Search for


TEXT SIZE

search for



CrossRef (0)
Hepatoprotective Effect of Uncaria rhynchophylla on Thioacetamide-Induced Liver Fibrosis Model
Biomed Sci Letters 2021;27:142-153
Published online September 30, 2021;  https://doi.org/10.15616/BSL.2021.27.3.142
© 2021 The Korean Society For Biomedical Laboratory Sciences.

Jeong Won Choi1,* , Mi-Rae Shin1,* * , Ji Hye Lee2,* * and Seong-Soo Roh1,†,* *

1Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea
2College of Korean Medicine, Semyung University, Jecheon, Chungbuk 27136, Korea
Correspondence to: Seong-Soo Roh. College of Korean Medicine, Daegu Haany University, 136, Sincheondong-ro, Suseong-gu, Daegu 42158, Korea.
Tel: +82-53-770-2350, Fax: +82-53-768-6340, e-mail: ddede@dhu.ac.kr
*Graduate student, **Professor.
Received August 26, 2021; Revised September 13, 2021; Accepted September 14, 2021.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
Liver fibrosis is a wound-healing response to chronic liver injury, which is caused by the continuous and excess deposition of extracellular matrix (ECM). The aim of this study is to investigate whether Uncaria rhynchophylla water extract (UR) can ameliorate thioacetamide (TAA)-induced liver fibrosis. The liver fibrosis model was induced on C57BL/6 mice by intraperitoneal injection with TAA three times a week for 8 weeks. UR (200 mg/kg) or silymarin (50 mg/kg) was administered orally daily for 8 weeks. Biochemical analyses including AST, ALT, MPO, and Ammonia levels were measured in serum. In the mice liver tissues, western blot and histological staining were analyzed. As a result, UR dramatically reduced the levels in serum AST, ALT, MPO, and Ammonia levels. UR treatment regulated NADPH oxidase factors expression, and antioxidant enzymes except for GPx-1/2 were significantly increased via Nrf2 activation. Furthermore, pro-inflammatory mediators, such as COX-2 and iNOS were markedly suppressed through the inhibition of NF-κB activation. Expressions of ECM-related protein including α-SMA and Collagen I were noticeably decreased. The additional histological evaluation confirmed that hepatocyte damage and collagenous fiber accumulation were attenuated. Taken together, these data suggest that UR possessed hepatoprotective effects in TAA-induced liver fibrosis via the NF-κB inactivation and Nrf2 activation. Therefore, UR may act as a potential therapeutic drug against liver fibrosis.
Keywords : Uncaria rhynchophylla, Liver fibrosis, Thioacetamide, Oxidative stress, Antioxidant, Anti-inflammatory
꽌 濡

媛(Liver) 떊泥댁뿉꽌 媛옣 겙 옣湲곗씠硫 깂닔솕臾, 吏諛, 떒諛깆쭏 벑 쁺뼇遺꾩쓽 궗 빟臾 궗, 硫댁뿭 湲곕뒫, 빐룆 옉슜 諛 떞利 遺꾨퉬 벑 以묒슂븳 뿭븷쓣 닔뻾븳떎(Park et al., 2018). 쁽궗쉶濡 뱾뼱꽌硫댁꽌 닔留롮 怨듯빐臾쇱쭏怨 쑀룆臾쇱쭏뿉 빆긽 끂異쒕맖뿉 뵲씪 媛꾩 걡엫뾾씠 빐룆 옉슜뿉 떆떖由ш퀬 엳떎. 삉븳, 怨쇰룄븳 젙떊쟻 뒪듃젅뒪, 씉뿰, 怨쇱쓬, 諛붿씠윭뒪, 吏吏 怨쇱궛솕 벑 媛꾩뿉 遺떞쓣 利앷떆耳 씠濡 씤븳 留뚯꽦쟻씤 媛꾩쭏솚 솚옄뱾쓣 뼇궛븯怨 엳떎(Kim, 2013). 媛 꽟쑀솕(Liver fibrosis)뒗 씠윭븳 留뚯꽦 媛꾩넀긽쓽 긽泥섏튂쑀 諛섏쓳씠硫, 듅엳 媛 꽦긽 꽭룷(hepatic stellate cell, HSC)쓽 솢꽦솕濡 씤빐 꽭룷쇅湲곗쭏(extracellular matrix, ECM)씤 援먯썝吏(collagen)쓽 怨쇱엵 異뺤쟻怨 媛숈 듅吏뺤쓣 蹂댁씠寃 맂떎(Bataller et al., 2005; Friedman, 2003). 썝옒 媛 꽟쑀솕뒗 媛뿭쟻씠吏留 씠 怨쇱젙씠 닔떗 뀈뿉 嫄몄퀜 媛꾧꼍蹂씠굹 媛꾩븫源뚯 吏꾪뻾릺硫 쉶蹂듯븯湲 옒뱺 遺덇뿭쟻씤 긽깭뿉 씠瑜닿쾶 맂떎(Lee and Friedman, 2011). 씠泥섎읆 媛꾩쭏솚 떊泥댁뿉 떖媛곹븳 쁺뼢쓣 誘몄튌 닔 엳湲 븣臾몄뿉 媛꾩쓣 蹂댄샇븯嫄곕굹 媛꾧린뒫쓣 媛쒖꽑떆궗 닔 엳뒗 泥쒖뿰냼옱쓽 諛쒓뎬뿉 吏묒쨷릺怨 엳떎.

Thioacetamide (TAA)뒗 媛꾨룆꽦 臾쇱쭏濡 cytochrome p450 슚냼뿉 쓽빐 thioacetamide S-oxide씪怨 븣젮吏 룆꽦씠 媛뺥븳 臾쇱쭏濡 궗릺怨, 씠濡 씤빐 媛꾩뿉꽌 媛꾧린뒫 옣븷, 궛솕 뒪듃젅뒪(oxidative stress), 吏吏 怨쇱궛솕瑜 쑀諛쒗븯뒗 寃껋쑝濡 븣젮졇 엳떎. 듅엳 TAA뿉 쓽빐 쑀諛쒕맂 궛솕 뒪듃젅뒪뒗 꽟쑀 깮꽦 怨쇱젙뿉 愿뿬븯뿬 媛꾩꽭룷쓽 glutathion怨 빆궛솕 諛⑹뼱 硫붿빱땲利섏쓣 媛먯냼떆궎硫 吏吏 怨쇱궛솕 諛 옄쑀 씪뵒移쇱쓽 삎꽦쓣 利앷떆궓떎. 뵲씪꽌, TAA뒗 媛꾩넀긽 諛 媛 꽟쑀솕 紐⑤뜽쓽 쑀諛쒖뿉 씪諛섏쟻쑝濡 궗슜릺怨 엳떎(Kim et al., 2000; Marciniak et al., 2018; da Silva et al., 2021).

議곌뎄벑(Uncaria rhynchophylla) 瑗몢꽌땲怨쇱뿉 냽븯뒗 뜦援댁꽦 紐⑸낯떇臾쇰줈 븳諛⑹뿉꽌 媛떆媛 떖由 媛吏瑜 깮빟옱濡 궗슜븯怨 엳떎. 議곌뎄벑 吏꾩젙 諛 吏꾧꼍슚뒫쓣 媛졇 媛곸쥌 떊寃쎌꽦 吏덊솚뿉 꼸由 泥섎갑릺怨 엳쑝硫, 냼븘怨좎뿴, 寃쏀뭾, 옄媛 벑뿉 슚怨쇨 엳怨 듅엳 怨좏삁븬뿉 쓽빐 쑀諛쒕맂 몢넻씠굹 쁽湲곗쬆移섎즺뿉 슚怨쇱쟻씤 寃껋쑝濡 븣젮졇 엳떎(Han et al., 2000; Kim et al., 2002). 議곌뎄벑쓽 二쇱슂 꽦遺꾩 alkaloids, flavonoids, terpenes, glycosides, quinovic acid 諛 coumarins 벑씠 蹂닿퀬릺怨 엳쑝硫, 깮由ы솢꽦뿉 븯뿬 뇤떊寃쎌꽭룷 泥숈닔떊寃쎌꽭룷쓽 넀긽뿉 븳 諛⑹뼱 슚怨, 鍮꾩븣肄쒖꽦 吏諛⑷컙 紐⑤뜽뿉꽌 씤뒓由 誘쇨컧꽦 媛쒖꽑 슚怨 諛 alkaloid 꽦遺꾩쓽 삁븬 媛뺥솕 삉뒗 삁愿 솗옣 슚怨쇰 媛吏怨 엳떎(Heitzman et al., 2005; Kim et al., 2006; Araujo et al., 2018; Loh et al., 2017).

