Search for


TEXT SIZE

search for



CrossRef (0)
Effects of Inhibiting Glycoprotein MUC5AC by Seaweed Ecklonia cava Extract in human Airway Epithelial Cells
Biomed Sci Letters 2021;27:334-339
Published online December 31, 2021;  https://doi.org/10.15616/BSL.2021.27.4.334
© 2021 The Korean Society For Biomedical Laboratory Sciences.

Sung-Gyu Lee1,†,* and Sang-Oh Kwon1,**

1Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
2R&D Center, S&D Co., Ltd., Cheongju-si, Chungcheongbuk-do 28156, Korea
Correspondence to: *Professor, **Chief Technology Officer
Corresponding author: Sung-Gyu Lee. Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si, Chungnam 31116, Korea.
Tel: +82-41-550-1465, Fax: +82-41-559-7934, e-mail: sung-gyu@dankook.ac.kr
Received November 9, 2021; Revised December 10, 2021; Accepted December 10, 2021.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
In the present study, antioxidant and MUC5AC mucin inhibition activities were measured in Ecklonia cava (E. cava) extract. The E. cava extract showed the total polyphenol and flavonoid contents of 607.40±19.44 μg GAE/mg and 13.33±5.28 μg QE/mg, respectively. The free radical scavenging activity of E. cava extract was high in the DPPH radical scavenging activity (RC50 7.08 μg/mL) and ABTS+ radical scavenging activity (RC50 4.74 μg/mL). Also, we investigated whether E. cava extract affects airway MUC5AC mucin gene expression, production and secretion induced by phorbol 12-myristate 13-acetate (PMA) from NCI-H292 cells. Cells were treated with E. cava extract and then stimulated with PMA for 24 h. The E. cava extract inhibited the gene expression of MUC5AC mucin from NCI-H292 cells. This result suggests that E. cava extract can inhibit the gene expression of mucin induced by PMA through directly acting on airway epithelial cells.
Keywords : Ecklonia cava, MUC5AC, NCI-H292, PMA, Seaweed
Body

샇씉湲곗뿉 議댁옱븯뒗 젏븸(mucus) 떎뼇븳 蹂묒썝꽦 誘몄깮臾, 솚寃쎌꽦 쑀빐엯옄, 솕븰臾쇱쭏뿉 븳 씤泥댁쓽 諛⑹뼱옉슜 湲곕뒫뿉꽌 留ㅼ슦 以묒슂븯떎. 씠윭븳 湲곕룄 젏븸쓽 옉슜 젏븸쓽 二 援ъ꽦슂냼씤 裕ㅼ떊(mucin)쓽 젏깂꽦뿉 湲곗씤맂떎(Mutschler and Derendorf, 1995). 裕ㅼ떊 怨좊텇옄쓽 젏븸꽦 떦떒諛깆쭏濡, 湲곕룄쓽 닠옍꽭룷(goblet cell)뿉꽌 二쇰줈 깮꽦맂떎(Lillehoj et al., 2013). 洹몃윭굹 湲곕룄 젏븸쓽 怨쇰떎遺꾨퉬뒗 泥쒖떇, 留뚯꽦 湲곌吏뿼, 궘룷꽦 꽟쑀利 諛 湲곌吏 솗옣利앹쓣 鍮꾨’븳 以묒쬆 룓吏덊솚怨 愿젴맂 二쇱슂 利앹긽 以 븯굹씠떎(Ellis, 1985). 뵲씪꽌 젏븸쓽 젏꽦쓣 遺뿬븯뒗 裕ㅼ떊쓽 깮꽦쓣 議곗젅븯뒗 빟臾쇱쓣 李얜뒗 寃껋 湲곕룄吏덊솚쓽 移섎즺뿉 以묒슂븳 諛⑺뼢씠 맆 닔 엳떎.

