Search for


TEXT SIZE

search for



CrossRef (0)
Meta-Analysis of Effect in Serum Bio-Markers for Early Diagnosis: Rheumatoid Arthritis
Biomed Sci Letters 2021;27:298-309
Published online December 31, 2021;  https://doi.org/10.15616/BSL.2021.27.4.298
© 2021 The Korean Society For Biomedical Laboratory Sciences.

Myoung Soo Woo1,* , Sora Mun2,** and Hee-Gyoo Kang2,†,*

1Department of Biomedical Laboratory Science, Jeonju Kijeon College, Jeonju 54989, Korea
2Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam 13135, Korea
Correspondence to: *Professor, **Researcher fellow.
Corresponding author: Hee-Gyoo Kang. Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam 13135, Korea.
Tel: +82-31-740-7303, Fax: +82-31-740-7303, e-mail: kanghg@eulji.ac.kr
Received November 16, 2021; Revised December 12, 2021; Accepted December 13, 2021.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
Rheumatoid arthritis refers to acute and chronic arthritis due to unexplained autoantibody attack. Rheumatoid arthritis should be accompanied by difficulty in mobility and severe distress due to the progression of systemic arthritis. Therefore, this study early diagnoses the effects of Rheumatoid factor (RF), C-reactive protein (CRP), and Anti-cyclic citrullinated peptide (Anti-CCP), which are typical serum markers for rheumatoid arthritis by meta-analysis. Pubmed and EMBASE, were used as PICO criteria, and two independent researchers selected papers according to the criteria set in this study. The selection criteria was a study of patients with rheumatoid arthritis who developed early onset, and the paper was evaluated using the NCS. Forest plot and Funnel plot graphs for each serum marker were calculated using Revman 5.4. After finding 193 papers on Pubmed and 184 papers on EMBASE and selecting according to the criteria, a total of 41 papers were used for the analysis. The magnitude of the effect that appears in the Forest plot of RF with the Mean differnce value is 134.34, CRP is 21.42 and Anti-CCP is 270.41. The magnitude of the effect of Anti-CCP in meta-analysis was analyzed to be larger than that of RF and CRP, and it is considered that the development of early-diagnosis serum markers using Anti-CCP and additional retrospective studies are highly effective. The combination of RF, CRP, and Anti-CCP as a panel marker is expected to be very efficient.
Keywords : Arthritis, Rheumatoid; Rheumatoid factor; C-reactive protein; Anti-CCP
꽌 濡

瑜섎쭏떚뒪 愿젅뿼 썝씤 遺덈텇紐낆쓽 옄媛빆泥 怨듦꺽쑝濡 씤븳 湲됱꽦 諛 留뚯꽦 愿젅뿼쓣 쓽誘명븯硫, 愿젅뿼뿉 쓽븳 씠룞꽦 뼱젮怨 넻利 닔諛섏쑝濡 씤빐 궣쓽 吏덉씠 븯맂떎(Mun et al., 2018). 삉븳, 愿젅 뿼利앹쓽 吏꾪뻾쑝濡 씤빐 쟾떊 愿젅뿼쑝濡 吏꾪뻾릺뼱 洹뱀떖븳 怨좏넻씠 닔諛섎맂떎. 뵲씪꽌, 쁽옱源뚯 슚怨쇱쟻씤 移섎즺諛⑸쾿씠 議댁옱븯吏 븡븘 湲고 留뚯꽦 吏덊솚怨 媛숈씠 議곌린 吏꾨떒 諛 愿由щ 넻븳 吏덊솚 吏꾪뻾쓣 理쒖냼솕 븯뿬빞 븳떎(Lee and Lee, 2020).

瑜섎쭏떚뒪 愿젅뿼 吏꾨떒뿉 궗슜릺뒗 몴쟻씤 삁泥 留덉빱쓽 醫낅쪟뒗 RF, CRP, Anti-CCP씠떎(Mun et al., 2021). RF뒗 瑜섎쭏떚뒪 愿젅뿼 솚옄 삁泥뿉꽌 議곌뎔뿉 鍮꾪빐 利앷릺硫, 遺遺 瑜섎쭏떚뒪 愿젅뿼 뿰援ъ뿉꽌 議곌뎔쑝濡 蹂댄넻 궗슜맂떎(Shen et al., 2015). 洹몃윭굹, 瑜섎쭏떚뒪 愿젅뿼 솚옄媛 븘떂뿉룄 RF媛 利앷븯뒗 寃쎌슦룄 엳떎(Nell et al., 2005). CRP뒗 泥대줈 떒룆쑝濡 궗슜릺湲 蹂대떎뒗 CRP level 媛믨낵 쁺긽 吏꾨떒 寃곌낵瑜 議고빀븳 Disease Activity Score 28-CRP (DAS28-CRP) 湲곗씠 궗슜맂떎(Aletaha et al., 2010). 洹몃윭굹, CRP룄 떎瑜 뿼利 吏덊솚뿉꽌룄 利앷븯誘濡 瑜섎쭏떚뒪 愿젅뿼쓽 吏꾨떒 듅씠룄뒗 留ㅼ슦 뼥뼱吏꾨떎(Otterness, 1994). Anti-CCP뒗 떆듃猷곕┛솕맂 떒諛깆쭏뿉 븳 옄媛빆泥대 쓽誘명븯硫, 媛옣 誘쇨컧룄 듅씠룄媛 넂 寃껋쑝濡 븣젮졇 엳떎(Mimori, 2005).

씠踰 끉臾몄쓽 紐⑹쟻 떎젣 異쒗뙋릺뼱 議곌린 吏꾨떒맂 瑜섎쭏떚뒪 愿젅뿼쓽 RF, CRP, Anti-CCP쓽 뿰援 뜲씠瑜 諛뷀깢쑝濡 븯뿬 媛 삁泥 留덉빱뱾쓽 슚怨쇰 鍮꾧탳 遺꾩꽍븯怨, 硫뷀遺꾩꽍 寃곌낵瑜 넗濡 븯뿬 뼢썑 議고빀 留덉빱쓽 以묒슂꽦怨 醫 뜑 떎뼇븯怨 꽭諛븳 긽옄 듅꽦뿉 遺빀븳 吏덊솚 留덉빱쓽 썑뼢쟻 뿰援ъ쓽 븘슂꽦쓣 젣떆븯怨좎옄 븳떎.

옱猷 諛 諛⑸쾿

臾명뿄 寃깋踰 諛 臾명뿄 뒪겕由щ떇 湲곗

臾명뿄 닔吏묎낵 쟾泥 怨쇱젙 Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)뿉꽌 젣떆븳 泥닿퀎쟻 臾명뿄怨좎같 蹂닿퀬吏移⑥뿉 洹쇨굅븯뿬 떎떆븯떎(Page et al., 2021). 蹂 뿰援ъ뿉꽌뒗 PICO 뼇떇(Participants, Intervention, Comparisons, Outcomes)쓣 씠슜븳 뿰援 二쇱젣瑜 꽕젙븯떎. 슦꽑 떎뿕援(Participants)쓣 議곕컻꽦 瑜섎쭏떚뒪 愿젅뿼 吏꾨떒쓣 諛쏆 꽦씤씠떎. 以묒옱 鍮꾧탳以묒옱(Intervention, Comparisons)뒗 蹂 뿰援ъ 愿젴씠 뾾뼱 꽕젙븯吏 븡븯떎. 寃곌낵(Outcomes)뒗 瑜섎쭏떚뒪 愿젅뿼援곌낵 議곌뎔쓽 삁泥 留덉빱웾씠떎.

