Search for


TEXT SIZE

search for



CrossRef (0)
Mutation Cases in the Korean Population using 23 Autosomal STR Loci Analysis
Biomed Sci Letters 2021;27:105-110
Published online June 30, 2021;  https://doi.org/10.15616/BSL.2021.27.2.105
© 2021 The Korean Society For Biomedical Laboratory Sciences.

Jeongyong Kim1,§,* , Hyojeong Kim1,§,* , Ja Hyun Lee1,§,* , Hyo Sook Kim1,* and Eungsoo Kim2,†,*

1National Forensic Service, Forensic DNA Division, Wonju 26460, Korea
2National Forensic Service Seoul Institute, DNA Analysis Division, Seoul 08036, Korea
Correspondence to: Eungsoo Kim. National Forensic Service Seoul Institute, DNA Analysis Division, Seoul 08036, Korea.
Tel: +82-2-2600-4850, Fax: +82-2-2600-4889, e-mail: sophist@korea.kr
*Researcher.
§Authors contributed equally.
Received April 9, 2021; Revised June 22, 2021; Accepted June 25, 2021.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
Short Tandem Repeats (STR) analysis which characterized by genetic polymorphism has been widely used in the forensic genetic fields. Unfortunately, mutation occurred in various STR loci could make it difficult to interpret STR data. Thus, the mutation rate of STR loci plays an important role for the data interpretation in human identification and paternity test. To verify the mutation of the STR loci in the Korean population, 545 trio sets (father, mother, and child) were analyzed with two commercial STR kits that include the 23 autosomal STR loci (D1S1656, TPOX, D2S441, D2S1338, D3S1358, FGA, D5S818, CSF1PO, D7S820, D8S1179, D10S1248, TH01, D12S391, VWA D13S317, D16S539, D18S51, D19S433, D21S11, D22S1045, SE33, Penta E and Penta D). As a result, 36 mutations were observed in 14 STR loci. The types of mutation were also classified by the increase or decrease of the alleles. The overall mutation rate was 1.4×10-3, and the paternal mutation rate was four times higher than that of the maternal. This study will provide more detailed criterion for human identification by the mutation rate of STR loci in the Korean population.
Keywords : Autosomal DNA, Short Tandem Repeats (STR), Mutation, Korean population
Body

DNA뿉뒗 怨쇰씠 諛섎났 뿼湲곗꽌뿴(hypervariable repetitive sequences)씤 떎삎꽦 遺쐞媛 議댁옱븳떎. 씠윭븳 깮臾쇳븰쟻 듅吏뺤쓣 넻빐 媛쒖씤留덈떎 怨좎쑀븳 DNA 젙蹂대 媛吏硫, 빐떦 遺쐞瑜 援ъ꽦븯뒗 쑀쟾옄 떒쐞뒗 쑀쟾옄醫 삉뒗 쑀쟾옄 留덉빱씪怨 遺덈━怨 엳떎. 씤媛꾩쓽 DNA뒗 polymerase chain reaction (PCR) 湲곕쾿 湲곕컲 쑀쟾옄 留덉빱瑜 씠슜븳 떎뼇븳 DNA 遺꾩꽍踰뺣뱾씠 踰뺢낵븰 遺꾩빞뿉 솢슜릺怨 엳떎. 삤뒛궇 媛쒖씤 떇蹂 諛 떊썝솗씤 怨쇱젙뿉꽌 short tandem repeat (STR) 遺꾩꽍 湲곕쾿씠 二쇰줈 궗슜릺怨 엳쑝硫 2~7 base pair (bp)쓽 諛섎났 떒쐞濡 議댁옱븯뒗 microsatellite瑜 留먰븳떎. STR 궗엺留덈떎 諛섎났슏닔媛 떎瑜닿퀬 룆由쎌쟻쑝濡 쑀쟾릺뼱 넂 떎삎꽦쓣 媛吏硫, 떎以 利앺룺 湲곕쾿쓣 씠슜븯뿬 留롮 쑀쟾옄 留덉빱瑜 븳 踰덉뿉 遺꾩꽍 媛뒫븯떎뒗 듅吏뺤씠 엳떎(Butler, 2007). 씠윭븳 듅吏뺣뱾 STR 쑀쟾옄쓽 由쏀삎吏덉쓣 鍮꾧탳빐 媛쒖씤 DNA 봽濡쒗븘 궗씠쓽 떇蹂꾨젰쓣 媛뺥솕떆耳, 媛먯젙臾쇱쓽 媛쒖씤 떇蹂꾩뿉 씠슜븯嫄곕굹, 삁뿰愿怨꾩쓽 遺紐, 옄 궗씠뿉 諛쒖깮릺뒗 쑀쟾쟻 룎뿰蹂씠瑜 뙋떒븷 닔 엳떎(Kim et al., 2016).