씠뿉 蹂 뿰援щ뒗 議곌뎄벑 異붿텧臾쇱씠 TAA濡 쑀諛쒕맂 媛 꽟쑀솕 紐⑤뜽뿉꽌 媛 蹂댄샇 슚怨쇱 깉濡쒖슫 湲곕뒫꽦 냼옱濡쒖쓽 솢슜 媛뒫꽦쓣 솗씤븯쑝硫 洹 湲곗쟾뿉 븯뿬 蹂닿퀬븯뒗 諛붿씠떎.

옱猷 諛 諛⑸쾿

옱猷

떆猷: 蹂 떎뿕뿉꽌 궗슜븳 議곌뎄벑 샊湲고븳빟援(Daegu, Korea)뿉꽌 援ъ엯븯뿬 깮빟洹쒓꺽吏묒뿉 留욎텛뼱 愿뒫寃궗瑜 吏꾪뻾븳 썑 빟쟾洹쒓꺽뿉 쟻빀븳 寃껊쭔쓣 젙꽑븯뿬 궗슜븯떎. 議곌뎄벑쓣 300 g 遺꾩뇙븯뿬 利앸쪟닔 3,000 mL 泥④븳 썑 뿴깢 異붿텧湲곕 씠슜븯뿬 2떆媛 룞븞 異붿텧븯떎. 뼸뼱吏 異붿텧臾쇱 媛먯븬 異붿텧옣移섎줈 냽異뺥븯쑝硫, 룞寃 嫄댁“湲곕 씠슜빐 셿쟾 嫄댁“떆耳 뙆슦뜑(닔쑉, 2.2%)瑜 뼸뿀떎. 뙆슦뜑뒗 -80℃뿉꽌 蹂닿븯怨 궗슜 吏곸쟾 利앸쪟닔뿉 끃뿬 궗슜븯떎.

떆빟: 蹂 떎뿕뿉 궗슜맂 gallic acid, folin-ciocalteús phenol reagent, quercetin, 2-Diphenyl-1-picrylhydrazyl (DPPH), 7 mM 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), thioacetamide (TAA), potassium phosphate monobasic, potassium phosphate dibasic Sigma-Aldrich Co. (St. Louis, MO, USA)뿉꽌 援ъ엯븯뿬 궗슜븯쑝硫, sodium carbonater怨 potassium acetate뒗 DAEJUNG (Gyeonggi, Korea)뿉꽌 援ъ엯븯뿬 궗슜븯떎. L-ascorbic acid, aluminum chloride Alfa Aesar (Ward Hill, MA, USA)뿉꽌, nitrocellulose membranes뒗 Amersham GE Healthcare (Little. Chalfont, UK)뿉꽌 援ъ엯븯떎. Gp91phox (Nox2), p22phox, p47phox, nuclear factor erythroid-2-related factor 2 (Nrf2), kelch-like ECH-associated protein 1 (Keap1), heme oxygenase 1 (HO-1), superoxide dismutase 1 (SOD-1), catalase, glutathione peroxidase-1/2 (GPx-1/2), nuclear factor-κB p65 (NF-κB p65), phospho-IκBα (p-IκBα), IκBα, cyclooxygenase-2 (COX-2), NOS2 (iNOS, inducible nitric oxide synthase), β-actin, histone Santa Cruz Biotechnology (Dallas, TX, USA)濡쒕꽣 援ъ엯븯뿬 궗슜븯怨, α-smooth muscle actin (α-SMA), Collagen I Abcam (Cambridge, UK)뿉꽌 援ъ엯븯뿬 궗슜븯쑝硫, 2李⑦빆泥대뒗 GeneTex, Inc. (Irvine, CA, USA)뿉꽌 援ъ엯븯뿬 궗슜븯떎. Protease inhibitor mixture, ethylenediaminetetraacetic acid (EDTA)뒗 Wako Pure Chemical Industries, Ltd. (Osaka. Japan)뿉꽌 援ъ엯븯뿬 궗슜븯쑝硫, ECL western blotting detection reagents뒗 GE Healthcare (Arlington Height, IL, USA)濡쒕꽣 援ъ엯븯뿬 궗슜븯떎. 떒諛깆쭏 젙웾쓣 쐞븳 BCA protein assay kit뒗 Thermo Scientific (Waltham, MA, USA)뿉꽌 援ъ엯븯떎.

떎뿕 룞臾: 7二쇰졊쓽 썒꽦 C57BL/6 (Daehan Biolink Co. Ltd., Chungbuk, Korea)瑜 援ъ엯븯뿬 1二쇱씪 룞븞 떎뿕떎 솚寃쎌뿉 쟻쓳떆궓 썑 떎뿕쓣 吏꾪뻾븯쑝硫, 룞臾 궗쑁떎 議곌굔 conventional system쑝濡 삩룄뒗 22±2℃, 뒿룄뒗 50±5%, 紐낆븫二쇨린(light: dark cycle)뒗 12떆媛 二쇨린濡 議곗젅븯怨, 궗猷(議곕떒諛깆쭏 18% 씠긽, 議곗諛 5.0% 씠긽, 議곗꽟쑀 5.0% 씠븯, 議고쉶遺 8.0% 씠븯, 移쇱뒛 1.0% 씠긽, 씤 0.85% 씠긽, 移쇰ⅷ 0.55% 씠긽, 굹듃瑜 0.25% 씠긽, 留덇렇꽕뒛 0.15% 씠긽, NIH-41, Zeigler Bros, Inc., Gardners, PA, USA) 臾쇱쓣 異⑸텇엳 怨듦툒븯떎. 룞臾쇱떎뿕쓽 쑄由ъ쟻, 怨쇳븰쟻 떦꽦 寃넗 諛 슚쑉쟻씤 愿由щ 쐞븯뿬 援ы븳쓽븰援 룞臾쇱떎뿕쑄由 쐞썝쉶(Institutional Animal Care and Use Committee: IACUC)쓽 듅씤(듅씤踰덊샇: DHU2021-039)쓣 諛쏆븯떎.

諛⑸쾿

Total Polyphenol怨 Total Flavonoid 痢≪젙: Total polyphenol 븿웾 Singleton 벑쓽 諛⑸쾿(Singleton and Rossi, 1965)뿉 뵲씪 痢≪젙븯떎. 100 μL쓽 떆猷뚯뿉 10% Folin-Ciocalteús phenol reagent 500 μL 7.5% sodium carbonate 400 μL瑜 샎빀븯뿬 떎삩쓽 븫냼긽깭뿉꽌 30遺 諛섏쓳떆耳곕떎. 洹 썑 Microplate reader (Infinite M200 pro, Tecan, Switzerland)瑜 궗슜븯뿬 765 nm뿉꽌 씉愿묐룄瑜 痢≪젙븳 뮘, 몴以臾쇱쭏씤 gallic acid濡 몴以 寃웾꽑쓣 援ы븯怨 total polyphenol 븿웾(mg gallic acid equivalents (GAE)/g UR)쓣 궛異쒗븯떎.

Total flavonoid쓽 븿웾 Islam 벑쓽 諛⑸쾿(Islam et al., 2015)뿉 뵲씪 痢≪젙븯떎. 100 μL쓽 떆猷뚯뿉 Methanol 300 μL, 10% aluminium chloride solution 20 μL, 1 M potassium acetate solution 20 μL 諛 利앸쪟닔 560 μL瑜 샎빀븯뿬 떎삩쓽 븫냼긽깭뿉꽌 30遺 諛섏쓳떆耳곕떎. 洹 썑 Microplate reader瑜 궗슜븯뿬 415 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯뿬, 몴以臾쇱쭏씤 quercetin濡 몴以 寃웾꽑쓣 援ы븯怨 total flavonoid 븿웾(mg quercetin equivalent (QE)/g UR)쓣 궛異쒗븯떎.