蹂 뿰援ъ뿉꽌 븰닠 DB 寃깋 Pubmed EMBASE瑜 湲곗쑝濡 臾명뿄 寃깋쓣 븯떎. 2媛쒖쓽 DB 紐⑤몢 쁺뼱濡 맂 臾명뿄쑝濡 젣븳븯쑝硫 寃깋 湲곌컙 2011뀈 1썡遺꽣 2021뀈 5썡 21씪 源뚯濡 븯떎. Anti-CCP Pubmed 寃깋떇 "Rheumatoid arthritis" AND "rheumatoid factor" AND "anti-CCP" AND "ELISA" 洹몃━怨 샃뀡뿉꽌 'human'쓣 꽑깮븯怨, EMBASE 寃깋떇('rheumatoid arthritis'/exp OR 'rheumatoid arthritis') AND ('rheumatoid factor'/exp OR 'rheumatoid factor') AND 'anti-ccp' AND ('elisa/exp' OR 'elisa') 洹몃━怨 샃뀡뿉꽌뒗 'human'怨 'articlé쓣 꽑깮븯떎. CRP Pubmed 寃깋떇 "Rheumatoid arthritis" AND "rheumatoid factor" AND "C-reactive protein" AND "ELISA" 洹몃━怨 샃뀡뿉꽌 'human'쓣 꽑깮븯怨, EMBASE 寃깋떇('rheumatoid arthritis'/exp OR 'rheumatoid arthritis') AND ('rheumatoid factor' /exp OR 'rheumatoid factor') AND ('c-reactive protein/exp' OR 'c-reactive protein') AND ('elisa/exp' OR 'elisa') 洹몃━怨 샃뀡뿉꽌뒗 'human'怨 'articlé쓣 꽑깮븯떎. 寃깋맂 臾명뿄 꽌吏 봽濡쒓렇옩(Endnote 20)쓣 씠슜븯뿬 以묐났맂 臾명뿄쓣 젣嫄 븯怨, 1李⑤줈 젣紐⑷낵 珥덈줉쓣 넻븯뿬 '瑜섎쭏떚뒪 愿젅뿼'怨 '삁泥 留덉빱'쓽 궎썙뱶媛 룷븿맂 끉臾몄쓣 뒪겕由щ떇 븳떎. 2李⑤줈 full text 끉臾몄씠 뾾뒗 寃껋 젣쇅븯怨 full text 끉臾몄씠씪룄 ELISA 寃곌낵濡 굹궡吏 븡뒗 끉臾몄 紐⑤몢 젣쇅븯떎. 씠 諛⑸쾿 2紐낆쓽 룆由쎌쟻씤 由щ럭뼱 뿭븷濡 븯뿬 빀쓽 吏꾪뻾븯떎.

臾명뿄 吏덊룊媛

New castle Ottawa Score (NOS)-Case Control protocol쓣 湲곗쑝濡 븯뿬 2紐낆쓽 뿰援ъ옄뿉 쓽빐 룆由쎌쟻씤 끉臾 룊媛瑜 떆뻾븯떎(Table 1). Selction case 꽑깮쓽 湲곗씠 룆由쎌쟻 삉뒗 몴꽦쓣 媛뽯뒗吏 Control쓽 꽑젙 諛 젙쓽媛 젙솗븳吏뿉 븳 룊媛씠떎. 씠 遺꾩빞뿉꽌 理쒕 4媛 蹂꾩젏쓣 뼸쓣 닔 엳떎. Comparability뒗 Control 鍮 떎뿕 뀒뒪듃쓽 닔瑜 쓽誘명븳떎. 理쒕 2媛 蹂꾩젏쓣 뼸쓣 닔 엳떎. Exposure뒗 case, Control쓽 湲곕줉, 룊媛 벑씠 뼵湲됰릺뼱 엳뒗吏뿉 븳 룊媛씠떎. 씠 遺꾩빞뿉꽌뒗 理쒕 4媛 蹂꾩젏쓣 뼸쓣 닔 엳떎(Wells et al., 2000).

Quality assessment by NOS (New castle-Ottawa Score) for included studies

Study Selection Comparability Exposure
Is the case definition adequate Representativeness of the cases Selection of controls Definition of controls Comparability of cases and controls on the basis of the design or analysis Ascertainment of exposure Same method of ascertainment for case and controls Non-Response rate
Ahlin 2015 * * * ** * *
Aiman 2020 * * ** * *
Anaparti 2019 * * * ** * *
Shazly 2014 * * * * * *
El-Banna 2014 * * * ** * *
Guo 2015 * * ** * *
Hasemi 2018 * * * ** * *
Henandez 2017 * * * ** * *
Iranshahi 2019 * * * ** * *
Janssen 2015 * * * ** * *
Konda 2017 * * * ** * *
Liao 2011 * * * * *
Meyer 2018 * * * ** * *
Nass 2017 * * * * ** * *
Okada 2011 * * * ** * *
Reyes-perez 2019 * * * * ** * *
Shakiba 2014 * * * ** * * *
Wei 2020 * * * ** * *
Zeng 2020 * * * ** * *
Abdul makoud 2017 * * * ** * *
Anaparti 2021 * * * * ** * *
Aslanalp 2020 * * * ** * *
Cao 2019 * * * ** * *
Giles 2015 * * ** * *
Guan 2019 * * * ** * *
HADINEDOUSHAN 2016 * * * * ** * *
Hussein 2021 * * * ** * *
Kahn 2012 * * * ** * *
Mohan 2017 * * * ** * *
Lazm 2018 * ** * *
Li 2019 * * * ** * *
Maksymowych 2014 * * * ** * *
Mohamed 2019 * * * ** * *
Narayan 2019 * * * ** * *
Ozkan 2012 * * * ** * **
Ramwadhdoebe 2019 * * * ** * *
Rykova 2017 * * * ** * *
Shen 2014 * * * ** * *
Shrivastava 2015 * * * ** * *
Tuncer 2019 * * * ** * *
Yan 2019 * * ** * *
Yang 2015 * * * ** * *


뜲씠 異붿텧諛⑸쾿

紐⑤뱺 異붿텧맂 뜲씠뒗 議곌린 瑜섎쭏떚뒪 愿젅뿼 솚옄 긽쓽 寃곌낵留뚯쑝濡 젣븳븯쑝硫, ELISA 寃곌낵뿉꽌 異붿텧븯떎. RF쓽 떒쐞 IU/mL, U/mL, CRP쓽 떒쐞 mg/L, Anti-CCP쓽 떒쐞 IU/mL, U/mL濡 넻씪맂 寃껋쓣 꽑깮븯떎. 紐뉖챺 끉臾몄뿉꽌뒗 援젣 넻씪 湲곗 떒쐞濡 몴떆븯吏 븡 寃껋 紐⑤몢 젣쇅 븯떎(Table 2).

