Search for


TEXT SIZE

search for



CrossRef (0)
Comparison of Saponin Content and Antioxidant Effect depending on the Processing Method of Codonopsis lanceolata
Biomed Sci Letters 2021;27:291-297
Published online December 31, 2021;  https://doi.org/10.15616/BSL.2021.27.4.291
© 2021 The Korean Society For Biomedical Laboratory Sciences.

Eun Young Kim1,* , Jeong Wook Jeon2,** and Kyung-Yae Hyun3,†,*

1Department of Biomedical Laboratory Science, Songho University, Hoengseong 25242, Korea
2R&D Center, Nutricare Co., Ltd., Hoengseong 25242, Korea
3Department of Clinical Laboratory Science, Dong-Eui University, Busan 47340, Korea
Correspondence to: *Professor, **Researcher.
Corresponding author: Kyung-Yae Hyun. Department of Clinical Laboratory Science, Dong-Eui University, Busan 47340, Korea.
Tel: 82-51-890-2683, Fax: +82-0505-182-6877, e-mail: kyhyun@deu.ac.kr
Received November 22, 2021; Revised December 1, 2021; Accepted December 1, 2021.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
Codonopsis lanceolata, called deodeok in Korean, has been verified for various effects, including anti-aging and antiinflammatory effects and insomnia improvement, and is one of the healthy foods that Koreans enjoy eating. In this study, the saponin content, lansemaside A content, and total saponin content of deodeok were analyzed using high-pressure sterilization and solid fermentation by mixed lactic acid bacteria. The antioxidant effect was compared to determine improved processing methods of deodeok. The lansemaside A content of deodeok samples depending on the preprocessing methods was analyzed: 2,594.10 mg/kg for dried deodeok, 2,100.93 mg/kg for steamed deodeok, and 1,151.31mg/kg for fermented deodeok. The total saponin content was found to be 7,209 mg/kg for dried deodeok and 8,605 mg/kg for steamed deodeok, showing a high saponin content. The total polyphenol content was highest for dried deodeok, steamed deodeok, and fermented deodeok. As for the antioxidant effect, it was analyzed that the effect of dried deodeok was the highest, followed by steamed deodeok and fermented deodeok; Dried deodeok had the highest value in total polyphenol content, not in total saponin content, which is considered to have a positive influence on its antioxidant effect. The content of lansemaside A was the highest for dried deodeok. When fermented deodeok is consumed, more beneficial effects on health can be expected by ingesting it with lactic acid bacteria cultured using saponins and polyphenols. Therefore, this study suggests the possibility of manufacturing products suitable for the needs of consumers, such as the flavor of deodeok, according to the processing methods.
Keywords : Codonopsis lanceolata, Deoduck, Lancemaside A, Total saponin, Total polyphenol content, Antioxidant effect
꽌 濡

꽭룷쓽 궛솕쟻 뒪듃젅뒪뒗 깮泥 궡 꽭룷궗怨쇱젙씠굹 뿬윭 솚寃쎌삤뿼 諛 솕븰臾쇱쭏쓽 끂異 벑뿉 쓽빐 깮꽦맂 怨쇱궛솕닔냼(hydrogen peroxide, H2O2), 븯씠뱶濡앹떆 씪뵒移(hydroxyl radicals, •OH) 벑쓽 솢꽦궛냼醫(reactive oxygen species, ROS)뿉 쓽빐 쑀諛쒕맂떎怨 븣젮졇 엳떎. 궛솕쟻 뒪듃젅뒪뒗 꽭룷泥대궡뿉 꽭룷留 넀긽怨, 吏吏 궛솕 벑쓣 珥덈옒븯뿬 븫, 떖옣吏덊솚, 뇤삁愿 吏덊솚怨 媛숈 留뚯꽦吏덊솚쓣 諛쒖깮븷 닔 엳湲 븣臾몄뿉 理쒓렐뿉 빆궛솕 솢꽦씠 넂怨 씤泥댁뿉 臾댄빐븳 꽦遺꾩쓣 李얠쑝젮뒗 떆룄媛 吏꾪뻾릺怨 엳떎(Jeon et al., 2013).

뜑뜒(Codonopsis lanceolata) 떎뀈깮 珥덈낯쓽 뜦援댁꽦 떇臾쇰줈 珥덈”苑껉낵뿉 냽븳떎. 뜑뜒 씪諛섏쟻쑝濡 슦由щ굹씪 쟾 吏뿭뿉꽌 옱諛곌 媛뒫븯怨 슦由щ굹씪肉먮쭔 븘땲씪 以묎뎅, 씪蹂, 벑吏뿉 遺꾪룷릺뼱 엳떎(Hwang et al., 2011). 뜑뜒 쟾넻쟻쑝濡 吏꾪빐, 嫄곕떞, 몢넻뿉 슚怨쇨 엳뒗 寃껋쑝濡 븣젮졇 엳怨, 븳諛⑹뿉꽌뒗 븳湲곗 뿴蹂, 寃쎈젴, 씤몢뿼 벑뿉 궗슜맂 泥쒖뿰 媛뺤옣젣濡쒕룄 옒 븣젮졇 엳쑝硫 理쒓렐뿉뒗 쁽씤뱾쓽 二쇱슂 愿떖씤 궗룷땶, 뤃由ы럹怨 媛숈씠 끂솕瑜 삁諛⑺븯뒗 빆궛솕꽦遺꾩쓣 룷븿븯怨 엳떎(Lee et al., 2002; Ichikawa et al., 2009; Jeon et al., 2013).

