Search for


TEXT SIZE

search for



CrossRef (0)
Isolation and Quantitative Analysis of Chemical Constituents in Codonopsis lanceolata
Biomed Sci Letters 2021;27:154-160
Published online September 30, 2021;  https://doi.org/10.15616/BSL.2021.27.3.154
© 2021 The Korean Society For Biomedical Laboratory Sciences.

Yeongdon Ju1,2,* , Jeong Wook Jeon3,* * and Kyung-Yae Hyun4,†,* * *

1Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea
2Clinical Trial Specialist Program for in Vito Diagnostics, Brain Busan 21 Plus Program, the Graduate School, Catholic University of Pusan, Busan 46252, Korea
3Nutricare Co Ltd, Gangwon-do 25250, Korea
4Department of Clinical Laboratory Science, Dong-Eui University, Busan 47340, Korea
Correspondence to: Kyung-Yae Hyun. Department of Clinical Laboratory Science, Dong-Eui University, Busan 47340, Korea.
Tel: +82-51-890-2683, Fax: +82-0505-182-6877, e-mail: kyhyun@deu.ac.kr
*Graduate student, **Researcher, ***Professor.
Received August 13, 2021; Revised September 13, 2021; Accepted September 14, 2021.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
Codonopsis lanceolata has numerous chemical constituents that includes polyphenols, saponins, tannins, triterpene, alkaloids, and steroids. The extract of C. lanceolata was partitioned with Haxane, CH2Cl2, EtOAc, n-BuOH and MeOH. The determination of structure for lancemaside G, lancemaside B, lancemaside A were based on physicochemical and HPLC chromatogram data, including NMR and HR-MS. In addition, tangshenoside I and lobetyolin were identified in the material separation process for the extract of C. lanceolata, and content analysis was performed using HPLC. The compounds were confirmed as lancemaside G, lancemaside B, lancemaside A, tangshenoside I, and lobetyolin.
Keywords : Codonopsis lanceolata, Lancemaside G, Lancemaside B, Lancemaside A, Tangshenoside I, Lobetyolin
꽌 濡

뜑뜒(Codonopsis lanceolata) 珥덈”苑껉낵뿉 냽븯뒗 떎뀈깮 뜦援댁떇臾쇰줈 肉뚮━뒗 吏곴렐쑝濡 븙냽 源딆씠 뱾뼱 엳뼱 삎긽씠 씤궪, 룄씪吏 쑀궗븯硫, 슦由щ굹씪, 씪蹂 諛 以묎뎅 벑뿉꽌 二쇰줈 빟슜怨 떇슜쑝濡 씠슜븯怨 엳떎(Choi and Choi, 1999; Kim et al., 2010). 슦由щ굹씪쓽 寃쎌슦 媛뺤썝룄 諛 젣二쇰룄뿉꽌 二쇰줈 깮궛릺怨 엳떎(Kim et al., 2010). 泥쒖뿰臾, 냽닔궛臾 諛 빟슜떇臾쇱쓣 긽쑝濡 깮由 솢꽦 룊媛 諛 臾쇱쭏 遺꾨━뿉 븳 뿰援щ뒗 吏냽쟻쑝濡 吏꾪뻾릺뼱 솕怨, 뜑뜒쓣 긽쑝濡 湲곕뒫꽦 떇뭹 諛 솕옣뭹 벑 떎뼇븳 紐⑹쟻쑝濡 뿰援щ뱾씠 吏꾪뻾릺뿀떎(Shim and Chun, 2012; Chung et al., 2014). 뜑뜒 쟾넻 쓽븰뿉꽌 꼸由 궗슜릺뿀쑝硫 湲곌吏뿼, 湲곗묠, 寃쎈젴, 젙떊 떊寃쎌쬆, 븫, 鍮꾨쭔, 怨좎삁利, 遺醫 媛꾩뿼, 옣뿼 諛 룓 넀긽怨 媛숈 吏덈퀝怨 利앹긽뿉 슚怨쇨 엳떎. 삉븳 polyphenols, saponins, tannins, triterpene, alkaloids, 諛 steroids 벑 떎뼇븳 깮臾쇳븰쟻 솢꽦솕빀臾쇱쓣 吏땲怨 엳떎(Hossen et al., 2016). 씠 以 뜑뜒쓽 saponin 꽦遺꾩 媛뺣젰븳 빆 뿼利 옉슜쓣 蹂댁씤떎怨 븣젮졇 엳떎(Byeon et al., 2009). 뜑뜒쓽 saponin lancemaside A, lancemaside B, lancemaside C, lancemaside E, lancemaside G, foetidissimoside A, aster saponin Hb 벑씠 엳떎. 씠 以 lancemaside A 꽦遺꾩씠 뜑뜒 肉뚮━뿉꽌 媛옣 뭾遺븯寃 議댁옱븳떎怨 븣젮졇 엳떎(Shirota et al., 2008). 듅엳 뜑뜒쓽 saponin 꽦遺 以 lancemaside A뒗 2,4,6-trinitrobenzenesulfonic acid쓽 옉슜쑝濡 옣뿼쓣 셿솕븯怨 빆 뿼利 솢꽦怨 愿젴씠 엳떎怨 蹂닿퀬릺뿀떎(Lee et al., 2019; Kim et al., 2014). 뵲씪꽌 蹂 뿰援ъ뿉꽌 뜑뜒 異붿텧臾쇱쓽 二쇱슂븳 꽦遺꾩씤 saponin쓣 젙젣븯뿬 吏몴꽦遺꾩쓽 븿웾 遺꾩꽍쓣 떎떆븯뿬 뜑뜒뿉꽌 쑀옒븳 깮由ы솢꽦臾쇱쭏뿉 빐 씠슜꽦쓣 솗씤븯뒗 湲곗큹옄猷뚮 솗蹂댄븯怨좎옄 븳떎.