Characteristics of study data included in the meta-analysis

Study Sample Test Control (n) RA*** (n) Anti-CCP (SD*) RF¶¶ (SD) CRP¶¶¶ (SD)
Ahlin 2015 (Åhlin et al., 2015) Serum ELISA 93 19 Con**: 51 U/mL Con: 20 IU/mL
RA: 1,265 U/mL RA: 239 IU/mL
Aiman 2020 (Aiman et al., 2020) Serum ELISA 78 135 Con: 2.64 (0.49) IU/mL Con: 25.36 (3.12) IU/mL
RA: 31.34 (5.63) IU/mL RA: 116.79 (16.23) IU/mL
Anaparti 2019 (Anaparti et al., 2019) Serum ELISA 77 56 Con: 42.6 (86.72) U/mL Con: 61.5 (221.16) IU/mL FDR: 4.8 (4.51) mg/L
RA: 169.1 (109) U/mL RA: 563.6 (806) IU/mL RA: 10.82 (15.2) mg/L
Shazly 2014 (El Shazly et al., 2014) Serum ELISA 30 50 Con: 1.72 (1.104) U/mL
RA: 252.63 (284.51) U/mL
El-Banna 2014 (El-Banna and Jiman-Fatani, 2014) Serum ELISA 90 120 Con: 4.41 (1.20) IU/mL Con: 13.5 (21) IU/mL
RA: 62.54 (21.22) IU/mL RA: 149.34 (64.30) IU/mL
Guo 2015 (Guo et al., 2015) Serum ELISA 10 23 Con: 4 (2) U/mL Con: 15 (10) IU/mL
RA: 200 (15) U/mL RA: 135 (10) IU/mL
Hasemi 2018 (Hashemi et al., 2018) Serum ELISA 240 240 Con: 1.82 (0.97) U/mL
RA: 72.05 (19.44) U/mL
Hernandez 2017 (Hernández-Bello et al., 2017) Serum ELISA 240 240 Con: 1.52 U/mL Con: 14 UI/mL
RA: 57.5 U/mL RA: 129 UI/mL
Iranshahi 2019 (Iranshahi et al., 2019) Serum ELISA 42 47 Con: 5.074 (24.53) U/mL Con: 0 UI/mL
RA: 82.687 (85.641) U/mL RA: 1 UI/mL
Janssen 2015 (Janssen et al., 2015) Serum ELISA 36 86 Con: 2 U/mL Con: 2 IU/mL Con: 0.4 mg/L
RA: 1,000 U/mL RA: 500 IU/mL RA: 1.9 mg/L
Konda 2017 (Konda Mohan et al., 2017) Serum ELISA 200 200 Con: 2.83 (5.58) U/mL Con: 25.98 (40.67) U/mL
RA: 68.2 (100.85) U/mL RA: 205.66 (234.11) U/mL
Liao 2011 (Liao et al., 2011) Serum ELISA 24 95 Con: 12.7 (2.7) U/mL
RA: 2185 (4533.9) U/mL
Meyer 2018 (Meyer et al., 2018) Serum ELISA 29 75 Con: 6 U/mL
RA: 494 U/mL
Nass 2017 (Nass et al., 2017) Serum ELISA 92 210 Con: 10 U/mL Con: 5 U/mL
RA: 160 U/mL RA: 10 U/mL
Okada 2011 (Okada et al., 2011) Serum ELISA 38 80 Con: 0.6 U/mL RA: 148.6 (29.4) IU/mL
RA: 250 U/mL
Reyes-perez 2019 (Reyes-Pérez et al., 2019) Serum ELISA 80 20 Con: 0.4 U/mL Con: 5.7 U/mL
RA: 149.1 U/mL RA: 90.2 U/mL
Shakiba 2014 (Shakiba et al., 2014) Serum ELISA 399 418 Con: 18.5 U/mL
RA: 68.9 U/mL
Wei 2020 (Wei et al., 2020) Serum ELISA 45 41 Con: 16.2 (10.9) IU/mL Con: 4.9 (3.8) mg/L
RA: 580.2 (950.2) IU/mL RA: 57.5 (61.2) mg/L
Zeng 2020 (Zeng et al., 2020) Serum ELISA 77 113 Con: 17.78 U/mL Con: 13.63 U/mL
RA: 104.53 U/mL RA: 91.51 U/mL
Abdul maksoud 2017 (Abdul-Maksoud et al., 2017) Serum ELISA 100 100 Con: 10 U/mL Con: 23 IU/mL Con: 10 mg/L
RA: 120 U/mL RA: 150 IU/mL RA: 34 mg/L
Anaparti 2021 (Anaparti et al., 2021) Serum ELISA 64 50 Con: 63.52 (94.79) U/mL Con: 58.83 (240.8) IU/mL Con: 6.23 (7.28) mg/L
RA: 222.4 (107.6) U/mL RA: 472.6 (770.2) IU/mL RA: 13.28 (16.4) mg/L
Aslanalp 2020 (Aslanalp et al., 2020) Serum ELISA 20 40 Con: 20.0 (0) U/mL Con: 9.0 (0) IU/mL Con: 2.2 (0.5) mg/L
RA: 249.8 (208.8) U/mL RA: 136.2 (203.9) IU/mL RA: 7.6 (6.7) mg/L
Cao 2019 (Cao et al., 2019) Serum ELISA 30 30 Con: 10.4 IU/mL Con: 3.1 mg/L
RA: 92.6 IU/mL RA: 20.43 mg/L
Giles 2015 (Giles et al., 2015) Serum ELISA 198 195 Con: 2.3 mg/L
RA: 2.5 mg/L
Guan 2019 (Guan et al., 2019) Serum ELISA 40 94 Con: 3.0 U/mL Con: 20.0 IU/mL
RA: 395.7 U/mL RA: 140.5 IU/mL
HADINEDOUSHAN 2016 (Hadinedoushan et al., 2016) Serum ELISA 90 90 Con: 9.11 (2.33) IU/mL
RA: 15.42 (8.69) IU/mL
Hussein 2021 (Hussein et al., 2021) Serum ELISA 50 50 Con: 10 (4.4) U/mL Con: 6 (1.4) IU/mL
RA: 187.25 (165.98) U/mL RA: 150.63 (128.61) IU/mL
Kahn 2012 (Khan et al., 2012) Serum ELISA 25 24 Con: 4 mg/L
RA: 63 mg/L
Mohan 2017 (Konda Mohan et al., 2017) Serum ELISA 200 200 Con: 2.83 (5.58) U/mL Con: 25.98 (40.67) U/mL
RA: 68.02 (100.85) U/mL RA: 205.66 (234.11) U/mL
Lazm 2018 (Lazm et al., 2018) Serum ELISA 50 50 Con: 5.26 (0.42) IU/mL Con: 4.42 (0.23) mg/L
RA: 65.75 (5.71) IU/mL RA: 32.29 (3.60) mg/L
Li 2019 (Li et al., 2019) Serum ELISA 50 163 Con: 10 U/mL Con: 10 IU/mL Con: 14 mg/L
RA: 130 U/mL RA: 420 IU/mL RA: 30 mg/L
Maksymowych 2014 (Maksymowych et al., 2014) Serum ELISA 189 99 Con: 5 IU/mL
RA: 53 IU/mL
Mohamed 2019 (Mohamed et al., 2019) Serum ELISA 60 96 Con: 13.74 (11.88) IU/mL
RA: 59.07 (48.93) IU/mL
Narayan 2019 (Narayan et al., 2019) Serum ELISA 68 152 Con: 0.31 U/mL Con: 11.62 U/mL
RA: 295.68 U/mL RA: 30.82 U/mL
Ozkan 2012 (Ozkan et al., 2012) Serum ELISA 20 32 Con: 1.0 IU/mL Con: 10.0 mg/L
RA: 101.0 IU/mL RA 60.0 mg/L
Ramwadhdoebe 2019 (Ramwadhdoebe et al., 2019) Serum ELISA 8 16 Con: 0.7 mg/L
RA: 4.6 mg/L
Rykova 2017 (Rykova et al., 2017) Serum ELISA 63 74 Con: 6.8 U/mL Con: 2.6 mg/L
RA: 16.1 U/mL RA: 21.4 mg/L
Shen 2014 (Shen et al., 2014) Serum ELISA 50 88 Con: 5.02 (3.11) mg/L
RA: 41.42 (32.83) mg/L
Shrivastava 2015 (Shrivastava et al., 2015) Serum ELISA 55 110 Con: 1.18 (0.71) mg/L
RA: 8.58 (5.99) mg/L
Tuncer 2019 (Tuncer et al., 2019) Serum ELISA 29 59 Con: 10.1 (2.9) IU/mL Con: 7.99 (3.4) IU/mL
RA: 407.3 (411.3) IU/mL RA: 117.2 (162.46) IU/mL
Yan 2019 (Yan et al., 2019) Serum ELISA 60 76 Con: 14.6 (6.3) IU/mL Con: 5.0 (5.1) mg/L
RA: 161.5 (45.4) IU/mL RA: 41.2 (15.9) mg/L
Yang 2015 (Yang et al., 2015) Serum ELISA 100 152 Con: 12 IU/mL Con: 0.87 mg/L
RA: 104 IU/mL RA: 25.41 mg/L