궗룷땶 뜑뜒쓽 몴쟻씤 빟슚꽦遺꾩쑝濡 븣젮졇 엳쑝硫 븳援궛 뜑뜒뿉 7醫낆쓽 궗룷땶씤 lacemaside A, lancemaside B, lancemaside C, lancemaside E, lancemaside G, foetidissimoside A, aster saponin Hb媛 議댁옱븯뒗 寃껋쑝濡 븣젮졇 엳떎(In et al., 2019). 洹 以 lacemasides A뒗 鍮꾨쭔 삁諛, 옣뿼 셿솕, 湲곗뼲젰 諛 遺덈㈃利 媛쒖꽑, 빆뿼利 벑뿉룄 슚怨쇨 엳뒗 寃껋쑝濡 蹂닿퀬릺怨 엳뼱 냼鍮꾩옄뱾쓽 愿떖씠 利앷븯뒗 異붿꽭씠떎(Hong et al., 2006). 삉븳 lancemaside A뒗 泥대궡뿉꽌 echinocystic acid濡 궗릺뒗뜲 씠뒗 echinocystic acid媛 빐留덈 옄洹뱁빐꽌 湲곗뼲愿젴 떊샇遺꾩옄쓽 씤궛솕 닔以쓣 利앷떆궎뒗 寃껋쑝濡 븣젮졇 엳떎(Lim, 2015). 씠 echinocystic acid뒗 씤吏湲곕뒫 옣븷쓽 몴쟻씤 吏덊솚씤 移섎ℓ瑜 媛쒖꽑븯뒗뜲 룄쓣 以 寃껋쑝濡 湲곕릺怨 엳떎(Jung et al., 2018).

뤃由ы럹 끃깋떇臾쇱쓽 愿묓빀꽦 옉슜뿉 쓽빐 깮꽦맂 씪遺쓽 떦씠 2李⑤궗궛臾쇰줈 踰ㅼ젨怨좊━(C6H6)쓽 닔냼 以 븯굹媛 닔궛떆濡 移섑솚맂 臾쇱쭏씤 럹씠 2媛 씠긽쓣 媛뽮퀬 엳뒗 臾쇱쭏씠떎. 怨쇱씪怨 빞梨, 李⑤쪟 媛숈 떇뭹뿉 븿쑀릺뼱 엳뒗 泥쒖뿰 솕빀臾쇰줈 옄쇅꽑, 솢꽦궛냼 벑怨 媛숈 쇅遺쓽 솚寃쎌쑝濡쒕꽣 蹂댄샇븯뒗 뿭븷쓣 븯뒗 떇臾쇱껜쓽 2李 궗궛臾쇰줈뜥 븣젮졇 엳떎. 뤃由ы럹 솕빀臾쇱씠 뭾遺븳 떇뭹 빆궛솕 빆洹 빆븫怨 愿젴맂 슚怨쇰 蹂댁뿬 옣湲곌컙 꽠痍⑦븯硫 떖삁愿 吏덊솚, 떦눊蹂, 떊寃 눜뻾꽦吏덊솚쓽 諛쒕퀝쓽 삁諛⑺슚怨쇰 굹궡뒗 寃껋쑝濡 븣젮졇 湲곕뒫꽦 떇뭹쑝濡 二쇰ぉ諛쏄퀬 엳떎(Jeong et al., 2017; Lee and Lee, 2018).

뜑뜒쓽 빟由 솢꽦 꽦遺꾩쓽 븿웾쓣 利앷떆궎湲 쐞븳 諛⑸쾿쑝濡 珥덇퀬븬, 諛쒗슚 벑쓽 媛怨듬갑踰 벑씠 뿰援щ릺怨 엳떎. 珥덇퀬븬 怨듭젙 鍮꾧뿴泥섎━ 媛怨듬갑踰뺤쑝濡 떇뭹쓽 蹂댁〈꽦, 臾쇱꽦 湲곕뒫꽦쓣 뼢긽떆耳 以 肉 븘땲씪 꽦遺꾩쓣 蹂꽦떆궎吏 븡怨 떊꽑媛먯쓣 쑀吏떆궗 닔 엳뒗 媛怨듦린닠濡 븣젮졇 엳떎(Bennett and Marquis, 1998; Shouqin et al., 2004; Deliza et al., 2005; Kim et al., 2010). 珥덇퀬븬 怨듭젙 떎瑜 떇뭹쓽 蹂댁〈꽦怨 湲곕뒫꽦쓣 뼢긽떆궗 닔 엳怨 븬젰쓣 씠슜빐 臾쇨낵 삤씪쓣 닚媛꾩쟻쑝濡 洹좎씪븯寃 쟾떖떆耳 떎瑜 怨듭젙뿉 鍮꾪빐 솕븰蹂솕媛 씪뼱굹吏 븡뒗떎. 떒떆媛 궡뿉 異붿텧븷 닔 엳怨, 遺덉닚臾쇱씠 쟻寃 嫄곗쓽 뾾뼱 怨좎닚룄쓽 떒씪 꽦遺 異붿텧臾쇱쓣 뼸쓣 닔 엳뒗 옣젏씠 엳떎(Park et al., 2010; Seo et al., 2011; Jeon et al., 2013).

