Search for


TEXT SIZE

search for



CrossRef (0)
Antioxidant and Anti-inflammatory Effects of Hot Water and Ethanol Extracts from Endemic Plants in Indonesia
Biomed Sci Letters 2021;27:161-169
Published online September 30, 2021;  https://doi.org/10.15616/BSL.2021.27.3.161
© 2021 The Korean Society For Biomedical Laboratory Sciences.

Jin-Woo Hwang1,* , Jae-Ho Choi1,* , Sang-Moon Kang2,* * , Sung-Gyu Lee1,* * * and Hyun Kang1,†,* * *

1Department ofMedical Laboratory Science, College of Health Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
2R&D Center, ANPEP Inc. Cheongju-si, Chungcheongbuk-do 28101, Korea
Correspondence to: Hyun Kang. Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si, Chungnam 31116, Korea.
Tel: +82-41-550-3015, Fax: +82-41-559-7934, e-mail: hkang@dankook.ac.kr
*Researcher, **Chief Technology Officer, ***Professor.
Received July 27, 2021; Revised September 15, 2021; Accepted September 16, 2021.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
The present study, antioxidant and anti-inflammatory effects were measured of 6 endemic plants in Indonesian extracted by hot water or ethanol. The Nipa Fruticans Wurmb ethanol extract (NFWE) and Orthosiphon aristatus ethanol extract (OAE) showed the highest polyphenol and flavonoid contents of 203.70 and 33.70 μg/mg, respectively. Antioxidant activity of OAE was highest in DPPH radical scavenging activity (77.49% at 10 μg/mL) and ABTS+ radical scavenging activity (93.36% at 10 μg/mL). FRAP activity was significantly higher in NFWE than other extracts. Anti-inflammatory effects of 6 endemic plants in Indonesian extracted by hot water or ethanol were examined using nitric oxide (NO) inhibition assays. In the LPS-induced BV2 cells, OAE showed the highest inhibition of NO production without toxicity. The results of this study, suggest that OAE is a potential functional raw material for antioxidant and anti-inflammatory.
Keywords : Indonesia, Plants, Antioxidant, Anti-inflammatory, Cytotoxicity
꽌 濡

씤룄꽕떆븘뒗 꽭怨 3쐞쓽 뿴슦由 蹂댁쑀援쑝濡 洹 겕湲곕쭔겮 떎뼇븳 깮臾쇱쥌뱾씠 옄씪굹怨 엳쑝硫, 洹 以묒뿉 빟슜떇臾쇰룄 떎닔 議댁옱븳떎. 끂땲(Morinda citrifolia L.)뒗 뿴꽦 떇臾쇰줈 2,000뀈 쟾遺꽣 諛쒓껄맂 빟슜떇臾쇰줈꽌 쟾넻 誘쇨컙 빟슜떇臾쇰줈 궗슜릺뼱 솕떎(Tabrah and Eveleth, 1966; Dixon et al., 1999). 끂땲쓽 怨쇱쑁 럹솕빀臾, 쑀湲곗궛 諛 븣移쇰줈씠뱶瑜 룷븿븯뒗 빟 160醫낆쓽 솕븰臾쇱쭏怨 떎뼇븳 鍮꾪誘 臾닿린吏, 떇씠꽟쑀 꽦遺꾩씠 븿쑀릺뼱 엳떎(Heinicke, 1985; Wang and Su, 2001). 씠윴 끂땲쓽 꽦遺꾨뱾 빆洹좎옉슜, 넻利앹셿솕, 빆怨좏삁븬, 빆븫, 빆뿼利, 빆궛솕, 꽭룷 끂솕 諛⑹ 벑 떎뼇븳 슚뒫씠 븣젮졇 엳떎(Pande et al., 2005; Sunder et al., 2013; Lee et al., 2018; Lee, 2020).

紐⑤쭅媛(Moringa oleifera)뒗 Moringaceae쓽 븳 醫낅쪟濡, 뿴吏諛 삉뒗 븘뿴吏諛⑹뿉꽌 옄씪硫, 媛뺤닔웾씠 쟻 솚寃쎌뿉꽌룄 옒 옄씪 쟾 꽭怨꾩쟻쑝濡 옱諛곕릺怨 엳떎(Gopalakrishnan et al., 2016). Flavonoid isothiocyanates, glucosinolates 벑쓽 꽦遺꾩쓣 븿쑀븯怨 엳怨, 떒諛깆쭏, 誘몃꽕엫, 鍮꾪誘 벑쓽 뭾遺븳 쁺뼇媛媛 넂寃 븿쑀릺뼱 엳쑝硫, 媛 湲곕뒫 蹂댄샇뿉 슚怨쇨 엳떎(Hamza, 2009). 洹 쇅 빆뿼利, 빆븫, 빆떦눊 벑 떎뼇븳 솢꽦怨 븫꽭룷쓽 利앹떇 뼲젣 슚怨쇨 엳떎(Sreelatha et al., 2011; Kou et al., 2018; Lin et al., 2018; Choi et al., 2021).

옄諛 李(Orthosiphon aristatus)뒗 룞궓븘떆븘 쟾뿭뿉꽌 諛쒓껄릺뒗 빟珥덈줈 빆븣젅瑜닿린, 빆怨좏삁븬, 빆뿼, 씠눊 꽦吏 벑쓽 留롮 嫄닿컯 媛쒖꽑 듅꽦쓣 媛吏怨 엳뼱, 떊옣 吏덊솚, 슂濡 媛먯뿼, 떦눊蹂, 諛⑷킅 寃곗꽍, 삁븬, 넻뭾 諛 瑜섎쭏떚利 벑쓣 移섎즺븯뒗뜲 닔꽭湲 룞븞 궗슜릺뼱 솕떎(Klungboonkrong et al., 2019). 옄諛 李⑤뒗 넂 鍮꾩쑉쓽 移쇰ⅷ, 誘몃꽕엫, 뿉꽱뀥 삤씪 諛 移쒖쑀꽦 뵆씪蹂몄쓣 븿쑀븯怨 엳쑝硫, 씠 뵆씪蹂몄뿉뒗 sinensetin (SEN), flavonol glycoside, 移댄럹씤궛 쑀룄泥(rosmarinic acid, 2,3-dicaffeoly-l-tartaric acid) 씠끂떆넧, 뵾넗뒪뀒濡 諛 궗룷땶씠 룷븿릺뼱 엳쑝硫(Ameer, 2012), 빆궛솕, 빆븫 諛 빆洹 슚뒫 벑쓣 媛吏怨 엳떎(Doleˇcková et al., 2012; López-Vidaña et al., 2017; Klungboonkrong et al., 2019).

洹몃씪鍮꾩삱씪(Annona muricate)뒗 궓誘, 遺곷, 븘由ы, 씤룄꽕떆븘 벑 뿴吏諛⑹뿉꽌 옱諛곕릺뒗 紐⑸젴紐 룷룄굹臾닿낵濡, 二쇱슂 꽦遺꾩쑝濡쒕뒗 flavonoids, isoquinoline alkaloids, annonaceous acetogenins 벑씠 뭾遺븯寃 븿쑀릺뼱 엳떎(Matsushige et al., 2012; Nawwar et al., 2012; Paul et al., 2013; Thang et al., 2013; Gavamukulya et al., 2014; Sun et al., 2014). 洹몃씪鍮꾩삱씪뒗 뿼利, 瑜섎쭏떚利, 떦눊蹂, 怨좏삁븬, 遺덈㈃利 諛 湲곗깮異 媛먯뿼 벑쓣 룷븿븳 吏덈퀝쓽 移섎즺뿉 愿묐쾾쐞븯寃 궗슜릺뼱 솕쑝硫, 듅엳 二쇱꽦遺꾩씤 annonaceous acetogenins 븫꽭룷쓽 궗留앹쓣 꽦怨듭쟻쑝濡 쑀룄떆궎뒗 寃껋쑝濡 二쇰ぉ諛쏄퀬 엳떎(Adewole and Ojewole, 2009; Torres et al., 2012; Ishola et al., 2014; Moghadamtousi et al., 2014; Asare et al., 2015; Park et al., 2017).