援궡뿉꽌뒗 DNA瑜 씠슜븯뿬 媛뺣젰궗嫄 쁽옣 媛먯젙臾 遺꾩꽍 떆 슜쓽옄 DNA profile怨 1 1濡 議고븯뿬 媛먯젙븯嫄곕굹 鍮꾧탳媛 遺덇뒫븳 DNA profile뿉 빐꽌뒗 DNA 떊썝솗씤 젙蹂댁쓽 씠슜 諛 蹂댄샇뿉 愿븳 踰뺣쪧(踰뺣쪧 젣16866샇)뿉 쓽빐 뜲씠꽣踰좎씠뒪瑜 슫쁺븯硫 踰붿즲궗嫄 빐寃곗뿉 솢슜븯怨 엳쑝硫, 遺덉긽 蹂궗옄쓽 寃쎌슦, 遺덉긽 蹂궗옄쓽 DNA profile쓣 1珥 愿怨꾩쓽 吏곴퀎 媛議깃낵 鍮꾧탳븯뿬 떊썝솗씤쓣 吏꾪뻾븯怨 엳떎.

쁽옱뒗 DNA 媛먯젙뿉 20 Combined DNA Index System (CODIS) STR 醫뚯쐞瑜 湲곗쑝濡 遺꾩꽍릺怨 엳쑝硫, 遺덉긽 蹂궗옄 삉뒗 떎醫낆븘룞 벑쓽 떊썝솗씤 遺꾩꽍 떇蹂꾨젰쓣 넂씠湲 쐞빐 異붽 醫뚯쐞뱾(Penta E, Penta D, SE33)쓣 궗슜븯怨 엳떎. DNA profile쓣 吏곸젒 鍮꾧탳븯뒗 踰붿즲궗嫄 媛먯젙臾쇱쓽 DNA 遺꾩꽍怨 떖由 遺덉긽 蹂궗옄 媛議깆쓣 鍮꾧탳븯뒗 떊썝솗씤 DNA 遺꾩꽍쓽 寃쎌슦, STR 醫뚯쐞뿉꽌 諛쒖깮븯뒗 룎뿰蹂씠 븣臾몄뿉 뼱젮씠 엳떎. STR쓽 룎뿰蹂씠쑉씠 10-3~10-4 젙룄濡 넂湲 븣臾몄뿉 醫뚯쐞瑜 異붽븯뿬 遺꾩꽍븯硫, 룎뿰蹂씠濡 씤빐 遺紐⑥ 옄 궗씠 怨듭쑀븯뒗 由쎌쑀쟾옄瑜 李얠 紐삵븯뒗 寃쎌슦룄 留롮븘吏 닔 엳떎(Yang et al., 2013). 뵲씪꽌 STR 湲곕쾿쓣 씠슜븳 떊썝솗씤 媛먯젙쓽 踰뺢낵븰쟻 솗瑜좉퀎궛쓣 쐞빐 醫뚯쐞蹂 룎뿰蹂씠쑉씠 李멸퀬릺뼱빞 븳떎(Mardini et al., 2013). STR 쑀쟾옄뿉꽌쓽 由쎌쑀쟾옄 遺꾪룷 鍮덈룄뒗 吏묐떒留덈떎 떎瑜닿쾶 諛쒖깮맂떎(Budowle et al., 2001). 媛숈 醫뚯쐞뿉꽌룄 뼱뼡 誘쇱”쓣 긽쑝濡 뿰援ш 吏꾪뻾릺뒗吏뿉 뵲씪 떎瑜 鍮덈룄媛 굹궇 닔 엳湲 븣臾몄뿉, 吏묐떒씠굹 誘쇱”뿉 뵲瑜 醫뚯쐞蹂 뿰援ш 吏꾪뻾릺뼱빞 븷 븘슂꽦씠 엳떎. 씠誘 以묎뎅쓣 룷븿븳 뿬윭 굹씪뿉꽌뒗(釉뚮씪吏, 硫뺤떆肄, 븘젣瑜대컮씠옍, 꽣궎 벑) 듅젙 씤援ъ뿉꽌 諛쒖깮븯뒗 STR 醫뚯쐞蹂 룎뿰蹂씠 뿰援щ 솢諛쒗엳 吏꾪뻾븯怨 엳떎(A힊icio푤lu et al., 2004; Mardini et al., 2013; Lopez Gonzalez et al., 2019; Mustafayev et al., 2019). 븯吏留 슦由щ굹씪쓽 寃쎌슦 醫뚯쐞蹂 룎뿰蹂씠쑉뿉 븳 뿰援ш 誘몄쭊븯怨(Han et al., 2000), 醫뚯쐞 솗옣뿉 뵲瑜 異붽 醫뚯쐞뿉 븳 룎뿰蹂씠 뿰援ш 븘슂븳 떎젙씠떎(Oh et al., 2015; Kim et al., 2016). 뵲씪꽌 蹂 뿰援ъ뿉꽌뒗 삁뿰愿怨꾩쓽 媛議 떆猷뚮 긽쑝濡 遺紐⑥ 옄 궗씠뿉꽌 諛쒖깮븷 닔 엳뒗 룎뿰蹂씠瑜 愿李고븯뿬 DNA 遺꾩꽍쓣 넻븳 떊썝솗씤 媛먯젙쓽 떊猶곗꽦쓣 넂씠怨좎옄 븯떎.