븳렪 빆궛솕 臾쇱쭏 씤泥 궡 궗 怨쇱젙 以묒뿉 궛냼쓽 遺덉셿쟾븳 솚썝쑝濡 諛쒖깮릺뒗 superoxide ion (O2-), hydroxyl radical (OH-), hydrogen peroxide (H2O2) 媛숈 솢꽦궛냼醫낆뿉 쓽븳 궛솕諛섏쓳쓣 빐븯뿬 솢꽦궛냼뿉 쓽븳 떎뼇븳 吏덊솚뱾쓣 삁諛⑺빐二쇰뒗 깮由ы솢꽦 臾쇱쭏씠떎. 泥대궡뿉꽌 솢꽦궛냼醫낆씠 利앷릺硫 룓 넀긽 벑 씤泥댁뿉꽌 룆꽦쓣 씪쑝궗 닔 엳떎뒗 蹂닿퀬(Freeman and Crapo, 1982; Freeman et al., 1982)媛 엳쑝硫 利앷맂 궛솕臾쇰뱾 뿼利앹쑀諛, 硫댁뿭븯, 裕ㅼ떊 怨쇰텇鍮 벑쓽 삎깭濡 룓吏덊솚 諛쒖깮뿉 愿뿬븳떎뒗 蹂닿퀬媛 엳떎(Lee, 1997).

빐뼇떇臾 以 듅엳 빐議곕쪟뒗 떇뭹, 湲곕뒫꽦떇뭹, 룞臾쇱슜 궗猷, 솕옣뭹, 쓽빟뭹 벑뿉 꼸由 솢슜릺怨 엳떎(Dhargalkar and Verlecar, 2009). 빐뼇떇臾, 듅엳 빐議곕쪟뒗 꼸由 빐議곕쪟 以 媛먰깭뒗 븳援쓽 젣二쇰룄 諛붾떎뿉꽌 二쇰줈 꽌떇븯怨 엳쑝硫 媛덉“떇臾 떎떆留덈ぉ 誘몄뿭怨쇱뿉 냽븯뒗 떎뀈깮 빐議곕쪟濡 븰紐낆 Ecklonia cava (E. cava)씠떎. 媛먰깭쓽 꽦遺꾩쑝濡쒕뒗 eckol, dieckol, phlorofucofuroeckol A, triphlorethol-A, phloroglucinol, dioxinodehydroeckol, fucodiphlorethol G 媛숈씠 뤃由ы럹 꽦遺꾩씤 뵆濡쒕줈깂땶 怨꾩뿴 꽦遺꾩쓣 떎웾 븿쑀븯怨 엳떎(Ahn et al., 2004; Kang et al., 2005; Kang et al., 2007; Kong et al., 2009). 씠泥섎읆 媛먰깭뒗 떎웾쓽 빐뼇 쑀옒 뤃由ы럹 꽦遺꾩쓣 븿쑀븯怨 엳뼱 빆궛솕, 빆븫, 빆쓳怨좎젣, 닔硫댁옣븷 媛쒖꽑 벑 떎뼇븳 깮由ы솢꽦 슚怨쇱뿉 븳 뿰援щ뱾씠 蹂닿퀬릺怨 엳떎(Heo et al., 2005; Heo et al., 2005; Athukorala et al., 2006; Kim et al., 2006). 븯吏留, 媛먰깭媛 샇씉湲곗쭏솚뿉꽌 諛쒖깮븯뒗 젏븸 怨쇰텇鍮꾩뿉 誘몄튂뒗 쁺뼢뿉 빐꽌뒗 뿰援ш 誘몃명븳 떎젙씠떎.

뵲씪꽌, 蹂 뿰援ъ뿉꽌뒗 媛먰깭 異붿텧臾쇱쓽 빆궛솕 슚怨쇱 씤媛 湲곕룄 긽뵾꽭룷씤 NCI-H292 꽭룷뿉꽌 PMA뿉 쓽빐 利앷맂 裕ㅼ떊쓽 쑀쟾옄 諛쒗쁽뿉 뼱뼚븳 쁺뼢쓣 굹궡뒗吏瑜 寃利앺븿쑝濡쒖뜥, 슚怨쇱쟻씤 湲곕룄 젏븸 怨쇰떎깮꽦 議곗젅 냼옱쓽 媛쒕컻쓣 쐞븳 湲곗큹옄猷뚮 젣怨듯븯怨좎옄 븯떎.