DPPH ABTS 씪뵒移 냼嫄 솢꽦 痢≪젙: DPPH free 씪뵒移 냼嫄 솢꽦 Blois 벑쓽 諛⑸쾿(Blois, 1958)뿉 뵲씪 痢≪젙븯떎. 60 μM DPPH 슜븸 100 μL 냽룄蹂꾨줈 씗꽍븳 떆猷 슜븸 100 μL瑜 샎빀븯뿬 30遺꾧컙 븫냼긽깭濡 諛섏쓳떆궓 썑 540 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 議곌뎔쑝濡쒕뒗 L-ascorbic acid瑜 궗슜븯怨, 씪뵒移쇱쓣 50% 媛먯냼떆궎뒗 떆猷뚯쓽 냽룄瑜 IC50 媛믪쑝濡 굹궡뿀떎. ABTS 씪뵒移 냼嫄 솢꽦 Re 벑쓽 諛⑸쾿(Re et al., 1999)뿉 뵲씪 痢≪젙븯떎. 7 mM ABTS 슜븸怨 2.4 mM potassium persulfate瑜 샎빀븯뿬 떎삩쓽 븫냼긽깭뿉꽌 빟 16떆媛 씠긽 諛⑹튂븯뿬 ABTS+瑜 삎꽦떆궓 썑, 씉愿묐룄(30℃, 415 nm) 媛믪씠 0.70±0.02媛 릺룄濡 ethanol濡 씗꽍븯떎. 씗꽍븳 ABTS 슜븸 95 μL 냽룄蹂꾨줈 씗꽍븳 떆猷 슜븸 5 μL瑜 샎빀븯뿬 15遺꾧컙 諛섏쓳떆궓 썑 30℃, 415 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 議곌뎔쑝濡쒕뒗 L-ascorbic acid瑜 궗슜븯怨, 씪뵒移쇱쓣 50% 媛먯냼떆궎뒗 떆猷뚯쓽 냽룄瑜 IC50 媛믪쑝濡 굹궡뿀떎.

DPPH and ABTS radical scavenging activity (%)=1ODsample/ODblank×100

媛 꽟쑀솕 紐⑤뜽: 떎뿕援곗 젙긽援(Normal), 議곌뎔(Control), silymarin 50 mg/kg 닾뿬援(Silymarin), 議곌뎄벑 異붿텧臾 200 mg/kg 닾뿬援(UR) 珥 4援곗쑝濡 媛곴컖 9留덈━뵫 遺꾨쪟븯떎. 紐⑤뱺 룞臾쇱 씪젙븳 떆媛꾩뿉 1쉶/1씪 泥댁쨷쓣 痢≪젙븯쑝硫, 젙긽援곗쓣 젣쇅븳 紐⑤뱺 룞臾쇱 8二쇨컙 3쉶/1二 TAA (1二 100 mg/kg, 2~3二 200 mg/kg, 4~8二 400 mg/kg) 蹂듦컯닾뿬 諛 DW뿉 끃씤 빐떦 빟臾쇱쓣 1쉶/1씪 寃쎄뎄닾뿬 븯떎. 떎뿕醫낅즺 썑 留덉랬븯뿬 떖옣뿉꽌 삁븸쓣 梨꾩랬븯怨 30遺 씠궡뿉 4,000 rpm, 4℃뿉꽌 10遺꾧컙 썝떖遺꾨━븯뿬 삁泥쓣 뼸뼱 -80℃뿉꽌 蹂닿븯쑝硫, 媛 議곗쭅 利됱떆 쟻異쒗븯뿬 -80℃뿉꽌 蹂닿븯떎(Table 1).

Total polyphenol and total flavonoid contents of UR

Total polyphenol
(mg GAE/g UR)
Total flavonoid
(mg QE/g UR)
UR 82.96±0.13 23.28±0.63

All experiments were performed in triplicate and expressed mean ± SEM



媛꾨룆꽦 吏몴 痢≪젙: 삁以 aspartate aminotransferase (AST) alanine aminotransferanse (ALT) level assay kit (Asanpharm Co., Seoul, Korea)쓽 봽濡쒗넗肄쒖뿉 뵲씪 痢≪젙븯떎.

Ammonia 痢≪젙: 삁以 Ammonia 痢≪젙 ammonia assay kit (Abcam, Cambridge, UK)쓽 봽濡쒗넗肄쒖뿉 뵲씪 痢≪젙븯떎.

궛솕 뒪듃젅뒪 諛붿씠삤留덉빱 痢≪젙: 삁以 Myeloperoxidase (MPO) 痢≪젙 MPO colorimetric activity assay kit (BioVision, CA, USA)쓽 봽濡쒗넗肄쒖뿉 뵲씪 痢≪젙븯떎.

媛 議곗쭅 western blotting: 媛 議곗쭅쓽 꽭룷吏덉쓣 뼸湲 쐞빐 100 mM Tris-HCl (pH 7.4), 5 mM Tris-HCl (pH 7.5), 2 mM MgCl, 15 mM CaCl, 1.5 M sucrose, 0.1 M DTT, protease inhibitor cocktail쓣 泥④븳 buffer A瑜 꽔怨 tissue grinder (BioSpec Product, Oklahoma, USA)濡 遺꾩뇙븳 썑 븘씠뒪 쐞뿉꽌 30遺꾧컙 젙移섏떆耳곕떎. 洹 썑, 10% NP-40 슜븸쓣 泥④븯뿬 12,000 rpm쑝濡 2遺꾧컙 썝떖遺꾨━ 븯뿬 꽭룷吏덉쓣 룷븿븯怨 엳뒗 긽痢듭븸쓣 遺꾨━븯떎. 빑쓣 뼸湲 쐞빐 10% NP-40媛 뜑빐吏 buffer A뿉 몢 踰 뿹援ш퀬 100 μL쓽 buffer C (50 mM HEPES, 0.1 mM EDTA, 50 mM KCl, 0.3 mM NaCl, 1 mM DTT, 0.1 mM PMSF, 10% glycerol)瑜 泥④빐 옱遺쑀 떆궓 뮘 10遺꾨쭏떎 vortex瑜 3踰 븯떎. 4℃뿉꽌 12,000 rpm쑝濡 10遺꾧컙 썝떖遺꾨━븳 썑 빑쓣 룷븿븯怨 엳뒗 긽痢듭븸쓣 뼸뼱 -80℃뿉꽌 媛곴컖 깋룞 蹂닿븯떎. 媛 議곗쭅 꽭룷吏덉뿉꽌 gp91phox, p22phox, p47phox, Keap1, HO-1, SOD-1, catalase, GPx-1/2, p-IκBα, IκBα, COX-2, NOS2, α-SMA, Collagen I 諛 β-actin怨 빑뿉꽌 Nrf2, NF-κBp65 諛 histone 떒諛깆쭏 諛쒗쁽쓣 痢≪젙븯湲 쐞븯뿬 12 μg쓽 떒諛깆쭏쓣 8~ 14% SDS-polyacrylamide gel쓣 씠슜븯뿬 쟾湲곗쁺룞 썑, acrylamide gel쓣 nitrocellulose membrane쑝濡 씠룞떆耳곕떎. 以鍮꾨맂 membrane뿉 媛곴컖쓽 1李 antibody (1:1,000)瑜 泥섎━븯뿬 4℃뿉꽌 overnight 떆궓 떎쓬 PBS-T濡 6遺꾨쭏떎 5쉶 꽭泥숉븯怨, 媛곴컖 泥섎━맂 1李 antibody뿉 궗슜릺뒗 2李 antibody (1:3,000)瑜 궗슜븯뿬 긽삩뿉꽌 1떆媛 30遺 諛섏쓳떆궓 썑, PBS-T濡 6遺꾨쭏떎 5쉶 꽭泥숉븯떎. 洹 썑 enhanced chemiluminescence (ECL) 슜븸뿉 끂異쒖떆耳 Sensi-Q2000 Chemidoc (Lugen Sci Co. Ltd, Seoul, Korea)瑜 씠슜빐 떒諛깆쭏 諛쒗쁽쓣 솗씤븯쑝硫, 빐떦 band瑜 ATTO Densitograph Software (ATTO Corporation, Tokyo, Japan) 봽濡쒓렇옩쓣 궗슜븯뿬 젙웾븯떎. 媛곴컖쓽 떒諛깆쭏 닔以쓣 Normal援곗쓽 떒諛깆쭏 닔以쑝濡 굹늿 썑 긽쟻 鍮꾨줈 굹궡뿀떎(represented as 1).