遺紐⑥ 옄 궗씠뿉 諛쒖깮븯뒗 룎뿰蹂씠瑜 뙆븙븯湲 쐞빐, 2020뀈 3썡遺꽣 7썡源뚯 씪珥뚭怨꾧 솗씤맂 媛怨꾨 긽쑝濡 珥 303媛怨꾩쓽 1,151紐낆쓽 떆猷뚮 닔吏묓븯떎. 븳 媛怨꾩쓽 援ъ꽦썝 理쒖냼 3紐낆뿉꽌 理쒕 6紐낆씠뿀쑝硫, 遺, 紐, 옄瑜 븯굹쓽 꽭듃濡 珥 545媛쒖쓽 trio 꽭듃媛 留뚮뱾뼱議뚮떎. 寃궗 떆猷뚮줈뒗 硫멸퇏맂 硫대큺쑝濡 怨듭뿬옄쓽 援ш컯 긽뵾 꽭룷瑜 梨꾩랬븯뿬 씠슜븯쑝硫, 씤泥 쑀옒臾쇱쓽 뿰援 吏꾪뻾뿉 븯뿬 援由쎄낵븰닔궗뿰援ъ썝 깮紐낆쑄由ъ쐞썝쉶(Institutional Review Board, IRB)濡쒕꽣 듅씤쓣 諛쏆븘 닔뻾븯떎(IRB number: 906-200214-BR-011-03). Genomic DNA (gDNA)뒗 DNA IQTM System (Promega, Madison, WI, USA)쓣 씠슜븯뿬 궗슜옄 留ㅻ돱뼹뿉 뵲씪 異붿텧븯떎. 異붿텧맂 gDNA뒗 QuantifilerTM Trio DNA Quantification Kit (Thermo Fisher Scientific, Waltham, MA, USA)瑜 궗슜븯뿬 7500 Real-Time PCR System (Thermo Fisher Scientific) 옣鍮꾨줈 젙웾 遺꾩꽍쓣 닔뻾븯떎. 젙웾씠 걹궃 DNA뒗 떎以 쑀쟾옄 利앺룺(multiplex PCR) 궎듃씤 GlobalFilerTM PCR Amplification Kit (Thermo Fisher Scientific, GF) PowerPlex Fusion System (Promega, PPF)쓣 씠슜븯뿬 ABI 9700 Thermal Cycler (Thermo Fisher Scientific)濡 利앺룺븯떎. 利앺룺怨쇱젙 媛곴컖쓽 젣議곗궗뿉꽌 沅뚭퀬븯뒗 몴以 硫붾돱뼹뿉 뵲씪 吏꾪뻾릺뿀떎. 利앺룺맂 PCR 궛臾쇱 3,500 xL Genetic Analyzer (Thermo Fisher Scientific)瑜 궗슜븯뿬 紐⑥꽭愿 쟾湲 쁺룞쓣 닔뻾븯쑝硫, GeneMapper ID-X software, ver. 1.4 (Thermo Fisher Scientific)瑜 궗슜븯뿬 理쒖쥌 寃곌낵瑜 遺꾩꽍븯떎. 遺꾩꽍맂 寃곌낵瑜 넗濡 遺紐⑥쓽 STR 寃곌낵 옄쓽 STR 寃곌낵瑜 鍮꾧탳븯뿬 룎뿰蹂씠 뿬遺瑜 뙋떒븯떎. 룎뿰蹂씠媛 諛쒖깮맂 삁뿰愿怨꾩뿉 븳 異붽 寃利앹쓣 쐞빐 꽦뿼깋泥 STR 遺꾩꽍怨 mitochondrial DNA (mt DNA) 遺꾩꽍쓣 닔뻾븯떎. Paternal 룎뿰蹂씠 솗씤쓣 쐞빐 븘뱾쓽 寃쎌슦 PowerPlex Y23 System (Promega, Y23)쑝濡, 뵺쓽 寃쎌슦 Investigator Argus X-12 QS Kit (Qiagen, Hilden, Germany, X-12)濡 寃궗瑜 吏꾪뻾븯떎. Maternal 룎뿰蹂씠쓽 寃쎌슦 븘뱾, 뵺 紐⑤몢 mt DNA sequencing쑝濡 異붽쟻씤 룎뿰蹂씠媛 엳뒗吏 솗씤븯떎.

