 삉븳 蹂 떎뿕뿉꽌 愿李곕맂 寃곌낵뒗 吏吏덈궗 愿젴맂 슚냼쓽 깮솕븰쟻 옉슜怨 궗옣븷쓽 媛쒖꽑뿉꽌 鍮꾨’릺뿀떎怨 뙋떒맂떎. 蹂 뿰援 寃곌낵 戮뺤옂怨 빞肄섏뿉꽌 異붿텧븳 MYE 泥섎━援곗 쟾諛섏쟻쑝濡 HCA 泥섎━援곗뿉 鍮꾪빐 媛, 룓, 떊옣, 怨좏솚쓣 룷븿븳 옣湲 臾닿쾶瑜 蹂댁〈븯怨, 떊옣怨 遺怨좏솚, 궡옣吏諛⑹뿉 엳뼱꽌 鍮꾨쭔쓣 뼲젣븯뒗 슚怨쇰 굹궡뿀떎. 洹몃윭굹 HCA뒗 泥댁쨷 媛먮웾 삉뒗 吏諛 뿰냼쓽 뿭븷쓣 븯吏뒗 븡쑝硫, 냼솕湲 넻利앹쓣 쑀諛쒗븷 닔 엳떎뒗 젏뿉꽌 냼솕湲 吏덊솚쓣 媛吏 솚옄뿉寃 泥섎갑 二쇱쓽빐빞 븳떎(Yamada et al., 2007)뒗 젏뿉꽌 戮뺤옂怨 빞肄 異붿텧臾쇱씠 3% 젙룄濡쒕룄 吏諛 異뺤쟻쓣 留됰뒗 뿭븷쓣 蹂댁뿬二쇱뼱 泥쒖뿰 臾쇱쭏쓽 빆鍮꾨쭔젣 媛쒕컻뿉 湲곗큹媛 맆 닔 엳떎. 戮뺣굹臾 肉뚮━쓽 Mulberroside A 꽦遺꾩씠 빆吏吏덉꽦 鍮꾨쭔뿉 룄씠 릺뒗 寃껋쑝濡 蹂닿퀬(Jo et al., 2014)릺뼱 戮뺣굹臾댁뿉 븳 留롮 뿰援ш 湲곕맂떎.

ACKNOWLEDGEMENTS

蹂 뿰援щ뒗 쟾븰援 2016뀈 援먮궡 뿰援щ퉬뿉 쓽빐 닔뻾릺뿀떎(This work was supported by research funds of Daejeon University in 2016).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