빆궛솕 솢꽦뿉 궗슜맂 떆빟 Folin 떆빟, Na2CO3, gallic acid, aluminium nitrate, potassium acetate, quercetin, ascorbic acid, 1,1-diphenyl-2-picryl hydrazyl (DPPH), 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), potassium persulfate뒗 Sigma-Aldrich Chemical Co. (St. Louis, MO, USA)濡쒕꽣 援ъ엯븯뿬 궗슜븯떎. 꽭룷諛곗뼇뿉 궗슜맂 떆빟 RPMI1640, antibiotic, fetal bovine serum (FBS), trypsin-EDTA뒗 Gibco BRL Co. (Grand Island, NY, USA)濡쒕꽣 援ъ엯븯떎. 꽭룷룆꽦뿉 궗슜맂 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT)뒗 Amresco (Amresco, Solon Ind. Ohio, USA)궗濡쒕꽣 援ъ엯븯怨, PCR 떆뿕뿉 궗슜맂 primer뒗 Bioneer (Bioneer, USA)궗뿉꽌 빀꽦븯쑝硫, trizol solution Molecular Research Center (Molecular Research Center, USA), 1-bromo-30-chloropropane Sigma-Aldrich Chemical Co.뿉꽌 援ъ엯븯뿬 궗슜븯떎.

媛먰깭 異붿텧臾쇱 (二)뿉뒪븻뵒(Osong, Korea)뿉꽌 젣議고븳 媛먰깭 뿉깂삱 異붿텧臾(Lot. No. 210222-001)쓣 젣怨듬컺븘 떎뿕뿉 궗슜븯떎.

媛먰깭 異붿텧臾쇱쓽 珥 뤃由ы럹 븿웾쓣 援ы븯湲 쐞빐 Folin-Denis踰(Folin and Denis, 1912)쓣 쓳슜븯뿬 痢≪젙븯떎. 媛먰깭 異붿텧臾쇨낵 몴以臾쇱쭏씤 gallic acid瑜 냽룄 蹂꾨줈 利앸쪟닔濡 씗꽍븯뿬 50% folin 떆빟쓣 96 well뿉 룞웾 샎빀븯뿬 3遺꾧컙 諛섏쓳떆궓 썑, 10% sodium carbonate瑜 룞웾 샎빀븯뿬 1떆媛 룞븞 떎삩뿉꽌 諛⑹튂븯떎. 洹 썑, Microplate Spectrophotometer (xMARK, BIO-RAD Co., California, USA)瑜 궗슜븯뿬 700 nm쓽 뙆옣뿉꽌 씉愿묐룄瑜 痢≪젙븯뿬 gallic acid濡쒕꽣 뼸뼱吏 몴以怨≪꽑쑝濡 媛먭뎅 異붿텧臾쇱쓽 珥 뤃由ы럹 븿웾쓣 援ы븯떎.

媛먰깭 異붿텧臾쇱쓽 珥 뵆씪蹂대끂씠뱶 븿웾 Nieva Moreno 벑 (2000)쓽 諛⑸쾿쓣 쓳슜븯뿬 痢≪젙븯떎. 냽룄蹂 媛먰깭 異붿텧臾 100 μL 80% 뿉깂삱 860 μL쓣 샎빀븯怨, 10% aluminium nitrate 20 μL 1 M potassium acetate 20 μL쓣 泥④븯뿬 떎삩뿉꽌 40遺 룞븞 諛섏쓳떆궓 뮘, 415 nm 뙆옣뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 씠븣 quercetin쓣 몴以臾쇱쭏濡 씠슜븯뿬 珥 뵆씪蹂대끂씠뱶 븿웾쓣 援ы븯떎.

옄쑀 씪뵒移 냼嫄 솢꽦 stable븳 씪뵒移쇱씤 DPPH ABTS 씪뵒移쇱뿉 븳 솚썝젰쓣 痢≪젙븯떎. 癒쇱 DPPH 씪뵒移 냼嫄 솢꽦 99% 硫뷀깂삱뿉 媛먰깭 異붿텧臾쇱쓣 냽룄 蹂꾨줈 씗꽍븯뿬 517 nm 뙆옣뿉꽌 珥덇린媛믪쓣 痢≪젙븳 썑, 硫뷀깂삱뿉 슜빐맂 0.15 mM DPPH 슜븸쓣 泥④븯뿬 떎삩뿉꽌 30遺 룞븞 諛섏쓳떆궓 썑 517 nm 뙆옣뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. ABTS 씪뵒移쇱쓣 씠슜븳 빆궛솕젰 痢≪젙 Re 벑 (1999)쓽 諛⑸쾿쓣 쓳슜븯떎. 理쒖쥌 諛섏쓳 냽룄媛 7 mM ABTS 2.45 mM potassium persulfate媛 릺룄濡 룞웾 샎빀븯뿬 븫떎뿉꽌 24떆媛 룞븞 諛섏쓳떆耳 ABTS쓣 삎꽦떆궓 썑 732 nm 뙆옣뿉꽌 씉愿묐룄 媛믪씠 0.70 (±0.02)씠 릺룄濡 phosphate buffered saline (PBS, pH 7.4)濡 議곗젅븯떎. 냽룄 蹂 媛먰깭 異붿텧臾 20 μL뿉 ABTS 슜븸 180 μL瑜 샎빀븯뿬 1遺 룞븞 諛섏쓳떆궓 썑 씉愿묐룄瑜 痢≪젙븯떎. 媛 떆猷뚯쓽 씪뵒移 냼嫄 솢꽦 떆猷뚮 泥④븯吏 븡 議곌뎄쓽 씉愿묐룄瑜 젅諛섏쑝濡 솚썝떆궎뒗뜲 븘슂븳 떆猷뚯쓽 냽룄씤 RC50쓣 궛異쒗븯뿬 뼇꽦議곌뎔씤 ascorbic acid 鍮꾧탳遺꾩꽍 븯떎.