諛쒗슚 怨듭젙 씪諛섏쟻쑝濡 誘몄깮臾쇱씠굹 洹좊쪟 벑쓣 씠슜빐 궗엺뿉寃 쑀슜븳 臾쇱쭏쓣 뼸뼱궡硫, 궛냼瑜 궗슜븯吏 븡怨 뿉꼫吏瑜 뼸뒗 떦 遺꾪빐怨쇱젙쑝濡 떇뭹쓽 뼢, 뭾誘, 議곗쭅媛먭낵 옣꽦쓣 뼢긽떆궓떎. 삉븳 떇뭹쓽 諛쒗슚怨쇱젙쓣 넻븯뿬 룆꽦臾쇱쭏 뙆愿, 깮由ы솢꽦 臾쇱쭏 깮궛 諛 냼솕꽦쓣 利앹쭊떆궎뒗 寃껋쑝濡 븣젮졇 엳떎(Lee et al., 2004; Kim et al., 2009). 뜑뜒쓽 媛怨 湲곗닠濡 二쇰줈 씠슜릺怨 엳뒗 珥덇퀬븬, 諛쒗슚 벑 빟由 솢꽦 꽦遺꾩쓽 븿웾쓣 利앷떆궎湲곕뒗 븯吏留, 珥덇퀬븬 怨듭젙 궛뾽솕 愿젏뿉꽌뒗 諛곗튂 엯쑝濡 젣議고븯뿬빞 븯硫, 愿由ъ뿉 엳뼱꽌 留롮 떆媛꾩씠 냼슂릺硫, 誘몄깮臾 삤뿼쓽 젙룄瑜 以꾩씪 닔 엳쑝굹 硫멸퇏怨 媛숈 슚怨쇰 媛졇삤吏 紐삵븯硫 吏꾧퇏瑜섏뿉 븳 愿由ъ뿉 뼱젮씠 엳쓣 닔 엳떎. 諛쒗슚 怨듭젙뿉꽌룄 뼱뼡 醫낃퇏쓣 궗슜븯뒓깘뿉 뵲씪 솢꽦 꽦遺꾩쓽 븿웾 李⑥씠瑜 媛졇삱 닔 엳뼱 떎뼇븳 떎뿕 議곌굔쓣 꽕젙븯뿬빞 븯뿬빞 븳떎(Kwak and Chang, 2001).

蹂 뿰援ъ뿉꽌뒗 씠윭븳 떒젏쓣 蹂댁셿븯怨좎옄 湲곗〈쓽 꽑뻾 뿰援ъ뿉꽌 궡렣蹂댁 븡 諛⑸쾿씤 怨좎븬硫멸퇏 諛⑸쾿怨 샎빀쑀궛洹좎뿉 쓽븳 怨좎껜 諛쒗슚 諛⑸쾿쓣 씠슜빐 理쒓렐뿉 二쇰ぉ 諛쏄퀬 엳뒗 뜑뜒 궗룷땶 lancemaside A 븿웾, 珥 궗룷땶 븿웾, 珥 뤃由ы럹 븿웾 遺꾩꽍 諛 빆궛솕 슚怨쇰 鍮꾧탳 遺꾩꽍븯뿬 빆궛솕 슚怨쇨 뼢긽맂 뜑뜒쓽 깉濡쒖슫 媛怨 怨듭젙쓽 媛뒫꽦쓣 솗씤븯怨좎옄 븯떎.

옱猷 諛 諛⑸쾿

떆빟 諛 옱猷

뜑뜒 媛뺤썝룄 슒꽦援 泥씪硫 냽삊쓣 넻븯뿬 2020뀈 7썡뿉 냽媛濡쒕꽣 닔留ㅽ븳 깮뜑뜒쓣 援щℓ븯떎. 李 뜑뜒怨 諛쒗슚 뜑뜒 떆猷뚮 留뚮뱾湲 쐞빐 援щℓ븳 뜑뜒 以묒뿉꽌 긽깭媛 뼇샇븳 깮뜑뜒 10媛쒕 꽑蹂꾪븯뿬 媛곴컖쓽 媛怨 怨듭젙쓣 嫄곗퀜꽌 理쒖쥌 遺꾨쭚 떆猷 삎깭濡 留뚮뱾뼱 샎빀븯뿬 궗슜븯떎.

嫄 뜑뜒 遺꾨쭚쓽 젣議

깮뜑뜒쓣 猿띿쭏쓣 젣嫄 썑 쓲瑜대뒗 臾쇱뿉 꽭泥 썑 뿴뭾嫄댁“븯뿬 嫄대뜑뜒쓣 留뚮뱾뿀떎. 嫄댁“맂 깮뜑뜒쓣 60℃뿉꽌 利앸쪟닔瑜 媛빐꽌 10떆媛꾩쓣 뿴닔異붿텧븯쑝硫 異붿텧븸쓣 뿬怨쇱(N0. 2, Whatman, Japan)쓣 궗슜븯뿬 뿬怨쇳븯쑝硫 긽벑븸쓣 媛먯븬냽異뺢린濡 냽異뺥븯쑝硫 냽異뺥븳 뜑뜒쓣 遺꾨쭚솕븯뿬 떎뿕뿉 궗슜븯떎.

李 뜑뜒 遺꾨쭚쓽 젣議

깮뜑뜒쓣 猿띿쭏쓣 젣嫄 썑 쓲瑜대뒗 臾쇱뿉 꽭泥 썑 121℃, 10遺꾩쓽 媛怨 議곌굔쑝濡 뜑뜒쓣 怨좎븬뿴泥섎━瑜 븯뿬 李먮뜑뜒쓣 留뚮뱾뿀떎. 씠瑜 50℃, 10떆媛 뿴뭾 嫄댁“瑜 넻븯뿬 理쒖쥌쟻쑝濡 嫄댁“ 삎깭쓽 뜑뜒쓣 뼸뼱 遺꾨쭚솕븯뿬 떎뿕뿉 궗슜븯떎. 씠뿉 븳 議곌뎔쑝濡쒖꽌 嫄대뜑뜒쓣 궗슜븯떎.

諛쒗슚 뜑뜒 遺꾨쭚쓽 젣議

깮뜑뜒쓣 猿띿쭏쓣 젣嫄 썑 쓲瑜대뒗 臾쇱뿉 꽭泥 썑 샎빀쑀궛洹좎쓣 깮뜑뜒 湲곗 1% (w/w) 쟻슜븯뿬 怨좎껜 諛쒗슚(40℃, 10떆媛)瑜 吏꾪뻾븯뿬 70℃, 5遺 뿴泥섎━븯뿬 씠瑜 50℃, 10떆媛 뿴뭾 嫄댁“瑜 넻븯뿬 理쒖쥌쟻쑝濡 嫄댁“ 삎깭쓽 쑀궛洹 怨좎껜 諛쒗슚 뜑뜒쓣 뼸뼱 遺꾨쭚솕븯뿬 떎뿕뿉 궗슜븯떎.

