Search for


TEXT SIZE

search for



CrossRef (0)
Lipoxygenases, Hyaluronidase, and Xanthine Oxidase Inhibitory Effects Extracted from Five Hydrocotyle Species
Biomed Sci Letters 2021;27:277-282
Published online December 31, 2021;  https://doi.org/10.15616/BSL.2021.27.4.277
© 2021 The Korean Society For Biomedical Laboratory Sciences.

Seok Hyeon Moon1,* , Yong Lim2,** and Man Kyu Huh1,†,**

1Food Science & Technology Major, Dong-eui University, Busan 47340, Korea
2Department of Clinical Laboratory Science, Dong-eui University, Busan 47340, Korea
Correspondence to: *Graduate student, **Professor.
Corresponding author: Man Kyu Huh. Food Science & Technology Major, Dong-eui University, Busan 47340, Korea.
Tel: +82-51-890-1592, Fax: +82-010-8334-8592, e-mail: mkhuh@deu.ac.kr
Received October 14, 2021; Revised November 23, 2021; Accepted November 25, 2021.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
Hydrocotyle is a genus of prostrate, perennial aquatic or semi-aquatic plants formerly classified in the family Apiaceae, now in the family Araliaceae. Lipoxygenases (LOX) are present in the human body and play an important role in the stimulation of inflammatory reactions. Ethanolic extracts of five Hydrocotyle species (H. ramiflora, H. maritima, H. nepalensis, H. sibthorpioides, and H. yabei) showed inhibition of 23.5~50.6% at 2.0 mg/mL. Their extracts showed LOX inhibition in half maximal effective concentration (EC50) range 15.1~15.7 μg/mL. Hyaluronic acid is a glycosaminoglycan, a major component of the extracellular matrix Five extracts of these species inhibited less than 23.0% of Hyaluronidase (HAase) activity at a concentration of 2.0 mg/mL Xanthine oxidase (XO) is a form of xanthine oxidoreductase, a type of enzyme that generates reactive oxygen species. Five Hydrocotyle species were found to have inhibitory activity of XO at 2.0 mg/ml, with 65% having greater than 50% inhibition. H. ramiflora exhibited the highest activity with an inhibition of 80.0%. The results suggested that Lipoxygenases, Hyaluronidase, and Busan 47340, Republic of Korea from five Hydrocotyle species might be multifunctional and prevent the degradation of allergic reactions and inflammation.
Keywords : Hydrocotyle, Lipoxygenases, Hyaluronidase, Xanthine oxidase, EC50
꽌 濡

뿼利앹씠 쇅遺濡쒕꽣쓽 媛먯뿼 諛 깮泥 議곗쭅 넀긽뿉 빐 泥대궡뿉꽌 씪뼱굹뒗 諛⑹뼱쟻 諛섏쓳쑝濡 硫댁뿭꽭룷瑜 룷븿븳 삁愿, 遺꾩옄쟻 諛⑹뼱湲곗옉 벑 씤泥닿 臾몄젣瑜 빐寃고븯룄濡 떊샇瑜 蹂대궡怨 쑀吏빐二쇰뒗 쁽긽씠떎(Ferrero-Miliani et al., 2007). 씪諛섏쟻씤 利앹긽 뿴(calor), 넻利(dolor), 遺醫(tumor), 솉諛(rubor)씠 엳쑝硫 臾몄젣媛 빐寃곕릺吏 븡 寃쎌슦 떖븯硫 湲곕뒫쓽 냼떎쓣 珥덈옒븯寃 맂떎(Lawrence et al., 2002). 뿼利앹꽦 떒諛깆쭏씠 삩紐몄뿉 怨꾩냽 뙎씠硫 媛곸쥌 吏덊솚쓣 吏 • 媛꾩젒쟻쑝濡 쑀諛쒗븳떎. 븣젅瑜닿린, 룞留κ꼍솕, 옄媛硫댁뿭吏덊솚, 移섎ℓ, 븞吏덊솚, 떖吏뼱뒗 븫룄 吏덈퀝 怨쇱젙뿉 뿼利앹씠 愿뿬븯怨 엳떎뒗 寃껋씠 씤떇릺怨 엳떎(Gracie et al., 1999; Kinne et al., 2000; Reilly et al., 2004; Milando et al., 2020).

由ы룺떆寃뚮굹븘젣(Lipoxygenase, LOX, EC 1.13.11.-)뒗 븘씪궎룉궛(arachidonic acid)쑝濡쒕꽣 뿼利앷낵 븣젅瑜닿린 利앹긽 쑀諛 臾쇱쭏씤 prostaglandin 瑜섏 瑜섏퐫듃由ъ뿏(leukotriene) 瑜섎 留뚮뱾뼱궡뒗 怨쇱젙쓣 珥됰ℓ븳떎(Fan and Chapkin, 1998; Kim et al., 2007). 瑜섏퐫듃由ъ뿏(leukotriene) 寃쎈줈뿉 愿뿬븯뒗 LOX뿉뒗 5-LOX, 12-LOX 諛 15-LOX媛 엳쑝硫(Samuelsson et al., 1987; Yedgar et al., 2007), 瑜섏퐫듃由ъ뿏씠 怨쇰룄븯寃 깮꽦맆 寃쎌슦 븘넗뵾, 븣젅瑜닿린꽦 鍮꾩뿼, 泥쒖떇怨 媛숈 븣젅瑜닿린 吏덊솚쓽 썝씤씠 맂떎(Lee and Ryu, 2000; Natarajan and Nadler, 2004; Kuhn and O'Donnell, 2006).