옱猷 諛 諛⑸쾿

떎뿕옱猷 諛 떆빟

蹂 뿰援ъ뿉꽌 궗슜븳 뜑뜒 媛뺤썝룄 룞슒꽦냽삊뿉꽌 援ъ엯븳 뜑뜒쑝濡 (二)돱듃由ъ뼱뿉꽌 異붿텧쓣 吏꾪뻾븯쑝硫, 媛곴컖쓽 떆猷뚮 desiccator뿉 蹂닿븯뿬 궗슜븯떎. 遺꾩꽍뿉 궗슜맂 Distilled water, methanol, ethanol, acetic acid 벑쓽 떆빟 HPLC (High Performance Liquid Chromatography) 벑湲됱쓣 궗슜븯떎.

몴以슜븸 젣議

Tanshenoside I 諛 Lobetyolin 媛곴컖쓽 몴以뭹 쟻젙웾쓣 젙諛븯寃 떖븘 硫뷀깂삱(MeOH)濡 슜빐븯뿬 빟 1.0 mg/mL媛 릺寃 끃뿬 몴以썝븸쑝濡 븯떎. 긽湲곗슜븸쓣 몴以썝븸(stock solution)쑝濡 븯硫 硫뷀깂삱濡 씗꽍븯뿬 몴以슜븸쑝濡 궗슜븯떎.

떆뿕슜븸 젣議

Tanshenoside I 諛 Lobetyolin 媛곴컖쓽 떆猷 50 mg쓣 移웾븳 썑 25 mL 遺뵾쓽 뵆씪뒪겕뿉 꽔뼱 50% 뿉깂삱(EtOH)濡 젙슜븯怨, 20遺 룞븞 珥덉쓬뙆 異붿텧쓣 吏꾪뻾븳 썑 0.45 μm syringe filter濡 뿬怨쇳븯뿬 HPLC 遺꾩꽍슜 떆猷뚮줈 궗슜븯떎.