怨좎껜 諛쒗슚뿉 궗슜븳 쑀궛洹좎 쁽옱 삩씪씤 뙋留ㅻ릺怨 엳뒗 M궗쓽 由ъ뼹 移댁뒪뵾 洹몃┃슂嫄고듃 뒪꽣 젣뭹쓣 궗슜븯쑝硫, 뿬湲곗뿉뒗 二쇱슂 쑀궛洹좎쑝濡 Lactobacillus acidophilus, Bifidobacterium lactis, Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus plantarum쓣 룷븿븯怨 엳쑝硫, 嫄닿컯湲곕뒫떇뭹怨듭쟾쓽 嫄닿컯湲곕뒫떇뭹 떆뿕踰뺤뿉 뵲瑜 쑀궛洹 떎뿕 寃곌낵 35~37℃뿉꽌 쑀궛洹 닔뒗 1.9 * 107 cfu /g 닔以쑝濡 븿쑀릺뼱 엳뒗 샎빀쑀궛洹좎쑝濡 怨좎껜 諛쒗슚瑜 븯떎(Fig. 1).

Fig. 1. Mixed Lactobacillus colonies in the nutrient agar.

뜑뜒 떆猷뚯쓽 궗룷땶 lansemaside A 꽦遺 遺꾩꽍

꽦遺 遺꾩꽍쓣 쐞빐 LC-MS/MS 옣鍮(Thermo Scientific TSQ ALTIS, USA)瑜 솢슜븯떎. 뜑뜒 궗룷땶 lansemaside A 몴以臾쇱쭏 援由쎈냽뾽怨쇳븰썝쓣 넻븯뿬 援ы븯떎. 씠瑜 몴以썝븸 lansemaside A濡 젣議고븯怨, 珥 뤃由ы럹, 珥 궗룷땶 遺꾩꽍쓣 쐞븯뿬 3李 利앸쪟닔濡 媛곴컖쓽 떆猷뚮 異붿텧 썑 70% 硫뷀깂삱濡 떒怨 씗꽍븯뿬 理쒖쥌쟻쑝濡 0.2 μm 븘꽣濡 뿬怨쇳븯뿬 떆猷뚮 以鍮꾪븯떎. 씠 븣 궗슜븳 而щ읆 Waters BEH C18 (2.1 mm × 100 mm × 1.7 μm), 而щ읆 삤釉 삩룄뒗 40℃, injection volume 5 μL, 씠룞긽 70% A 슜留(0.1% Formic acid in water) 30% B 슜留(0.1% formic acid in Acetonitrile)濡 룊삎솕떆궓 ODS-AM C18 column (4.6 × 250 mm, 5 μm, YBM, USA)뿉 떆猷 5 μL瑜 二쇱엯븳 썑 쑀냽 01.0 mL/min瑜 쑀吏븯硫 슜留 B쓽 냽룄援щ같濡 슜異쒖떆耳곕떎. 슜異쒖“嫄댁 0 min : 70A/30B, 35 min : 60A/40B, 37 min : 60A/40B, 40 min : 70A/30B, 50 min : 70A/30B씠떎. 쑀냽 0.25 mL/min瑜 쑀吏븯硫 슜留 B쓽 냽룄援щ같濡 슜異쒖떆耳곕떎.

뜑뜒 떆猷뚯쓽 珥 궗룷땶 꽦遺 遺꾩꽍

뜑뜒쓽 珥 궗룷땶(total saponin) 遺꾩꽍踰뺤 뜑뜒쓣 40 硫붿돩 겕湲곕줈 遺꾩뇙븯뿬 궗룷땶 꽦遺꾩쓣 80% 硫뷀깂삱濡 異붿텧븯떎. 떆뿕슜븸 100 µL쓣 젙솗엳 痍⑦븯뿬 떆뿕愿뿉 꽔怨 뼹쓬臾 냽뿉꽌 8% 諛붾땺由-뿉깂삱 슜븸 0.3 mL怨 72% 솴궛 슜븸 4 mL쓣 泥④븯떎. 떆뿕愿쓣 60℃ 빆삩 닔議곗뿉 꽔怨 10遺꾧컙 媛삩븯뿬 궡슜븸쓣 諛쒖깋떆궓 썑 545 nm뿉꽌 遺꾧킅룄瑜 痢≪젙븯쑝硫 ginsenoside-Re瑜 몴以臾쇱쭏濡 궗슜븯떎.

떆猷뚯뿉 븿쑀릺뼱 엳뒗 珥 궗룷땶 븿웾(Y) 떎쓬 떇뿉 以븯뿬 怨꾩궛븯떎.

Y%=Y'×T/V/W×100

Y': 떆뿕슜븸쓽 遺꾧킅룄瑜 寃웾꽑뿉 엯븯뿬 援ы븳 뼇(mg)

T: 궗룷땶 異붿텧븸쓣 젙슜븳 遺뵾(mL)

V: 遺꾧킅룄 痢≪젙 떆 痍⑦븳 遺뵾(μL)

W: 떆猷 梨꾩랬웾(mg)

뜑뜒 떆猷뚯쓽 珥 뤃由ы럹 꽦遺 遺꾩꽍

珥 뵆씪럹 븿웾 Zhishen 벑 (Zhishen et al., 1999)怨 Singleton 벑 (Singleton et al., 1999)쓽 諛⑸쾿쓣 쓳슜븯뿬 痢≪젙븯떎. 媛 떆猷 20 μL瑜 sodium nitrite solution 75 μL 3李 利앸쪟닔 100 μL瑜 샎빀븯뿬 6遺꾧컙 諛섏쓳떆궎怨 aluminum chloride solution 20 μL瑜 泥④븯뿬 떎떆 5遺꾧컙 諛섏쓳떆궓 썑 1 M NaOH 40 μL 꽎뼱 510 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 몴以臾쇱쭏 quercetin쓣 궗슜븯뿬 떆猷뚯 룞씪븳 諛⑸쾿쑝濡 遺꾩꽍븯뿬 寃웾꽑쓣 옉꽦븳 썑 珥 뵆由ы럹 븿웾쓣 궛異쒗븯떎. 떎뿕 3쉶 諛섎났 닔뻾븯뿬 룊洹좉컪쓣 굹궡뿀떎.