蹂 뿰援ъ뿉꽌 궗슜맂 궗엺 샇씉湲 긽뵾꽭룷二(human airway epithelial cell line)씤 NCI-H292 꽭룷뒗 븳援꽭룷二쇱뻾뿉꽌 援ъ엯븯뿬 궗슜븯떎. 꽭룷쓽 諛곗뼇 10% FBS 1% penicillin-streptomycin쑝濡 援ъ꽦맂 RPMI1640 諛곗瑜 궗슜븯怨 37℃, 5% CO2 議곌굔씠 쑀吏릺뒗 꽭룷諛곗뼇湲곗뿉꽌 諛곗뼇븯쑝硫, 2~3씪 二쇨린濡 怨꾨 諛곗뼇븯뿬 떎뿕쓣 吏꾪뻾븯떎.

NCI-H292 꽭룷瑜 96 well plate뿉 1×104 cells/well濡 遺꾩<븯뿬 24떆媛 룞븞 諛곗뼇븯떎. 씠썑 臾댄삁泥 諛곗濡 援먰솚 썑 媛먰깭 異붿텧臾(10, 50, 100 μg/mL) 떒룆 샊 100 nM PMA 蹂듯빀쑝濡 泥섎━븯뿬 떎떆 24떆媛 룞븞 諛곗뼇븯떎. 洹 썑 5 mg/mL MTT 떆빟쓣 10 μL뵫 泥④븳 썑 4떆媛 룞븞 諛곗뼇븯뿬 MTT媛 솚썝릺룄濡 븯떎. 洹 썑 긽벑븸쓣 젣嫄고븯怨 DMSO瑜 100 μL뵫 遺꾩<븯뿬 formazone맂 cell 寃곗젙쓣 슜빐떆궓 썑 Microplate Spectrophotometer (xMARK, BIO-RAD Co.)瑜 궗슜븯뿬 550 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 꽭룷깮議댁쑉 議곌뎔뿉 븳 꽭룷깮議댁쑉쓣 諛깅텇쑉濡 몴떆븯떎.

RNA 遺꾨━ 諛 reverse transcription-polymerase chain reaction (RT-PCR)쓣 닔뻾븯湲 쐞빐 6 well plate뿉 10% FBS媛 泥④맂 諛곗瑜 씠슜븯뿬 꽭룷瑜 5×105 cells/well쓽 냽룄濡 24떆媛 遺李⑹떆궓 썑 臾댄삁泥 諛곗濡 媛덉븘以 떎쓬 媛먰깭 異붿텧臾(10, 20, 40 μg/mL)쓣 쟾泥섎━ 븯怨 30遺 썑뿉 100 nM phorbol 12-myristate 13-acetate (PMA)瑜 泥섎━븯떎. 24떆媛 썑 꽭룷瑜 쉶닔븯뿬 trizol reagent (Molecular Research center, Inc.)瑜 궗슜븯뿬 RNA瑜 遺꾨━븯떎. 遺꾨━맂 RNA뒗 NanoDrop (Thermo Scientific, Waltham, USA)쓣 씠슜븯뿬 젙웾븯떎. 遺꾨━맂 RNA 1 μg怨 oligo DT (100 pM) 1 μL瑜 룷븿븯뿬 珥앸웾씠 12 μL 릺룄濡 DEPC瑜 泥④븳 떎쓬 70℃뿉꽌 10遺꾧컙 諛섏쓳떆耳곕떎. 洹몃━怨 RT premix kit (Bioneer)쓽 궗슜옄 꽕紐낆꽌뿉 뵲씪 뿭쟾궗 諛섏쓳쓣 吏꾪뻾떆耳곕떎. MUC5AC Rig/S15 쑀쟾옄뿉 븳 PCR, 媛곴컖쓽 뿭쟾궗 諛섏쓳뿉꽌 뼸 cDNA 궛臾 2 μL瑜 PCR premix kit (Bioneer)쓽 궗슜옄 꽕紐낆꽌뿉 뵲씪 吏꾪뻾떆耳곕떎. MUC5AC Rig/S15쓽 primer sequence뒗 Table 1怨 媛숈쑝硫 利앺룺諛섏쓳쓣 쐞븯뿬, PCR쓣 40쉶 떎떆(PCR thermal cycler, Takara MP-300, Japan) 븯쑝硫, denaturation 94℃뿉꽌 30s, annealing 60℃뿉꽌 30s, extension 72℃뿉꽌 45s媛 媛곴컖 떆뻾븯떎. RNA쓽 뿭쟾궗 諛섏쓳 諛 以묓빀슚냼 뿰뇙諛섏쓳쑝濡 利앺룺맂 cDNA 궛臾쇰뱾쓣 ethidium bromide媛 泥④맂 1.2% agarose gel濡 쟾湲곗쁺룞쓣 떎떆븯뿬 遺꾩꽍븯떎.