議곗쭅븰쟻 愿李: 媛 議곗쭅쓣 10% neutral buffered formalin뿉 怨좎젙떆궓 썑 graded alcohol濡 깉닔떆궎怨, 뙆씪쑝濡 룷留ㅽ븯뿬 몴蹂몄쓣 젣옉븳 썑 microtome쑝濡 5 μm 몢猿섏쓽 議곗쭅 젅렪쓣 젣옉븯뿬 hematoxylin & eosin (H&E)쑝濡 뿼깋븯쑝硫, xylene clearing쓣 嫄곗퀜 permount濡 泥섎━븯뿬 怨좎젙븯떎. Masson's trichrome (MT) 뿼깋쓣 쐞빐 weigert iron hematoxylin뿉꽌 7遺꾧컙 뿼깋븯쑝硫, 꽭泥 썑 iebrich scarlet-acid fuchsin뿉꽌 2遺 룞븞 뿼깋븯떎. 洹 썑, phosphotungstic-phosphomolybdic acid뿉꽌 7遺 룞븞 諛곗뼇븯怨, aniline blue濡 10遺 룞븞 뿼깋븯쑝硫, 1% 븘꽭듃궛뿉꽌 3遺 룞븞 怨좎젙븯뿬 愿묓븰쁽誘멸꼍(DSCHX50V; Sony, Tokyo, Japan)쓣 씠슜븯뿬 議곗쭅쓽 듅씠 蹂묐 쑀臾대 愿李고븯떎.

넻怨꾨텇꽍: In vitro쓽 닔移섎뒗 mean ± SEM쑝濡 몴떆븯怨 In vivo쓽 닔移섎뒗 mean ± SD濡 몴떆븯쑝硫, SPSS program for windows version 25 (SPSS Inc., Chicago, USA)瑜 궗슜븯뿬 one-way analysis of variance (ANOVA) test瑜 떎떆븳 썑 least-significant differences (LSD) test濡 궗썑寃利앹쓣 떎떆븯뿬 媛 援곗쓽 룊洹 李⑥씠뿉 븳 넻怨꾩쟻 쑀쓽꽦쓣 P<0.05뿉꽌 寃利앺븯떎.

寃 怨

Total Polyphenol Total Flavonoid 븿웾 痢≪젙

UR쓽 total polyphenol total flavonoid 븿웾 痢≪젙 寃곌낵, total polyphenol 븿웾 82.96±0.13 mg GAE/g UR, total flavonoid 븿웾 23.28±0.63 mg QE/g UR쑝濡 굹궗떎(Table 1).

DPPH ABTS 씪뵒移 냼嫄 솢꽦

DPPH free 씪뵒移 냼嫄 솢꽦쓣 痢≪젙븳 寃곌낵, 뼇꽦議곕Ъ吏덈줈 궗슜븳 L-ascorbic acid쓽 IC50 媛믪 1.23±0.05 μg/mL濡 굹궗怨, UR쓽 IC50 媛믪 9.12±0.27 μg/mL濡 굹궗떎. ABTS free 씪뵒移 냼嫄 솢꽦쓣 痢≪젙븳 寃곌낵, 뼇꽦議곕Ъ吏덈줈 궗슜븳 L-ascorbic acid쓽 IC50 媛믪 3.56±0.06 μg/mL濡 굹궗怨, UR쓽 IC50 媛믪 21.34±0.46 μg/mL濡 굹궗떎(Table 2).

DPPH and ABTS radical scavenging activity of UR

DPPH ABTS
UR 9.12±0.58 21.34±1.19

All experiments were performed in triplicate and expressed mean ± SEM



삁以 AST 諛 ALT 痢≪젙

遺꾨━븳 삁泥쓽 AST 痢≪젙 寃곌낵 Normal援 鍮 Control援(P<0.001)뿉꽌 7諛 씠긽 겕寃 利앷븯怨, Control援 鍮 UR援(P <0.001)뿉꽌 44% 쑀쓽쟻씤 媛먯냼媛 굹궗떎.

ALT 痢≪젙 寃곌낵 Normal援 鍮 Control援(P<0.001)뿉꽌 3諛 씠긽쓽 넂 利앷瑜 蹂댁쑝硫, Control援 鍮 UR援(P<0.001)뿉꽌 47% 쑀쓽쟻쑝濡 媛먯냼븯怨 Silymarin援곌낵 鍮꾧탳븯쓣 븣룄 16% 궙 닔移섎줈 蹂댁뿬吏꾨떎(Fig. 1).

Fig. 1. AST and ALT levels in serum. Normal, normal mice; Control, liver fibrosis-induced with distilled water mice; Silymarin, liver fibrosis-induced with silymarin 50 mg/kg mice; UR, liver fibrosis-induced with UR 200 mg/kg mice. All data are expressed as mean ± SD (n=9). Significance: ###P<0.001 versus normal mice, **P<0.01, ***P<0.001 versus liver fibrosis-induced mice.

삁以 Ammonia MPO 痢≪젙

遺꾨━븳 삁泥쓽 Ammonia 냽룄 痢≪젙 寃곌낵, Normal援 鍮 Control援(P<0.001)뿉꽌 빟 3諛곗쓽 쑀쓽쟻씤 利앷媛 굹궗怨, UR援(P<0.001)뿉꽌 18% 쑀쓽쟻쑝濡 媛먯냼븯떎.

MPO 痢≪젙 寃곌낵 Normal援 鍮 Control援(P<0.001)뿉꽌 빟 5諛곗쓽 넂 利앷媛 굹궗怨, Control援 鍮 UR援(P<0.001)뿉꽌 47% 쑀쓽쟻쑝濡 媛먯냼븯뿬 Silymarin援곌낵 쑀궗븳 닔移섍퉴吏 媛먯냼븯떎(Fig. 2).

Fig. 2. Ammonia and MPO levels in serum. Normal, normal mice; Control, liver fibrosis-induced with distilled water mice; Silymarin, liver fibrosis-induced with silymarin 50 mg/kg mice; UR, liver fibrosis-induced with UR 200 mg/kg mice. All data are expressed as mean ± SD (n=9). Significance: ###P<0.001 versus normal mice, ***P<0.001 versus liver fibrosis-induced mice.

媛 議곗쭅 western blotting

NADPH oxidase 諛쒗쁽웾 遺꾩꽍: NADPH oxidase씤 gp91phox, p22phox 諛 p47phox쓽 諛쒗쁽웾쓣 遺꾩꽍븳 寃곌낵, gp91phox쓽 寃쎌슦 Normal援 鍮 Control援곗뿉꽌 50% 쑀쓽븯寃 利앷븯怨 Control援 鍮 Silymarin援곗뿉꽌뒗 쑀쓽쟻씤 蹂솕媛 굹굹吏 븡븯吏留 UR援곗뿉꽌뒗 21% 쑀쓽쟻쑝濡 媛먯냼븯떎. p22phox p47phox쓽 寃쎌슦 Normal援 鍮 Control援곗뿉꽌 30%, 20% 利앷븯怨, UR援곗뿉꽌뒗 29%, 21% 쑀쓽븯寃 媛먯냼븯떎(Fig. 3).

Fig. 3. Expression of NADPH oxidase. Normal, normal mice; Control, liver fibrosis-induced with distilled water mice; Silymarin, liver fibrosis-induced with silymarin 50 mg/kg mice; UR, liver fibrosis-induced with UR 200 mg/kg mice. All data are expressed as mean ± SD (n=9). Significance: ##P<0.01, ###P<0.001 versus normal mice, *P<0.05, **P<0.01, ***P<0.001 versus liver fibrosis-induced mice.

빆궛솕 떒諛깆쭏 Nrf2 Keap1 諛쒗쁽웾 遺꾩꽍: 빆궛솕 떒諛깆쭏 Nrf2 Keap1쓽 諛쒗쁽웾쓣 遺꾩꽍븳 寃곌낵, Nrf2뒗 Normal援곗뿉 鍮꾪븯뿬 Control援곗뿉꽌 46% 媛먯냼븯怨, Control援곗뿉 鍮꾪븯뿬 UR援곗뿉꽌 2諛 씠긽 쑀쓽븯寃 利앷븯뿬 Normal援곌낵 쑀궗븳 닔移섎 굹깉떎. Keap1쓽 寃쎌슦, Normal援곗뿉 鍮꾪븯뿬 Control援곗뿉꽌 10%媛웾 쑀쓽븯寃 利앷븯怨, UR援곗뿉꽌 22% 쑀쓽쟻쑝濡 媛먯냼븯떎(Fig. 4).