뜑뜒 떆猷뚯쓽 빆궛솕 뒫젰 痢≪젙

DPPH뿉 븳 닔냼怨듭뿬 슚怨쇰줈 痢≪젙븯뒗 씪뵒移 냼嫄곕뒫 Blois (Blois, 1958)쓽 諛⑸쾿쓣 蹂삎븯뿬 痢≪젙븯떎. 씪젙 냽룄濡 씗꽍맂 떆猷 40 μL 1.5×10-4 M쓽 냽룄濡 DPPH瑜 absolute methanol뿉 씗꽍븳 슜븸 160 μL瑜 媛븯뿬 옒 샎빀븳 썑 븫냼뿉꽌 30遺꾧컙 諛섏쓳떆궓 썑 518 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 寃곌낵 媛믪 異붿텧臾 泥④援ъ 臾댁꺼媛援щ 鍮꾧탳븯뿬 씪뵒移쇱쓽 냼嫄고솢꽦쓣 諛깅텇쑉(%)濡 굹궡뼱 냽룄뿉 뵲瑜 DPPH 씪뵒移 냼嫄곕뒫쓣 솗씤븯떎.

Y%=W2W1/S×100

S: 떆猷 梨꾩랬웾(g)

W1: 냽異뺥뵆씪뒪겕쓽 臾닿쾶(g)

W2: 4.3.2뿉꽌 뼸 냽異뺥뵆씪뒪겕쓽 臾닿쾶(g)

寃곌낵 諛 怨좎같

뜑뜒 떆猷뚯쓽 쟾泥섎━뿉 뵲瑜 lansemaside A 븿웾怨 珥 궗룷땶 븿웾 遺꾩꽍

깮뜑뜒쓣 嫄대뜑뜒, 李먮뜑뜒, 諛쒗슚 뜑뜒쑝濡 媛곴컖 쟾泥섎━븯뿬 떆猷뚮 留뚮뱾뼱 怨좏삎遺 湲곗쑝濡 뜑뜒쓽 궗룷땶 lansemaside A 꽦遺꾩쓣 遺꾩꽍븯떎(Table 1). 뜑뜒 궗룷땶쑝濡쒖꽌 lansemaside A 嫄대뜑뜒 2,594.10 mg/kg, 李먮뜑뜒 2,100.93 mg/kg, 諛쒗슚뜑뜒 1,151.31 mg/kg쑝濡 遺꾩꽍릺뿀쑝硫, 嫄대뜑뜒, 李먮뜑뜒, 諛쒗슚뜑뜒 닚쑝濡 媛먯냼븯뒗 寃쏀뼢쓣 蹂댁떎. 씠뿉 빐꽌뒗 利 諛쒗슚 怨듭젙怨 뿴泥섎━ 怨듭젙쓣 넻빐꽌 lansemaside A뒗 떎瑜 삎깭濡 쟾솚씠 릺뒗 寃껋쑝濡 異붿젙빐蹂 닔 엳떎. 洹 씠쑀뒗 珥 궗룷땶 븿웾쓣 遺꾩꽍븯쓣 븣 諛쒗슚뜑뜒뿉꽌 5,057 mg/kg, 嫄대뜑뜒뿉꽌 7,209 mg/kg, 李먮뜑뜒뿉꽌 8,605 mg/kg 븿웾쑝濡 遺꾩꽍릺뿀쑝硫, 쟾泥댁쟻쑝濡 李먮뜑뜒쓽 珥 궗룷땶 븿웾씠 利앷븯뒗 寃쏀뼢쓣 蹂댁떎. lansemaside A媛 쟾泥섎━ 怨듭젙쓣 넻빐 떎瑜 궗룷땶 삎깭濡 쟾솚맂 寃껋쑝濡 쑀異뷀븷 닔 엳떎.

Contents of lancemaside A and total saponin by dried deouck, steamed deodeok, fermented deodeok

(mg/kg) Dried deodeok Fermented deodeok Steamed deodeok
Lancemaside A 2594.1 1151.31 2100.93
Total saponin 7,209 5,057 8,605