엳븣猷⑤줎궛(Hyaluronic acid, HA) 떊泥댁쓽 뿰怨, 뵾遺 벑 寃고빀議곗쭅뿉 議댁옱븯뒗 怨좊텇옄 臾쇱쭏濡 떇꽭룷쓽 떇옉슜쓣 뼲젣븯뿬 뿼利앸컲쓳쓣 議곗젅븯뒗 옉슜쓣 븳떎(Girish and Kemparaju, 2007). HA쓽 遺꾪빐슚냼씤 Hyaluronidase (HAase, EC 3.2.1.35)뒗 瑜섎쭏떚뒪 愿젅뿼 媛숈 뿼利 吏덊솚 떆 솢꽦솕릺怨 븣젅瑜닿린 쑀諛, 븫 쟾씠 벑怨쇱쓽 뿰愿꽦씠 蹂닿퀬맂 諛 엳떎(Goggins et al., 1968; Bertolami and Donoff, 1978). HAase 빐뿉 쓽빐 HA쓽 怨좊텇옄 삎깭瑜 쑀吏븯寃 븿쑝濡쒖뜥 빆뿼利 슚怨쇰 湲곕븷 닔 엳떎(Ghosh, 1994).

겕궛떞 궛솕슚냼(Xanthine oxidase, EC 1.2.3.2)뒗 깮泥 궡 벂由곕궗뿉 愿뿬븯뒗 슚냼濡 xanthine쓣 湲곗쭏濡 븯뿬 uric acid瑜 깮꽦븯뒗 怨쇱젙뿉꽌 superoxide radical쓣 깮꽦븯뒗 슚냼씠떎(Ziegler et al., 1971; Duke et al., 1973). 슂궛씠 삁븸 以묒뿉꽌 씠긽 利앷濡 愿젅궘뿉 異뺤쟻릺硫 뿼利앹쓣 쑀諛쒗븯硫, 넻뭾 諛 떖븳 寃쎌슦 떊옣씠굹 떖옣뿉 빀蹂묒쬆쓣 쑀諛쒗븯湲곕룄 븳떎(Storch and Ferber, 1988). 븳렪 xanthine oxidase 빐젣뒗 넻뭾, 슂궛삁利앹뿉 븳 移섎즺젣濡 궗슜릺뼱 솕쑝硫 allopurinol, alloxanthine, probenecid 벑씠 븣젮졇 엳쑝굹(Gilman et al., 1985), 移섎즺젣 궡꽦 쑀諛, 빆븫젣 궗 뼲젣, 옱깮遺덈웾꽦 鍮덊삁 벑쓽 遺옉슜씠 엳떎.

븳援뿉꽌 뵾留됱씠쓽 씠由꾩 뵾瑜 硫덉텛寃 븯뒗 슜룄濡 궗슜릺뿀뒗뜲, 뵾留됱씠냽(Hydrocotyle) 떇臾쇱쓽 옂씠 吏삁젣濡 궗슜릺뿀떎. 뵾留됱씠냽 떇臾쇱쓽 異붿텧臾쇱 Chloramphenicol뿉 鍮꾪빐 빟媛 궙 빆洹 솢꽦쓣 굹깉떎(Handique and Garg, 2015). 삉븳 珥 럹 솕빀臾, 뵆씪蹂대끂씠뱶 諛 뵆씪蹂대쓽 議댁옱媛 씪뵒移 냼嫄 듅꽦쓣 룷븿븳 愿묐쾾쐞븳 솕븰 諛 깮臾쇳븰쟻 솢꽦怨 愿젴맂 뵾留됱씠냽 떇臾쇱씠 蹂닿퀬릺뿀떎(Chan et al., 2009). 뵾留됱씠쓽 뿰援щ줈 諛앺吏 깮由ы솢꽦쑝濡쒕뒗 빆궛솕, 빆利앹떇, 빆洹 벑 媛꾩뿼뿉쓽 슚怨쇨 븣젮졇 엳쑝硫(Farong et al., 2007), 빆삁쟾 슚뒫뿉 빐꽌뒗 뿰援ш 遺議깊븳 떎젙씠떎.

蹂 뿰援щ뒗 in vitro test濡쒖꽌 븳援궛 뵾留됱씠 5醫낆뿉 븳 빆븣젅瑜닿린 슚뒫怨 諛젒븯寃 愿젴맂 15-LOX쓽 뼲젣뒫, 怨좊텇옄 HAase 빐瑜 넻븳 빆뿼利 슚怨, 빆넻뭾꽦 냼옱 깘깋쓣 쐞븳 xanthine oxidase 빐슚怨쇰 궡렣蹂댁븯떎.