Fig. 4. Expression of Nrf2 and Keap1. Normal, normal mice; Control, liver fibrosis-induced with distilled water mice; Silymarin, liver fibrosis-induced with silymarin 50 mg/kg mice; UR, liver fibrosis-induced with UR 200 mg/kg mice. All data are expressed as mean ± SD (n=9). Significance: #P<0.05, ###P<0.001 versus normal mice, **P<0.01, ***P<0.001 versus liver fibrosis-induced mice.

빆궛솕 슚냼 諛쒗쁽웾 遺꾩꽍: 빆궛솕 슚냼 HO-1, SOD-1, catalase 諛 GPx-1/2쓽 諛쒗쁽웾쓣 遺꾩꽍븳 寃곌낵, Normal援 鍮 Control援곗뿉꽌 媛곴컖 52%, 50%, 15%, 34% 쑀쓽븯寃 媛먯냼븯쑝硫, Control援 鍮 UR援곗뿉꽌 媛곴컖 50%, 42%, 32% 쑀쓽쟻쑝濡 利앷븯쑝굹, GPx-1/2뒗 17% 利앷븯뒗 寃쏀뼢쓣 蹂댁뿬二쇱뿀떎. 듅엳 catalase쓽 諛쒗쁽 Silymarin援곌낵 鍮꾧탳븯쓣 븣 빟 23% 넂 쑀쓽꽦쓣 蹂댁떎(Fig. 5).

Fig. 5. Expression of antioxidant enzymes. Normal, normal mice; Control, liver fibrosis-induced with distilled water mice; Silymarin, liver fibrosis-induced with silymarin 50 mg/kg mice; UR, liver fibrosis-induced with UR 200 mg/kg mice. All data are expressed as mean ± SD (n=9). Significance: #P <0.05, ###P<0.001 versus normal mice, *P<0.05, **P<0.01 versus liver fibrosis-induced mice.

뿼利앷젴 떒諛깆쭏 諛쒗쁽웾 遺꾩꽍: 뿼利앷젴 떒諛깆쭏 p-IκBα, NF-κBp65, COX-2 諛 iNOS (NOS2)쓽 諛쒗쁽웾쓣 遺꾩꽍븳 寃곌낵, Normal援 鍮 Control援곗뿉꽌 媛곴컖 25%, 55%, 42%, 40% 쑀쓽븯寃 利앷븯怨, Control援 鍮 UR援곗뿉꽌 37%, 25%, 45%, 20% 쑀쓽븯寃 媛먯냼븯떎. 듅엳 p-IκBα, NF-κBp65 諛 COX-2쓽 諛쒗쁽 Silymarin援곌낵 鍮꾧탳븯쓣 븣 빟 11%, 6%, 11% 넂 쑀쓽꽦쓣 蹂댁떎(Fig. 6).

Fig. 6. Expression of inflammatory-related protein and inflammatory mediators. Normal, normal mice; Control, liver fibrosis-induced with distilled water mice; Silymarin, liver fibrosis-induced with silymarin 50 mg/kg mice; UR, liver fibrosis-induced with UR 200 mg/kg mice. All data are expressed as mean ± SD (n=9). Significance: ##P <0.01, ###P<0.001 versus normal mice, *P<0.05, **P<0.01, ***P<0.001 versus liver fibrosis-induced mice.

꽭룷쇅湲곗쭏 愿젴 떒諛깆쭏 諛쒗쁽웾 遺꾩꽍: 꽟쑀솕 씤옄 α-SMA Collagen I쓽 諛쒗쁽웾쓣 遺꾩꽍븳 寃곌낵, α-SMA뒗 Normal援곗뿉 鍮꾪븯뿬 Control援곗뿉꽌 2諛 利앷븯怨, Control援곗뿉 鍮꾪븯뿬 UR援곗뿉꽌 32% 쑀쓽븯寃 媛먯냼븯떎. Collagen I쓽 寃쎌슦, Normal援곗뿉 鍮꾪븯뿬 Control援곗뿉꽌 66% 媛웾 쑀쓽븯寃 利앷븯怨, UR援곗뿉꽌 29% 쑀쓽쟻쑝濡 媛먯냼븯떎(Fig. 7).

Fig. 7. Expression of extracellular matrix (ECM)-related proteins. Normal, normal mice; Control, liver fibrosis-induced with distilled water mice; Silymarin, liver fibrosis-induced with silymarin 50 mg/kg mice; UR, liver fibrosis-induced with UR 200 mg/kg mice. All data are expressed as mean ± SD (n=9). Significance: ###P<0.001 versus normal mice, *P<0.05, **P<0.01 versus liver fibrosis-induced mice.

議곗쭅蹂묐━븰쟻 遺꾩꽍: 媛 議곗쭅쓣 H&E 뿼깋쑝濡 愿李고븳 寃곌낵, Normal援곗뿉 鍮꾪븯뿬 Control援곗뿉꽌뒗 TAA뿉 쓽븳 媛꾩꽭룷쓽 鍮꾨, 愿댁궗 諛 뿼利앹꽭룷 移⑥쑄쓽 利앷瑜 愿李고븷 닔 엳뿀떎. Control援곗뿉 鍮꾪빐 UR援곗뿉꽌 꽭룷 蹂솕 젙룄媛 媛먯냼븯뿬 꽟쑀솕 젙룄媛 솗뿰엳 媛쒖꽑맂 寃껋씠 굹궗떎. MT 뿼깋 寃곌낵 Normal援곗뿉 鍮꾪븯뿬 Control援곗뿉꽌뒗 꼻 踰붿쐞쓽 援먯썝꽟쑀쓽 移⑥갑쓣 솗씤븯쑝硫, UR援곗뿉꽌뒗 Control援곗뿉 鍮꾪븯뿬 援먯썝꽟쑀쓽 移⑥갑 諛 議곗쭅븰쟻 꽟쑀솕 蹂솕媛 셿솕릺뿀쓬쓣 솗씤븯떎(Fig. 8).

Fig. 8. Histological analysis. Liver histological analysis through hematoxylin and eosin (H&E); (A) and Masson's trichrome (MT); (B) staining (Original magnification ×200). Normal, normal mice; Control, liver fibrosis-induced with distilled water mice; Silymarin, liver fibrosis-induced with silymarin 50 mg/kg mice; UR, liver fibrosis-induced with UR 200 mg/kg mice.
怨 李

媛꾩 泥대궡 쁺뼇냼 궗, 삁븸 議곗젅, 硫댁뿭泥닿퀎, 吏吏 諛 肄쒕젅뒪뀒濡 빆긽꽦 議곗젅 벑쓽 깮由ъ쟻 怨쇱젙뿉꽌 以묒슂븳 뿭븷쓣 닔뻾븳떎(Trefts et al., 2017). 븯吏留 쁽씤뱾 쓬二, 씉뿰, 怨쇰룄븳 뒪듃젅뒪 諛 빟臾 벑쓽 쐞뿕슂냼뿉 빆긽 끂異쒕릺뼱 엳쑝硫, 씠濡 씤빐 씤泥댁쓽 궗 湲곕뒫쓣 닔뻾븯뒗 媛꾩꽭룷媛 吏냽쟻쑝濡 넀긽쓣 諛쏄쾶 맂떎. 媛 넀긽쓽 吏냽 媛 꽟쑀利, 媛꾧꼍蹂 諛 媛꾩꽭룷 븫醫 媛숈 떎瑜 媛 吏덊솚쑝濡 븙솕릺뼱吏 닔 엳떎(Park et al., 2015; Han et al., 2019). 씠 以 媛 꽟쑀솕뒗 留뚯꽦쟻씤 媛 넀긽뿉 븳 媛꾩쓽 긽泥섏튂쑀 諛섏쓳쑝濡쒖꽌 꽭룷쇅湲곗쭏(extracellular matrix, ECM)쓽 깉濡쒖슫 移⑥갑怨 씉닔 궗씠뿉 깮湲 遺덇퇏삎쓽 寃곌낵濡 諛쒖깮맂떎(Lackner and Tiniakos, 2019). Thioacetamide (TAA)뒗 媛꾨룆꽦 臾쇱쭏濡 1948뀈遺꽣 궗슜릺뼱 솕쑝硫, TAA뒗 깮臾쇱뿉꽌 S-oxide (TASO)濡 궛솕맂 썑 S,S-dioxide (TASO2)濡 궗릺뼱 留뚯꽦쟻쑝濡 궗슜맆 븣 媛 꽟쑀솕瑜 쑀諛쒗븯뒗 寃껋쑝濡 옒 븣젮졇 엳떎(Hajovsky et al., 2012). 씠뿉 蹂 뿰援ъ뿉꽌뒗 TAA濡 쑀룄븳 媛 꽟쑀솕 룞臾 紐⑤뜽뿉꽌 議곌뎄벑 異붿텧臾쇱쓣 寃쎄뎄닾뿬 븯쓣 븣 媛 蹂댄샇 슚怨쇱 洹 湲곗쟾쓣 洹쒕챸븯湲 쐞빐 삁븸 궡 媛 넀긽 吏몴쓽 蹂솕, 뿼利앷젴 씤옄, 빆궛솕 씤옄, 꽟쑀솕 씤옄 諛 議곗쭅蹂묐━븰쟻 蹂솕瑜 愿李고븯떎.