빐二쎌닚(Nypa fruticans Wurmb) 룞궓븘떆븘 뿴吏諛 諛 븘뿴 吏뿭쓽 빐븞媛踰뚯씠굹 留밴렇濡쒕툕 吏 벑쓽 뒿吏뿉꽌 옄씪뒗 빞옄굹臾닿낵 떇臾쇰줈꽌, 援궡뿉꽌뒗 빐二쎌닚쑝濡 遺덈┛떎(Tamunaidu and Saka, 2011; Hossain and Islam, 2015; Sugai et al., 2016). 빐二쎌닚뿉뒗 떎웾쓽 뤃由ы럹 諛 뵆씪蹂대끂씠뱶 솕빀臾쇱씠 븿쑀릺뼱 엳뼱 빆궛솕 諛 뿼利 議곗젅 슚怨쇨 쎇뼱궃 寃껋쑝濡 蹂닿퀬릺뼱 엳떎(Prasad et al., 2013; Yosoff et al., 2015; Bae and Park, 2016).

蹂 뿰援ъ뿉꽌뒗 씤룄꽕떆븘쓽 빟슜떇臾쇱씤 끂땲, 紐⑤쭅媛 옂, 옄諛 李, 洹몃씪鍮꾩삱씪 옂怨 遺꾨쭚, 빐二쎌닚쓽 뿴닔 諛 뿉깂삱 異붿텧臾쇱쓽 빆궛솕 諛 빆뿼利 湲곕뒫꽦 냼옱濡쒖꽌쓽 媛뒫꽦쓣 寃넗븯湲 쐞븯뿬 뤃由ы럹, 뵆씪蹂대끂씠뱶 븿웾쓣 솗씤븯怨 DPPH, ABTS 뼲젣 솢꽦怨 FRAP 솢꽦쓣 痢≪젙븯뿬 빆궛솕젰쓣 솗씤븯쑝硫, NO 깮꽦 뼲젣 솢꽦쓣 痢≪젙븯뿬 빆뿼利 냼옱濡쒖꽌쓽 媛뒫꽦쓣 솗씤븯떎.

옱猷 諛 諛⑸쾿

떎뿕옱猷

Folin 떆빟, Na2CO3, gallic acid, aluminium nitrate, potassium acetate, quercetin, 1,1-diphenyl-2-picryl hydrazyl (DPPH), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), potassium persulfate, 2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ), Iron (II) sulfate heptahydrate (FeSO4), sodium nitrate, sulfanilamide, naphthylethylendiamine, phosphoric acid, LPS, Dimethyl sulfoxide (DMSO) 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazol-ium Bromide (MTT)뒗 Sigma-Aldrich Chemical Co. (St. Louis, MO, USA)濡쒕꽣 援ъ엯븯뿬 궗슜븯떎. 꽭룷諛곗뼇뿉 궗슜맂 떆빟쑝濡 fetal bovine serum (FBS), penicillin怨 RPMI 1640 諛곗뒗 Gibco BRL Co. (Grand Island, NY, USA)뿉꽌 援ъ엯븯뿬 궗슜븯떎.

떆猷뚯쓽 異붿텧臾 젣議

蹂 뿰援ъ뿉 궗슜맂 6醫낆쓽 씤룄꽕떆븘 옄깮떇臾(끂땲, 紐⑤쭅媛 옂, 옄諛 李, 洹몃씪鍮꾩삱씪 옂 諛 遺꾨쭚, 빐二쎌닚) One-tech solution Co., Ltd (Seoul, Korea)뿉꽌 援ъ엯븯떎. 씤룄꽕떆븘 옄깮떇臾 뿴닔 異붿텧臾 젣議곕뒗 嫄댁“맂 썝猷뚯뿉 怨좏삎遺 鍮 10諛곗닔쓽 젙젣닔瑜 泥④븯뿬 100℃뿉꽌 30遺꾧컙 뿴닔 異붿텧븳 썑 긽삩뿉꽌 26떆媛 異붽 異붿텧 썑 뿬怨쇳븯뿬 뿴닔 異붿텧븸쓣 젣議고븯떎. 씤룄꽕떆븘 옄깮떇臾 70% 뿉깂삱 異붿텧臾 젣議곕뒗 嫄댁“맂 썝猷뚯뿉 10諛곗닔쓽 70% 뿉깂삱쓣 泥④븯뿬 72떆媛 룞븞 긽삩뿉꽌 異붿텧 썑 뿬怨쇳븯뿬 뿉깂삱 異붿텧븸쓣 젣議고븯떎. 뿴닔 異붿텧븸怨 뿉깂삱 異붿텧븸 媛곴컖 媛먯븬 냽異뺥븳 떎쓬, 룞寃곌굔議곌린(Ilshinbiobase Co., Ltd, Yangju, Korea)瑜 씠슜븯뿬 룞寃곌굔議 썑 떎뿕뿉 궗슜븯떎. 蹂 뿰援ъ뿉 궗슜맂 媛 異붿텧臾쇱쓽 븰紐 諛 떆猷뚮챸 Table 1뿉 젣떆븯떎.

Lists of Indonesia endemic plants in used in this study

Scientific name Korean name Sample name Extraction condition
Morinda citrifolia L. 끂땲 MCLW Hot water
MCLE 70% EtOH
Moringa oleifera Leaf 紐⑤쭅媛 옂 MOLW Hot water
MOLE 70% EtOH
Orthosiphon aristatus 옄諛 李 OAW Hot water
OAE 70% EtOH
Annona muricata Leaf 洹몃씪鍮꾩삱씪 옂 AMLW Hot water
AMLE 70% EtOH
Nipa Fruticans Wurmb 빐二쎌닚 NFWW Hot water
NFWE 70% EtOH
Annona muricata Powder 洹몃씪鍮꾩삱씪 遺꾨쭚 AMPW Hot water
AMPE 70% EtOH


珥 뤃由ы럹 諛 뵆씪蹂대끂씠뱶 븿웾 痢≪젙

씤룄꽕떆븘 썝猷 異붿텧臾쇱쓽 珥 뤃由ы럹 솕빀臾쇱쓽 븿웾 Folin-Denis踰(Folin and Denis, 1912)쓣 쓳슜븯뿬 痢≪젙븯떎. 媛 異붿텧臾쇱쓣 냽룄蹂꾨줈 씗꽍븳 슜븸쓣 50%濡 씗꽍맂 Folin 떆빟쓣 룞웾 샎빀븳 썑 샎빀븸쓣 3遺꾧컙 諛섏쓳떆궓떎. 샎빀븸뿉 10% Na2CO3瑜 룞웾 샎빀븯怨 1떆媛 룞븞 諛섏쓳떆궓 썑 Microplate Spectrophotometer (xMARK, BIO-RAD Co., California, USA)瑜 궗슜븯뿬 700 nm뿉꽌쓽 씉愿묐룄瑜 痢≪젙븯떎. 異붿텧臾쇱쓽 珥 뤃由ы럹 븿웾 냽룄蹂 gallic acid瑜 異붿텧臾쇨낵 룞씪븳 諛⑸쾿쑝濡 痢≪젙븯뿬 몴以怨≪꽑쓣 옉꽦븯뿬 援ы븯떎.