옱猷 諛 諛⑸쾿

떆빟 諛 湲곌린

뵾留됱씠냽뿉뒗 겙뵾留됱씠(Hydrocotyle ramiflora), 겙옂뵾留됱씠(H. nepalensis), 꽑뵾留됱씠(H. maritima), 젣二쇳뵾留됱씠(H. yabei)쓽 5醫낆씠 엳쑝硫 쟾씪궓룄 臾댁븞援 泥怨꾨㈃, 寃쎌긽궓룄 궗泥쒖떆 怨ㅻ챸硫, 슱궛愿묒뿭떆 슱二쇨뎔 궪궔쓭, 遺궛愿묒뿭떆 湲덉젙援 옣쟾룞, 젣二쇰룄 꽌洹룷떆 꽦궛쓭 꽦궛룷 씪썝뿉꽌 梨꾩랬븯뿬 떎뿕옱猷뚮줈 궗슜븯떎. 梨꾩랬븳 Hydrocotyle 냽 5醫낆 꽭泥 썑 留덉뇙븯뿬 媛곴컖 臾닿쾶 떦 10諛곗쓽 70% 뿉깂삱쓣 媛븯뿬 24떆媛 援먮컲븯뿬 쑀슚꽦遺꾩쓣 異붿텧븯떎. 異붿텧븸 Whatman filter paper No 1濡 嫄곕Ⅸ 뮘 쉶쟾떇 吏꾧났 利앸컻湲(N-1001S-W, Eyela, Tokyo, Japan)瑜 궗슜븯뿬 媛먯븬븯怨 삩룄瑜 議곗젅븯뿬 슜留ㅻ 젣嫄고븯떎. 洹 썑, 嫄댁“ 遺꾨쭚쓣 뼸湲 쐞빐 깦뵆쓣 吏꾧났 梨붾쾭뿉 꽔怨 삩뿉 몢뿀떎. 룞寃 嫄댁“븯뿬 遺꾨쭚 떆猷뚮 떎뿕뿉 궗슜븯떎.

떎뿕쓣 쐞븯뿬 궗슜맂 떆빟 15-LO inhibitor screening assay kit (Cayman Chemical Co., Ann Arbor, MI, USA)씠硫, xanthine, xanthine oxidase, nordihydroguaiaretic acid (NDGA), hyaluronidase, hyaluronic acid, p-dimethylaminobenzaldehyde (DMAB), Calcium chloride, potassiumtetraborate, sodium hydroxide, trichloroacetic acid (TCA) 벑 Sigma궗(St. Louis, USA)뿉꽌 援ъ엯븯떎.

蹂 떎뿕뿉꽌 궗슜븳 二쇱슂 湲곌린뒗 centrifuge (UNION 32R, Hanil Science Industrial Co., Korea), CO2 incubator (MCO 175, Sanyo Electric Co., Japan), water bath (C-WB, CHANG SHIN Scientific Co., Korea)瑜 궗슜븯떎. ELISA autoreader뒗 VERSA max (Molecular devices Co., Sunnyvale, USA) 紐⑤뜽쓣 궗슜븯떎.

15-Lipoxygenase (15-LO) 빐솢꽦 痢≪젙

115-LO 빐솢꽦 痢≪젙 15-LO inhibitor screening assay kit (Abnova, CA, USA)쓽 留ㅻ돱뼹뿉 뵲옄떎. 깦뵆 10 μL뿉 15-LO (220 units/ml) 90 μL 1 mM 븘씪궎룉궛 10 μL쓣 泥④븯뿬 5遺 媛 긽삩뿉꽌 諛섏쓳떆궓 썑, 깋썝泥(chromogen) 100 μL瑜 媛븯뿬 긽삩뿉꽌 5遺 룞븞 諛섏쓳떆궎怨 ELISA autoreader瑜 궗슜븯뿬 490 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 씠븣 뼇꽦議곌뎔쑝濡 nordihydroguaiaretic acid쓣 궗슜븯떎.