異붿텧臾 諛 슜留ㅻ텇쉷臾 젣議

뜑뜒 異붿텧 媛뺤썝룄 룞슒꽦냽삊뿉꽌 援ъ엯븳 3뀈洹 嫄댁“ 뜑뜒 젅렪 3.5 kg쓣 50% 二쇱젙 20 L 궗슜븯뿬 50℃뿉꽌 20떆媛 異붿텧쓣 吏꾪뻾븯떎. 떇뭹쓽빟뭹븞쟾泥섏쓽 湲곕뒫꽦 썝猷 몴以솕 吏移⑥꽌瑜 李몄“븯뿬 理쒖쟻쓽 異붿텧슜留 議곌굔쓣 꽕젙븯쑝硫, 湲곕뒫꽦遺 諛 吏몴꽦遺꾩쓣 遺꾩꽍븯湲 쐞븯뿬 50%쓽 二쇱젙議곌굔쑝濡 꽕젙븯뿬 떎뿕쓣 吏꾪뻾븯떎. 異붿텧떆媛꾩 8떆媛꾩뿉꽌 24떆媛 궗씠쓽 議곌굔쑝濡, 異붿텧삩룄뒗 20℃뿉꽌 80℃ 궗씠쓽 議곌굔쑝濡 吏꾪뻾븯쑝硫 洹 寃곌낵 50℃뿉꽌 20떆媛꾩쓽 議곌굔쑝濡 異붿텧븯쓣 븣 異붿텧븿웾씠 媛옣 넂寃 굹굹 빐떦 議곌굔쑝濡 떎뿕쓣 吏꾪뻾븯떎. 삉븳 媛먯븬嫄댁“瑜 떎떆븯뿬 뿴뭾嫄댁“쓽 議곌굔쑝濡 50℃뿉꽌 3씪媛 嫄댁“븳 썑, 珥 104.3 g쓽 議 異붿텧臾쇱쓣 쉷뱷븯떎. 異붿텧臾 슜留ㅻ텇쉷 遺꾨퀎 源붾븣湲곕 씠슜븯뿬 吏꾪뻾븯떎. 냽異뺣맂 뜑뜒 異붿텧臾(104.3 g)쓣 臾(700 mL)뿉 끃씤 썑, 뿥궛(Hexane), 硫뷀떥젋겢濡쒕씪씠뱶(CH2Cl2), 뿉떥븘꽭뀒씠듃(Ethyl acetate, EtOAc), 遺깂삱(n-BuOH)濡 媛곴컖 슜留ㅻ텇쉷쓣 떎떆븯떎. 뼸뼱吏 異붿텧臾쇱쓽 遺깂삱 遺꾪쉷(20.0 g)뿉꽌 떦쓣 젣嫄고븯湲 쐞빐 Diaion HP-20쓣 씠슜븯뿬 利앸쪟닔濡 떦쓣 젣嫄고븯怨, 硫뷀깂삱 遺꾪쉷 9.1 g쓣 쉷뱷븯떎(Fig. 1).

Fig. 1. Flow diagram the extract and fractionation of Codonopsis lanceolata. The concentrated Codonopsis lanceolata extract (104.3 g) was dissolved in water (700 mL). Then, fraction was carried out with hexane (9.2 g), methylene chloride (3.1 g), ethyl acetate (2.7 g), and butanol (20 g), respectively. The methanol fraction (9.1 g) was obtained using a Diaion HP-20 column.