異붿텧臾쇱쓽 珥 뵆씪蹂대끂씠뱶 븿웾 Nieva Moreno 벑(2000)쓽 諛⑸쾿쓣 蹂삎븯뿬 痢≪젙븯떎. 媛 異붿텧臾쇱쓣 냽룄蹂꾨줈 씗꽍븳 떆猷 100 μL 80% 뿉깂삱 860 μL쓣 샎빀븳 샎빀븸뿉 10% aluminium nitrate 20 μL 1 M potassium acetate 20 μL쓣 샎빀븯뿬 떎삩뿉꽌 40遺꾧컙 諛⑹튂븳 뮘 415 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 珥 뵆씪蹂대끂씠뱶 븿웾쓽 몴以臾쇱쭏濡쒕뒗 냽룄蹂 quercetin쓣 룞씪븳 諛⑸쾿쑝濡 痢≪젙븯뿬 몴以怨≪꽑쓣 옉꽦븯뿬 븿웾쓣 援ы븯떎.

DPPH 씪뵒移 냼嫄 솢꽦 痢≪젙

씤룄꽕떆븘 썝猷 異붿텧臾쇱쓽 옄쑀 씪뵒移 냼嫄 솢꽦 stable radical씤 DPPH뿉 븳 솚썝젰쓣 痢≪젙븳 寃껋쑝濡 硫뷀깂삱뿉 媛 냽룄蹂꾨줈 씗꽍븳 異붿텧臾쇱쓽 씗꽍븸 160 μL쓣 517 nm뿉꽌 珥덇린媛 痢≪젙 썑 硫뷀깂삱뿉 끃씤 0.15 mM DPPH 슜븸 40 μL瑜 媛븯뿬 떎삩뿉 30遺 諛⑹튂븳 썑 517 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. DPPH쓽 떆猷 異붿텧臾쇱뿉꽌쓽 씪뵒移 냼嫄 솢꽦 떎쓬 떇뿉 뵲씪 냼嫄 솢꽦쓣 怨꾩궛븯쑝硫, 議곌뎔쑝濡 硫뷀깂삱쓣 궗슜븯떎.

DPPH쓽 radical scavenging activity (%) = [100-(S/C×100)]

S: 떆猷뚭뎔 諛섏쓳 썑 씉愿묐룄 - 떆猷뚭뎔 諛섏쓳 쟾 씉愿묐룄

C: 議곌뎔 諛섏쓳 썑 씉愿묐룄 - 議곌뎔 諛섏쓳 쟾 씉愿묐룄

ABTS 씪뵒移 냼嫄 솢꽦 痢≪젙

ABTS쓽 radical쓣 씠슜븳 빆궛솕젰 痢≪젙 ABTS cation decolorization assay 諛⑸쾿쓣 쓳슜븯뿬 닔뻾븯떎(Re et al., 1999). 7 mM ABTS 2.45 mM potassium persulfate瑜 理쒖쥌 냽룄濡 룞웾 샎빀븯뿬 떎삩씤 븫떎뿉꽌 24떆媛 룞븞 諛⑹튂븯뿬 ABTS쓣 삎꽦떆궓 썑 732 nm뿉꽌 씉愿묐룄 媛믪씠 0.70 (±0.02)씠 릺寃 phosphate buffered saline (PBS, pH 7.4)濡 씗꽍븯떎. 씗꽍맂 슜븸 180 μL뿉 異붿텧臾 20 μL瑜 媛븯뿬 젙솗엳 1遺 룞븞 諛⑹튂븳 썑 씉愿묐룄瑜 痢≪젙븯떎.

FRAP踰뺤쓣 궗슜븳 珥 빆궛솕젰 痢≪젙

떆猷 異붿텧臾쇱쓽 FRAP踰뺤쓣 궗슜븳 珥 빆궛솕젰 룊媛뒗 300 mM acetate buffer (pH 3.6), 40 mM HCl뿉 끃씤 10 mM TPTZ 諛 20 mM FeCl3 • 6H2O瑜 媛곴컖 10:1:1 (v/v/v)쓽 鍮꾩쑉濡 샎빀븯뿬 FRAP 떆빟쓣 젣議고븯떎. 떆猷 50 μL 1.0 mL쓽 FRAP 떆빟쓣 샎빀븯怨 37℃뿉꽌 5遺꾧컙 諛섏쓳떆궓 썑 593 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 寃곌낵뒗 FeSO4瑜 몴以臾쇱쭏濡 븯뿬 mM FeSO4 equivalent/mg extract濡 몴떆븯떎.

꽭룷二 諛곗뼇

蹂 뿰援ъ뿉뒗 留덉슦뒪 쑀옒 microglial cell line씤 BV2瑜 븳援꽭룷二쇱뻾뿉꽌 遺꾩뼇 諛쏆븘 궗슜븯떎. 꽭룷뒗 10% FBS, 100 μg/mL penicillin쓣 泥④븳 RPMI 1640 諛곗瑜 씠슜븯뿬 5% CO2媛 議댁옱븯뒗 37℃ 諛곗뼇湲곗뿉꽌 1~2씪뿉 븳踰덉뵫 諛곗뼇빐二쇱뿀떎.

꽭룷깮議댁쑉 痢≪젙

떆猷뚯쓽 異붿텧臾쇱쓣 諛곗뼇 꽭룷二쇱씤 BV2 cell뿉 泥섎━븳 떎쓬뿉 꽭룷쓽 깮議댁쑉쓣 솗씤븯湲 쐞븯뿬 MTT 떆빟쓣 씠슜븯뿬 痢≪젙븯떎. 96 well plate뿉 1×104 cells/well쓽 꽭룷瑜 100 μL뵫 遺꾩<븯뿬 20떆媛 씠긽 CO2 諛곗뼇湲곗뿉꽌 諛곗뼇 썑, 臾댄삁泥 諛곗濡 援먰솚븳 썑 떆猷뚮 媛 냽룄뿉 뵲씪 泥섎━븳 썑 24떆媛 뮘뿉 MTT 냽룄媛 0.5 mg/mL씠 릺룄濡 泥④븳 썑 4떆媛 룞븞 諛곗뼇븯뿬 MTT媛 솚썝릺룄濡 븯떎. 洹 썑 긽벑븸쓣 젣嫄고븯怨 DMSO瑜 100 μL뵫 遺꾩<븯뿬 formazone맂 cell 寃곗젙쓣 슜빐떆궓 썑 Microplate Spectrophotometer (xMARK, BIO-RAD Co.)瑜 궗슜븯뿬 550 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 꽭룷깮議댁쑉 議곌뎔怨 鍮꾧탳븯뿬 諛깅텇쑉(%)濡 굹궡뿀떎.

NO 깮꽦 빐 슚怨 痢≪젙

떆猷 異붿텧臾쇱쓽 NO 깮꽦 뼲젣 솢꽦쓣 痢≪젙븯湲 쐞븳 븿웾 痢≪젙 Griess reagent瑜 씠슜븯뿬 痢≪젙븯떎. BV2 꽭룷瑜 RPMI1640 諛곗瑜 씠슜븯뿬 5×104 cells/mL 냽룄濡 48 well plate뿉 遺꾩<븯뿬 24떆媛 諛곗뼇븳 썑, 떆뿕 떆猷뚯 LPS (100 ng/mL)瑜 븿쑀븳 諛곗瑜 룞떆뿉 泥섎━븯뿬 24떆媛 諛곗뼇븯떎. 꽭룷諛곗뼇 긽벑븸 100 μL Griess 떆빟 (1% sulfanilamide, 0.1% naphthylethylendiamine in 2.5% phosphoric acid) 100 μL瑜 샎빀븯뿬 96 well plate뿉꽌 15遺꾧컙 諛섏쓳떆궓 썑 Microplate Spectrophotometer (xMARK, BIO-RAD Co.)瑜 씠슜븯뿬 540 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯쑝硫, sodium nitrate濡 몴以怨≪꽑쓣 옉꽦븯뿬 NO쓽 븿웾쓣 궛異쒗븯떎.