移쒖옄솗씤쓣 쐞븳 Trio set 遺꾩꽍 寃곌낵, 303媛怨 以 33媛쒖쓽 媛怨(10.89%)뿉꽌 珥 36媛쒖쓽 룎뿰蹂씠媛 愿李곕릺뿀떎. 룎뿰蹂씠뒗 遺꾩꽍맂 23媛쒖쓽 긽뿼깋泥 STR 醫뚯쐞 以 D1S1656, D2S441, D2S1338, FGA, CSF1PO, SE33, D7S820, vWA, D12S391, Penta E, D18S51, D21S11, Penta D, D22S1045쓽 14媛 醫뚯쐞뿉꽌 愿李곕릺뿀떎(Table 1). 듅엳 SE33 醫뚯쐞뿉꽌 7媛쒖쓽 룎뿰蹂씠媛 愿李곕릺뼱 媛옣 넂 룎뿰蹂씠쑉(1.28%)瑜 굹깉怨, 떎쓬쑝濡 Penta E 醫뚯쐞 D12S391 醫뚯쐞媛 넂 룎뿰蹂씠쑉쓣 蹂댁떎(Fig. 1). 넂 룎뿰蹂씠쑉쓣 蹂댁뜕 빐떦 醫뚯쐞뱾 꼻 由쎌쑀쟾옄 踰붿쐞瑜 媛뽮퀬 엳嫄곕굹 넂 媛蹂꽦쓣 媛뽮퀬 엳湲 븣臾몄뿉, 떎瑜 醫뚯쐞뱾뿉 鍮꾪빐 넂 룎뿰蹂씠쑉씠 愿李곕릺뒗 寃껋쑝濡 뙋떒맂떎(Butler et al., 2011; Butler, 2012; Butler and Hill, 2013; Liu et al., 2017). 諛쒓껄맂 룎뿰蹂씠뒗 諛섎났 꽌뿴쓽 슏닔媛 1쉶 利앷븯뒗 寃쎌슦瑜 +1, 1쉶 媛먯냼븯뒗 寃쎌슦瑜 -1, 룎뿰蹂씠 諛쒖깮 由쎌쑀쟾옄 솗씤씠 뼱젮썙 利앷/媛먯냼媛 젙솗븯吏 븡 寃쎌슦 짹1濡 몴湲고븯떎(Kim et al., 2016). 珥 36媛쒖쓽 룎뿰蹂씠 以 17媛쒓 遺紐⑥쓽 由쎌쑀쟾옄蹂대떎 利앷븯怨(47.22%), 12媛쒕뒗 遺紐⑥쓽 由쎌쑀쟾옄蹂대떎 媛먯냼븯쑝硫(33.33%), 굹癒몄 7媛쒖쓽 룎뿰蹂씠뒗 遺紐⑥쓽 뼱뼡 由쎌쑀쟾옄濡쒕꽣 쑀옒릺뿀뒗吏 솗씤씠 遺덇뒫븯뿬 利앷 삉뒗 媛먯냼瑜 뙋떒븷 닔 뾾뿀떎(19.44%). 遺遺꾩쓽 룎뿰蹂씠뒗 븳 媛怨꾩뿉꽌 븳 媛쒖쓽 룎뿰蹂씠媛 遺紐⑥쓽 由쎌쑀쟾옄 蹂대떎 1 諛섎났(1-step) 利앷 삉뒗 媛먯냼瑜 븯쑝굹(77.78%), 븳 궗엺씠 2媛쒖쓽 룎뿰蹂씠瑜 媛뽯뒗 寃쎌슦(104c, 231c)룄 엳뿀쑝硫, 븳 媛怨꾩쓽 寃쎌슦 2媛 醫뚯쐞쓽 룎뿰蹂씠媛 2紐낆쓽 옄뿉꽌 媛곴컖 愿李곕릺뒗 寃쎌슦(223c, 223d)룄 엳뿀떎. 삉븳 遺紐⑥쓽 由쎌쑀쟾옄蹂대떎 諛섎났슏닔媛 2쉶 利앷(2-step)븯뒗 寃쎌슦(21d, 195e, Fig. 2)룄 愿李곕릺뿀떎.