HPLC 遺꾩꽍議곌굔

뜑뜒 異붿텧臾쇱뿉 븿쑀릺뼱 엳뒗 tangshenoside I 諛 lobetyolin 몴以뭹쓣 HPLC濡 遺꾩꽍븳 寃異쒖떆媛(Retention time, RT)怨 떆猷뚮 몴以뭹怨 룞씪븳 議곌굔쑝濡 遺꾩꽍븳 寃곌낵 鍮꾧탳븯뿬 룞젙븯怨, 떆猷뚯슜븸뿉 씪젙웾쓽 몴以뭹쓣 泥④븯뿬 룞떆뿉 HPLC뿉꽌 遺꾩꽍쓣 떎떆븯뿬 寃異쒕맂 peak쓽 紐⑥뼇 諛 寃異쒖떆媛꾩쓣 痢≪젙븯뿬 솗씤븯떎. Tangshenoside I쓽 寃쎌슦 16.87遺, Lobetyolin쓽 寃쎌슦 18.95遺꾩쑝濡 굹궗떎. 삉븳 蹂 떎뿕쓽 遺꾩꽍議곌굔뿉꽌 몴以臾쇱쭏쓽 遺꾨━ 긽깭뒗 뼇샇븯怨, 쟾 泥섎━븳 뜑뜒 떆猷뚯쓽 chromatogram쓣 鍮꾧탳븯뿬 媛곴컖쓽 꽦遺꾩쓽 peak媛 遺꾨━릺뒗吏 솗씤븳 寃곌낵 媛 꽦遺꾨뱾 떎瑜 peak 媛꾩꽠씠 뾾씠 遺꾨━릺뿀쓬쓣 솗씤븯怨, 몴以슜븸 peak쓽 寃異쒖떆媛꾧낵 뜑뜒 異붿텧臾쇱쓽 寃異쒖떆媛꾩씠 씪移섑븯떎. 遺꾩꽍議곌굔 HPLC (Shimadzu HPLC system)瑜 씠슜븯怨, ACE 5 (4.6 × 250 mm, 5 μm) column쓣 궗슜븯떎. 씠룞긽 슜留ㅻ뒗 0.1% acetic acid(슜留 A), acetonitrile (슜留 B)瑜 궗슜븯뿬 gradient瑜 二쇱뼱 tangshenoside I怨 lobetyolin쓣 룞떆뿉 遺꾩꽍븯떎. 씠룞긽 냽룄 援щ같議곌굔 슜留 B瑜 5%濡 떆옉븯뿬 3遺 룞븞 쑀吏븯怨, 17遺꾧퉴吏 95%濡 利앷떆궓 떎쓬 3遺 룞븞 쑀吏븯떎媛, 22遺꾧퉴吏 5%濡 媛먯냼떆궎怨 25遺꾧퉴吏 쑀吏븯떎. 슜異 냽룄뒗 0.5 mL/min, column쓽 삩룄뒗 30℃濡 쑀吏븯怨, 寃異쒓린뒗 UV detector, 寃異 뙆옣 267 nm뿉꽌 痢≪젙븯떎.

寃 怨

HR-MS 諛 HPLC 遺꾩꽍

硫뷀깂삱 遺꾪쉷(9.1 g)쓣 Normal phase open column chromatography (EtOAc:MeOH:Water, 9:3:1)瑜 씠슜븯뿬 8媛쒖쓽 遺꾪쉷(D2G0-D2G7)쑝濡 굹늻뿀怨, 遺꾪쉷 D2G5 (534.0 mg)쓣 Preparative HPLC (40%→100% MeOH, gradient system)瑜 씠슜븯뿬 6媛쒖쓽 遺꾪쉷(D2G5P1-P6)쑝濡 굹늻뿀떎. High resolution electrospray ionization quadrupole time-of-flight mass spectrometer (HR-ESI-QTOF-MS) profile 遺꾩꽍쓣 넻빐, lancemaside 怨꾪넻쓽 saponin 臾쇱쭏뱾씠 遺꾪룷릺뼱 엳뒗 寃껋쑝濡 蹂댁씠뒗 遺꾪쉷 D2G5P5쓣 솗씤븯쑝硫, 빐떦 遺꾪쉷쓣 Semi-preparative HPLC (55%→80% MeOH, gradient system)瑜 씠슜븯뿬 吏몴臾쇱쭏 1 (lancemaside G), 2 (lancemaside B), 3 (lancemaside A)쓣 遺꾨━븯떎(Fig. 1, Fig. 2).

Fig. 2. HPLC chromatograms of three lancemaside compounds in Codonopsis lanceolata extracts. Compound 1: lancemaside G, Compound 2: lancemaside B, Compound 3: lancemaside A.