넻怨꾪븰쟻 遺꾩꽍

議곌뎔怨 異붿텧臾 泥섎━援곗쓽 寃곌낵뿉 븳 넻怨꾩쿂由щ뒗 Student's t-test濡 鍮꾧탳븯쑝硫, 넻怨꾩쿂由 썑 P 媛믪씠 0.05 誘몃쭔씪 寃쎌슦 넻怨꾩쟻씤 쑀쓽꽦씠 엳떎怨 뙋젙븯떎.

寃곌낵 諛 怨좎같

珥 뤃由ы럹 솕빀臾쇨낵 珥 뵆씪蹂대끂씠뱶 븿웾

끂땲, 紐⑤쭅媛 옂, 옄諛 李, 洹몃씪鍮꾩삱씪 옂, 洹몃씪鍮꾩삱씪 遺꾨쭚 諛 빐二쎌닚쓽 뿴닔 諛 뿉깂삱 異붿텧臾쇱뿉 議댁옱븯뒗 珥 뤃由ы럹 븿웾怨 뵆씪蹂대끂씠뱶 븿웾쓣 痢≪젙븳 寃곌낵瑜 Table 2뿉 굹궡뿀떎.

Contents of total polyphenols and flavonoids of endemic plants in Indonesia

Sample1) Total polyphenols
(μg GAE2)/mg)
Total flavonoids
(μg QE3)/mg)
MCLW 45.00±2.334)c 16.96±0.83ab
MCLE 25.73±25.31a -
MOLW 37.93±3.06b 16.13±0.42a
MOLE 60.70±6.64e 32.63±0.43e
OAW 139.23±13.20h 23.63±2.17cd
OAE 185.41±12.49ij 33.70±1.77e
AMLW 83.02±4.21f 22.65±0.24c
AMLE 111.22±11.42g 21.13±0.00c
NFWW 176.81±23.10i 24.74±0.96d
NFWE 203.70±33.25j 23.7±0.42d
AMPW 24.23±3.19a 18.21±1.10b
AMPE 50.55±2.86d 16.63±0.21ab

1) Sample information is presented in Table 1

2) Total phenolic content was expressed as μg/mg galic acid equivalent

3) Total flavonoid content was expressed as μg/mg quercetin equivalent

4) Each value is mean ± S.D.(n=3)



뤃由ы럹 꽦遺꾩 떇臾쇱뿉 꼸由 遺꾪룷릺뼱 엳뒗 2李 궗궛臾 以 븯굹濡 빆궛솕, 빆洹, 빆븫, 빆떦눊 벑 떎뼇븳 깮由 湲곕뒫쓣 굹궡뒗 臾쇱쭏濡 옒 븣젮졇 엳떎(Choi and Ohk, 2017). 媛 떆猷뚯쓽 뿴닔 異붿텧臾 以 뤃由ы럹 븿쑀웾 빐二쎌닚 異붿텧臾쇱씠 176.81 μg/mg쑝濡 媛옣 넂 븿쑀웾쓣 굹궡뿀怨, 옄諛 李⑥ 洹몃씪鍮꾩삱씪 옂쓽 뿴닔 異붿텧臾쇱씠 洹 떎쓬쑝濡 留롮 븿웾쓣 굹궡뿀떎.

뵆씪蹂대끂씠뱶뒗 룆꽦쓣 嫄곗쓽 굹궡吏 븡怨 깮泥 궡 媛뺥븳 빆궛솕 옉슜쑝濡 옒 븣젮졇 엳떎(Choi and Ohk, 2017). 씠 뵆씪蹂대끂씠뱶 븿웾룄 빐二쎌닚 뿴닔 異붿텧臾쇱뿉꽌 24.74 μg /mg쑝濡 媛옣 넂 븿웾쑝濡 寃異쒕릺뿀쑝硫, 洹 떎쓬쑝濡 옄諛 李⑥ 洹몃씪鍮꾩삱씪 옂쓽 뿴닔 異붿텧臾쇱씠 넂 뵆씪蹂대끂씠뱶 븿웾쓣 蹂댁뿬二쇱뿀떎(Table 2).

諛섎㈃뿉, 뿉깂삱 異붿텧臾쇱뿉꽌뒗 빐二쎌닚 뿉깂삱 異붿텧臾쇱씠 203.70 μg/mg쑝濡 媛옣 넂 珥 뤃由ы럹 븿쑀웾쓣 蹂댁뿬二쇱뿀怨, 떎쓬쑝濡 옄諛 李⑥ 洹몃씪鍮꾩삱씪 옂 異붿텧臾쇱씠 넂 珥 뤃由ы럹 븿쑀웾쓣 굹궡뿀떎. 뵆씪蹂대끂씠뱶 븿웾 33.70 μg/mg쑝濡 옄諛 李④ 媛옣 넂 븿쑀웾쑝濡 寃異쒕릺뿀怨, 떎쓬쑝濡 紐⑤쭅媛 옂, 빐二쎌닚 닚쑝濡 넂 珥 뵆씪蹂대끂씠뱶 븿웾쓣 蹂댁뿬二쇱뿀떎(Table 2).

떆猷뚯쓽 뿴닔 諛 뿉깂삱 異붿텧臾쇱쓽 珥 뤃由ы럹 븿웾쓣 蹂대㈃ 끂땲瑜 젣쇅븳 굹癒몄 떆猷뚯쓽 뿉깂삱 異붿텧臾쇱뿉꽌 뿴닔 異붿텧臾쇰낫떎 넂 븿웾쓣 굹궡뿀怨, 뵆씪蹂대끂씠뱶 븿웾쓽 寃쎌슦뿉뒗 紐⑤쭅媛 옂怨 옄諛 李⑤ 젣쇅븳 굹癒몄 떆猷뚯쓽 뿴닔 異붿텧臾쇱뿉꽌 뿉깂삱 異붿텧臾쇰낫떎 넂 븿쑀웾씠 寃異쒕릺뿀떎(Table 2). 삉븳, Choi 벑 (2021)쓽 뿰援ъ뿉꽌뒗 엳鍮꾩뒪而ㅼ뒪 苑껋옂, 紐⑤쭅媛 寃됱뵪, 李⑥슜 빐二쎌닚쓽 뿴닔 異붿텧臾 以 李⑥슜 빐二쎌닚쓽 109.04 μg/mg쓽 뤃由ы럹 븿웾, 13.49 μg/mg쓽 뵆씪蹂대끂씠뱶 븿웾蹂대떎 넂 븿웾쓣 븿웾쓣 蹂댁뿬二쇱뿀떎. 蹂 뿰援ъ뿉꽌 넂 뤃由ы럹怨 뵆씪蹂대끂씠뱶 븿웾쓣 蹂댁뿬以 異붿텧臾쇱 Ku 벑 (2009)쓽 삦닔닔 닔뿼쓽 60% 硫뷀깂삱 異붿텧臾쇱쓽 32.74 μg/mg쓽 뤃由ы럹 븿웾怨 24.20 μg/mg쓽 뵆씪蹂대끂씠뱶 븿웾蹂대떎 5~6諛곗쓽 뤃由ы럹 븿웾쓣 蹂댁뿬二쇱뿀떎.

寃곕줎쟻쑝濡 珥 뤃由ы럹 븿웾 203.70 μg/mg쑝濡 빐二쎌닚 뿉깂삱 異붿텧臾쇱씠, 珥 뵆씪蹂대끂씠뱶뒗 33.70 μg/mg쑝濡 옄諛 李 뿉깂삱 異붿텧臾쇱씠 媛옣 넂 븿쑀웾쓣 蹂댁뿬二쇱뿀떎.