媛 꽟쑀솕 쑀諛쒖쓣 쐞빐 8二쇨컙 TAA瑜 3쉶/1二(1二 100 mg/kg, 2~3二 200 mg/kg, 4~8二 400 mg/kg)濡 蹂듦컯닾뿬 븯怨, DW뿉 끃씤 議곌뎄벑 異붿텧臾쇱쓣 200 mg/kg濡 1쉶/1씪 寃쎄뎄닾뿬 븳 뮘 遺寃 썑 뼸 삁泥怨 媛꾩“吏곸쓣 遺꾩꽍븯떎.

Aspartate aminotransferase (AST) alanine aminotransferase (ALT)뒗 媛꾩꽭룷뿉꽌 amino acids ketoacids 궗씠쓽 amino 쟾떖쓣 珥됰ℓ븯뒗 슚냼씠떎. 媛꾩꽭룷媛 넀긽릺硫 꽭룷留됱쓽 닾怨쇱꽦씠 利앷븯怨, 媛꾩꽭룷쓽 AST ALT媛 삁븸쑝濡 諛⑹텧릺뼱 삁泥 궡 닔移섍 넂븘吏寃 맂떎. 鍮꾩젙긽쟻쑝濡 利앷븯硫 媛꾩꽭룷쓽 넀긽怨 愿댁궗瑜 쑀諛쒗븯湲 븣臾몄뿉 AST ALT뒗 媛꾧린뒫 룊媛쓽 以묒슂 빆紐⑹쑝濡 뿬寃⑥怨 엳떎(Xu et al., 2018). 삁以 AST ALT瑜 遺꾩꽍븳 寃곌낵, Control援곗뿉 鍮꾪빐 UR援곗뿉꽌 쑀쓽쟻씤 媛먯냼媛 굹궗떎.

Ammonia뒗 二쇰줈 옣궡 꽭洹좉낵 슚냼뿉 쓽빐 옣뿉꽌 깮꽦릺怨 二쇰줈 媛꾩뿉꽌 빐룆릺吏留, 留뚯꽦쟻씤 媛 넀긽씠 씠猷⑥뼱吏硫 媛꾩꽭룷 湲곕뒫 옣븷濡 씤빐 삁以묒뿉 Ammonia媛 異뺤쟻맂떎(Ninan and Feldman, 2017; Nam et al., 2019). 삁以 Ammonia 닔移섎 솗씤븳 寃곌낵 Control援곗뿉 鍮꾪빐 UR援곗뿉꽌 쑀쓽븯寃 媛먯냼븯뒗 뼇긽쓣 蹂댁떎.

Myeloperoxidase (MPO)뒗 샇以묎뎄뿉 쓽빐 깮꽦릺뒗 뿼利앹꽦 슚냼濡, 뿼利앹긽깭쓽 議곗쭅뿉꽌 吏吏 怨쇱궛솕쓽 二쇱슂븳 썝씤쑝濡 뿬寃⑥怨 엳쑝硫, 移⑥쑄맂 샇以묎뎄뒗 cytokine, chemokine 諛 reactive oxygen species (ROS) 媛숈 뿼利 留ㅺ컻泥대 諛⑹텧븯怨 씠濡 씤빐 媛꾩꽭룷쓽 넀긽쓣 쑀옒븷 닔 엳떎. MPO쓽 뼲젣뒗 媛꾩쭏솚쓽 吏꾪뻾 諛 媛 꽟쑀利앹쓣 빟솕떆궓떎怨 븣젮졇 엳떎(Liu et al., 2018; Piek et al., 2019; Koop et al., 2020). 삁泥 MPO瑜 痢≪젙븳 寃곌낵, Control援 鍮 UR援곗뿉꽌 MPO瑜 슚쑉쟻쑝濡 뼲젣븯뒗 寃껋쑝濡 굹궗떎.

씠윭븳 寃곌낵뒗 議곌뎄벑 異붿텧臾쇱씠 삁泥 궡 AST ALT 닔移섏쓽 媛먯냼濡 蹂댁븘 媛꾧린뒫쓣 媛쒖꽑븯怨 꽭룷넀긽쓣 뼲젣떆耳곗쑝硫, 媛꾩꽭룷뿉 쑀빐븳 ammonia MPO쓽 異뺤쟻쓣 빐떆耳 媛 꽟쑀솕뿉 븳 蹂댄샇 슚怨쇰 굹궦 寃껋쑝濡 蹂댁뿬吏꾨떎.

媛꾩“吏곸뿉꽌 떒諛깆쭏 諛쒗쁽쓣 룊媛븯湲 쐞빐 western blotting쓣 닔뻾븯떎. ROS뒗 諛섏쓳꽦 遺꾩옄瑜 룷븿븯뒗 궛냼 씪뵒移쇰줈 젙긽쟻씤 궛냼 궗뿉꽌뒗 꽭룷꽦옣怨 떊샇쟾떖쓣 議곗젅븯뿬 꽭룷 빆긽꽦쓣 쑀吏븯뒗뜲 以묒슂븳 뿭븷쓣 븳떎. 븯吏留 NADPH oxidase뿉 쓽빐 ROS媛 웾깮궛릺怨 꽭룷뿉 異뺤쟻릺硫 議곗쭅넀긽 諛 湲곌 湲곕뒫 옣븷瑜 珥덈옒븳떎. Gp91-phox뒗 NADPH oxidase쓽 븘닔쟻 슂냼濡 p22phox 寃고빀븳 꽭룷留 떒諛깆쭏濡 議댁옱븯硫 怨쇰룄븯寃 솢꽦솕맆 븣 깮꽦맂 ROS쓽 깮꽦쓣 珥됱쭊븯뿬 媛 꽟쑀利앹쓽 諛쒕떖쓣 쑀룄븷 닔 엳떎(Liang et al., 2016; Gan et al., 2018). 삉븳 꽭룷吏 떒諛깆쭏뿉 냽븯뒗 p47phox뒗 솢꽦솕뿉 吏곸젒쟻쑝濡 愿뿬븯吏뒗 븡吏留 oxidase쓽 솢꽦솕瑜 珥됱쭊븯뒗 슚냼濡 옉슜븯硫, 몴쟻씤 ROS씤 O2- 깮꽦怨 뿰愿맂 寃껋쑝濡 븣젮졇 엳떎(Brandes et al., 2002). 뵲씪꽌 NADPH oxidase쓽 諛쒗쁽쓣 뼲젣븯뒗 臾쇱쭏 媛 꽟쑀솕쓽 쑀留앺븳 移섎즺젣濡 媛꾩<릺怨 엳떎. 媛꾩“吏곸뿉꽌 떒諛깆쭏 諛쒗쁽 솗씤 寃곌낵 NOX2뒗 Control援 鍮 Silymarin援곗뿉꽌 蹂솕媛 굹굹吏 븡븯吏留 Control援 鍮 UR援곗뿉꽌 쑀쓽븯寃 媛먯냼븯쑝硫, p22phox p47phox 삉븳 쑀쓽븯寃 媛먯냼븯떎.