뜑뜒 떆猷뚯쓽 쟾泥섎━뿉 뵲瑜 珥 뤃由ы럹 븿웾 遺꾩꽍

뤃由ы럹 떇臾쇱쓽 몴쟻씤 씠李⑤궗궛臾쇰줈꽌 빆궛솕 옉슜, 빆洹 옉슜, 빆븣젅瑜닿린 諛 빆븫 슚怨쇱뿉 愿뿬븯뒗 寃껋쑝濡 븣젮졇 엳떎(Rice-Evans et al., 1997; Perron and Brumaghim, 2009). 媛怨 怨듭젙뿉 뵲瑜 뜑뜒 異붿텧臾쇱쓽 珥 뤃由ы럹 븿웾쓣 遺꾩꽍븳 寃곌낵 Table 2 媛숈씠 嫄대뜑뜒 > 李먮뜑뜒 > 諛쒗슚뜑뜒 닚쑝濡 넂寃 굹궗떎. 씠쟾뿉 媛怨듦났젙뿉 뵲瑜 뜑뜒 異붿텧臾쇱쓽 빆궛솕 솢꽦(Jeon et al., 2013)뿉 쓽븳 떎뿕 寃곌낵 쓽븯硫 깮뜑뜒蹂대떎 媛怨 泥섎━븳 뜑뜒뿉꽌 뤃由ы럹 븿웾씠 紐⑤몢 利앷븳떎뒗 蹂닿퀬 諛섎쓽 寃곌낵瑜 뼸뿀떎. 利, 諛쒗슚 怨듭젙怨 怨좎븬 뿴泥섎━ 議곌굔뿉 뵲씪 뤃由ы럹 븿웾 議곗젅 媛뒫븯떎怨 빐꽍릺뼱吏꾨떎. Table 3뿉 굹엳뒗 떇臾 쑀옒 異붿텧臾 125醫낆쓽 吏몴꽦遺꾩쓣 媛吏怨 嫄대뜑뜒, 李먮뜑뜒, 諛쒗슚뜑뜒뿉 빐 뤃由ы럹 醫낅쪟뿉 븳 뒪겕由щ떇쓣 븯떎. 洹 寃곌낵 Table 4뿉꽌 媛숈씠 吏몴꽦遺꾩쑝濡쒖꽌 겢濡쒕줈寃먯궛쓽 寃쎌슦 嫄대뜑뜒 > 李먮뜑뜒 > 諛쒗슚뜑뜒 닚쑝濡 븿웾씠 遺꾩꽍릺뿀떎. 떎瑜 뤃由ы럹쓽 吏몴꽦遺꾩쑝濡쒖꽌 嫄대뜑뜒뿉꽌 븿웾씠 넂 꽦遺꾩 移댄럹씤궛, 荑좊쭏由곗궛, 럹猷곕┃궛, 떆由곗쭅궛, 媛덈┃궛, 봽濡쒗넗移댄뀒痢꾩씡궛씠 긽쟻쑝濡 넂寃 굹궗怨, 諛쒗슚뜑뜒뿉꽌 븿웾씠 긽쟻쑝濡 넂 꽦遺꾩 뿤뒪럹由щ뵖씠 엳뿀쑝硫, 李먮뜑뜒뿉꽌 긽쟻쑝濡 넂 꽦遺꾩 궡由ъ떎由궛씠 엳뿀떎(Table 5).

Contents of total polyphenol by dried deouck, steamed deodeok, fermented deodeok

(mg/kg) Dried deodeok Fermented deodeok Steamed deodeok
Total polyphenol 5,548 3,761 4,480


Indicator ingredients of 125 plant derived extracts of dried deouck, steamed deodeok, fermented deodeok

No Ingredients No Ingredients No Ingredients
1 10-Hydroxy-2-decenoic acid 43 Epoxybergamottin 85 Naringin
2 3-Acetyl-11-koto-β-boswellic acid 44 Eupatilin 86 Narirutin
3 4-o-Feruloylquinic acid 45 Ferulic acid 87 Neohesperidin
4 β-Boswellic acid 46 Formononetin 88 Nodakenetin
5 D-Luciferin 47 GABA 89 Nodakenin
6 ε-Viniferin 48 Galangin 90 Nodosin
7 p-Coumaric acid 49 Gallic acid 91 Nordihydroguaiaretic acid
8 Acacetin 50 Ganoderic acid 92 Ombuoside
9 Aleuritic acid 51 Genistein 93 Oxymatrine
10 Allantoin 52 Genistin 94 Oxypeucedanin
11 Apigenin 53 Glycitein 95 Paeoniflorin
12 Artemisinin 54 Glycitin 96 Parthenolide
13 Artepillin C 55 Glycyrrhizin 97 Phloretin
14 Asiaticoside 56 Hamamelitannin 98 Phlorizin
15 Astragalin 57 Hesperidin 99 Phloroglucinol
16 Astragaloside IV 58 1Hispidulin 100 Pinocembrin
17 Baicalein 59 Honokiol 101 Poncirin
18 Baicalin 60 Hydroxy alpha Sanshool 102 Protocatechuic acid
19 Bakuchiol 61 Hyperforin 103 Pterostilbene
20 Berberine 62 Hyperoside 104 Quercetin
21 Bergamottin 63 Icariin 105 Resveratrol
22 Bergapten 64 Isopimpinellin 106 Rhamnetin
23 Biochanin A 65 Isoquercitrin 107 Rosavin
24 Bixin 66 Isosakuranetin 108 Rosmarinic acid
25 Byakangelicol 67 Kaempferol 109 Rut
26 Caffeic acid 68 Kakklide 110 Sakuranetin
27 Caffein 69 Kavain 111 Sakuranin
28 Capsaisin 70 Lancemaside A 112 Salicylic acid
29 Catechin 71 Leonurine 113 Sapindoside A
30 Chalcon 72 Levistilide A 114 Shikonin
31 Chlorogenic acid 73 Linarin 115 Silibinin
32 Cinnamic acid 74 Liquiritigenin 116 Sinapic acid
33 Curcumin 75 Liquiritin 117 Sophoridine
34 Daidzein 76 Loganin 118 Sulforaphane
35 Daidzin 77 Lovastatin 119 Syringic acid
36 Decursin 78 Lucidone B 120 Theobromine
37 Ellagic acid 79 Luteolin 121 Vanillic acid
38 Emodin 80 Madecassoside 122 Vitexin
39 Epicatechin 81 Magnolol 123 Withaferin A
40 Epicatechin gallate 82 Matrine 124 Withanolide
41 Epigallocatechin gallate 83 Myricetin 125 Xantotoxin
42 Epigallocatechin 84 Myricitrin


Contents of chlorogenic acid by dried deouck, steamed deodeok, fermented deodeok

Dried deodeok Fermented deodeok Steamed deodeok
Chlorogenic acid 255.66 43.69 199.37