*Standard Deviation, **Control, ***Rheumatoid arthritis, Enzyme Linked Immuno Sorbent Assay, Enti-Cyclic Citrullinated Peptide, ¶¶Rheumatoid factor, ¶¶¶C-reactive protein



넻怨 遺꾩꽍諛⑸쾿

議곌린 瑜섎쭏떚뒪 愿젅뿼 솚옄瑜 긽쑝濡 븳 珥 41媛쒖쓽 끉臾몄뿉꽌 삁泥 留덉빱쓽 ELISA 寃곌낵媛믪쓣 異붿텧븯뿬 mean difference 媛믪쓣 넗濡 硫뷀遺꾩꽍쓣 넻빐 넻怨꾨웾쓣 빀궛븯떎. 씠吏덉꽦 寃궗뒗 Higgin's I2 넻怨꾨웾怨 Cochrans's Q 寃젙, Random effect model쓣 넻빐 떎떆븯怨, I2씠 50% 씠긽씠硫 씠吏덉쟻씤 寃껋쑝濡 뙋紐낇븯떎. 뜲씠쓽 슚怨쇳겕湲곕뒗 Forest plot쑝濡 굹궡뿀怨, 異쒗뙋 삤瑜 寃궗뒗 Funnel plot쓣 넻븯뿬 궡렣蹂댁븯떎. 媛 넻怨꾨웾 떊猶곌뎄媛 95%, 넻怨꾩쟻 쑀쓽닔以 5%濡 젙븯떎. 硫뷀遺꾩꽍 봽濡쒓렇옩 Review Manager (RevMan) 5.4瑜 씠슜븯떎.

寃 怨

瑜섎쭏떚뒪 愿젅뿼뿉꽌 珥 3媛吏 吏꾨떒 삁泥 留덉빱뱾씤 RF, CRP, Anti-CCP瑜 궎썙뱶濡 媛곴컖 삉뒗 以묐났 룷븿븯뒗 臾명뿄닔뒗 291媛쒖怨, 젣紐⑷낵 珥덈줉 臾명뿄 寃깋뿉꽌 議곌린 諛쒕퀝씠 븘땶 臾명뿄怨 移섎즺젣 愿젴 臾명뿄, 瑜섎쭏떚뒪 愿젅뿼씠 븘땶 湲고 뿼利 吏덊솚怨 愿젴맂 臾명뿄 젣쇅븯뿬 162媛쒕줈 異붾젮議뚯쑝硫 꽑깮맂 끉臾몃뱾쓣 full-text 臾명뿄쑝濡 議곗궗븯뿬 議곌뎔怨 떎뿕援곗씠 紐낇솗븯怨 젙솗엳 ELISA 寃곌낵媛(Mean)씠 遺꾨챸븳 뜲씠瑜 媛吏 臾명뿄留 꽑깮븯뿬 珥 42媛쒕줈 硫뷀遺꾩꽍쓣 吏꾪뻾븯떎(Fig. 1). 삉븳, 臾명뿄 吏덊룊媛뒗 NOS 湲곗쑝濡 룊媛븯뿬 뜲씠 吏 寃利 떒怨꾨 떆뻾븯떎. 珥 42媛 臾명뿄뿉꽌 媛 留덉빱蹂 議곌뎔怨 떎뿕援곗뿉꽌쓽 삁泥 ELISA 媛믪쓣 異붿텧븯뿬 젙由ы븯떎(Table 1). RF뒗 泥대줈 ELISA 遺꾩꽍뿉꽌 議곌뎔 뿭븷濡 RF Anti-CCP 삉뒗 RF CRP 벑 뜲씠媛 留롮븯쑝硫 3媛吏 留덉빱뱾쓣 紐⑤몢 遺꾩꽍븳 臾명뿄룄 議댁옱븯떎. 삉븳 냼닔씠湲곕뒗 븯굹 CRP 떒룆 뜲씠룄 議댁옱븯떎. RF Anti-CCP쓽 ELISA 媛 痢≪젙 떒쐞뒗 U/mL怨 IU/mL濡 넻씪븯뿬 異붿텧븯쑝굹 洹 쇅 湲고 떒쐞뒗 젣쇅븯떎. 洹몃━怨 CRP 痢≪젙 떒쐞룄 mg/L濡 넻씪븯떎.

Fig. 1. Flow diagram of study for the systematic review and meta-analysis by PRISMA.