References
  1. Atkinson RL. Use of drugs in the treatment of obesity. Annu Rev Nutr. 1997. 17: 383-403.
    Pubmed CrossRef
  2. Baginski ES, Foa PP, Zak B. Glucose-6-phosphatase. In Methods of enzymatic analysis. 2. Ed, Eds, Eds, Eds, Eds, Ed, Eds, Ed, Eds, Ed, Eds, Ed, Eds, Eds, Ed, Ed, Kurstak EKurstak ELoebenstein G, Lawson RH, Brunt AAEvans DA, Sharp WR, Ammirato PV, Yamada YThorpe TASomers DA, Gegenbach BG, Biesboer DD, Hackett WP, Green CEHenke RREvans DA, Sharp WR, Ammirato PV, Yamada YThorpe TASomers DA, Gegenbach BG, Biesboer DD, Hackett WP, Green CEHenke RRMariani A, Tavoletti SSchiva T, Mercuri ASawhney VK, Shivanna KRLoebenstein G, Lawson RH, Brunt AABergmeyer HU. NY, USA: Academic Press; p876-880.
    CrossRef
  3. Carmichael AR. Treatment for morbid obesity. Postgrad Med J. 1999. 75: 7-12.
    Pubmed KoreaMed CrossRef
  4. Chen HL, Lu YH, Lin JJ, Ko LY. Effects of fructooligosaccharide on bowel function and indicators of nutritional status in constipated elderly men. Nutr Res. 2000. 20: 1725-1733.
    CrossRef
  5. Cho JJ, Shin HJ. Body-fat suppressive effects of capsaicin through β-adrenergic stimulation in rats fed a high-fat diet. Korean J Nutr. 1999. 32: 533-539.
  6. Cho JJ, Shin HJ. Sensory evaluation and changes in physiochemical properties, and microf lora and enzyme activities of pumpkin-added kochujang. Korean J Food Sci Technol. 2000. 32: 851-859.
  7. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF. Serum immuno-reactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996. 334: 292-295.
    Pubmed CrossRef
  8. Cooke JP, Oka RK. Dose leptin cause vascular disease?. Circulation. 2002. 106: 1904-1905.
    Pubmed CrossRef
  9. DeMoss RD. Kinases in Leuconostoc mesenteroides. J Bacteriol. 1968. 95: 1692-1697.
    Pubmed KoreaMed CrossRef
  10. Fu Z, Gilbert ER, Liu, D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr iabetes Rev. 2013. 9: 25-53.
    Pubmed KoreaMed CrossRef
  11. Fujimoto T, Nomura T. Components of root bark of cudrania tricuspidata 3. Isolation and structure studies on the flavonoids. Planta Med. 1985. 51: 190-196.
    CrossRef
  12. Guallar E, Stranges S, Mulraw C, Appel LJ. Enough is enough: Stop wasting money on vitamin and mineral supplements. Ann Intern Med. 2013. 159: 850-851.
    Pubmed CrossRef
  13. Hara H, Miwa I, Okuda J. Inhibition of rat glucokinase by alloxan and ninhydrin. Chem Pharm Bull. 1986. 34: 4731-4737.
    Pubmed CrossRef
  14. Havel PJ, Kasim-Karakas S, Dubuc GR, Mueller W, Phinney SD. Gender differences in plasma leptin concentrations. Nat Med. 1996. 2: 949-950.
    Pubmed CrossRef
  15. Hirano T. Pathophysiology of diabetic dyslipidemia. J Atheroscler Thromb. 2018. 25: 771-782.
    Pubmed KoreaMed CrossRef
  16. Jee SH, Sull JW, Park J, Lee SY, Ohrr H, Guallar E, Samet JM. Body-mass index and mortality in Korean men and women. N Engl J Med. 2006. 355: 779-787.
    Pubmed CrossRef
  17. Jo SP, Kim JK, Lim YH. Antihyperlipidemic effects of stilbenoidsisolated from Morus alba in rats fed a high-cholesterol diet. Food Chem Toxicol. 2014. 65: 213-218.
    Pubmed CrossRef
  18. Kawada T, Hgihara K, Iwai K. Effects of capsaicin on lipid metab-olism in rats fed a high fat diet. J Nutr. 1986. 116: 1272-1278.
    Pubmed CrossRef
  19. Kereiakes DJ, Willerson JT. Metabolic syndrome epidemic. Circu-lation. 2003. 13: 1552-1553.
    Pubmed CrossRef
  20. Kim CH, Choi TM, Chang SG, Hong SY. Palsma homocysteine, folate and vitamin B concentrations in coronary artery disease. J Kor Cir. 1998. 28: 516-524.
    CrossRef
  21. Kim IJ. Autoantibodies against oxidized LDLs and atherosclerosis in type 2 diabetes. Diabetes Research Digest. 2005. 2: 70-71.
    CrossRef
  22. Kim SS, Oh HY, Kim HR, Yang JS, Kim DS, Sheen YY, Choi KH. Effect of biphenyl dimethyl dicarboxylate on cytochrome P450 1A1 and 2B1 and CCl4-induced hepatotoxicity in rat liver. Yakhak Hoeji. 1999. 43: 827-833.
  23. Kim MH, Sung CJ. The study of relationship among serum leptin. nutritional status, serum glucose and lipids of middle-school girls. Kor J Nutr. 2000. 33: 49-58.
  24. Kopelman P. Health risks associated with overweight and obesity. Obes Rev. 2007. 8: 13-17.
    Pubmed CrossRef
  25. Lim TK. Edible medicinal and non medicinal plants. Dordrecht: Springer; p717-734.
    CrossRef
  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measure-ment with the folin phenol reagent. J Biol Chem. 1951. 193: 265-275.
  27. Ministry of Health and Welfare. National Health Interview Survey (NHIS). Sejong, Korea: National Center for Health Statistics, Centers for Disease Control and Prevention; p71-72.
  28. Murat JC, Serfaty, A. Simple enzymatic determination of polysaccharide (glycogen) content of animal tissue. Clinical Chemistry. 1974. 20: 1576-1577.
    Pubmed CrossRef
  29. Nassir F, Rector RS, Hammound GM, Ibdah JA. Pathogenesis and prevention of hepatic steatosis. Gastronterol Hepatol (NY). 2015. 11: 167-175.
    Pubmed KoreaMed
  30. Ogden CL, Yanovski SZ, Carroll MD, Flegal KM. The epidemiology of obesity. Gastroenterology. 2007. 132: 2087-2102.
    Pubmed CrossRef
  31. Pellymounter MA, Cullen MJ, Baker MB, Hecht R, Wmters D, Boone T. Effects of the obese gene product on body weight regulation in ob/ob mice. Science. 1995. 269: 540-543.
    Pubmed CrossRef
  32. Pi-Sunyer XF. Medical hazards of obesity. Ann Intern Med. 1993. 119: 655-660.
    Pubmed CrossRef
  33. Prentice AM. Obesity and its potential mechanistic basic. Brit Med Bull. 2001. 60: 51-67.
    Pubmed CrossRef
  34. Russo D, Valentao P, Andrade PB, Fernandez EC, Milella L. Evaluation of antioxidant, antidiabetic and anticholinesterase activities of Smallanthus sonchifolius landraces and correlation with their phytochemical prof iles. Int J Mol Sci. 2015. 16: 17696-17718.
    Pubmed KoreaMed CrossRef
  35. Singhal A, Farooqi IS, Cole TJ, O'Rahilly S, Fewtrell M, KattenhornM, Lucas A, Deanfield J. Influence of leptin on arterial disten-sibility: a novel link between obesity and cardiovascular disease. Circulation. 2002. 106: 1919-1924.
    Pubmed CrossRef
  36. Yamada T, Hida H, Yamada Y. Chemistry, physiological properties,and microbial production of hydroxycitric acid. Appl Microbiol Biotechnol. 2007. 75: 977-982.
    Pubmed CrossRef
  37. Weledji, EP. Overview of gastric bypass surgery. Int J Sur Open. 2016. 5: 11-19.
    CrossRef
  38. WHO. The Asia pacific perspective: redefining obesity and its treatment. Geneva. Ref. Type, Report. 2000.
  39. Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005. 26: 19-39.
    CrossRef