The sequences of primers used in this study

Gene Product size (bp) Sequences
MUC5AC 458 Forward 5'-TGA TCA TCC AGC AGG GCT-3'
Reverse 5'-CCG AGC TCA GAGGAC ATA TGG G-3'
Rig/S15 361 Forward 5'-TTC CGC AAG TTC ACC TAC C-3'
Reverse 5'-CGG GCC GGC CAT GCT TTA CG-3'


떎뿕 寃곌낵뒗 SPSS statistics (ver. 25, IBM Co., Armonk, NY, USA)쓣 씠슜븯뿬 mean ± standard error of mean쑝濡 굹궡뿀쑝硫, ANOVA瑜 떎떆븯怨 룊洹좉컪쓽 넻怨꾩쟻 쑀쓽꽦 P<0.05 닔以뿉꽌 Duncan's multiple range test瑜 씠슜븯뿬 遺꾩꽍븯떎.

뤃由ы럹瑜섎뒗 떇臾쇱뿉 떎웾쑝濡 遺꾪룷릺뼱 엳뒗 씠李 궗궛臾 以 븯굹濡 flavonoid, lignan, phenolic acid, stillbene 벑쓽 4醫낆쑝濡 援щ텇릺뒗뜲 씠 꽦遺꾨뱾 떇臾쇱쓽 씠李 궗궛臾쇰줈꽌 깮泥 궡 媛뺥븳 빆궛솕 옉슜쓣 븯뒗 寃껋쑝濡 옒 븣젮졇 엳떎(Cragg et al., 1997). 媛먰깭 異붿텧臾쇱쓽 珥 뤃由ы럹 븿웾 諛 뵆씪蹂대끂씠뱶 븿웾쓣 痢≪젙븳 寃곌낵 Table 2 媛숈씠 媛곴컖 607.40±19.44 μg GAE/mg, 13.33±5.28 μg QE/mg쓽 븿웾쓣 蹂댁떎. 媛먰깭뒗 뤃由ы럹 솕빀臾 以 깮由ы솢꽦 臾쇱쭏濡 옒 븣젮吏 eckol瑜섍 떎瑜 빐議곕쪟뿉 鍮꾪빐 떎웾 븿쑀릺뼱 엳뼱 빆궛솕 솢꽦씠 슦닔븳 寃껋쑝濡 븣젮졇 엳떎. Kim 벑 (Kim et al., 2015)쓽 뿰援ъ뿉꽌 媛먰깭쓽 뤃由ы럹 븿웾씠 144.69±0.43 mg/g쑝濡 굹궃 寃껋뿉 鍮꾪빐 蹂 뿰援ъ뿉꽌 궗슜맂 媛먰깭 異붿텧臾쇱쓽 寃쎌슦 빟 4諛 씠긽 넂 븿웾쓣 蹂댁떎. 씠뒗 媛먰깭 궛吏 諛 異붿텧諛⑸쾿뿉 뵲씪 븿웾쓽 李⑥씠媛 엳뒗 寃껋쑝濡 궗猷뚮릺硫 슦닔븳 빆궛솕 꽦遺꾩쓣 씠슜븳 湲곕뒫꽦 냼옱濡쒖쓽 媛쒕컻 媛뒫꽦씠 湲곕맂떎.