Hyaluronidase (HAase) 빐솢꽦 痢≪젙

HAase 빐솢꽦 sodium-hyaluronic acid (HA)濡쒕꽣 삎꽦맂 N-acetylglucosamine쓣 glucoxazoline 쑀룄泥대줈 蹂삎떆궓 썑 p-dimethylaminobenzaldehyde (DMAB)濡 諛쒖깋떆耳 씉愿묐룄瑜 痢≪젙븯뿬 슚냼 솢꽦쓣 痢≪젙븯떎(Reissig et al., 1995). 0.1 M acetate buffer (pH 3.5)뿉 끃씤 HAase (7,900 U/mL) 0.05 mL 떆猷 슜븸 0.1 mL瑜 샎빀븯뿬 37℃뿉꽌 20遺꾧컙 諛곗뼇븳 떎쓬 12.5 mM CaCl2 0.1 mL瑜 媛븯怨 샎빀 썑 떎떆 20遺 媛 諛곗뼇븯떎. 湲곗쭏濡쒖꽌 0.1 M acetate buffer (pH 3.5)뿉 끃씤 hyaluronic acid (12 mg/mL)瑜 泥④븯뿬 떎떆 40遺 媛 諛곗뼇븯뿬 0.4 N potassium-tetraborate 0.1 mL 諛 0.4 N NaOH 슜븸쓣 0.1 mL 諛섏쓳 샎빀臾쇱뿉 泥④븯뿬 3遺 룞븞 닔議곗뿉꽌 媛뿴븳 썑 셿쟾엳 깋媛곸떆耳곕떎. 깋媛곸떆궓 諛섏쓳臾쇱뿉 諛쒖깋젣濡 DMAB 떆빟 3 mL쓣 媛븯뿬 37℃뿉꽌 20遺꾧컙 諛곗뼇븳 떎쓬 585 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯뿬 빐솢꽦쓣 궛異쒗븯떎.

Xanthine oxidase 빐솢꽦 痢≪젙

Xanthine oxidase 빐솢꽦 Stirpe and Corte (1969)쓽 諛⑸쾿뿉 뵲씪 痢≪젙븯떎. 씪젙 냽룄濡 씗꽍븳 媛 뵾留됱씠냽 5醫 異붿텧臾 0.1 mL뿉 0.1 M potassium phosphate buffer (pH 7.5) 0.6 mL xanthine (2 mM)쓣 끃씤 湲곗쭏븸 0.2 mL瑜 泥④븯떎. 뿬湲곗뿉 xanthine oxidase (0.2 U/mL) 0.1 mL瑜 媛븯뿬 37℃뿉꽌 5遺꾧컙 諛섏쓳떆궓 썑 20% trichloroacetic acid (TCA) 1 mL瑜 媛븯뿬 諛섏쓳쓣 젙吏떆궓 떎쓬 諛섏쓳븸뿉 깮꽦맂 uric acid瑜 292 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 뵾留됱씠냽 5醫 異붿텧臾쇱뿉 븳 xanthine oxidase 빐솢꽦 떆猷뚯쓽 泥④援곌낵 臾댁꺼媛援곗쓽 씉愿묐룄 媛먯냼쑉쓣 %濡 굹궡뿀떎. 議곌뎔 ascorbic acid瑜 異붿텧臾 떊 룞씪븳 냽룄濡 泥④븯뿬 떆猷뚭뎔怨 룞씪븳 諛⑸쾿쑝濡 痢≪젙븯떎.

넻怨꾨텇꽍

떆뿕 臾쇱쭏쓽 15-Lipoxygenase (15-LO), Hyaluronidase (HAase), Xanthine oxidase 빐솢꽦쓣 븘옒 떇쑝濡 怨꾩궛븯떎.

Inhibition effect (%)=IAAs/IC×100

뿬湲곗꽌 IA뒗 떆猷 臾댁꺼媛援곗쓽 씉愿묐룄씠怨, As뒗 떆猷뚯슜븸 泥④援곗쓽 씉愿묐룄씠떎.

S:Δabsorbance of sample C:Δabsorbance of control

슚냼 솢꽦쓽 50% 빐 냽룄(EC50)媛믪쓣 logarithmic regression analysis쑝濡 궛異쒗븯떎. 쑀쓽꽦 寃利앹 遺꾩궛遺꾩꽍(ANOVA)쓣 떆뻾븯怨 P<0.05 닔以뿉꽌 Duncan's multiple range test뿉 뵲씪 遺꾩꽍븯떎.

寃 怨

LOX뿉 븳 빐옉슜 5醫 紐⑤몢 냽룄 쓽議댁쟻쑝濡 굹궗떎(Table 1). LOX 빐젙룄뒗 異붿텧냽룄 0.1 mg/mL씪 寃쎌슦 H. ramiflora뿉꽌 5.8%濡 媛옣 궙븯怨, H. sibthorpioides뿉꽌 14.7%濡 媛옣 넂븯떎. 0.25 mg/mL씪 寃쎌슦룄 쑀궗븳 寃쏀뼢쓣 굹궡뿀떎. 1.0 mg/mL씪 寃쎌슦 H. nepalensis뿉꽌 44.2%濡 媛옣 넂븯떎. H. ramiflora瑜 젣쇅븷 寃쎌슦 냽룄 利앷뿉 뵲瑜 LOX 냼嫄곕뒫 쑀쓽꽦 뾾뿀떎(P<0.05). 삉븳, LOX뿉 븳 빐옉슜 2.0 mg/mL씪 寃쎌슦뿉룄 50.6% 씠궡濡 겕寃 넂吏 븡븯떎. NDGA쓣 議곌뎔쑝濡 궗슜뻽쓣 븣 0.1 mg/mL뿉꽌뒗 빟 40.3%, 2.0 mg/mL뿉꽌뒗 94.3%쓽 빐 슚怨쇰 굹궡뿀떎.