씪뵒移 냼嫄 솢꽦

떆猷뚯쓽 빆궛솕 솢꽦 DPPH 諛 ABTS 씪뵒移 냼嫄 솢꽦쓣 넻븯뿬 솗씤븯떎. 媛 냽룄蹂 DPPH 씪뵒移 빐뒫쓣 諛깅텇쑉濡 굹궦 寃곌낵瑜 Table 3뿉 굹궡뿀떎. DPPH 씪뵒移쇱 鍮꾧탳쟻 븞젙븳 씪뵒移쇰줈, 젙깋꽦쓣 엪寃 릺뒗 꽦吏덉쓣 씠슜븯뿬 빆궛솕뒫쓽 젙룄瑜 痢≪젙븷 닔 엳떎(Lee and Cho, 2016). 媛 떆猷 異붿텧臾쇱쓽 DPPH 씪뵒移 냼嫄곕뒫쓣 솗씤빐 蹂대㈃ 옄諛 李, 洹몃씪鍮꾩삱씪 옂 諛 빐二쎌닚쓽 뿴닔 뿉깂삱 異붿텧臾쇱뿉꽌 넂 DPPH 씪뵒移 냼嫄곕뒫쓣 굹궡뿀怨 媛 떆猷 10 μg/mL쓽 寃곌낵瑜 鍮꾧탳빐 蹂대㈃ 옄諛 李 뿉깂삱 異붿텧臾쇱씠 77.49%쓽 넂 DPPH 씪뵒移 냼嫄곕뒫쓣 蹂댁뿬二쇱뿀떎. ABTS瑜 씠슜븳 빆궛솕뒫쓽 痢≪젙 potassium persulfate 諛섏쓳쑝濡 씤빐 깮꽦맂 ABTS 씪뵒移쇱씠 떆猷 궡쓽 빆궛솕 臾쇱쭏뿉 쓽빐 젣嫄곕릺뼱 씪뵒移 듅쑀쓽 깋씤 泥濡앹깋씠 깉깋릺뒗 寃껋쓣 씠슜븳 諛⑸쾿씠떎. 떆猷 異붿텧臾쇱쓽 ABTS 씪뵒移 냼嫄곕뒫 뼹쓬꽕깢 異붿텧臾쇱쓣 젣쇅븳 紐⑤뱺 떆猷 異붿텧臾쇱뿉꽌 넂 ABTS 씪뵒移 냼嫄곕뒫쓣 蹂댁뿬二쇱뿀쑝硫, 듅엳 옄諛 李, 洹몃씪鍮꾩삱씪 옂 諛 빐二쎌닚쓽 뿴닔 뿉깂삱 異붿텧臾 10 μg/mL뿉꽌 90% 씠긽쓽 쎇뼱궃 ABTS 씪뵒移 냼嫄곕뒫쓣 솗씤븷 닔 엳뿀떎(Table 3). Choi 벑 (2009)쓽 뿰援ъ뿉꽌뒗 궛닔쑀, 蹂듬텇옄, 쓬뼇怨, 슦뒳, 쁽궪, 吏솴 벑 깮빟 異붿텧臾쇱씠 90% 씠긽쓽 ABTS 씪뵒移 냼嫄 솢꽦쓣 굹궡뒗 냽룄媛 50 mg/mL濡 蹂닿퀬맂 寃곌낵瑜 鍮꾧탳븯쓣 븣, 옄諛 李, 洹몃씪鍮꾩삱씪 옂, 빐二쎌닚 異붿텧臾쇱쓽 ABTS 씪뵒移 냼嫄 솢꽦 쎇뼱굹떎怨 븷 닔 엳떎. 삉븳, 媛숈 냽룄뿉꽌 DPPH 씪뵒移쇰낫떎 ABTS 씪뵒移쇱뿉꽌 넂 씪뵒移 냼嫄 솢꽦쓣 굹궡뒗 寃껋 씪뵒移쇱쓣 냼嫄고븯뒗 湲곗옉씠 떎瑜닿퀬, 湲곗쭏씠 寃고빀븯뒗 젙룄媛 떎瑜대떎뒗 젏뿉꽌 媛숈 냽룄뿉꽌룄 떎瑜 솢꽦쓣 굹궡뒗 寃껋쑝濡 뙋떒맂떎(Kwon and Youn, 2014). Kim 벑 (2011)쓽 솗伊먮삦굹臾 옂 異붿텧臾쇱쓣 궗슜븳 DPPH 씪뵒移 냼嫄 솢꽦 뿰援 寃곌낵瑜 蹂대㈃ 뿴닔 異붿텧臾쇱쓽 寃쎌슦 20 μg/mL뿉꽌, 뿉깂삱 異붿텧臾쇱쓽 寃쎌슦 10 μg/mL뿉꽌 50%쓽 뼲젣 솢꽦쓣 蹂댁뿬二쇱留 蹂 뿰援ъ쓽 옄諛 李 뿴닔, 뿉깂삱 異붿텧臾쇱 10 μg/mL뿉꽌 媛곴컖 69.92, 77.49%濡 솗伊먮삦굹臾 옂 異붿텧臾쇰낫떎 넂 DPPH 씪뵒移 뼲젣 솢꽦쓣 굹궡뿀떎.

DPPH and ABTS radical scavenging activities of the extracts of endemic plants in Indonesia

Sample1) Radical scavenging activity (%)
Sample name Concentration (μg/mL) DPPH radical ABTS radical
MCLW 10 0.36±1.09 0.36±1.09
50 18.43±2.32 18.43±2.32
100 40.51±6.03 40.51±6.03
MCLE 10 - 45.73±12.71
50 - 93.24±0.10
100 6.37±11.25 93.31±0.14
MOLW 10 5.11±1.67 5.11±1.67
50 27.01±1.67 27.01±1.67
100 46.72±6.42 46.72±6.42
MOLE 10 - 69.16±1.01
50 28.46±0.65 92.57±0.08
100 85.39±1.12 92.48±0.00
OAW 10 69.92±1.41 69.92±1.41
50 90.24±0.00 90.24±0.00
100 92.28±0.70 92.28±0.70
OAE 10 77.49±1.09 93.36±0.08
50 94.79±0.82 93.27±0.08
100 95.26±0.41 93.13±0.08
AMLW 10 14.38±1.37 14.38±1.37
50 90.87±2.41 90.87±2.41
100 99.77±1.43 99.77±1.43
AMLE 10 27.85±0.40 92.89±0.00
50 92.69±0.40 93.31±0.20
100 94.06±0.40 93.40±0.08
NFWW 10 45.21±0.68 45.21±0.68
50 97.03±0.40 97.03±0.40
100 106.39±12.26 106.39±12.26
NFWE 10 67.35±1.98 93.31±0.00
50 94.52±0.0 93.27±0.08
100 94.75±0.40 92.89±0.14
AMPW 10 2.97±2.09 2.97±2.09
50 20.78±1.05 20.78±1.05
100 42.01±1.05 42.01±1.05
AMPE 10 2.74±1.19 87.88±0.64
50 14.16±1.05 90.76±0.16
100 27.63±2.09 85.28±0.08