Contents of total polyphenols and flavonoids of E. cava extract

Sample Total polyphenols (μg GAE1) / mg) Total flavonoids (μg QE2) / mg)
E. cava extract 607.40±19.443) 13.33±5.28

1) Total phenolic content was expressed as μg/mg gallic acid equivalent

2) Total flavonoid content was expressed as μg/mg quercetin equivalent

3) Each value is mean ± S.D. (n=3)



媛먰깭 異붿텧臾쇱쓽 빆궛솕 솢꽦 DPPH 諛 ABTS 씪뵒移쇱쓣 씠슜븯뿬 솗씤븯떎. 媛 냽룄 蹂 DPPH 諛 ABTS 씪뵒移 냼嫄 솢꽦쓣 諛깅텇쑉濡 굹궦 寃곌낵瑜 Table 3뿉 굹궡뿀떎. DPPH 씪뵒移쇱 鍮꾧탳쟻 븞젙븳 씪뵒移쇰줈, 빆궛솕 臾쇱쭏쓣 泥④븯뿬 diphenylpicryl hydrazine쑝濡 솚썝릺뒗 썝由щ 씠슜븯뿬 빆궛솕뒫쓽 젙룄瑜 痢≪젙븷 닔 엳떎(Lee and Cho, 2016). 媛먰깭 異붿텧臾쇱쓽 DPPH 씪뵒移 냼嫄 솢꽦 泥쒖뿰 빆궛솕젣씤 ascorbic acid RC50쑝濡 鍮꾧탳븯떎. 떎뿕 寃곌낵, 媛먰깭 異붿텧臾쇱쓽 RC50 7.08 μg/mL濡 議곌뎔씤 ascorbic acid (RC50 = 1.34 μg/mL) 鍮꾧탳븯쓣 븣, 씪뵒移 냼嫄 솢꽦씠 빟 5諛 젙룄 궙 寃껋쑝濡 굹궗떎. ABTS瑜 씠슜븳 빆궛솕뒫쓽 痢≪젙 ABTS potassium persulfate 諛섏쓳쑝濡 泥濡앹깋씠 ABTS+ 씪뵒移쇱쓣 깮꽦븯뒗 諛⑸쾿쑝濡 빆궛솕 臾쇱쭏쓣 泥④븯硫 깉깋맂 깋쓽 씉愿묐룄瑜 痢≪젙븯뿬 빆궛솕뒫쓣 痢≪젙븯뒗 諛⑸쾿씠떎. 媛먰깭 異붿텧臾쇱쓽 ABTS 씪뵒移 냼嫄 솢꽦 1, 2.5, 5, 10 μg/mL쓽 냽룄 蹂꾨줈 媛곴컖 13.31%, 29.65%, 58.29%, 91.80%濡 궙 냽룄뿉꽌 넂 ABTS 씪뵒移 냼嫄 솢꽦쓣 蹂댁怨, 議곌뎔쑝濡 궗슜맂 ascorbic acid RC50쓣 鍮꾧탳븯쓣 븣 媛곴컖 4.74, 4.68 μg/mL濡 쑀궗븳 빆궛솕뒫쓣 蹂댁떎. Yoo 벑 (2015)쓽 뿰援ъ뿉꽌 媛먰깭 50% 뿉깂삱 異붿텧臾쇱쓽 옄쑀 씪뵒移 냼嫄 솢꽦 RC50씠 22.15 μg/mL濡 蹂 뿰援ъ뿉 궗슜맂 異붿텧臾쇱씠 빟 4.7諛 젙룄 넂 빆궛솕 솢꽦쓣 蹂댁떎. 씠뒗 蹂 뿰援ъ뿉꽌 궗슜맂 媛먰깭 異붿텧臾쇱뿉꽌 빆궛솕 솢꽦씠 겙 꽦遺꾨뱾씠 留롮씠 異붿텧릺뼱 엳쓬쓣 떆궗븳떎.