The inhibitory effect of lipoxygenase (%) for five species of Hydrocotyle

Species Concentration (mg/mL)
0.1 0.25 0.5 1.0 2.0
H. ramiflora 5.83 10.49 10.96 17.86 23.54
H. maritima 8.62 25.41 34.36 35.76 39.86
H. nepalensis 12.35 26.34 35.71 44.15 50.58
H. sibthorpioides 14.69 27.74 39.44 41.68 49.65
H. yabei 14.22 21.21 26.01 33.80 35.20
NDGA 40.3 50.6 71.1 75.8 94.3


Hyaluronidase 빐슚怨쇰뒗 異붿텧냽룄 0.1 mg/mL씪 寃쎌슦 H. sibthorpioides뿉꽌 1.2%濡 媛옣 궙븯怨, H. ramiflora뿉꽌 9.7%濡 媛옣 넂븯떎(Table 2). 0.25 mg/mL씪 寃쎌슦 H. yabei뿉꽌 11.9%濡 媛옣 넂븯떎. 0.5 mg/mL씪 寃쎌슦 H. ramiflora뿉꽌 16.0%濡 媛옣 넂븯떎. 1.0 mg/mL씪 寃쎌슦 H. ramiflora뿉꽌 媛옣 넂븯떎. 쟾諛섏쟻쑝濡 H. ramiflora뿉꽌 媛옣 넂 빐솢꽦쓣 굹궡뿀怨, H. nepalensis뿉꽌 媛옣 궙븯떎(Fig. 2). Hyaluronidase뿉 븳 빐 옉슜 냽룄 쓽議댁쟻씠뿀吏留, 2.0 mg/mL씪 寃쎌슦뿉룄 23%瑜 珥덇낵븯吏 븡븘 빐 솢꽦씠 쟾諛섏쟻쑝濡 넂吏 븡븯떎.

The inhibitory effect of hyaluronidase (%) for five species of Hydrocotyle

Species Concentration (mg/mL)
0.1 0.25 0.5 1.0 2.0
H. ramiflora 9.74 11.64 15.97 17.17 22.24
H. maritima 1.39 6.16 7.00 13.54 15.80
H. nepalensis 3.63 5.75 6.66 8.51 12.17
H. sibthorpioides 1.18 7.17 8.18 11.45 14.86
H. yabei 8.82 11.93 12.94 17.10 18.92
DSCG 28.88 43.28 65.66 76.70 78.43


Fig. 2. The 50% inhibition (EC50) of hyaluronidase in five Hydrocotyle species on 1.0 μg/mL.

Xanthine oxidase 빐슚怨쇰뒗 異붿텧냽룄 0.1 mg/mL씪 寃쎌슦 H. sibthorpioides뿉꽌 2.6%濡 媛옣 궙븯怨, H. ramiflora뿉꽌 9.7%濡 媛옣 넂븯떎(Table 3). 0.25 mg/mL씪 寃쎌슦 H. yabei뿉꽌 6.7%濡 媛옣 궙븯떎. 0.5 mg/mL씪 寃쎌슦 H. ramiflora뿉꽌 40.3%濡 媛옣 넂븯떎. 1.0 mg/mL, 2.0 mg/mL씪 寃쎌슦 H. ramiflora뿉꽌 媛옣 넂븯떎. 쟾諛섏쟻쑝濡 H. ramiflora뿉꽌 媛옣 넂 빐솢꽦쓣 굹궡뿀怨, H. sibthorpioides H. yabei媛 2.0 mg/mL뿉꽌 43%濡 媛옣 궙븯떎. Xanthine oxidase뿉 븳 빐옉슜 냽룄 쓽議댁쟻씠뿀吏留 쟾諛섏쟻쑝濡 H. ramiflora H. maritima뿉꽌뒗 빐 솢꽦쓣 굹궡吏留 떎瑜 醫낆뿉꽌뒗 겕寃 넂吏 븡븯떎(Fig. 3). Xanthine oxidase 빐쑉 2.0 mg/mL 寃쎌슦 H. ramiflora媛 80%, H. maritima 65.4%濡 넂寃 굹궗떎. 諛섎㈃ 굹癒몄 3醫낆 겕寃 넂吏 븡븘 醫낃컙 李⑥씠媛 쑀쓽꽦쓣 굹궡뿀떎.