Contents of each polyphenol by dried deouck, steamed deodeok, fermented deodeok

(mg/kg) Dried deodeok Fermented deodeok Steamed deodeok
Caffeic acid 2.83 1.16 1.64
p-coumaric acid 2.11 1.01 0.2
Ferulic acid 2.26 1.14 0.4
Salicylic acid 0.3 0.18 0.57
Syringic acid 1.24 0.63 0.43
Gallic acid 0.3 0 0
Hesperidin 0 0.66 0
Protocatechuic acid 2.49 1.01 1.4


뜑뜒 떆猷뚯쓽 쟾泥섎━뿉 뵲瑜 빆궛솕 슚怨 遺꾩꽍

Table 3쓽 떎뿕 寃곌낵뿉꽌 珥 뤃由ы럹, 珥앹궗룷땶쓽 李⑥씠뿉 쓽빐 빆궛솕슚怨쇰 鍮꾧탳빐 蹂대㈃ 빆궛솕슚怨쇨 媛옣 醫뗭 닚꽌濡쒖꽌 嫄대뜑뜒 > 李먮뜑뜒 > 諛쒗슚뜑뜒 닚꽌濡 굹궗쑝硫, 珥앹궗룷땶蹂대떎뒗 珥 뤃由ы럹쓽 븿웾씠 嫄대뜑뜒뿉꽌 媛옣 留롮븘꽌 빆궛솕슚怨쇱뿉 湲띿젙쟻쑝濡 옉슜븳 寃껋쑝濡 궗猷뚮맂떎(Table 6). 蹂 뿰援ш껐怨쇱뿉 뵲瑜대㈃ 뜑뜒쓣 꽠痍⑦븯뒗 諛⑸쾿쑝濡 嫄대뜑뜒씠 빆궛솕슚怨 痢〓㈃뿉꽌 媛옣 슚怨쇨 醫뗭쓣 寃껋쑝濡 蹂댁씤떎. 嫄대뜑뜒 떎瑜 뜑뜒蹂대떎 빆궛솕 슚怨쇨 넂븘 뜑뜒쓣 꽠痍⑦븯嫄곕굹 媛怨듯븷 븣 삉뒗 蹂댁〈꽦쓣 利앷떆뒗 諛⑸쾿쑝濡쒖꽌 嫄댁“떆궎뒗 諛⑸쾿쓣 씠슜븯硫 뜑 嫄닿컯뿉 쑀슜븳 떇뭹씠 맆 寃껋씠떎. 利, 嫄닿컯湲곕뒫떇뭹 냼옱濡 嫄대뜑뜒쓣 遺꾨쭚 삎깭濡 씠슜븯뿬 샇씉湲곗쭏솚쓣 삁諛⑺븯怨 씤吏뒫젰쓣 媛쒖꽑떆궗 닔 엳쓣 寃껋씠떎.

Contents of DPPH by dried deouck, steamed deodeok, fermented deodeok

Dried deodeok Fermented deodeok Steamed deodeok
DPPH (%) 1.8% 6.8% 4.8%

Abbreviation: DPPH, α-diphenyl-β-picrylhydrazyl



삉븳 lansemaside A媛 嫄대뜑뜒뿉꽌 媛옣 븿웾씠 넂 諛섎㈃ 珥 궗룷땶 븿웾 李먮뜑뜒뿉꽌 넂떎뒗 寃껋 怨좎븬뿴泥섎━ 議곌굔뿉꽌 꽭留덉궗씠뱶 A媛 떎瑜 궗룷땶 삎깭濡 쟾솚맂 寃껋쑝濡 쑀異뷀븷 닔 엳떎. 씠썑 뜑 留롮 뿰援щ 넻븯뿬 뜑뜒쓣 怨좎븬뿴泥섎━瑜 뻽쓣 寃쎌슦 利앷릺뒗 궗룷땶 以 쑀슜븳 궗룷땶쓣 꽑蹂꾪븯뿬 깉濡쒖슫 떇뭹 냼옱 吏몴臾쇱쭏濡쒖꽌 媛쒕컻븷 닔 엳쓣 寃껋씠떎.

諛쒗슚怨듭젙쓣 넻빐 lansemaside A, 珥앹궗룷땶, 珥앺뤃由ы럹 븿웾씠 紐⑤몢 媛먯냼븳떎뒗 寃껋쓣 蹂 뿰援ъ쓽 寃곕줈 븣 닔 엳벏씠 듅젙 쑀궛洹좎뿉 쓽빐 뜑뜒 궗룷땶怨 뤃由ы럹씠 궗슜맂 寃껋쑝濡 궗猷뚮맂떎. 利, 諛쒗슚뜑뜒쓣 꽠痍 떆 궗룷땶怨 뤃由ы럹쓣 씠슜븯뿬 諛곗뼇맂 쑀궛洹좎쓣 븿猿 꽠痍⑦븿쑝濡쒖뜥 嫄닿컯뿉 쑀슜븳 슚怨쇰 湲곕븷 닔 엳쓣 寃껋씠떎. 삉븳 씪긽 깮솢뿉꽌 뜑뜒쓣 돺寃 씠슜븷 닔 엳뒗 諛⑸쾿쑝濡쒖뜥 怨좎쑀쓽 媛뺥븳 뜑뜒 뭾誘몃 醫뗭븘븯吏 븡뒗 냼鍮꾩옄뿉寃 룄쓣 以 닔 엳쑝硫, 遺뱶윭슫 臾쇱꽦쓣 媛吏 떇뭹씠 媛쒕컻맆 닔 엳떎뒗 寃껋쓣 떆궗븯怨 엳떎.