꽦遺 援ъ“ 룞젙

뜑뜒 異붿텧臾쇱뿉꽌 珥 3醫낆쓽 吏몴臾쇱쭏쓣 遺꾨━븯怨 吏몴臾쇱쭏쓽 뿬遺瑜 븣븘蹂닿린 쐞빐꽌 HR-ESI-QTOF-MS [10% →100% Acetonitrile (MeCN), gradient system]瑜 궗슜븯뿬 硫뷀깂삱 遺꾪쉷뿉꽌 吏몴臾쇱쭏쓽 遺꾩옄웾씠 엳쓬쓣 솗씤븯떎. 삉븳 솕븰쟻 援ъ“瑜 洹쒕챸븯湲 쐞빐 pyridine-d5뿉 끃뿬 1H-NMR (Nuclear magnetic resonance) 諛 HR-MS (High-resolution mass spectrometer) data瑜 솢슜븯뿬 寃곗젙븯떎(Table 1, Fig. 3). Electrospray ionization mass spectrum쓣 痢≪젙븳 寃곌낵 泥 踰덉㎏ 솕빀臾쇱 m/z 1205.5522뿉꽌 [M-H]-뿉 湲곗씤븯뒗 peak瑜 愿李고븯뿬 遺꾩옄웾 1206.5586쓣 솗씤븷 닔 엳뿀떎. 몢 踰덉㎏ 솕빀臾쇱 m/z 1351.6091뿉꽌 [M-2H]2-뿉 湲곗씤븯뒗 peak瑜 넻빐 遺꾩옄웾 1352.6249瑜 솗씤븯怨, 꽭 踰덉㎏ 솕빀臾쇱 m/z 1189.5566뿉꽌 [M-H]-뿉 湲곗씤븯뒗 peak瑜 愿李, 遺꾩옄웾 1190.5643쓣 솗씤븷 닔 엳뿀떎. 뵲씪꽌 遺꾨━븳 3媛쒖쓽 솕빀臾쇱 lancemaside G, lancemaside B, lancemaside A濡 룞젙븯떎(Fig. 4). 삉븳 Saponin 怨꾩뿴 lancemaside 3醫 솕빀臾쇱쓽 遺꾨━웾 lancemaside G쓽 寃쎌슦 1.4 mg, lancemaside B뒗 1.9 mg, lancemaside A뒗 2.0 mg쑝濡 굹궗쑝硫 lancemaside 怨꾪넻 臾쇱쭏뱾 以 lancemaside A쓽 遺꾨━웾씠 媛옣 留롮 寃껋쓣 솗씤븯떎.

1H (850 MHz) NMR data (pyridine-d5) of three compounds isolated from Codonopsis lanceolata

Position Compound 1 Compound 2 Compound 3
δH (J in Hz) δH (J in Hz) δH (J in Hz)
H-1 2.20, Overlap 1.37, Overlap 1.40, d (12.0)
1.15, s 0.87, Overlap 0.87, Overlap
2 4.71, s 2.28, Overlap 2.23, d (11.0)
1.86, Overlap 1.85, Overlap
3 3.42, Overlap 3.40, Overlap 3.38, dd (12.0)
5 0.97, d (11.0) 0.78, d (12.0) 0.79, d (12.0)
9 1.74, Overlap 1.73, Overlap 1.73, t (8.5)
12 5.58, s 5.64, Overlap 5.58, br. s
16 5.26, s 5.27, s 5.26, s
18 3.58, d (13.0) 3.51, Overlap 3.56, d (14.5)
19 2.77, t (13.0) 2.77, t (13.0) 2.76, t (13.5)
1.34, s 1.33, Overlap 1.30, br. d
21 2.42, t like 2.43, Overlap 2.41, t (10.5)
1.29, Overlap 1.30, Overlap 1.30, Overlap
22 2.31, Overlap 2.30, Overlap 2.30, t
2.20, Overlap 2.17, Overlap 2.18, t
23 1.34, s 1.27, s 1.27, s
24 1.37, s 0.95, s 0.97, s
25 1.50, s 0.80, s 0.81, s
26 1.11, s 1.07, s 1.05, s
27 1.82, s 1.82, s 1.81, s
29 1.00, s 0.98, s 1.00, s
30 1.15, s 1.12, s 1.13, s
glcA-1 5.02, Overlap 5.03, Overlap 5.02, d (7.5)
5 4.54, d (9.0) 4.71, Overlap 4.69, d (9.0)
ara-1 6.51, s 6.40, Overlap 6.49, br. s
rha-1 5.70, s 5.84, s 5.69, br. s
6 1.70, s 1.71, d (6.0) 1.70, br. s
xyl-1 5.18, d (7.5) 5.15, d (7.0) 5.17, d (7.5)
xyl-1' 5.23, d (7.5) 5.21, d (7.5) 5.22, d (7.5)
glc-1 5.12, d (7.5)

Reference; Ushijima et al. Triterpene glycosides from the roots of Codonopsis lanceolata, 2008



Fig. 3. HR-MS data of three lancemaside compounds in Codonopsis lanceolata extracts. Compound 1: lancemaside G (C57H90O27), Exact Mass; 1206.5586, m/z; 1205.5522 [M-H]-, Compound 2: lancemaside B (C63H100O31), Exact Mass; 1352.6249, m/z; 1351.6091 [M-2H]2-, Compound 3: lancemaside A (C57H90O26), Exact Mass; 1190.5643, m/z; 1189.5566 [M-H]-.