List of mutations found as a result of 545 Trio analysis

Mutation type Family No. Loci Father Mother Child Type
1 family-1 mutation 3-d D7S820 12~12 11~13 11~13 ±1
6-e Penta E 11~19 11~16 11~20 +1
21-d D22S1045 15~15 11~15 11~17 +2
29-d SE33 26.2~28.2 18~21 21~27.2 ±1
44-c CSF1PO 12~12 10~12 10~13 +1
63-c D12S391 21~21 18~18 18~20 -1
81-d D12S391 22~24 19~19 19~25 +1
94-c SE33 28.2~30.2 18~22 21~30.2 -1
103-d D18S51 19~22 17~22 18~22 ±1
109-c D12S391 21~23 19~22 19~20 -1
117-c D18S51 13~20 13~19 19~19 -1
124-c D7S820 11~12 8~11 8~13 +1
136-c SE33 21~29.2 21~24.2 21~22 +1
138-d SE33 19~26.2 23.2~30.2 20~23.2 +1
170-c SE33 19~19 18~21 18~20 +1
172-d Penta E 11~24 16~20 20~23 -1
181-c SE33 17~25.2 19~23.2 23.2~26.2 +1
195-e D21S11 29~31 31.2~32 31.2~33 +2
221-c Penta D 9~11 9~14 9~12 +1
225-e CSF1PO 9~13 11~13 13~14 +1
228-c FGA 24~26 20~21 20~25 ±1
233-c D21S11 29~29 31~32.2 30~32.2 +1
234-c D2S1338 24~25 18~19 19~26 +1
236-d vWA 16~18 14~20 16~19 -1
238-d Penta D 9~12 9~9 9~13 +1
243-f D22S1045 16~17 11~16 11~15 -1
267-d D1S1656 13~18 13~15 12~18 -1
287-c CSF1PO 10~12 10~12 10~11 -1
289-c SE33 17~26 25.2~30.2 25~25.2 -1
304-d Penta E 11~16 13~20 16~21 +1
1 person-2 mutation 104-c D1S1656 13~16 14~15 14~15 ±1
D12S391 19~21 19~22 20~22 ±1
1 person-2 mutation 231-c D2S441 11~13 11~11 11~12 ±1
Penta E 16~19 11~16 17~19 +1
1 family-2 mutation 223-c FGA 23~25 23~25 23~24 -1
223-d Penta E 10~22 5~22 10~21 -1

Bold letters indicate allele mutation or allele with high potential for mutation. c: first child of each family, d: second child of each family, e: third child of each family, f: fourth child of each family, +2: 2-step mutation



Fig. 1. Mutation frequency for each STR locus observed in the 545 trio sets.

Fig. 2. Electropherogram of trio sets with a 2-step mutation. (A) Mutation found at locus D22S1045 in family 21, (B) Mutation found at locus D21S11 in family 195.