뜑뜒쓽 쑀슜꽦遺꾩쓣 利앸떆궎湲 쐞븳 媛怨듬갑踰뺤쑝濡쒖꽌 怨좎븬泥섎━ 諛쒗슚 怨듭젙뿉 빐꽌뒗 怨듭젙 理쒖쟻솕瑜 넻븳 異붽 뿰援ш 븘슂븯떎怨 깮媛곹븳떎.

ACKNOWLEDGEMENT

This work was supported by the research fund of Songho University (SH-2020-A).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

References
  1. Bennett PB, Marquis RE. High pressure biology and medicine. 1998. pp. 1-428. University of Rochester Press. New York, NY, USA.
  2. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958. 181: 1199-1200.
    CrossRef
  3. Deliza R, Rosenthal A, Abadio F, Silva CH, Castillo C. Application of high pressure technology in the fruit juice processing: Benefits perceived by consumers. Journal of Food Engineering. 2005. 67: 241-246.
    CrossRef
  4. Hong WS, Lee JS, Ko SY, Choi YS. A study on the perception of Codonopsis lanceolata dishes and the development of Codonopsis lanceolata dishes. Korean Journal of Food and Cookery Science. 2006. 22: 181-192.
  5. Hwang CR, Oh SH, Kim HY, Lee SH, Hwang IG, Shin YS, Lee JS, Jeong HS. Chemical composition and antioxidant activity of deoduk (Codonopsis lanceolata) and doragi (platycodon grandiflorum) according to temperature. Journal of the Korean Society of Food Science and Nutrition. 2011. 40: 798-803.
    CrossRef
  6. Ichikawa M, Ohta S, Komoto N, Ushijima M, Kodera Y, Hayama M, Shirota O, Sekita S, Kuroyanagi M. Simultaneous deter-mination of seven saponins in the roots of Codonopsis lanceolata by liquid chromatography-mass spectrometry. Journal of Natural Medicines. 2009. 63: 52-57.
    Pubmed CrossRef
  7. In SU, Min JL, Ju HN, Il RR. Effects of Additional Fertilization after Cultivating Green Manure Crops on the Growth and Saponin Content of Codonopsis lanceolata Trautv. Korean J Medicinal Crop Sci. 2019. 27: 1-8.
    CrossRef
  8. Jeong IH, Oh MS, Jeon JS, Kim HT, Hong SR, Park KH, Yoon MH. A Comparative Study on Anthocyanin and Polyphenol Contents in Colored Agricultural Products. Journal of Food Hygiene and Safety. 2017. 32: 371-380.
    CrossRef
  9. Jeon SM, Kim SY, Kim IH, Go JS, Kim HR, Jeong JY, Lee HY, Park DS. Antioxidant activities of processed deoduck (Codonopsis lanceolata) extracts. J Korean Soc Food Sci Nutr. 2013. 42: 924-932.
    CrossRef
  10. Jung WY, Kim H, Jeon SJ, Park HJ, Choi HJ, Kim NJ, Kim DH, Jang DS, Ryu JH. Eclalbasaponin ii ameliorates the cognitive impairmentinduced by cholinergic blockade in mice. Neurochemical Research. 2018. 43: 351-362.
    Pubmed CrossRef
  11. Kim GY, Yang YS, Youn JY, Lee CJ, Jeon JW, Jung OS, Choi YH. Theory and Practice of Fermented Food. 2009. pp. 12. Kyomunsa. Seoul, Korea.
  12. Kim NY, Chae HS, Lee IS, Kim DS, Seo KT, Park SJ. Analysis of Chemical Composition and Antioxidant Activity of Codonopsis lanceolata Skin. J Korean Soc Food Sci Nutr. 2010. 11: 1627-1633.
    CrossRef
  13. Kwak YS, Chang JK. Effect of various sterilization methods on growth of microorganism contaminated in ginseng powder. Journal of Food Hygiene and Safety. 2001. 16: 221-226.
  14. Lee KT, Choi J, Jung WT, Nam JH, Jung HJ, Park HJ. Structure of a new echinocystic acid bisdesmoside isolated from Codonopsis lanceolata roots and the cytotoxic activity of prosapogenins. Journal of Agricultural and Food chemistry. 2002. 50: 4190-4193.
    Pubmed CrossRef
  15. Lee SB, Go GH, Yang JY, Oh SH, Kim JG. Fermented food. 2nd. 2004. pp. 3. Kyomunsa. Seoul, Korea.
  16. Lee SY, Lee HS. The roles of dietary polyphenols in brain neuromodulation, Journal of Life Science. 2018. 28: 1386-1395.
    Pubmed CrossRef
  17. Lim TK. Edible medicinal and non-medicinal plants. 2015. pp. 1036. 1036. Springer Dordrecht Heidelberg. New York, USA.
    CrossRef
  18. Park SJ, Park, Park DS, Lee SB, He XL, Ahn JH, Yoon WB, Lee HY. Enhancement of Antioxidant Activities of Codonopsis lanceolata and Fermented Codonopsis lanceolata by Ultra High Pressure Extraction. J Korean Soc Food Sci Nutr. 2010. 39: 1898-1902.
    CrossRef
  19. Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys. 2009. 53: 75-100.
    Pubmed CrossRef
  20. Rice-Evans C, Miller N, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997. 2: 152-159.
    CrossRef
  21. Seo YC, Choi WY, Kim JS, Cho JS, Kim YO, Kim JC, Lee HY. Enhancement of Anticancer Activities from Lithospermum erythrorhizon Extracts by Ultra High Pressure Process. Korean J. Medicinal Crop Sci. 2011. 19: 103-110.
    CrossRef
  22. Shouqin Z, Junjie Z, Changzhen W. Novel high pressure extraction technology. International Journal of Pharmaceutics. 2004. 278: 471-474.
    Pubmed CrossRef
  23. Singleton VL, Orthofer R, Lamuela-Ravent똲 RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999. 299: 152-178.
    CrossRef
  24. Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999. 64: 555-559.
    CrossRef