Fig. 4. Schematic diagram of the proposed fragmentation of three compounds in Codonopsis lanceolata extracts. 1: lancemaside G, 2: lancemaside B, 3: lancemaside A.

븿웾 遺꾩꽍

뜑뜒 異붿텧臾쇱쓽 臾쇱쭏遺꾨━ 怨쇱젙뿉꽌 二쇱슂븳 peak 2媛쒓 寃異쒕릺뿀怨, 媛곴컖 tangshenoside I, lobetyolin쑝濡 솗씤븯떎(Fig. 5). 뵲씪꽌 뜑뜒쓽 tangshenoside I 諛 lobetyolin쓽 븿웾쓣 솗씤븯湲 쐞빐 遺꾩꽍쓣 吏꾪뻾븯떎. 蹂 뿰援ъ쓽 떎뿕媛믪 3쉶 諛섎났븯怨, 湲곌린 遺꾩꽍쓣 넻빐 궛異쒗븳 븿웾媛믪쓣 湲곗쑝濡 룊洹 諛 몴以렪李⑤ 굹궡뿀떎(Table 2).

The contents of tangshenoside I and lobetyolin in Codonopsis lanceolata powder

Compound No. Mean ± S.D.1) (mg/g, dry weight)
Tangshenoside I Lobetyolin Total
Codonopsis lanceolata powder 1 3.65±0.04 1.56±0.02 5.21±0.06
2 3.49±0.00 1.50±0.00 4.99±0.00
3 3.74±0.03 1.60±0.02 5.34±0.04

1) Mean ± S.D. in triplicate (n=3)



Fig. 5. HPLC chromatogram of tangshenoside I and lobetyolin in powder of Codonopsis lanceolata extracts. Absorbance: 267 nm.

삉븳 뜑뜒쓽 二쇱슂븳 꽦遺 遺꾩꽍쓣 쐞빐 遺꾩꽍踰뺤뿉 빐 吏곸꽑꽦(linearity)쓣 솗씤븯떎. 吏곸꽑꽦쓣 룊媛븯湲 쐞빐 6떒怨꾩쓽 냽룄(0.78~28.27 ppm) 몴以뭹쓣 遺꾩꽍븯怨, 씠瑜 넻빐 뼸 chromatogram뿉꽌 peak쓽 硫댁쟻怨 냽룄 媛꾩쓽 긽愿愿怨꾨줈 寃웾꽑쓣 옉꽦븯떎(Table 3). 紐⑤뱺 寃웾꽑 빐떦 냽룄 踰붿쐞뿉꽌 넂 긽愿怨꾩닔瑜 굹궡뿀떎(R2=1).

Preparation of calibration curve for tangshenoside I and lobetyolin

Compound Range Regression equation R2
Tangshenoside I 0.78~24.93 y = 11830x + 1045.4 1
Lobetyolin 0.88~28.27 y = 3924.7x + 677.28 1