궛솕 뒪듃젅뒪뿉 븳 꽭룷諛⑹뼱 떆뒪뀥쓽 二쇱슂븳 議곗젅 Nrf2뿉 쓽빐 굹궃떎. Nuclear factor-erythroid 2-related factor 2 (Nrf2)뒗 젙긽 긽깭뿉꽌 Nrf2瑜 뼲젣븯뒗 뿭븷쓣 븯뒗 kelch-like ECH-associated protein 1 (Keap1)怨 寃고빀맂 긽깭濡 議댁옱븳떎. 븯吏留 궛솕 뒪듃젅뒪瑜 諛쏄쾶 릺硫 Keap1쓽 蹂삎뿉 쓽빐 寃고빀씠 뼱吏寃 릺怨 Nrf2媛 빑 궡濡 씠룞븯뿬 ARE sequence뿉 寃고빀븯硫댁꽌 빆궛솕 슚냼쓽 諛쒗쁽쓣 珥됱쭊떆궓떎(Li et al., 2017). Nrf2쓽 빑 궡 諛쒗쁽쓣 솗씤븳 寃곌낵, Control援곗뿉 鍮꾪빐 UR援곗뿉꽌 2諛 씠긽 쑀쓽븯寃 利앷븯怨, 꽭룷吏 궡 Keap1쓽 諛쒗쁽쓣 솗씤븳 寃곌낵, Control援곗뿉 鍮꾪빐 UR援곗뿉꽌 쑀쓽븯寃 媛먯냼븯떎.

궛솕 뒪듃젅뒪媛 諛쒖깮븯硫 ROS媛 諛⑹뼱泥닿퀎瑜 怨듦꺽븯뿬 빆궛솕 슚냼媛 넀떎맂떎(Jia et al., 2014). 궛솕 뒪듃젅뒪뿉 빐 諛⑹뼱븯뒗 빆궛솕 슚냼 以 heme oxygenase 1 (HO-1) 삁깋냼 援ъ꽦슂냼씤 heme쓣 遺꾪빐븯뿬 빆궛솕젣씤 씪궛솕깂냼 bilirubin쓣 깮꽦븯뿬 빆궛솕 옉슜쓣 븳떎(Bataille and Manautou, 2012). 삉븳 superoxide dismutase 1 (SOD-1), catalase 諛 glutathione peroxidase-1/2 (GPx-1/2)뒗 궛솕 뒪듃젅뒪濡쒕꽣 꽭룷瑜 蹂댄샇븯怨 媛꾩꽭룷쓽 愿댁궗瑜 뼲젣븿쑝濡쒖뜥 빆궛솕 옉슜쓣 븯뒗 寃껋쑝濡 븣젮졇 엳떎(Wu et al., 2019). 빆궛솕 슚냼쓽 諛쒗쁽웾쓣 솗씤븳 寃곌낵, Control援 鍮 UR援곗뿉꽌 HO-1, SOD-1 諛 catalase쓽 쑀쓽쟻씤 利앷媛 굹궗怨, 諛섎㈃ GPx-1/2 빟 17% 利앷븯뒗 寃쏀뼢쓣 蹂댁떎.

留뚯꽦쟻씤 媛꾩쭏솚뿉꽌 뿼利앹 꽟쑀솕 愿젴맂 以묒슂븳 듅吏뺤씠떎. Nuclear factor-κB p65 (NF-κB p65)뒗 꽭룷 뒪듃젅뒪뿉 諛섏쓳븯뿬 쟾궗 議곗젅쓽 以묒떖쟻씤 뿭븷쓣 븯硫 媛꾩뿼, 媛꾧꼍蹂利 諛 媛꾩꽭룷 븫醫낆쓣 룷븿븯뿬 媛꾩뿉 쁺뼢쓣 誘몄튂뒗 떎뼇븳 蹂묒쬆怨 媛 빆긽꽦 쑀吏뿉꽌 以묒슂븳 留ㅺ컻泥대줈 옉슜븳떎. NF-κB p65뒗 옄洹뱀뿉 쓽빐 솢꽦솕맆 븣 寃고빀릺뼱 엳뜕 IκBα쓽 씤궛솕 遺꾪빐濡 씤빐 빑 궡濡 씠룞븯뿬 寃곌낵쟻쑝濡 cyclooxygenase-2 (COX-2), iNOS (inducible nitric oxide synthase) 媛숈 뿼利앹꽦 留ㅺ컻씤옄쓽 遺꾨퉬瑜 珥됱쭊븳떎怨 븣젮졇 엳떎(Robinson and Mann, 2010; Han et al., 2017). 뿼利앷젴 떒諛깆쭏 NF-κB p65, p-IκBα, COX-2 諛 iNOS쓽 諛쒗쁽쓣 솗씤븳 寃곌낵 紐⑤뱺 씤옄媛 Control援 鍮 UR援곗뿉꽌 쑀쓽븯寃 媛먯냼븳 寃껋쓣 솗씤븯떎.

媛 꽟쑀솕뒗 洹쇰낯쟻쑝濡 ECM쓽 異뺤쟻뿉 쓽빐 쑀룄릺뒗뜲 ECM쓽 깮꽦뿉 二쇱슂븳 뿭븷쓣 븯뒗 寃껋씠 媛 꽦긽 꽭룷씠떎. 솢꽦솕 맂 媛 꽦긽 꽭룷뒗 꽟쑀솕瑜 珥됱쭊떆궎뒗 cytokine쓣 諛⑹텧븯怨 寃곌낵쟻쑝濡 ECM쓽 援ъ꽦슂냼씤 Collagen I쓽 異뺤쟻쓣 쑀룄븯怨 씠 吏곸젒쟻씤 뿰愿쓣 媛吏뒗 α-smooth muscle actin (α-SMA)쓽 諛쒗쁽쓣 利앷떆궓떎(Carpino et al., 2005; Yoon et al., 2020). α-SMA Collagen I 諛쒗쁽웾쓣 遺꾩꽍븳 寃곌낵, Control援곗뿉 鍮꾪븯뿬 UR援곗뿉꽌 쑀쓽븯寃 媛먯냼븯떎. 삉븳, 議곗쭅蹂묐━븰쟻 遺꾩꽍뿉꽌 議곌뎄벑 異붿텧臾쇱 TAA뿉 쓽븳 議곗쭅 궡 뿼利앹꽦 蹂묐, 뿼利앹꽭룷 移⑥쑄 諛 援먯썝꽟쑀쓽 移⑥갑쓣 쁽븯寃 寃쎄컧떆궓 寃껋씠 솗씤릺뿀떎.

蹂 뿰援ъ뿉꽌뒗 TAA濡 媛 꽟쑀솕瑜 쑀룄븳 C57BL/6 mice 紐⑤뜽뿉꽌 議곌뎄벑 異붿텧臾쇱 궛솕 뒪듃젅뒪瑜 議곗젅븯怨, Nrf2-Keap1 寃쎈줈瑜 솢꽦솕떆耳 빆궛솕 슚냼쓽 諛쒗쁽쓣 利앷떆耳곕떎. 삉븳, 뿼利앸컲쓳쓽 議곗젅뿉 以묒텛쟻씤 뿭븷쓣 븯뒗 NF-κB p65쓽 빑 궡 씠룞쓣 議곗젅븯뿬 뿼利앹꽦 留ㅺ컻씤옄쓽 諛쒗쁽쓣 뼲젣븯怨, ECM쓽 異뺤쟻怨 뿰愿맂 씤옄씤 α-SMA Collagen I쓽 諛쒗쁽쓣 寃쎄컧떆耳곕떎. 議곗쭅蹂묐━븰쟻 蹂솕瑜 遺꾩꽍븯쓣 떆 TAA뿉 쓽븳 넀긽쓣 쁽븯寃 셿솕떆耳곕떎. 뵲씪꽌, 議곌뎄벑 異붿텧臾쇱씠 媛꾧린뒫 蹂댄샇 媛 꽟쑀솕 媛쒖꽑뿉 슚怨쇱쟻쑝濡 씠슜븷 닔 엳뒗 옞옱쟻 泥쒖뿰냼옱엫쓣 젣떆븯뒗 諛붿씠떎.