The inhibitory effect of xanthine oxidase (%) for five species of Hydrocotyle

Species Concentration (mg/mL)
0.1 0.25 0.5 1.0 2.0
H. ramiflora 9.7 27.0 40.3 70.1 80.0
H. maritima 5.7 25.1 29.7 46.0 65.4
H. nepalensis 4.6 9.8 19.1 40.7 52.1
H. sibthorpioides 2.6 11.4 13.6 35.3 43.8
H. yabei 6.7 8.6 24.9 27.3 43.2
Ascorbic acid 5.7 15.2 21.9 34.1 37.5


Fig. 3. The 50% inhibition (EC50) of xanthine oxidase in five Hydrocotyle species on 1.0 μg/mL.
怨 李

LOX뒗 怨〓쪟(諛, 샇諛, 洹由, 蹂대━, 삦닔닔)굹 肄⑷낵瑜(몢, 셿몢, 끃몢, 媛뺣궘肄), 媛먯옄愿닿꼍뿉 뭾遺븯떎(Baysal and Demirdöven, 2007; Lampi et al., 2020). 臾쇳뫖젅굹臾(Fraxinus rhynchophylla) 異붿텧臾 냽룄 4.0 mg/mL씪 븣 LOX 빐쑉 47.3%떎(Huh et al., 2015). Coumarin umbelliprenin뿉꽌 LOX 빐쑉 47.0%떎(Iranshahi et al., 2009). 李⑤굹臾(Camellia sinesis), 諛붿쐞룎苑(Rhodiola rosea), 紐④컧二쇰굹臾(Koelreuteria henryi) 벑룄 넂 LOX 빐쑉쓣 굹궡뿀떎(Chen et al., 2009). 씠뱾 냽룄 鍮꾧탳븯湲 쐞빐 뵾留됱씠쓽 異붿텧냽룄瑜 8.0 mg/mL濡 넂씪 寃쎌슦 LOX 빐쑉 옂뿉꽌뒗 55.5%濡 굹궡뿀떎(data not shown). Apiaceae 냽 떇臾쇱뿉 븳 EC50 媛믪 Sandix pectrn-veneris 醫낆쓣 젣쇅븯怨 20.0~52.0 μg/mL씠뿀떎(Loncaric et al., 2021). 뵾留됱씠냽 떇臾쇱쓽 EC50 媛믪 15.1~15.7 μg/mL쑝濡 굹굹 Apiaceae 냽 떇臾쇰낫떎 궙 寃껋쑝濡 議곗궗릺뿀떎(Fig. 1).

Fig. 1. The 50% inhibition (EC50) of lipoxygenase in five Hydrocotyle species on 1.0 μg/mL.

뵾留됱씠냽 떇臾쇱쓽 hyaluronidase뿉 븳 빐옉슜 냽룄 쓽議댁쟻씠뿀吏留, 2.0 mg/mL씪 寃쎌슦뿉룄 21%瑜 珥덇낵븯吏 븡븘 쟾諛섏쟻쑝濡 빐 솢꽦씠 넂吏 븡븯떎(Table 2). Hyaluronidase inhibition뿉 븳 臾명뿄쑝濡 Garcinia indica쓽 寃쎌슦, 닔슜븸 異붿텧臾 500 μg/mL뿉꽌 95.7%, 뿉깂삱 異붿텧臾 500 μg/mL뿉 빐꽌 90.4%瑜 굹궡뿀떎(Sahasrabundhe and Deodhar, 2010). Trametes Lactinea쓽 닔슜꽦 異붿텧臾쇱뿉꽌 88.6±0.11%, 븘꽭넠 異붿텧臾쇱 88.3±0.14%濡 넂 떇臾쇱쥌씠 蹂닿퀬릺뿀떎(Yahaya and Don, 2012). 씠뱾 넂 빐솢꽦쓣 蹂댁떎. 諛섎㈃뿉, 꽟뫁遺웳씠 뿥궛 遺꾪쉷臾쇱 10 μg/mL뿉꽌 17.91%, 뿉떥븘꽭뀒씠듃 遺꾪쉷臾쇱 10 μg/mL뿉꽌 24.37%, 遺깂삱 遺꾪쉷臾쇱 10 μg/mL뿉꽌 15.74%, 臾 遺꾪쉷臾쇱 10 μg/mL뿉꽌 8.75%쓽 빐 슚怨쇨 굹궗怨, 議곌뎔씤 (+)-Catechin쓽 寃쎌슦, 10 μg/mL뿉꽌 31.61%쓽 빐뒫쓣 굹궡뿀떎(Kim et al., 2010).

Hudaib et al. (2011)Lavandula angustifolia Mill. (28.7% inhibition), Helianthemum ledifolium (L.) Mill. (28.4%), Majorana syriaca (L.) Kostel. (25.1%), and Mentha spicata L. (22.5%)씠 蹂닿퀬븳 Xanthine oxidase뿉 븳 빐슚怨쇰 蹂댁쑝硫, EC50 媛믪 Salvia spinosa L. (IC50 = 53.7 μg/mL), Anthemis palestina Boiss. (168.0 μg/mL), Chrysanthemum coronarium L. (199.5 μg/mL), Achillea biebersteinii Afansiev (360.0 μg/mL), Rosmarinus officinalis L. (650.0 μg/mL), Ginkgo biloba L. (595.8 μg/mL)쑝濡 굹궗떎. 씠뒗 蹂 뿰援 뵾留됱씠 6醫낆쓽 寃곌낵 빐쑉 43.2~80.0%뿉 鍮꾪빐 궙 媛믪씠떎(Table 3).