蹂 뿰援 寃곌낵, 珥 25,070媛쒖쓽 Meiosis 以 36媛쒖쓽 룎뿰蹂씠媛 愿李곕릺뼱 룎뿰蹂씠쑉(mutation rate)씠 1.4횞10-3濡 怨꾩궛릺뿀떎. 洹 以 븘踰꾩濡쒕꽣 쑀옒맂(paternal) 룎뿰蹂씠뒗 25媛쒓 愿李곕릺뼱 룎뿰蹂씠쑉 2.0횞10-3쓣 굹깉쑝硫, 뼱癒몃땲濡쒕꽣 쑀옒맂(maternal) 룎뿰蹂씠뒗 6媛쒓 愿李곕릺뼱 4.8횞10-4쓽 룎뿰蹂씠쑉濡 솗씤릺뿀떎. 洹몃━怨 굹癒몄 5媛쒖쓽 룎뿰蹂씠뒗 遺紐 以 늻援щ줈遺꽣 쑀옒릺뿀뒗吏 솗떎엳 援щ텇븷 닔 뾾뿀떎. 삁瑜 뱾뼱 223踰 媛議깆 FGA쓽 醫뚯쐞뿉꽌 遺(23~25), 紐(23~25), 옄(23~24)쓽 由쎌쑀쟾옄瑜 媛뽯뒗떎. 씠븣 옄쓽 寃쎌슦 遺紐⑥쓽 由쎌쑀쟾옄 鍮꾧탳븯뿬 룎뿰蹂씠 뿬遺瑜 븣 닔 엳吏留 떎젣 諛쒖깮맂 룎뿰蹂씠媛 遺, 紐 以 뼱뵒꽌遺꽣 쑀옒릺뿀뒗吏 븣 닔 뾾뿀떎. Paternal 룎뿰蹂씠뒗 maternal 룎뿰蹂씠뿉 鍮꾪빐 빟 4諛 媛웾 넂寃 굹굹뒗 寃껋쓣 愿李고븷 닔 엳뿀뒗뜲 씠뒗 Jin 벑씠 諛쒗몴븳 끉臾몄쓽 寃곌낵(5諛) 蹂대떎 궙븯吏留 몴蹂몄쭛떒쓽 닔媛 긽쟻쑝濡 遺議깊븯뿬 諛쒖깮릺뒗 李⑥씠濡 蹂댁씤떎(Jin et al., 2016). 궓꽦쓽 寃쎌슦, 뿬꽦뿉 鍮꾪빐 룎뿰蹂씠媛 뜑 옄二 諛쒖깮븯뒗 寃쏀뼢씠 엳뒗뜲, 씠뒗 깮떇 꽭룷 諛쒖깮 떆 꽭룷 遺꾩뿴쓽 닔 쑀삎쓽 李⑥씠媛 썝씤쑝濡 蹂닿퀬릺뿀떎(Brinkmann et al., 1998).

룎뿰蹂씠媛 諛쒖깮맂 삁뿰愿怨꾩뿉 븳 異붽 寃利앹쓣 쐞빐 꽦뿼깋泥 STR 遺꾩꽍怨 mt DNA 遺꾩꽍쓣 닔뻾븯떎. 34媛쒖쓽 룎뿰蹂씠 떆猷뚯뿉꽌뒗 異붽 룎뿰蹂씠媛 솗씤릺吏 븡븯쑝硫, 2 step 룎뿰蹂씠媛 솗씤맂 195踰 媛怨꾩쓽 DYS458 醫뚯쐞뿉꽌 븘踰꾩(195a)뒗 16 allele씠 븘뱾(195e) 17 allele씠 愿李곕릺뿀떎. 遺 媛 룎뿰蹂씠媛 솗씤맂 103踰 媛怨꾩쓽 寃쎌슦, DXS10079 醫뚯쐞뿉꽌 븘踰꾩(103a)뒗 19 allele씠 뵺(103d) 18 allele씠 愿李곕릺뿀떎. mt DNA 뜲씠꽣 遺꾩꽍 寃곌낵뿉꽌뒗 異붽쟻씤 룎뿰蹂씠媛 諛쒓껄릺吏 븡븯떎. 뵲씪꽌, 蹂대떎 떊猶곗꽦 엳뒗 떊썝솗씤 뜲씠꽣 젣怨듭쓣 쐞빐꽌뒗 異붽 遺꾩꽍 떆뿕踰뺤씤 X-STR, Y-STR 諛 mt DNA 뿼湲곗꽌뿴 遺꾩꽍 벑뿉 븳 룎뿰蹂씠 뿰援ш 븘슂븷 寃껋쑝濡 뙋떒맂떎.