DPPH and ABTS radical scavenging activities of the extracts of E. cava extract

Sample DPPH radical ABTS radical
Sample name Concentration (μg/mL) Scavenging activity (%) RC501) (μg/mL) Scavenging activity (%) RC50 (μg/mL)
E. cava extract 1 11.27±1.50g2)3) 7.08±0.18a 13.31±1.82d 4.74±0.11
2.5 17.63±0.51f 29.65±1.80c
5 38.37±2.31e 58.29±1.53b
10 69.30±0.42d 91.80±1.09a
Ascorbic acid 1 42.21±5.49e 1.34±0.11b 10.61±0.85d 4.68±0.08
2.5 90.89±1.10c 29.12±0.36c
5 95.32±0.02b 56.65±0.62b
10 99.21±1.14a 93.44±0.07a

1) Amount required for 50% reduction of scavenging activity

2) Data are mean ± standard deviation (n=3)

3) Different superscripts in a column indicate significant differences at P<0.05 by Duncan's multiple range test



MTT踰뺤쓣 씠슜븳 꽭룷룆꽦 寃궗뿉꽌 媛먰깭 異붿텧臾쇱쓣 떎뼇븳 냽룄(10, 50, 100 μg/mL)濡 24떆媛 룞븞 泥섎━븯쓣 븣, 꽭룷룆꽦 諛 利앹떇뿉 쁺뼢쓣 굹궡吏 븡븯쑝硫, protein kinase C (PKC)쓽 솢꽦솕젣씤 PMA 泥섎━ 떆뿉룄 꽭룷룆꽦 愿李곕릺吏 븡븯떎(Fig. 1).

Fig. 1. Effects of E. cava extract or E. cava extract with PMA on cell viability in NCI-H292 cells. NCI-H292 cells were treated with E. cava extract (0, 10, 50, and 100 μg/mL) or E. cava extract with PMA 100 nM for 24 h.

샇씉湲곗뿉 議댁옱븯뒗 裕ㅼ떊 쁽옱源뚯 20뿬醫낆쓽 MUC 쑀쟾옄媛 蹂닿퀬릺怨 엳떎. 洹 以 MUC5AC 裕ㅼ떊씠 씤媛꾩쓽 샇씉湲곗뿉꽌 諛쒓껄릺뒗 젮삎꽦 裕ㅼ떊쓣 援ъ꽦븯怨 엳떎(Rogers and Barnes, 2006). 씤泥 湲곕룄뿉꽌쓽 裕ㅼ떊쓽 遺꾨퉬, 깮꽦, 쑀쟾옄 諛쒗쁽 議곗젅怨 뿰愿맂 in vitro 떆뿕뿉꽌뒗 二쇰줈 NCI-H292 꽭룷媛 궗슜릺뒗뜲, 씠븣 쑀룄젣濡 궗슜릺뒗 PMA뒗 PKC쓽 궡씤꽦 솢꽦솕瑜 쑀룄븯뿬 쑀쟾옄 쟾궗 꽭룷遺꾪솕瑜 議곗젅븷 닔 엳뒗 옄洹뱀씤옄濡 븣젮졇 엳쑝硫 MUC5AC 쑀쟾옄 諛쒗쁽쓣 쑀룄븯뒗 寃껋쑝濡 蹂닿퀬릺뿀떎(Hewson et al., 2004). 씠윭븳 湲곗〈쓽 蹂닿퀬뿉 洹쇨굅븯뿬 닔뻾맂 蹂 뿰援ъ쓽 寃곌낵, 媛먰깭 異붿텧臾쇱 PMA濡 利앷맂 MUC5AC쓽 쑀쟾옄 諛쒗쁽쓣 냽룄쓽議댁쟻쑝濡 뼲젣븯뒗 寃쏀뼢쓣 蹂댁떎(Fig. 2).

Fig. 2. Effects of E. cava extract on PMA-induced MUC5AC gene expression in NCI-H292 cells. Total RNA was isolated and MUC5AC mRNA levels were analyzed by RT-PCR. The PCR products were separated on 1.2% agarose gel and stained with ethidium bromide.

醫낇빀븯뿬 蹂대㈃, 媛먰깭 異붿텧臾쇱 떎웾쓽 뤃由ы럹 꽦遺꾩쓣 븿쑀븯怨 엳뼱 샇씉湲 뿼利앹쓣 쑀룄 諛 븙솕떆궎뒗 솢꽦궛냼 MUC5AC 쑀쟾옄 諛쒗쁽쓣 뼲젣븿쑝濡 샇씉湲곗쭏솚 媛쒖꽑쓽 빟臾쇰줈쓽 媛쒕컻 媛뒫꽦쓣 젣떆븯怨 엳쑝硫, 裕ㅼ떊 怨쇰떎깮꽦 뼲젣뿉 愿븳 異붽쟻씤 湲곗쟾뿰援ш 븘슂븷 寃껋쑝濡 깮媛곷맂떎.