ACKNOWLEDGEMENT

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2018R1A5A2025272).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

References
  1. Araujo LCC, Feitosa KB, Murata GMMurata GM et al. Uncaria tomentosa improves insulin sensitivity and inflammation in experimental NAFLD. Sci Rep. 2018. 8: 11013.
    Pubmed KoreaMed CrossRef
  2. Bataille AM, Manautou JE. Nrf2: a potential target for new therapeutics in liver disease. Clin Pharmacol Ther. 2012. 92: 340-348.
    Pubmed KoreaMed CrossRef
  3. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005. 115: 209-218.
    Pubmed KoreaMed CrossRef
  4. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958. 181: 1199-1200.
    CrossRef
  5. Brandes RP, Miller FJ, Beer SBeer S et al. The vascular NADPH oxidase subunit p47phox is involved in redox-mediated gene expression. Free Radic Biol Med. 2002. 32: 1116-1122.
    Pubmed CrossRef
  6. Carpino G, Morini S, Ginanni Corradini SGinanni Corradini S et al. Alpha-SMA expression in hepatic stellate cells and quantitative analysis of hepatic fibrosis in cirrhosis and in recurrent chronic hepatitis after liver transplantation. Dig Liver Dis. 2005. 37: 349-356.
    Pubmed CrossRef
  7. da Silva BS, Paulino AMB, Taffarel MTaffarel M et al. High sucrose diet attenuates oxidative stress, inflammation and liver injury in thioacetamide-induced liver cirrhosis. Life Sci. 2021. 267: 118944.
    Pubmed CrossRef
  8. Friedman SL. Liver fibrosis - from bench to bedside. J Hepatol. 2003. 38 Suppl 1: S38-S53.
    Pubmed CrossRef
  9. Gan D, Zhang W, Huang CHuang C et al. Ursolic acid ameliorates CCl4-induced liver fibrosis through the NOXs/ROS pathway. J Cell Physiol. 2018. 233: 6799-6813.
    Pubmed KoreaMed CrossRef
  10. Hajovsky H, Hu G, Koen YKoen Y et al. Metabolism and toxicity of thioacetamide and thioacetamide S-oxide in rat hepatocytes. Chem Res Toxicol. 2012. 25: 1955-1963.
    Pubmed KoreaMed CrossRef
  11. Han JT, Oh SJ, Kim HY, Park YD, Baek NI. Hyperin, Antioxidant compounds isolated from the branch of Uncaria rhynchophylla Miq. J Appl Biol Chem. 2000. 43: 78-80.
  12. Han M, Liu X, Liu SLiu S et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces hepatic stellate cell (HSC) activation and liver fibrosis in C57BL6 mouse via activating Akt and NF-觀B signaling pathways. Toxicol Lett. 2017. 273: 10-19.
    Pubmed CrossRef
  13. Han NK, Jung MG, Jeong YJJeong YJ et al. Plasma fibrinogen-like 1 as a potential biomarker for radiation-induced liver injury. Cells. 2019. 8: 1042.
    Pubmed KoreaMed CrossRef
  14. Heitzman ME, Neto CC, Winiarz E, Vaisberg AJ, Hammond GB. Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae). Phytochemistry. 2005. 66: 5-29.
    Pubmed CrossRef
  15. Islam T, Hasan MR, Roy ARoy A et al. Screening of in-vitro antioxidant, brine shrimp lethality bioassay and antimicrobial activities of extracts of Bridelia retusa (L.) Spreng. fruit. Int J Pharm. 2015. 5: 1058-1067.
  16. Jia R, Cao LP, Du JLDu JL et al. Effects of carbon tetrachloride on oxidative stress, inflammatory response and hepatocyte apoptosis in common carp (Cyprinus carpio). Aquat Toxicol. 2014. 152: 11-19.
    Pubmed CrossRef
  17. Kim HS, Lee YS, Oh SKOh SK et al. Effect of ramulus et uncus uncariae on glucose oxidase-induced toxicity in cultured cerebral neurons. J Physiol &. Pathol Korean Med. 2002. 16: 1016-1019.
  18. Kim HY. Effects of water extracts of black tea on hepatic functional improvement and anti-fibrosis in rats. J East Asian Soc Diet Life. 2013. 23: 44-52.
  19. Kim KH, Bae JH, Cha SW, Han SS, Park KH, Jeong TC. Role of metabolic activation by cytochrome P450 in thioacetamide-induced suppression of antibody response in male BALB/c mice. Toxicol Lett. 2000. 114: 223-235.
    Pubmed CrossRef
  20. Kim ST, Kim JD, Lyu YS, Lee MY, Kang HW. Neuroprotective effect of some plant extracts in cultured CT105-induced PC12 cells. Biol Pharm Bull. 2006. 29: 2021-2024.
    Pubmed CrossRef
  21. Koop AC, Thiele ND, Steins DSteins D et al. Therapeutic targeting of myeloperoxidase attenuates NASH in mice. Hepatol Commun. 2020. 4: 1441-1458.
    Pubmed KoreaMed CrossRef
  22. Lackner C, Tiniakos D. Fibrosis and alcohol-related liver disease. J Hepatol. 2019. 70: 209-304.
    Pubmed CrossRef
  23. Lee UE, Friedman SL. Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol. 2011. 25: 195-206.
    Pubmed KoreaMed CrossRef
  24. Li J, Hu R, Xu SXu S et al. Xiaochaihutang attenuates liver fibrosis by activation of Nrf2 pathway in rats. Biomed Pharmacother. 2017. 96: 847-853.
    Pubmed CrossRef
  25. Liang S, Kisseleva T, Brenner DA. The role of NADPH oxidases (NOXs) in liver fibrosis and the activation of myofibroblasts. Front Physiol. 2016. 7: 17.
    Pubmed KoreaMed CrossRef
  26. Liu A, Shen Y, Du YDu Y et al. Esculin prevents lipopolysaccharide/D-Galactosamine-induced acute liver injury in mice. Microb Pathog. 2018. 125: 418-422.
    Pubmed CrossRef
  27. Loh YC, Ch'ng YS, Tan CS, Ahmad M, Asmawi MZ, Yam MF. Mechanisms of action of Uncaria rhynchophylla ethanolic extract for its vasodilatory effects. J Med Food. 2017. 20: 895-911.
    Pubmed CrossRef
  28. Marciniak S, Wnorowski A, Smoli흦ska KSmoli흦ska K et al. Kynurenic acid protects against thioacetamide-induced liver injury in rats. Anal Cell Pathol (Amst). 2018. 2018: 1270483.
    Pubmed KoreaMed CrossRef
  29. Nam Y, Ko SK, Sohn UD. Hepatoprotective effect of ultrasonicated ginseng berry extract on a rat mild bile duct ligation model. J Ginseng Res. 2019. 43: 606-617.
    Pubmed KoreaMed CrossRef
  30. Ninan J, Feldman L. Ammonia levels and hepatic encephalopathy in patients with known chronic liver disease. J Hosp Med. 2017. 12: 659-661.
    Pubmed CrossRef
  31. Park YM, Kim JA, Kim CH, Lim JH, Seo EW. Effects of cultured acer tegmentosum cell extract against hepatic injury induced by D-galactosamine In SD-rats. Korean J. Plant Res. 2015. 28: 551-560.
    CrossRef
  32. Park YM, Lee JE, Seo EW. Effect of semisulcospira libertina extract on hepatic injury induced by D-galactosamine. Korean J Environ Biol. 2018. 36: 498-506.
    CrossRef
  33. Piek A, Koonen DPY, Schouten EMSchouten EM et al. Pharmacological myeloperoxidase (MPO) inhibition in an obese/hypertensive mouse model attenuates obesity and liver damage, but not cardiac remodeling. Sci Rep. 2019. 9: 18765.
    Pubmed KoreaMed CrossRef
  34. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med. 1999. 26: 1231-1237.
    Pubmed CrossRef
  35. Robinson SM, Mann DA. Role of nuclear factor kappaB in liver health and disease. Clin Sci (Lond). 2010. 118: 691-705.
    Pubmed CrossRef
  36. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965. 16: 144-158.
  37. Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol. 2017. 27: R1147-R1151.
    Pubmed KoreaMed CrossRef
  38. Wu CT, Deng JS, Huang WC, Shieh PC, Chung MI, Huang GJ. Salvianolic acid C against acetaminophen-induced acute liver injury by attenuating inflammation, oxidative stress, and apoptosis through inhibition of the Keap1/Nrf2/HO-1 Signaling. Oxid Med Cell Longev. 2019. 2019: 9056845.
    Pubmed KoreaMed CrossRef
  39. Xu L, Yu Y, Sang R, Li J, Ge B, Zhang X. Protective effects of taraxasterol against ethanol-induced liver injury by regulating CYP2E1/Nrf2/HO-1 and NF-觀B signaling pathways in mice. Oxid Med Cell Longev. 2018. 2018: 8284107.
    Pubmed KoreaMed CrossRef
  40. Yoon YC, Fang Z, Lee JELee JE et al. Selonsertib inhibits liver fibrosis via downregulation of ASK1/MAPK Pathway of hepatic stellate cells. Biomol Ther (Seoul). 2020. 28: 527-536.
    Pubmed KoreaMed CrossRef