LOX, Hyaluronidase, Xanthine oxidase뿉 븳 뵾留됱씠냽 떇臾쇱쓽 빐슚怨쇰뒗 슦由 議곗긽뱾씠 긽泥섍 궗쓣 븣 吏삁肉먮쭔 븘땲씪 빆뿼利앹씠굹 빆븣윭吏뿉 븳 슚怨쇰 굹궡뒗 꽦遺꾩씠 븿쑀릺뼱 엳뒗 寃껋쑝濡 굹궗떎. 씪遺 떇臾쇱 '룆'씠씪 븯뿬 씤泥댁뿉 빐濡쒖슫 꽦遺꾩씠굹 옂 媛옣옄由ъ뿉 궇移대줈슫 嫄곗튂媛 엳뼱 뵾遺넀긽쓣 媛졇삱 닔 엳떎. 븿遺濡 빟슜쑝濡 궗슜릺吏 紐삵븳떎. 뵾留됱씠뒗 옂 옄泥닿 遺뱶윭슱 肉먮쭔 븘땲씪 룆꽦씠 蹂닿퀬릺吏 븡븘 빞쇅뿉꽌 엫떆諛⑺렪쑝濡 吏삁濡 궗슜맆 닔 엳쓬씠 씪遺 엯利앸릺뿀떎.

ACKNOWLEDGEMENT

None

CONFLICT OF INTEREST

The authors have declared no conflict of interest.