꽭 媛 룎뿰蹂씠 蹂꾨룄濡 궗슜븳 몢 STR 궎듃(GF, PPF)쓽 寃곌낵媛 긽씠븳 10媛쒖쓽 떆猷뚮 솗씤븷 닔 엳뿀쑝硫 씠뒗 遺紐⑥ 옄뿉꽌 룞씪븯寃 愿李곕릺뿀떎. 삉븳, 몢 媛怨꾩뿉꽌뒗 null allele씠 遺紐⑥뿉꽌 옄뿉寃뚮줈 쑀쟾맖쓣 솗씤븯떎. 봽씪씠癒 젒빀 遺쐞(primer binding site) 3' 留먮떒쓽 룎뿰蹂씠 諛쒖깮 삉뒗 궫엯(insertion), 寃곗떎(deletion) 移⑤У 由쎌쑀쟾옄(silent allele) 諛쒖깮쓣 쑀諛쒗븯뿬 몢 궎듃 媛 떎瑜 寃곌낵 삉뒗 null allele쓽 썝씤씠 릺硫(Butler and Hill, 2013), 寃쎌슦뿉 뵲씪 遺紐-옄 궗씠뿉쓽 移쒖옄愿怨 遺덉씪移섎 씪쑝궗 닔 엳떎(Mizuno et al., 2008). 씠瑜 紐낇솗엳 솗씤븯湲 쐞빐꽌뒗 룎뿰蹂씠 醫뚯쐞 遺꾩꽍쓣 쐞븳 깉濡쒖슫 primer瑜 젣옉븯嫄곕굹 뿼湲곗꽌뿴 遺꾩꽍쓣 닔뻾븯뿬빞 븳떎(Cotton et al., 2000; Delamoye et al., 2004; Ricci et al., 2007; Lane, 2013).

蹂 뿰援ъ뿉꽌뒗 삁뿰愿怨꾩쓽 遺紐⑤줈遺꽣 옄뿉寃 쑀쟾릺뒗 由쎌쑀쟾옄뿉 빐 23媛쒖쓽 긽뿼깋泥 STR 醫뚯쐞뿉꽌 諛쒖깮릺뒗 룎뿰蹂씠瑜 珥 303 媛怨꾩쓽 1,151紐낆쓽 떆猷뚮 遺꾩꽍븯뿬 솗씤븯쑝硫, 洹 以 14媛쒖쓽 STR 醫뚯쐞뿉꽌 룎뿰蹂씠媛 愿李곕릺뿀怨, 蹂대떎 젙솗븳 떊썝솗씤 媛먯젙쓽 湲곗쓣 젣怨듯븯湲 쐞빐꽌 STR 醫뚯쐞뱾뿉 븳 룎뿰蹂씠쑉 뿰援ъ쓽 븘슂꽦쓣 젣떆븯떎. 븯吏留 蹂 뿰援ъ뿉 궗슜맂 떆猷 닔쓽 븳怨꾨줈 씤빐 룎뿰蹂씠媛 솗씤릺吏 븡 STR 醫뚯쐞쓽 빐꽍쓣 쐞빐꽌뒗 蹂대떎 솗옣맂 紐⑥쭛떒쓣 넻빐 異붽 뿰援 닔뻾씠 븘슂븷 寃껋쑝濡 뙋떒릺硫, 씠瑜 넻빐 떊썝솗씤 媛먯젙쓽 떊猶곗꽦 엳뒗 湲곗쓣 젣怨듯븷 닔 엳쓣 寃껋쑝濡 湲곕맂떎.

ACKNOWLEDGEMENT

This work was supported by National Forensic Service (NFS2021DNA03), Ministry of the Interior and Safety, Republic of Korea.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