1) Sample information is presented in Table 1



FRAP 솢꽦

빆궛솕젰쓣 룊媛븯뒗 諛⑸쾿 以 븯굹씤 FRAP踰뺤 떆猷뚭 3媛泥좎쓣 2媛泥좊줈 솚썝떆궗 븣 2媛泥좎씠 굹궡뒗 씉愿묐룄移섎 痢≪젙븯뿬 빆궛솕 뒫젰쓣 룊媛븯뒗 諛⑸쾿쑝濡 씪뵒移쇱쓽 냼嫄 솢꽦쓣 痢≪젙븯뒗 DPPH, ABTS踰뺢낵뒗 떎瑜 硫붿빱땲利섏쓽 빆궛솕뒫 痢≪젙 諛⑸쾿씠떎(Ku et al., 2009). 異붿텧臾쇱쓽 FRAP 솢꽦쓣 솗씤븳 寃곌낵 옄諛 李, 洹몃씪鍮꾩삱씪 옂, 빐二쎌닚 異붿텧臾쇱뿉꽌 넂 FRAP 솢꽦쓣 굹궡뿀쑝硫, 뿴닔 異붿텧臾쇰낫떎 뿉깂삱 異붿텧臾쇱뿉꽌 뜑 넂 FRAP 솢꽦쓣 솗씤븷 닔 엳뿀떎. 듅엳, 빐二쎌닚 뿉깂삱 異붿텧臾쇱뿉꽌 2.647 FeSO4 eq. mM/mg쑝濡 媛옣 쎇뼱궃 FRAP 솢꽦쓣 굹궡뿀떎(Fig. 1). Kim 벑 (2011)쓽 뤌吏媛먯옄 옂 異붿텧臾쇱쓽 FRAP 솢꽦 뿰援 寃곌낵瑜 蹂대㈃ 뿴닔 諛 뿉깂삱 異붿텧臾 媛곴컖쓽 FRAP 솢꽦 0.908怨 0.712 mM FeSO4 equivalent/mg extract濡 굹궗쑝硫, 蹂 뿰援ъ쓽 옄諛 李, 洹몃씪鍮꾩삱씪 옂, 빐二쎌닚쓽 뿴닔 諛 뿉깂삱 異붿텧臾쇱뿉꽌 1 mM FeSO4 equivalent/mg extract 씠긽쓽 FRAP 솢꽦쓣 蹂댁뿬二쇱뼱 옄諛붿감, 洹몃씪鍮꾩삱씪 옂, 빐二쎌닚 異붿텧臾쇱씠 넂 FRAP 솢꽦쓣 媛吏怨 엳떎 寃껋씠 솗씤릺뿀떎.

Fig. 1. FRAP activity of the extracts of endemic plants in Indonesia. Sample information is presented in Table 1. The activity of each sample was measured using a spectrophotometer. Data are means ± SD (n=3) of three replicates.

뤃由ы럹怨 뵆씪蹂대끂씠뱶쓽 븿웾 빆궛솕 솢꽦怨 넂 긽愿愿怨꾨 굹궡뒗 寃껋쑝濡 옒 븣젮졇 엳떎. 蹂 뿰援ъ뿉꽌 DPPH, ABTS 씪뵒移 냼嫄 諛 FRAP 솢꽦뿉꽌 넂 빆궛솕 솢꽦쓣 蹂댁뿬以 옄諛 李, 洹몃씪鍮꾩삱씪 옂 諛 빐二쎌닚 異붿텧臾쇱쓽 씠윭븳 寃곌낵뒗 뤃由ы럹 諛 뵆씪蹂대끂씠뱶쓽 넂 븿웾怨 愿젴꽦씠 엳쓣 寃껋쑝濡 뙋떒맂떎.

꽭룷깮議댁쑉

떆猷뚯쓽 뿴닔 諛 뿉깂삱 異붿텧臾쇱쓽 꽭룷룆꽦쓣 솗씤븯湲 쐞븯뿬 BV2 꽭룷뿉꽌쓽 꽭룷깮議댁쑉 痢≪젙쓣 닔뻾븯떎(Fig. 2). MTT assay瑜 솢슜븯뿬 BV2 꽭룷뿉꽌 깮議댁쑉쓣 솗씤븳 寃곌낵, 洹몃씪鍮꾩삱씪 遺꾨쭚쓽 뿴닔 諛 뿉깂삱 異붿텧臾쇨낵 洹몃씪鍮꾩삱씪 옂쓽 뿴닔 異붿텧臾 100 μg/mL뿉꽌 꽭룷깮議댁쑉씠 80% 誘몃쭔쑝濡 쑀쓽쟻씤 룆꽦쓣 솗씤븷 닔 엳뿀怨, 굹癒몄 異붿텧臾쇱뿉꽌뒗 꽭룷룆꽦씠 뾾쓬쓣 솗씤븯떎.

Fig. 2. Effect of the extracts of endemic plants in Indonesia on cell viability of BV2 microglia cell. Sample information is presented in table 1. Data are means ± SD (n=3) of three replicates. *P<0.05 compared to control.

씤룄꽕떆븘 옄깮떇臾 異붿텧臾쇱쓽 NO 깮꽦 뼲젣 솢꽦 痢≪젙

뿼利 諛섏쓳씠 쇅遺 옄洹뱀씠굹 떎뼇븳 쑀빐씤옄뿉 빆븯湲 쐞븳 씪젴쓽 깮泥 諛⑹뼱 湲곗쟾씠떎. 洹몃윭굹, 怨쇰룄븳 뿼利 諛섏쓳 꽭룷 넀긽 벑쓽 蹂묐━쟻 긽깭뿉 씠瑜닿쾶 븯湲 븣臾몄뿉 뿼利 諛섏쓳쓣 쑀諛쒗븯뒗 떥씠넗移댁씤씠굹 뿼利 留ㅺ컻泥대뱾쓣 議곗젅븯뒗 寃껋씠 뿼利앹꽦 吏덊솚쓽 移섎즺踰뺤쑝濡 젣떆릺怨 엳떎(Zamora et al., 2000). 뿼利 諛섏쓳쓣 쑀諛쒗븯뒗 뿼利 留ㅺ컻泥 以 븯굹씤 NO媛 吏냽쟻씠怨 怨쇰룄븯寃 깮꽦맆 寃쎌슦 빐떦 議곗쭅뿉꽌 뿼利앹꽦 넀긽쓣 쑀諛쒗븯硫, 씠 臾쇱쭏 iNOS뿉 쓽븯뿬 L-arginine쑝濡쒕꽣 깮꽦릺뒗 寃껋쑝濡 븣젮졇 엳떎(Hou et al., 1999; Kang, 2018). 떆猷 異붿텧臾쇱쓽 빆뿼利 솢꽦쓣 솗씤븯湲 쐞븯뿬 뿼利 諛섏쓳 쑀諛 臾쇱쭏씤 NO쓽 깮꽦웾쓣 NO assay瑜 닔뻾븯뿬 솗씤븯떎(Fig. 3). 씤룄꽕씠떆븘 옄깮떇臾 異붿텧臾쇱 紐⑤뱺 援곗뿉꽌 NO 깮꽦씠 LPS 떒룆 泥섎━援곗뿉 鍮꾪빐 쑀쓽쟻쑝濡 媛먯냼븯뒗 寃껋쓣 솗씤븯떎. 끂땲 뿉깂삱 異붿텧臾, 빐二쎌닚 뿴닔 異붿텧臾쇱쓣 젣쇅븳 紐⑤뱺 異붿텧臾쇱 LPS 臾댁쿂由 援곌낵 쑀궗븳 NO 븿웾쓣 蹂댁쑝硫, 꽭룷룆꽦씠 엳뒗 洹몃씪鍮꾩삱씪 옂 뿴닔 異붿텧臾, 洹몃씪鍮꾩삱씪 뿴닔 諛 뿉깂삱 異붿텧臾쇱쓣 젣쇅븳 紐⑤뱺 異붿텧臾쇱 異뷀썑 빆뿼利 냼옱濡쒖쓽 솢슜 媛뒫꽦씠 넂떎怨 븷 닔 엳떎.

Fig. 3. Effect of the extracts of endemic plants in Indonesia on NO production in BV2 microglia cell stimulated by LPS. Sample information is presented in Table 1. Data are means ± SD (n=3) of three replicates. #P<0.05 compared to LPS-untreated group; *P<0.05 compared to LPS-treated group.