References
  1. Baysal T, Demird철ven A. Lipoxygenase in fruits and vegetables: A review. Enzyme and Microbial Technology. 2007. 40: 491-496.
    CrossRef
  2. Bertolami CN, Donoff RB. Hyaluronidase activity during open wound healing in rabbits: A preliminary report. Journal of Surgical Research. 1978. 25: 256-259.
    Pubmed CrossRef
  3. Chen CH, Chan HC, Chu YT, Ho HY, Chen PY, Lee TH, Lee CK. Antioxidant activity of some plant extracts towards xanthine oxidase, lipoxygenase and tyrosinase. Molecules. 2009. 14: 2947-2958.
    Pubmed KoreaMed CrossRef
  4. Duke EJ, Joyce P, Ryan JP. Characterization of alternative molecular forms of xanthine oxidase in the mouse. Biochemical Journal. 1973. 131: 187-190.
    Pubmed KoreaMed CrossRef
  5. Fan YY, Chapkin RS. Importance of dietary gamma-linolenic acid in human health and nutrition. Journal of Nutrition. 1998. 128: 1411-1414.
    Pubmed CrossRef
  6. Farong Yu, Fahong Yu, McGuire PM, Li R, Wang R. Effects of Hydrocotyle sibthorpioides extract on transplanted tumors and immune function in mice. Phytomedicine. 2007. 14: 166-171.
    Pubmed CrossRef
  7. Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clinical and Experimental Immunology. 2007. 147: 227-235.
    Pubmed KoreaMed CrossRef
  8. Ghosh P. The role of hyaluronic acid (hyaluronan) in health and disease: interactions with cells, cartilage and components of synovial fluid. Clinical and Experimental Rheumatology. 1994. 12: 75-82.
    Pubmed
  9. Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sciences. 2007. 80: 1921-1943.
    Pubmed CrossRef
  10. Gilman AG, Goodman LS, Rall TW, Murad F. Goodman and Gilman's the pharmacological basis of therapeutics. 1985. pp. 712-715. Macmillan. New York, USA.
  11. Goggins JF, Fullmer HM, Steffek AJ. Hyaluronidase activity of human gingiva. Archives of Pathology &. Laboratory Medicine. 1968. 85: 272-274.
  12. Gracie JA, Forsey RJ, Chan WL, Gilmour A, Leung BP, Greer MR, Kennedy K, Carter R, Wei XQ, Xu D, Field M, Foulis A, Liew FY, McInnes IB. A proinflammatory role for IL-18 in rheumatoid arthritis. Journal of Clinical Investigation. 1999. 104: 1393-1401.
    Pubmed KoreaMed CrossRef
  13. Handique PJ, Garg M. Evaluation of antioxidant and antimicrobial activity of a medicinal plant Hydrocotyle sibthorpiodes Lam., grown in ne India. International Journal of Pharmaceutical Sciences and Research. 2015. 8: 3524-3529.
  14. Hudaib MM, Tawaaha KA, Mohammad MK, Assaf AM, Issa AY, Alali FQ, Aburjai TA, Bustanji YK. Xanthine oxidase inhibitory activity of the methanolic extracts of selected Jordanian medicinal plants. Pharmacognosy Magazine. 2011. 7: 320-324.
    Pubmed KoreaMed CrossRef
  15. Huh MK, Cho KS, Jeon SJ. Inhibitory effect of lipoxygenase and DPPH radical scavenging activity of Fraxinus rhynchophylla. European Journal of Advanced Research in Biological and Life Sciences. 2015. 3: 10-16.
  16. Iranshahi M, Askari M, Sahebkar A, Hadjipavlou-Litina D. Evaluation of antioxidant, anti-inflammatory and lipoxygenase inhibitory activities of the prenylated Coumarin umbelliprenin. DARU. 2009. 17: 99-103.
  17. Kim KB, Lee EG, Chai OH, Song CH, Jeong JM. Inhibitory effect of phyto-extract mixture (PEM381) on type 뀪 allergic reaction. Journal of the Korean Society of Food Science and Nutrition. 2007. 36: 155-162.
    CrossRef
  18. Kim HH, Park GH, Park KS, Lee JY, An BJ. Anti-oxidant and anti-inflammation activity of fractions from Aster glehni Fr. Schm. Korean Journal of Microbiology and Biotechnology. 2010. 38: 434-441.
  19. Kinne RW, Bruer R, Stuhlmller B, Palombo-Kinne E, Burmester GR. Macrophages in rheumatoid arthritis. Arthritis Research. 2000. 2: 189-202.
    Pubmed KoreaMed CrossRef
  20. Kuhn H, O'Donnell VB. Inflammation and immune regulation by 12/15-lipoxygenases. Progress in Lipid Research. 2006. 45: 334-356.
    Pubmed CrossRef
  21. Lampi AM, Yang Z, Mustonen O, Piironen V. Potential of faba bean lipase and lipoxygenase to promote formation of volatile lipid oxidation products in food models. Food Chemistry. 2020. 311: 125982.
    Pubmed CrossRef
  22. Lawrence T, Willoughby DA, Gilroy DW. Antiinflammatory lipid mediators and insights into the resolution of inflammation. Nature Reviews Immunology. 2002. 2: 787-795.
    Pubmed CrossRef
  23. Lee HJ, Ryu JH. Screening of leukotriene B4 receptor antaginist activity from the herbal drugs. Korean Journal of Pharmacognosy. 2000. 31: 273-279.
  24. Loncaric M, Strelec I, Moslavac T, Subaric D, Pavic V, Molnar M. Lipoxygenase inhibition by plant extracts. Biomolecules. 2021. 11: 152. doi:10.3390/biom11020152.
    Pubmed KoreaMed CrossRef
  25. Milando AC, Silva RL, Chu Z, Campochiaro PA, Pandey NB, Popel AS. Suppression of ocular vascular in詮괶mmation through peptide-mediated activation of angiopoietin-Tie2 signaling. International Journal of Molecular Sciences. 2020. 21: 5142. doi: 10.3390/ijms21145142.
    Pubmed KoreaMed CrossRef
  26. Natarajan R, Nadler JL. Lipid inflammatory mediators in diabetic vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology. 2004. 24: 1542-1548.
    Pubmed CrossRef
  27. Reilly KB, Srinivasan S, Hatley ME, Patricia MK, Lannigan J, Bolick DT, Vandenhoff G, Pei H, Natarajan R, Nadler JL, Hedrick CC. 12/15-Lipoxygenase activity mediates inflammatory monocyte /endothelial interactions and atherosclerosis in vivo. J Biol Chem. 2004. 279: 9440-9450.
    Pubmed CrossRef
  28. Reissig JL, Storminger JL, Leloir LF. A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem. 1995. 217: 959-966.
    Pubmed CrossRef
  29. Sahasrabundhe A. Deodhar, M. Anti-hyaluronidase, anti-elastase activity of Garcinia indica. International Journal of Botany. 2010. 6: 299-303.
    CrossRef
  30. Samuelsson B, Dahl챕n SE, Lindgren J, Rouzer CA, Serhan CN. Leukotrienes and lipoxins: Structures, biosynthesis, and biological effects. Science. 1987. 237: 1171-1176.
    Pubmed CrossRef
  31. Stirpe F, Corte ED. The regulation of rat liver xanthine oxidase. Journal of Biological Chemistry. 1969. 244: 3855-3861.
    Pubmed KoreaMed CrossRef
  32. Storch J, Ferber E. Detergent-amplified chemiluminescence of lucigenin for determination of superoxide anion production by NADPH oxidase and xanthine oxidase. Analytical Biochemistry. 1988. 169: 262-267.
    Pubmed CrossRef
  33. Yahaya YA, Don MM. Evaluation of Trametes lactinea extracts on the inhibition of hyaluronidase, lipoxygenase and xanthine oxidase activities in vitro. Journal of Physical Science. 2012. 23: 1-15.
  34. Yedgar S, Krimsky M, Cohen Y, Flower RJ. Treatment of inflammatory diseases by selective eicosanoid inhibition: A double-edged sword? Trends in Pharmacological Sciences. 2007. 28: 459-464.
    Pubmed CrossRef
  35. Ziegler DW, Hutchinson HD, Kissling RE. Induction of xanthine oxidase by virus infections in newborn mice. Infection and Immunity. 1971. 3: 237-242.
    Pubmed KoreaMed CrossRef