RF쓽 Forest plot쓣 蹂대㈃, 珥 32媛 臾명뿄 뜲씠 遺꾩꽍씠떎. Mean diffrence 媛믪쓣 湲곗쑝濡 떎뼇븳 臾명뿄뿉꽌 뜲씠瑜 異붿텧븯쑝誘濡, Random effect model濡 遺꾩꽍쓣 븯떎. RF mean difference 媛믪씠 媛옣 겙 寃껋 Wei 2020뿉꽌쓽 564씠怨 95% CI뒗 273.13~854.87씠硫, 媛옣 옉 寃껋 Iranshahi 2019濡 1씠怨 95% CI뒗 0.58~1.42씠떎. 珥 RF쓽 슚怨쇳겕湲곕뒗 134.34씠硫 95% CI뒗 93.62遺꽣 175.05씠떎(Fig. 2). 諛섎㈃뿉, CRP mean difference 媛믪씠 媛옣 겙 寃껋 Kahn 2012뿉꽌쓽 59씠怨 95% CI뒗 58.44~59.56씠硫, 媛옣 옉 寃껋 Giles 2015濡 0.2씠怨 95% CI뒗 0.0~0.4씠떎. 珥 CRP쓽 슚怨쇳겕湲곕뒗 21.42씠硫 95% CI뒗 14.03遺꽣 28.82씠떎. CRP뒗 珥 18媛 臾명뿄 뜲씠濡 遺꾩꽍븯떎(Fig. 3). Anti-CCP쓽 mean difference 媛믪씠 媛옣 겙 寃껋 Liao 2011뿉꽌쓽 2172.3씠怨 95% CI뒗 1260.59~3084.01씠硫, 媛옣 옉 寃껋 Aiman 2020濡 28.7씠怨 95% CI뒗 27.74~29.66씠떎. 珥 Anti-CCP쓽 슚怨쇳겕湲곕뒗 270.41씠硫 95% CI뒗 154.51遺꽣 386.31씠떎. Anti-CCP뒗 珥 26媛 臾명뿄 뜲씠濡 遺꾩꽍쓣 븯떎(Fig. 4). 蹂 뿰援ъ뿉꽌쓽 異쒗뙋 鍮꾨슕由 룊媛뿉꽌뒗 RF, CRP, Anti-CCP 留덉빱뱾쓽 臾명뿄 뜲씠 泥대줈 긽떒쓽 瑗湲곗뿉 吏묒쨷맖쓣 蹂댁씠誘濡쒖뜥, 몴蹂명겕湲곌 겕떎뒗 寃껋쓣 븣 닔 엳떎. 씠뒗 몴蹂 뿰援ъ쓽 몴蹂몄닔媛 而ㅼ쭏 닔濡 몴以삤李④ 媛먯냼븯怨 젙諛룄媛 利앷븿쓣 蹂댁뿬以떎. 븯吏留, RF뿉꽌 3嫄, CRP뿉꽌 1嫄댁 以묓븯쐞 쐞移섏뿉 議댁옱븯誘濡 몴蹂명겕湲곌 옉怨 鍮꾨移맂 젏쓣 蹂댁븘 異쒗뙋 鍮꾨슕由쇱씠 議댁옱븿쓣 굹궦떎(Fig. 5).

Fig. 2. Forest plot of RF. Mean differences are indicated by filled squares. The size of the squares indicates the weight of study. The mean difference and 95% CI is indicated by diamond. The solid line indicates a range of 95% CI. CI; Confidence interval.

Fig. 3. Forest plot of CRP. Mean differences are indicated by filled squares. The size of the squares indicates the weight of study. The mean difference and 95% CI is indicated by diamond. The solid line indicates a range of 95% CI. CI; Confidence interval.

Fig. 4. Forest plot of Anti-CCP. Mean differences are indicated by filled squares. The size of the squares indicates the weight of study. The mean difference and 95% CI is indicated by diamond. The solid line indicates a range of 95% CI. CI; Confidence interval.

Fig. 5. Funnel plot. (A) RF, (B) CRP, (C) Anti-CCP (SE; standard error, MD; mean difference).
怨 李

蹂 뿰援щ뒗 議곌린 瑜섎쭏떚뒪 愿젅뿼 솚옄뱾쓽 吏곸젒쟻씤 삁泥 留덉빱뱾쓽 ELISA 뜲씠瑜 醫낇빀븯怨, Forest plot쓣 넻븳 RF, CRP, Anti-CCP 珥 3媛吏 삁泥 留덉빱뿉 븳 슚怨쇳겕湲곕 鍮꾧탳븯떎. 洹 寃곌낵 Anti-CCP媛 媛옣 而멸퀬, CRP媛 媛옣 옉寃 굹궗떎. 洹몃젃吏留, Anti-CCP뿉꽌쓽 뜲씠 2嫄댁쓽 媛믪씠 씠吏덉꽦씠 而 씠瑜 젣쇅븯硫 RF 鍮꾩듂븯嫄곕굹 겢 寃껋쑝濡 깮媛곷맂떎. 洹몃윭굹 씠뒗 subgroup 遺꾩꽍쓣 넻븯뿬 썝씤쓣 遺꾩꽍븷 닔 엳吏留, 5嫄 씠븯씪 遺꾩꽍뿉 겙 쓽誘몃뒗 뾾쓣 寃껋쑝濡 궗猷뚮맂떎.

뵲씪꽌, 蹂 뿰援 寃곌낵쓽 쓽誘몃뒗 瑜섎쭏떚뒪 愿젅뿼뿉꽌쓽 3媛吏 삁泥 留덉빱 以묒뿉꽌 꽑뻾뿰援ъ뿉꽌 蹂닿퀬맂 諛붿 媛숈씠 Anti-CCP쓽 議곌뎔 鍮 솚옄援곗뿉꽌쓽 쑀쓽븳 냽룄 利앷뿉 뵲瑜 吏꾨떒 슚怨쇨 겕떎뒗 寃껋쓣 蹂댁뿬以떎. 씠뒗 寃곌뎅 쁽옱 瑜섎쭏떚뒪 愿젅뿼 솚옄쓽 吏꾨떒뿉 궗슜릺怨 엳뒗 삁泥 留덉빱뱾씤 RF, CRP 븿猿 슚怨쇱쟻씤 삁泥 留덉빱濡 궗슜맆 닔 엳쓬쓣 蹂댁뿬以떎.

蹂 뿰援ъ뿉꽌 遺꾩꽍븳 臾명뿄 룊媛뒗 NOS (case Control) 湲곗쑝濡 吏꾪뻾븯쑝硫 Funnel plot쓣 넻븯뿬 寃利앸맂 臾명뿄뱾씠 3媛吏 삁泥 留덉빱뿉 븳 뜲씠쓽 遺遺 plot 긽 瑗湲 遺遺꾩뿉 쐞移섑븯뿬 吏묐떒 겕湲곗 슚怨쇳겕湲곌 겙 끉臾몄쑝濡 씠猷⑥뼱議뚯쑝굹 移씠 븘땶 愿怨꾨줈 異쒗뙋 삤瑜섍 議댁옱븯쓬쓣 굹궡뿀떎. 씠뒗 蹂 끉臾 꽑깮쓽 湲곗씤 쁺뼱濡 맂 끉臾몃쭔쓣 遺꾩꽍뻽뜕 寃껉낵 룞떆뿉 꽕媛떚釉뚰븳 寃곌낵瑜 異쒗뙋븯吏 븡뒗 寃쎌슦媛 쟾삎쟻씤 썝씤씠 씠쑀씪 궗猷뚮맂떎.