떎뼇븳 씤룄꽕떆븘 옄깮떇臾쇱쓽 湲곕뒫꽦 뿰援щ뒗 빆洹 솢꽦쓣 鍮꾧탳븳 Kim 벑 (2000)쓽 뿰援ш 엳쑝硫, 蹂 뿰援щ뒗 湲곗〈 뿰援ъ 떖由 씤룄꽕떆븘 옄깮떇臾쇱씤 끂땲, 紐⑤쭅媛 옂, 옄諛 李, 洹몃씪鍮꾩삱씪 옂, 洹몃씪鍮꾩삱씪 遺꾨쭚, 빐二쎌닚 6醫낆쓣 媛吏怨 뿴닔 諛 뿉깂삱 異붿텧臾쇱쓣 젣議고븯怨 빆궛솕 諛 빆뿼利 솢꽦쓣 鍮꾧탳븯뿬 洹 寃곌낵瑜 솗씤븯떎. 씤룄꽕떆븘 떆猷 6醫낆쓽 뿴닔 諛 뿉깂삱 異붿텧臾쇱쓽 빆궛솕 솢꽦 諛 꽭룷룆꽦, NO 깮꽦 뼲젣 솢꽦쓣 痢≪젙븳 寃곌낵 쟾泥댁쟻쑝濡 옄諛 李 뿉깂삱 異붿텧臾쇱씠 쎇뼱궃 솢꽦쓣 蹂댁뿬二쇱뿀떎. 12醫낆쓽 뿴닔 諛 뿉깂삱 異붿텧臾 以 옄諛 李 뿉깂삱 異붿텧臾쇱씠 185.41 mg/g쑝濡 빐二쎌닚 뿉깂삱 異붿텧臾 떎쓬쑝濡 넂 뤃由ы럹 븿웾쓣 蹂댁뿬二쇱뿀쑝硫, 33.70 mg/g濡 媛옣 넂 뵆씪蹂대끂씠뱶 븿웾쓣 굹궡뿀떎. 옄諛 李 뿉깂삱 異붿텧臾쇱 DPPH ABTS 씪뵒移 냼嫄 솢꽦 痢≪젙뿉꽌룄 10 μg/mL뿉꽌 媛곴컖 77.49 93.36%濡 媛옣 쎇뼱궃 냼嫄 솢꽦쓣 蹂댁뿬二쇱뿀怨, 빐二쎌닚 異붿텧臾 떎쓬쑝濡 넂 FRAP 솢꽦쓣 蹂댁뿬二쇱뿀떎. 꽭룷룆꽦 솗씤 寃곌낵 옄諛 李 뿉깂삱 異붿텧臾쇱 BV2 꽭룷뿉꽌 꽭룷룆꽦쓣 굹궡吏 븡븯쑝硫, BV2 꽭룷뿉꽌 닔뻾븳 NO 깮꽦 뼲젣 슚뒫 룊媛뿉꽌룄 75.5%쓽 뼲젣 슚뒫쓣 蹂댁뿬二쇱뼱 꽭룷룆꽦쓣 굹궡吏 븡뒗 떆猷 以 媛옣 쎇뼱궃 슚뒫쓣 蹂댁뿬二쇱뿀떎.

寃곕줎쟻쑝濡, 옄諛 李⑥쓽 뿉깂삱 異붿텧臾쇱씠 넂 뤃由ы럹怨 뵆씪蹂대끂씠뱶 븿웾怨 쎇뼱궃 DPPH, ABTS 씪뵒移 냼嫄 솢꽦怨 FRAP 솢꽦쑝濡 씤룄꽕떆븘 썝猷 6醫낆쓽 異붿텧臾 以 媛옣 쎇뼱궃 빆궛솕 솢꽦쓣 蹂댁뿬二쇱뿀쑝硫, BV2 꽭룷뿉꽌 꽭룷룆꽦쓣 굹궡吏 븡뒗 異붿텧臾 以 媛옣 넂 NO 깮꽦 뼲젣 슚뒫쓣 蹂댁뿬二쇱뿀떎. 옄諛 李 뿉깂삱 異붿텧臾쇱뿉 븳 異붽쟻씤 뿰援ш 吏꾪뻾맂떎硫 湲곕뒫꽦 냼옱濡쒖꽌쓽 솢슜꽦쓣 뜑 넂씪 닔 엳쓣 寃껋쑝濡 뙋떒맂떎.

ACKNOWLEDGEMENT

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI17C1234).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