References
  1. A힊icio푤lu F, Oguz-Savran F, Ozbek U. Mutation rate at commonly used forensic STR loci: Paternity testing experience. Dis Markers. 2004. 20: 313-315.
    Pubmed KoreaMed CrossRef
  2. Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B. Mutation Rate in Human Microsatellites: Influence of the Structure and Length of the Tandem Repeat. Am J Hum Genet. 1998. 62: 1408-1415.
    Pubmed KoreaMed CrossRef
  3. Budowle B, Shea B, Niezgoda S, Chakraborty R. CODIS STR Loci Data from 41 sample Populations*. J Forensic Sci. 2001. 46: 453-489.
    CrossRef
  4. Butler JM. Short tandem repeat typing technologies used in human identity testing. Biotechniques. 2007.
    Pubmed CrossRef
  5. Butler JM. Advanced Topics in Forensic DNA Typing: Methodology, Advanced Topics in Forensic DNA Typing: Methodology. 2012.
  6. SE33 variant alleles: Sequences and implications. Forensic Sci Int Genet Suppl Ser. 2011. 3.
    CrossRef
  7. Butler JM, Hill CR. Biology and genetics of new autosomal STR loci useful for forensic DNA analysis. Forensic DNA Anal. Curr Pract Emerg Technol. 2013. 181-198.
    CrossRef
  8. Cotton EA, Allsop RF, Guest JLGuest JL et al. Validation of the AMPFlSTR SGM Plus (TM) system for use in forensic casework. Forensic Sci Int. 2000. 112: 151-161.
    CrossRef
  9. Delamoye M, Duverneuil C, Riva KRiva K et al. False homozygosities at various loci revealed by discrepancies between commercial kits: Implications for genetic databases. Forensic Sci Int. 2004. 143: 47-52.
    Pubmed CrossRef
  10. Han GR, Lee YW, Lee HLLee HL et al. A Korean population study of the nine STR loci FGA, VWA, D3S1358, D18551, D21S11, D8S1179, D7S820, D13S317 and D5S818. Int J Legal Med. 2000. 114: 41-44.
    Pubmed CrossRef
  11. Jin B, Su Q, Luo HLuo H et al. Mutational analysis of 33 autosomal short tandem repeat (STR) loci in southwest Chinese Han population based on trio parentage testing. Forensic Sci Int Genet. 2016. 23: 86-90.
    Pubmed CrossRef
  12. Kim MY, Cho S, Lyoo SHLyoo SH et al. Looking Back at Our 5-Year Experience of Paternity Testing: A Summary. Korean J Leg Med. 2016. 40: 48-54.
    CrossRef
  13. Lane AB. STR null alleles complicate parentage testing in South Africa. South African Med J. 2013. 103: 1004-1008.
    Pubmed CrossRef
  14. Liu QL, Chen YF, Huang XL, Liu KY, Zhao H, Lu DJ. Population data and mutation rates of 19 STR loci in seven provinces from China based on Goldeneye DNA ID System 20A. Int J Legal Med. 2017. 131: 653-656.
    Pubmed CrossRef
  15. Lopez Gonzalez PN, Bautista-Gonzalez JE, Lopez-Gonzalez MJ, Sosa-Escalante JE, Gonzalez-Herrera L. The most frequent autosomal STRs involved in exclusion of paternity cases in a population from southeast, Mexico. Forensic Sci Int Genet Suppl Ser. 2019. 7: 465-467.
    CrossRef
  16. Mardini AC, Rodenbusch R, Schumacher SSchumacher S et al. Mutation rate estimates for 13 STR loci in a large population from Rio Grande do Sul, Southern Brazil. Int J Legal Med. 2013. 127: 45-47.
    Pubmed CrossRef
  17. Mizuno N, Kitayama T, Fujii KFujii K et al. A D19S433 primer binding site mutation and the frequency in Japanese of the silent allele it causes. J Forensic Sci. 2008. 53: 1068-1073.
    Pubmed CrossRef
  18. Mustafayev NS, Mammadov ER, Mammadov AC. Mutation cases in the paternity tests using 15 autosomal STR markers. J Life Sci Biomed. 2019. 1: 5-17.
  19. Oh YN, Lee HY, Lee EYLee EY et al. Haplotype and mutation analysis for newly suggested Y-STRs in Korean father-son pairs. Forensic Sci Int Genet. 2015. 15: 64-68.
    Pubmed CrossRef
  20. Ricci U, Melean G, Robino C, Genuardi M. A single mutation in the FGA locus responsible for false homozygosities and discrepancies between commercial kits in an unusual paternity test case. J Forensic Sci. 2007. 5: 393-396.
    Pubmed CrossRef
  21. Yang IS, Lee HY, Park SJ, Yang W-I, Park MJ. Analysis of Kinship Index Distributions in Koreans Using Simulated Autosomal STR Profiles. Korean J Leg Med. 2013. 57-65.
    CrossRef