蹂 뿰援 遺꾩꽍뿉꽌뒗 떎쓬怨 媛숈 젣븳젏씠 議댁옱븳떎. 泥レ㎏, 닔吏 臾명뿄쓣 쁺뼱 異쒗뙋臾쇰줈, 닔吏묎린븳쓣 2011뀈 1썡遺꽣 2021뀈 5썡 21씪源뚯濡, 異쒗뙋맂 寃껊쭔 遺꾩꽍븯쑝硫 impact factor 젏닔 臾닿븯寃 臾명뿄쓣 理쒕븳 닔吏묓븯뿬 遺꾩꽍븯떎. 몮吏, 떎뿕援 솚옄뒗 2010 ACR 吏꾨떒湲곗뿉 쓽빐 瑜섎쭏떚뒪 愿젅뿼쑝濡 吏꾨떒맂 솚옄濡 젣븳븯怨, 븯쐞 뿰愿 吏덊솚 꽭遺쟻쑝濡 援щ텇븯吏 븡븯떎. 뀑吏, 씤醫 諛 援媛蹂, 굹씠, 꽦蹂 援щ텇쓣 븯吏 븡븘 吏덊솚 삁泥 留덉빱 냽룄뿉 씪遺 쁺뼢쓣 以 닔 엳뒗 쑀쟾쟻 諛 솚寃쎌쟻 슂씤쓣 寃곕떆궎吏 븡븯떎. 꽬吏, 媛 끉臾 옄뱾쓽 떎뿕떎 솚寃 吏 젙룄 愿由ъ 寃궗 궎듃 諛 옣鍮 벑씠 넻씪릺吏 븡븘 寃곌낵媛믪씠 긽씠븯寃 굹궇 媛뒫꽦씠 엳떎.

蹂 뿰援 寃곌낵뿉 쓽븯硫, 쁽옱 怨듭떇쟻씤 RA 議곌린 吏꾨떒 留덉빱濡 븣젮吏 RF, CRP 蹂대떎 Anti-CCP쓽 吏꾨떒 슚怨 諛 젙솗룄媛 긽쟻쑝濡 넂쑝굹(Reyes-Pérez et al., 2019) RF굹 CRP 留덉갔媛吏濡 RA 肉먮쭔 븘땶 떎瑜 뿼利앹뿉꽌룄 寃異쒖씠 릺벏 븯굹쓽 삁泥 留덉빱媛 븘땶 뿬윭 媛쒖쓽 삁泥 議고빀 留덉빱濡 吏꾨떒빐빞 RA 議곌린 吏꾨떒쓽 듅씠룄瑜 뜑슧 넂씠뒗 諛⑺뼢씠씪 깮媛곷맂떎.

寃곕줎쟻쑝濡, Anti-CCP쓽 硫뷀遺꾩꽍뿉꽌쓽 吏꾨떒 슚怨쇳겕湲곕뒗 RF, CRP蹂대떎 겕寃 遺꾩꽍씠 릺뿀쑝硫, 씠뒗 Anti-CCP瑜 씠슜븳 議곌린 吏꾨떒 삁泥 留덉빱 媛쒕컻 諛 異붽쟻씤 썑뼢쟻 뿰援ъ쓽 슚슜꽦씠 겢 寃껋쑝濡 궗猷뚮릺硫, 삉븳 몴쟻 삁泥 留덉빱濡 븣젮吏 RF, CRP 諛 Anti-CCP瑜 議고빀븯뿬 Panel markers濡 궗슜븯뒗 諛⑹븞씠 留ㅼ슦 슚쑉쟻씪 寃껋쑝濡 湲곕맂떎.

ACKNOWLEDGEMENT

This research was supported by the Bio & Medical Technology Development Program of the NRF funded by the Korean government, MSIP (Grant No. 2016M3A9B6904241).