References
  1. Adewole S, Ojewole J. Protective effects of Annona muricata Linn. (Annonaceae) leaf aqueous extract on serum lipid profiles and oxidative stress in hepatocytes of streptozotocin-treated diabetic rats. Afr J Tradit Complement Altern Med. 2009. 6: 30-41.
    Pubmed KoreaMed CrossRef
  2. Ameer OZ. Orthosiphon stamineus: traditional uses, phytochemistry, pharmacology, and toxicology: a review. J Med Food. 2012. 15: 678-690.
    Pubmed CrossRef
  3. Asare GA, Afriyie D, Ngala RANgala RA et al. Antiproliferative activity of aqueous leaf extract of Annona muricata L. on the prostate, BPH-1 cells, and some target genes. Integr Cancer Ther. 2015. 14: 65-74.
    Pubmed CrossRef
  4. Bae GS, Park SJ. The Anti-inflammatory Effect of Nypa fruticans Wurmb. Fruit on Lipopolysaccharide-induced Inflammatory response on RAW 264.7 cells. Kor J Herbol. 2016. 31: 79-84.
    CrossRef
  5. Choi JH, Hwang JW, Lee SG, Heo SH, Kang H. Antioxidant Effect of Hot Water Extracts from 3 Types Indonesia Plants (Hibiscus Petals, Moringa oleifera Gymnosperm, and Nipa Fruticans Wurmb). J Naturopath. 2021. 10: 42-47.
    CrossRef
  6. Choi JH, Ohk SH. Evaluations on Antioxidant Effect of Water Extract from Graviola Leaves. J Korea Academia-Industrial cooperation Society. 2017. 18: 129-135.
  7. Choi SS, Yim DS, Lee SK. Radical scavenging activities and protective effects against oxidative damage to DNA of extracts from medicinal plants with known osteoprotective effects. Korean J Pharmacogn. 2009. 40: 143-149.
  8. Dixon AR, McMillen H, Etkin NL. Ferment this: The transformation of noni, a traditional Polynesian medicine (Morinda citrifolia, Rubiaceae). Econ Bot. 1999. 53: 51-68.
  9. Dole놻kov찼 I, R찼rov찼 L, Gr첬z J, Vondrusov찼 M, Strnad M, Kry큄tof V. Antiproliferative and antiangiogenic effects of flavone eupatorin, an active constituent of chloroform extract of Orthosiphon stamineus leaves. Fitoterapia. 2012. 83: 1000-1007.
    Pubmed CrossRef
  10. Folin O, Denis W. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem. 1912. 12: 239-243.
    CrossRef
  11. Gavamukulya Y, Abou-Elella F, Wamunyokoli F, AEl-Shemy H. Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola). Asian Pac J Trop Med. 2014. 7: 355-363.
    Pubmed CrossRef
  12. Gopalakrishnan L, Doriya K, Kumar DS. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci Human Wellness. 2016. 5: 49-56.
    CrossRef
  13. Hamza AA. Ameliorative effects of Moringa oleifera Lam seed extract on liver fibrosis in rats. Food Chem Toxicol. 2009. 48: 345-355.
    Pubmed CrossRef
  14. Heinicke RM. The pharmacologically active ingredient of noni. Pac Trop Bot Gard Bull. 1985. 15: 10-14.
    CrossRef
  15. Hossain F, Islam A. Utilization of mangrove forest plant: Nipa palm (Nypa fruticans Wurmb.). Am J Agri Forest. 2015. 3: 156-160.
    CrossRef
  16. Hou YC, Janczuk A, Wang PG. Current trends in the development of nitric oxide donors. Curr Pharm Des. 1999. 5: 417-441.
    Pubmed
  17. Ishola IO, Awodele O, Olusayero AM, Ochieng CO. Mechanisms of analgesic and anti-inflammatory properties of Annona muricata Linn. (Annonaceae) fruit extract in rodents. J Med Food. 2014. 17: 1375-1382.
    Pubmed KoreaMed CrossRef
  18. Kang H. Anti-Oxidative and Anti-Neuroinflammatory Effect of Ethanol Extracts from Walnuts's (Juglans regia L.) Shell. Biomedical Science Letters. 2018. 24: 365-371.
    CrossRef
  19. Kim MS, Lee DC, Hong JEHong JE et al. Antimicrobial Effects of Ethanol Extracts from Korean and Indonesian plants. Korean J Food Sci Technol. 2000. 32: 949-958.
  20. Kim YS, Lee SJ, Hwang JW, Kim EH, Park PJ, Jeon BT. Antioxidant Activity and Protective Effects of Extracts from Helianthus tuberosus L. Leaves on t-BHP Induced Oxidative Stress in Chang Cell. J Korean Soc Food Sci Nutr. 2011. 40: 1525-1531.
    CrossRef
  21. Kim YS, Lee SJ, Hwang JW, Kim EH, Park PJ, Jeong JH. Antioxidant Activities of Extracts from Ligustrum ovalifolium H. Leaves. J Korean Soc Food Sci Nutr. 2011. 40: 1642-1647.
    CrossRef
  22. Klungboonkrong V, Lamsal BP, Phoungchandang S. Changes and degradation kinetics of some bioactive compounds in dried Orthosiphon aristatus (Java tea) leaves during elevated tem-perature storage. J Sci Food Agric. 2019. 99: 933-940.
    Pubmed CrossRef
  23. Kou X, Li B, Olayanju JB, Drake JM, Chen N. Nutraceutical or pharmacological potential of Moringa oleifera Lam. Nutrients. 2018. 10: 1-12.
    Pubmed KoreaMed CrossRef
  24. Ku KM, Kim SK, Kang YH. Antioxidant Activity and Functional Components of Corn Silk (Zea mays L.). Korean J Plant Res. 2009. 22: 323-329.
  25. Kwon YR, Youn KS. Antioxidant activity and physiological properties of Moringa (Moringa oleifera Lam.) leaves extracts with different solvents. Korean J Food Preserv. 2014. 21: 831-837.
    CrossRef
  26. Lee GW, Cho YH. Antioxidant Activity of Leaf Extract from Annona muricata. Review of Korea Contents Association. 2016. 14: 43-46.
  27. Lee KW, Je H, Jung THJung TH et al. Comparison of components and antioxidant activity of cherry, aronia, and maquiberry. Korean J Food Nutr. 2018. 31: 729-736.
  28. Lee YR. Antioxidant and 慣-Amylase Inhibitory Activity of 70% Ethanolic Extract from Morinda citrifolia L. (Noni). Korean J Food Nutr. 2020. 33: 210-214.
  29. Lin M, Zhang J, Chen X. Bioactive flavonoids in Moringa oleifera and their health-promoting properties. J Funct Foods. 2018. 47: 469-479.
    CrossRef
  30. L처pez-Vida챰a EC, Figueroa IP, Cort챕s FB, Rojano BA, Oca챰a AN. Effect of temperature on antioxidant capacity during drying process of morti챰o (Vaccinium meridionale Swartz). Int J Food Prop. 2017. 20: 294-305.
    CrossRef
  31. Matsushige A, Kotake Y, Matsunami K, Otsuka H, Ohta S, Takeda Y. Annonamine, a new aporphine alkaloid from the leaves of Annona muricata. Chem Pharm Bull (Tokyo). 2012. 60: 257-259.
    Pubmed CrossRef
  32. Moghadamtousi SZ, Karimian H, Rouhollahi E, Paydar M, Fadaeinasab M, Kadir HA. Annona muricata leaves induce G1 cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cells. J Ethnopharmacol. 2014. 156: 277-289.
    Pubmed CrossRef
  33. Nawwar M, Ayoub N, Hussein SHussein S et al. A flavonol triglycoside and investigation of the antioxidant and cell stimulating activities of Annona muricata Linn. Arch Pharm Res. 2012. 35: 761-767.
    Pubmed CrossRef
  34. Nieva Moreno MI, Isla MI, Sampietro ARSampietro AR et al. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol. 2000. 71: 109-114.
    Pubmed CrossRef
  35. Pande M, Naiker M, Mills G, Singh N, Voro T. The Kura files: Qualitative social survey. Pac Health Surveill Response. 2005. 12: 85-93.
    Pubmed
  36. Park SH, Kim JM, Kim JHKim JH et al. Antioxidative Effects and Component Analysis of Graviola (Annona muricata) Leaf Extract/Fractions. J Soc Cosmet Sci Korea. 2017. 43: 309-320.
  37. Paul J, Gnanam R, Jayadeepa RM, Arul L. Anti-cancer activity on Graviola, an exciting medicinal plant extract vs various cancer cell lines and a detailed computational study on its potent anti-cancerous leads. Curr Top Med Chem. 2013. 13: 1666-1673.
    Pubmed CrossRef
  38. Prasad N, Yang B, Kong KWKong KW et al. Phytochemicals and antioxidant capacity from Nypa fruticans Wurmb. Fruit. Evid Based Complement Alternat Med. 2013. 2013: 1-9.
    Pubmed KoreaMed CrossRef
  39. Re R, Pellegrini N, Proteggente AProteggente A et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999. 26: 1231-1237.
    Pubmed CrossRef
  40. eelatha S Sr, Jeyachitra A, Padma PR. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food Chem Toxicol. 2011. 49: 1270-1275.
    Pubmed CrossRef
  41. Sugai K, Watanabe S, Kuishi TKuishi T et al. Extremely low genetic diversity of the northern limit populations of Nypa fruticans (Arecaceae) on Iriomote Island. Japan Conserv Genet Resour. 2016. 17: 221-228.
  42. Sun S, Liu J, Kadouh H, Sun X, Zhou K. Three new anti-proliferative Annonaceous acetogenins with mono-tetrahydrofuran ring from graviola fruit (Annona muricata). Bioorg Med Chem Lett. 2014. 24: 2773-2776.
    Pubmed CrossRef
  43. Sunder J, Jeyakumar S, Sujatha T, Kundu A. Effect of feeding of morical: A herbal based supplement on production and egg quality in Japanese quail. Adv Anim Vet Sci. 2013. 1: 157-160.
  44. Tabrah FL, Eveleth BM. Evaluation of the effectiveness of ancient Hawaiian medicine. Hawaii Med J. 1966. 25: 223-230.
    Pubmed
  45. Tamunaidu P, Saka S. Chemical characterization of various parts of nipa palm (Nypa fruticans). Ind Crop Prod. 2011. 34: 1423-1428.
  46. Thang TD, Dai DN, Hoi TM, Ogunwande IA. Study on the volatile oil contents of Annona glabra L., Annona squamosa L., Annona muricata L. and Annona reticulata L., from Vietnam. Nat Prod Res. 2013. 27: 1232-1236.
    Pubmed CrossRef
  47. Torres MP, Rachagani S, Purohit VPurohit V et al. Graviola: a novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo. through altering cell metabolism, Cancer Lett. 2012. 323: 29-40.
    Pubmed KoreaMed CrossRef
  48. Wang MY, Su C. Cancer preventive effect of Morinda citrifolia (noni). Ann NY Acad Sci. 2001. 952: 161-168.
    Pubmed CrossRef
  49. Yosoff NA, Ahmad M, AI-Hindi B, Widyawati T, Yam MF, Mahmud R. Aqueous extract of Nypa fruticans Wurmb. Vinegar alleviates postprandial hyperglycemia in normoglycemic rats. Nutrients. 2015. 7: 7012-7026.
    Pubmed KoreaMed CrossRef
  50. Zamora R, Vodovotz Y, Billiar TR. Inducible nitric oxide synthase and inflammatory diseases. Mol Med. 2000. 6: 347-373.
    Pubmed KoreaMed CrossRef