怨 李

蹂 뿰援щ뒗 뜑뜒쓽 二쇱슂 꽦遺꾩씤 saponin쓽 젙젣 諛 쑀슚꽦遺꾩쓽 븿웾 遺꾩꽍쓣 넻빐 뜑뜒 쑀옒 깮由ы솢꽦臾쇱쭏 諛 씠슜꽦 利앹쭊 뿰援ъ쓽 湲곗큹옄猷뚮 솗蹂댄븯怨좎옄 븯떎. 뜑뜒 異붿텧臾쇱뿉꽌 珥 3醫낆쓽 솕빀臾쇱쓣 遺꾨━븷 닔 엳뿀怨, 遺꾨━븳 3媛쒖쓽 솕빀臾쇱 lancemaside G, lancemaside B, lancemaside A濡 룞젙븯떎. 듅엳, 솕빀臾 lancemaside A뒗 뜑뜒뿉꽌 遺꾨━븳 saponin 怨꾪넻 lancemaside 臾쇱쭏뱾 以 媛옣 留롮 뼇쓣 吏땶 寃껋쑝濡 굹궗떎. 삉븳 뜑뜒 異붿텧臾쇱쓽 臾쇱쭏遺꾨━ 怨쇱젙뿉꽌 tangshenoside I 諛 lobetyolin쓣 뜑뜒뿉꽌 留롮 뼇쓣 李⑥븯怨 엳뒗 二쇱슂 솕빀臾쇰줈 솗씤븯쑝硫, HPLC瑜 넻빐 tangshenoside I 諛 lobetyolin쓣 룞떆 遺꾩꽍븯怨, 뜑뜒 遺꾨쭚쓽 tangshenoside I 諛 lobetyolin쓽 븿웾씠 媛곴컖 3.49~ 3.74 mg/g, 1.50~1.60 mg/g쑝濡 굹궃 寃껋쓣 솗씤븯떎. 뜑뜒뿉꽌 遺꾨━븳 saponin 怨꾩뿴 lancemaside 솕빀臾 以 媛옣 留롮 뼇쑝濡 솗씤맂 lancemaside A쓽 寃쎌슦 뿼利앹쓽 議곗젅 諛 뼲젣뿉 愿븳 뿰援щ뱾씠 솢諛쒗븯寃 씠猷⑥뼱吏怨 엳떎(Kim et al., 2014; Joh and Kim, 2010). 肉먮쭔 븘땲씪 떖삁愿怨 吏덊솚 媛쒖꽑 슚怨쇰 솗씤븯뿬 씠瑜 諛뷀깢쑝濡 嫄닿컯湲곕뒫떇뭹쓣 媛쒕컻븯뒗 뿰援щ룄 吏꾪뻾 以묒씠떎(Han et al., 2018; Shin et al., 2019). 떎뿕뿉꽌 솗씤븳 tangshenoside I 諛 lobetyolin Codonopsis 냽 떇臾쇱쓽 二쇱슂븳 솕빀臾쇰줈, Codonopsis 냽쓽 吏몴꽦遺꾩쑝濡 꽑젙븳 뿰援ш껐怨 諛 슦由щ굹씪 吏뿭蹂 뜑뜒쓽 tangshenoside 諛 lobetyolin쓣 젙웾 遺꾩꽍븳 뿰援ш껐怨쇰 넻빐 뜑뜒쓽 吏몴臾쇱쭏 궗슜 媛뒫꽦쓣 솗씤븷 닔 엳뿀떎(Ichikawa et al., 2009; Hwang et al., 2018). 븯吏留 뜑뜒쓽 tangshenoside I 諛 lobetyolin쓣 씠슜븳 湲곕뒫꽦 뿰援щ뒗 떎瑜 솕빀臾쇱뿉 鍮꾪빐 떎뼇븯怨 留롮 뿰援ш 씠猷⑥뼱吏吏 븡怨 엳뼱 뜑뜒뿉꽌 異붿텧븳 tangshenoside I 諛 lobetyolin쓣 湲곕뒫꽦遺꾩쑝濡 궗슜븯湲 쐞빐꽌뒗 異붽쟻씤 떎뿕씠 븘슂븳 긽솴씠떎. 뵲씪꽌 蹂 뿰援ъ쓽 寃곌낵瑜 넻빐 뜑뜒쓽 깮由ы솢꽦臾쇱쭏 諛 씠슜꽦 利앹쭊 뿰援щ 吏냽븯뒗뜲 湲곗큹옄猷뚮줈뜥 솢슜맆 닔 엳쓣 寃껋쑝濡 궗猷뚮맂떎.