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

References
  1. Abdul-Maksoud RS, Sediq AM, Kattaia A, Elsayed W, Ezzeldin N, Abdel Galil SM, Ibrahem RA. "Serum miR-210 and miR-155 expression levels as novel biomarkers for rheumatoid arthritis diagnosis". Br J Biomed Sci. 2017. 74: 209-213. doi: 210.1080/09674845.09672017.01343545. Epub 09672017 Aug 09674847.
    Pubmed CrossRef
  2. 횇hlin E, Elshafie AI, Nur MAM, R철nnelid J. "Anti-Citrullinated Peptide Antibodies in Sudanese Patients with Leishmania donovani Infection Exhibit Reactivity not Dependent on Citrullination.". Scandinavian Journal of Immunology. 2015. 81: 201-208.
    Pubmed CrossRef
  3. Aiman AQ, Nesrin M, Amal A, Nassar AD. "A new tool for early diagnosis of rheumatoid arthritis using combined biomarkers; synovial MAGE-1 mRNA and serum anti-CCP and RF.". Pan Afr Med J. 2020. 36: 270. doi: 10.11604/pamj.12020.11636.11270.21827. eCollection 12020.
    Pubmed KoreaMed CrossRef
  4. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham III CO, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD. "2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative." Arthritis &. Rheumatism. 2010. 62: 2569-2581.
    Pubmed CrossRef
  5. Anaparti V, Meng X, Hemshekhar M, Smolik I, Mookherjee N, El-Gabalawy H. "Circulating levels of free 25(OH)D increase at the onset of rheumatoid arthritis.". PLoS One. 2019. 14: e0219109. doi: 0219110.0211371/journal.pone.0219109. e-Collection 0212019.
    Pubmed KoreaMed CrossRef
  6. Anaparti V, Smolik I, Meng X, O'Neil L, Jantz MA, Fritzler MJ, El-Gabalawy H. "Expansion of Alternative Autoantibodies Does Not Follow the Evolution of Anti-Citrullinated Protein Antibodies in Preclinical Rheumatoid Arthritis: An Analysis in At-Risk First Degree Relatives.". Arthritis and Rheumatology. 2021. 73: 740-749.
    Pubmed CrossRef
  7. Aslanalp Z, Tikiz C, Ulusoy A, Orguc 힇, Bilgi Yedekci A, Ulman C. "The relationship between serum angiogenic factor levels and disease activity in rheumatoid arthritis.". Archives of Rheumatology. 2020. 35: 416-425.
    Pubmed KoreaMed CrossRef
  8. Cao G, Chi S, Wang X, Sun J, Zhang Y. "CD4+CXCR5+pd-1+ t follicular helper cells play a pivotal role in the development of rheumatoid arthritis.". Medical Science Monitor. 2019. 25: 3032-3040.
    Pubmed KoreaMed CrossRef
  9. El Shazly RI, Hussein SA, Raslan HZ, Elgogary AA. "Anti-mutated citrullinated vimentin antibodies in rheumatoid arthritis patients: Relation to disease activity and manifestations.". Egyptian Rheumatologist. 2014. 36: 65-70.
    CrossRef
  10. El-Banna H, Jiman-Fatani A. "Anti-cyclic citrullinated peptide antibodies and paraoxonase-1 polymorphism in rheumatoid arthritis.". BMC Musculoskelet Disord. 2014. 15: 379. doi: 10.1186/1471-2474-1115-1379.
    Pubmed KoreaMed CrossRef
  11. Giles JT, Danielides S, Szklo M, Post WS, Blumenthal RS, Petri M, Schreiner PJ, Budoff M, Detrano R, Bathon JM. "Insulin resistance in rheumatoid arthritis: Disease-related indicators and associations with the presence and progression of subclinical atherosclerosis.". Arthritis and Rheumatology. 2015. 67: 626-636.
    Pubmed KoreaMed CrossRef
  12. Guan SZ, Yang YQ, Bai X, Wang Y, Feng KQ, Zhang HJ, Dong M, Yang HW, Li HQ. "Serum 14-3-3管 could improve the diagnostic rate of rheumatoid arthritis and correlates to disease activity.". Annals of Clinical and Laboratory Science. 2019. 49: 57-62.
  13. Guo CJ, Lv JH, Niu DS, Ma T, Sun SX, Li LX, Zhao X, Wu L, Jin QH. "Detection of anti-cyclic citrullinated peptide antibodies in rheumatoid arthritis patients undergoing total knee arthroplasty.". International Journal of Clinical and Experimental Medicine. 2015. 8: 4410.
  14. Hadinedoushan H, Noorbakhsh P, Soleymani-Salehabadi H. "Tumor necrosis factor alpha gene polymorphism and association with its serum level in Iranian population with rheumatoid arthritis.". Archives of Rheumatology. 2016. 31: 306-313.
    Pubmed KoreaMed CrossRef
  15. Hashemi V, Farrokhi AS, Tanomand A, Babaloo Z, Hojjat-Farsangi M, Anvari E, Tahoori MT, Ezzeddini R, Hosseini A, Gharibi T, Ghalamfarsa G, Jadidi-Niaragh F. "Polymorphism of Foxp3 gene affects the frequency of regulatory T cells and disease activity in patients with rheumatoid arthritis in Iranian population.". Immunol Lett. 2018. 204: 16-22. doi: 10.1016/j.imlet.2018.1010.1001. Epub 2018 Oct 1014.
    Pubmed CrossRef
  16. Hern찼ndez-Bello J, Oreg처n-Romero E, V찼zquez-Villamar M, Garc챠a-Arellano S, Valle Y, Padilla-Guti챕rrez JR, Rom찼n-Fern찼ndez IV, Palafox-S찼nchez CA, Mart챠nez-Bonilla GE, Mu챰oz-Valle JF. "Aberrant expression of interleukin-10 in rheumatoid arthritis: Relationship with IL10 haplotypes and autoantibodies.". Cytokine. 2017. 95: 88-96. doi: 10.1016/j.cyto.2017.1002.1022. Epub 2017 Feb 1027.
    Pubmed CrossRef
  17. Hussein MS, El-Barbary AM, Nada DW, Gaber RA, Elkolaly RM, Aboelhawa MA. "Identification of serum interleukin-13 and interleukin-13 receptor subunit expressions: Rheumatoid arthritis-associated interstitial lung disease.". International Journal of Rheumatic Diseases. 2021. 24: 591-598.
    Pubmed CrossRef
  18. Iranshahi N, Assar S, Amiri SM, Zafari P, Fekri A, Taghadosi M. "Decreased Gene Expression of Epstein-Barr Virus-Induced Gene 3 (EBI-3) may Contribute to the Pathogenesis of Rheumatoid Arthritis.". Immunol Invest. 2019. 48: 367-377. doi: 310.1080/08820139.08822018.01549066. Epub 08822018 Dec 08820134.
    Pubmed CrossRef
  19. Janssen KM, de Smit MJ, Brouwer E, de Kok FA, Kraan J, Altenburg J, Verheul MK, Trouw LA, van Winkelhoff AJ, Vissink A, Westra J. "Rheumatoid arthritis-associated autoantibodies in non-rheumatoid arthritis patients with mucosal inflammation: a case-control study.". Arthritis Res Ther. 2015. 17: 174. doi: 110.1186/s13075-13015-10690-13076.
    Pubmed KoreaMed CrossRef
  20. Khan MA, Dixit K, Uddin M, Malik A, Alam K. "Role of peroxynitrite-modified H2A histone in the induction and progression of rheumatoid arthritis.". Scandinavian Journal of Rheumatology. 2012. 41: 426-433.
    Pubmed CrossRef
  21. Konda Mohan V, Ganesan N, Gopalakrishnan R, Venkatesan V. "HLA-DRB 1 shared epitope alleles in patients with rheumatoid arthritis: relation to autoantibodies and disease severity in a south Indian population.". International Journal of Rheumatic Diseases. 2017. 20: 1492-1498.
    Pubmed CrossRef
  22. Lazm AM, Alomashi GB, Jebur MS. "Potential association of proteus mirabilis and strongyloides stercoralis among rheumatoid arthritis patients.". Biochemical and Cellular Archives. 2018. 18: 109-114.
  23. Lee CH, Lee KH. "Surgical Treatment for Hand and Wrist Problems in Rheumatoid Arthritis.". J Korean Orthop Assoc. 2020. 55: 472-486.
    CrossRef
  24. Li W, Liu Y, Zheng X, Gao J, Wang L, Li Y. "Investigation of the potential use of sialic acid as a biomarker for rheumatoid arthritis.". Annals of Clinical and Laboratory Science. 2019. 49: 224-231.
  25. Liao J, Ip WS, Cheung KY, Wan WM, Cautherley GWH, Cai X, Lin X, Renneberg R, Chan CPY. "Diagnostic utility of an anti-CCP point-of-care immunotest in Chinese patients with rheumatoid arthritis.". Clinica Chimica Acta. 2011. 412: 778-781.
    Pubmed CrossRef
  26. Maksymowych WP, Naides SJ, Bykerk V, Siminovitch KA, Van Schaardenburg D, Boers M, Landew챕 R, Van Der Heijde D, Tak PP, Genovese MC, Weinblatt ME, Zhukov OS, Keystone EC, Abolhosn RW, Popov JM, Britsemmer K, Van Kuijk AW, Marotta A. "Serum 14-3-3管 is a novel marker that complements current serological measurements to enhance detection of patients with rheumatoid arthritis.". Journal of Rheumatology. 2014. 41: 2104-2113.
    Pubmed CrossRef
  27. Meyer PWA, Ally MTM, Hodkinson B, Anderson R, Tikly M. "Comparison of the diagnostic potential of three anti-citrullinated protein antibodies as adjuncts to rheumatoid factor and CCP in a cohort of South African rheumatoid arthritis patients.". Rheumatol Int. 2018. 38: 993-1001. doi: 1010.1007/s00296-00018-04036-y. Epub 02018 Apr 00230.
    Pubmed CrossRef
  28. Mimori T. "Clinical significance of anti-CCP antibodies in rheumatoid arthritis.". Internal Medicine. 2005. 44: 1122-1126.
    Pubmed CrossRef
  29. Mohamed A, Enein A, Abdelsalam N, Balata M, Abdellatif S, Rizk E, Fathy A. "Utility of anti-carbamylated protein antibodies in the diagnosis of early rheumatoid arthritis.". Indian Journal of Rheumatology. 2019. 14: 37-41.
    CrossRef
  30. Mun S, Lee J, Lim MK, Lee YR, Ihm C, Lee SH, Kang HG. "Development of a novel diagnostic biomarker set for rheumatoid arthritis using a proteomics approach.". BioMed Research International. 2018. 2018.
    Pubmed KoreaMed CrossRef
  31. Mun S, Lee J, Park M, Shin J, Lim MK, Kang HG. "Serum biomarker panel for the diagnosis of rheumatoid arthritis." Arthritis Research &. Therapy. 2021. 23: 1-10.
    Pubmed KoreaMed CrossRef
  32. Narayan V, Pallinti V, Ganesan N. "A study of serum YKL-40 and its correlation with traditional biomarkers in rheumatoid arthritis patients.". Indian Journal of Rheumatology. 2019. 14: 200-205.
    CrossRef
  33. Nass FR, Skare TL, Goeldner I, Nisihara R, Messias-Reason IT, Utiyama SRR. "Analysis of four serum biomarkers in rheumatoid arthritis: association with extra articular manifestations in patients and arthralgia in relatives.". Rev Bras Reumatol Engl Ed. 2017. 57: 286-293. doi: 210.1016/j.rbre.2016.1003.1001. Epub 2016 Mar 1022.
    Pubmed CrossRef
  34. Nell V, Machold KP, Stamm TA, Eberl G, Heinzl H, Uffmann M, Smolen JS, Steiner G. "Autoantibody profiling as early diagnostic and prognostic tool for rheumatoid arthritis.". Annals of the Rheumatic Diseases. 2005. 64: 1731-1736.
    Pubmed KoreaMed CrossRef
  35. Okada M, Kobayashi T, Ito S, Yokoyama T, Komatsu Y, Abe A, Murasawa A, Yoshie H. "Antibody responses to periodontopathic bacteria in relation to rheumatoid arthritis in Japanese adults.". J Periodontol. 2011. 82: 1433-1441. doi: 1410.1902/jop.2011.110020. Epub 112011 Feb 110022.
    Pubmed CrossRef
  36. Otterness IG. The value of C-reactive protein measurement in rheumatoid arthritis. 1994. Seminars in arthritis and rheumatism, Elsevier.
    CrossRef
  37. Ozkan Y, Mete G, Sepici-Dincel A, Sepici V, Simsek B. "Tryptophan degradation and neopterin levels in treated rheumatoid arthritis patients.". Clinical Rheumatology. 2012. 31: 29-34.
    Pubmed CrossRef
  38. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE. "The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.". Bmj. 2021. 372.
    Pubmed KoreaMed CrossRef
  39. Ramwadhdoebe TH, Ramos MI, Maijer KI, van Lienden KP, Maas M, Gerlag DM, Tak PP, Lebre MC, van Baarsen LGM. "Myeloid dendritic cells are enriched in lymph node tissue of early rheumatoid arthritis patients but not in at risk individuals.". Cells. 2019. 8.
    Pubmed KoreaMed CrossRef
  40. Reyes-P챕rez IV, S찼nchez-Hern찼ndez PE, Mu챰oz-Valle JF, Mart챠nez-Bonilla GE, Garc챠a-Iglesias T, Gonz찼lez-D챠az V, Garc챠a-Arellano S, Cerpa-Cruz S, Polanco-Cruz J, Ram챠rez-Due챰as MG. "Cytokines (IL-15, IL-21, and IFN-款) in rheumatoid arthritis: association with positivity to autoantibodies (RF, anti-CCP, anti-MCV, and anti-PADI4) and clinical activity.". Clinical Rheumatology. 2019. 38: 3061-3071.
    Pubmed CrossRef
  41. Rykova E, Sizikov A, Roggenbuck D, Antonenko O, Bryzgalov L, Morozkin E, Skvortsova K, Vlassov V, Laktionov P, Kozlov V. "Circulating DNA in rheumatoid arthritis: Pathological changes and association with clinically used serological markers.". Arthritis Research and Therapy. 2017. 19.
    Pubmed KoreaMed CrossRef
  42. Shakiba Y, Koopah S, Jamshidi AR, Amirzargar AA, Masoud A, Kiani A, Niknam MH, Nazari B, Nikbin B. "Anti-cyclic citrullinated peptide antibody and rheumatoid factor isotypes in iranian patients with rheumatoid arthritis: Evaluation of clinical value and association with disease activity.". Iranian Journal of Allergy, Asthma and Immunology. 2014. 13: 147-156.
  43. Shen C, Sun XG, Liu N, Mu Y, Hong CC, Wei W, Zheng F. "Increased serum amyloid A and its association with autoantibodies, acute phase reactants and disease activity in patients with rheumatoid arthritis.". Molecular Medicine Reports. 2014. 11: 1528-1534.
    Pubmed CrossRef
  44. Shen R, Ren X, Jing R, Shen X, Chen J, Ju S, Yang C. "Rheumatoid factor, anti-cyclic citrullinated peptide antibody, C-reactive protein, and erythrocyte sedimentation rate for the clinical diagnosis of rheumatoid arthritis.". Laboratory Medicine. 2015. 46: 226-229.
    Pubmed CrossRef
  45. Shrivastava AK, Singh HV, Raizada A, Singh SK, Pandey A, Singh N, Yadav DS, Sharma H. "Inflammatory markers in patients with rheumatoid arthritis.". Allergol Immunopathol (Madr). 2015. 43: 81-87. doi: 10.1016/j.aller.2013.1011.1003. Epub 2014 Mar 1020.
    Pubmed CrossRef
  46. Tuncer T, Kaya A, Gulkesen A, Kal GA, Kaman D, Akgol G. "Matrix metalloproteinase-3 levels in relation to disease activity and radiological progression in rheumatoid arthritis.". Advances in Clinical and Experimental Medicine. 2019. 28: 665-670.
    Pubmed CrossRef
  47. Wei Y, Peng L, Li Y, Zhang N, Shang K, Duan L, Zhong J, Chen J. "Higher Serum CCN3 Is Associated with Disease Activity and Inflammatory Markers in Rheumatoid Arthritis.". Journal of Immunology Research. 2020. 2020.
    Pubmed KoreaMed CrossRef
  48. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2000. Oxford.
  49. Yan S, Wang P, Wang J, Yang J, Lu H, Jin C, Cheng M, Xu D. "Long Non-coding RNA HIX003209 Promotes Inflammation by Sponging miR-6089 via TLR4/NF-觀B Signaling Pathway in Rheumatoid Arthritis.". Frontiers in Immunology. 2019. 10.
    Pubmed KoreaMed CrossRef
  50. Yang L, Zhang J, Tao J, Lu T. "Elevated serum levels of Interleukin-37 are associated with inflammatory cytokines and disease activity in rheumatoid arthritis.". APMIS. 2015. 123: 1025-1031.
    Pubmed CrossRef
  51. Zeng T, Tan L, Wu Y, Yu J. "14-3-3管 protein in rheumatoid arthritis: Promising diagnostic marker and independent risk factor for osteoporosis.". Lab Medicine. 2020. 51: 529-539.
    Pubmed CrossRef