ACKNOWLEDGEMENT

This research was supported by 2020 Regional Specialized Industry Promotion (Non-R&D) Project of Hongcheon Institute of Medicinal Herb (HIMH) and Brain Busan 21 Plus (BB21+) Project.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

References
  1. Byeon SE, Choi WS, Hong EK, Lee J, Rhee MH, Park HJPark HJ et al. Inhibitory effect of saponin fraction from Codonopsis lanceolata on immune cell-mediated inflammatory responses. Arch Pharm Res. 2009. 32: 813-822.
    Pubmed CrossRef
  2. Choi MS, Choi PS. Plant Regeneration and Saponin Contents in Codonopsis lanceolata L. Korean J Med Crop Sci. 1999. 7: 275-281.
  3. Chung KH, Jo HJ, Yoon JA, Song BC, An JH. Free Radical-scavenging Activities of Amaranth (Amaranthus spp. L.) Seed Extracts. Food Eng Prog. 2014. 18: 116-123.
  4. Han AY, Lee YS, Kwon SH, Lee HS, Lee KW, Seol GH. Codonopsis lanceolata extract prevents hypertension in rats. Phytomedicine. 2018. 15: 119-124.
    Pubmed CrossRef
  5. Hossen MJ, Kim MY, Kim JH, Cho JY. Codonopsis lanceolata: A Review of Its Therapeutic Potentials. Phytother Res. 2016. 30: 347-356.
    Pubmed CrossRef
  6. Hwang BS, Kim JY, Jang M, Kim GC, Park YH, Hwang IG. Quantitative Analysis of Tangshenoside 뀪 and Lobetyolin from Korean Deoduk (Codonopsis lanceolata). Korean J. Food Nutr. 2018. 31: 957-963.
  7. Ichikawa M, Ohta S, Komoto N, Ushijima M, Kodera Y, Hayama MHayama M et al. Simultaneous determination of seven saponins in the roots of Codonopsis lanceolata by liquid chromatography-mass spectrometry. J Nat Med. 2009. 63: 52-57.
    Pubmed CrossRef
  8. Joh EH, Kim DH. Lancemaside A inhibits lipopolysaccharide-induced inflammation by targeting LPS/TLR4 complex. J Cell Biochem. 2010. 111: 865-871.
    Pubmed CrossRef
  9. Kim E, Yang WS, Kim JH, Park JG, Kim HG, Ko JKo J et al. Lancemaside A from Codonopsis lanceolata modulates the inflammatory responses mediated by monocytes and macrophages. Mediators Inflamm. 2014. 2014: 405158.
    Pubmed KoreaMed CrossRef
  10. Kim JA, Moon HK, Choi YE. Triterpenoid Saponin Contents of the Leaf, Stem and Root of Codonopsis lanceolata. Korean J Med Crop Sci. 2014. 22: 1-7.
  11. Kim NY, Chae HS, Lee IS, Kim DS, Seo KT, Park SJ. Analysis of Chemical Composition and Antioxidant Activity of Codonopsis lanceolata Skin. J Korean Soc Food Sci Nutr. 2010. 11: 1627-1633.
  12. Kim SS, Jeong MH, Seo YC, Kim JS, Kim NS, Woon WBWoon WB et al. Comparison of Antioxidant Activities by High Pressure Extraction of Codonopsis lanceolata from Different Production Areas. Korean J Med Crop Sci. 2010. 18: 248-254.
  13. Lee MJ, Nam JH, Um IE, Kang CK, Rho IR. Determination the optimum extraction method for saponin lancemasides in Codonopsis lanceolata. Korean J Food Sci Technol. 2019. 51: 103-108.
  14. Shim SB, Chun YJ. The Study on Skin Safety and Efficacy of Codonopsis lanceolata Root Fermentation Extract. JKAIS. 2012. 11: 5623-5627.
  15. Shin YK, Han AY, Hsieh YS, Kwon SH, Kim JH, Lee KWLee KW et al. Lancemaside A from Codonopsis lanceolata prevents hypertension by inhibiting NADPH oxidase 2-mediated MAPK signalling and improving NO bioavailability in rats. J Pharm Pharmacol. 2019. 71: 1458-1468.
    Pubmed CrossRef
  16. Shirota O, Nagamatsu K, Sekita S, Komoto N, Kuroyanagi M, Ichikawa MIchikawa M et al. Preparative separation of the saponin Lancemaside a from Codonopsis lanceolata by centrifugal partition chromatography. Phytochem Anal. 2008. 19: 403-410.
    Pubmed CrossRef
  17. Ushijima M, Komoto N, Sugizono Y, Mizuno I, Sumihiro M, Ichikawa MIchikawa M et al. Triterpene glycosides from the roots of Codonopsis lanceolata. Chem Pharm Bull. 2008. 56: 308-314.
    Pubmed CrossRef