ACKNOWLEDGEMENT

This research was a part of the project titled 'Development and commercialization of functional ingredient for improving respiratory diseases using diarsenic seaweed', funded by the Ministry of Oceans and Fisheries, Korea.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

References
  1. Ahn MJ, Yoon KD, Min SY, Lee JS, Kim JH, Kim TG, Kim SH, Kim NG, Huh H, Kim J. Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava. Biol Pharm Bull. 2004. 27: 544-547.
    Pubmed CrossRef
  2. Athukorala Y, Jung WK, Vasanthan T, Jeon YJ. Anticoagulative polysaccharide froman enzymatic hydrolysate of Ecklonia cava. Carbohydr Polym. 2006. 66: 184-191.
    CrossRef
  3. Cragg GM, Newman DJ, Weiss RB. Coral reefs, forests, and thermal vents: the worldwide exploration of nature for novel antitumor agents. Semin Oncol. 1997. 24: 156-163.
    Pubmed
  4. Dhargalkar VK, Verlecar XN. Southern Ocean seaweeds: A resource for exploration in food and drugs. Aquaculture. 2009. 287: 287-229.
    CrossRef
  5. Ellis EF. Asthma in childhood. J Allergy Clin Immunol. 1985. 72: 526-539.
    Pubmed CrossRef
  6. Folin O, Denis W. On phosphotungstic-phosphomolybdic com-pounds as color reagents. J Biol Chem. 1912. 12: 239-243.
    CrossRef
  7. Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury. Lab Invest. 1982. 47: 412-426.
    Pubmed
  8. Freeman BA, Topolosky MK, Crapo JD. Hyperoxia increases oxygen radical production in rat lung homogenates. Arch Biochem Biophys. 1982. 216: 477-484.
    Pubmed CrossRef
  9. Heo SJ, Park EJ, Lee K, Jeon YJ. Antioxidant activities of enzymatic extracts from brown seaweeds. Biores Technol. 2005. 96: 1613-1623.
    Pubmed CrossRef
  10. Heo SJ, Park PJ, Park EJ, Cho SK, Kin SK, Jeon YJ. Antioxidative effect of proteolytic hydrolysates from Ecklonia cava on radical scavenging using ESR and H2O2-induced DNA damage. Food Sci Biotechnol. 2005. 14: 614-620.
  11. Hewson CA, Edbrooke MR, Johnston SL. PMA induces the MUC5AC respiratory mucin in human bronchial epithelial cells, via PKC, EGF/TGF-alpha, Ras/Raf, MEK, ERK and Sp1-dependent mechanisms. J Mol Biol. 2004. 344: 683-695.
    Pubmed CrossRef
  12. Kang KA, Lee KH, Chae S, Koh YS, Yoo BS, Kim JH, Ham YM, Baik JS, Lee NH, Hyun JW. Triphlorethol-A from Ecklonia cava protects V79-4 lung fibroblast against hydrogen peroxide induced cell damage. Free Radic Res. 2005. 39: 83-892.
    Pubmed CrossRef
  13. Kang KA, Lee KH, Park JW, Lee NH, Na HK, Surh YJ, You HJ, Chung MH, Hyun JW. Triphlorethol-A induces heme oxygenase-1 via activation of ERK and NF-E2 related factor 2 transcription factor. FEBS Lett. 2007. 581: 2000-2008.
    Pubmed CrossRef
  14. Kim JH, Kang HM, Lee SH, Lee JY, Park LY. Antioxidant and 慣-glucosidase inhibition activity of seaweed extracts. Korean J Food Preserv. 2015. 22: 290-296.
    CrossRef
  15. Kim KN, Lee KW, Song CB, Jeon YJ. Cytotoxic activity of green and brown seaweeds collected from Jeju Island against four tumor cell lines. J Food Sci Nutr. 2006. 11: 17-24.
    CrossRef
  16. Kong CS, Kim JA, Yoon NY, and Kin S. Induction of apoptosis by phloroglucinol derivative from Ecklonia cava in MCF-7 human breast cancer cells. Food Chem Toxicol. 2009. 47: 1653-1658.
    Pubmed CrossRef
  17. Lee GW, Cho YH. Antioxidant Activity of Leaf Extract from Annona muricata. Review of Korea Contents Association. 2016. 14: 43-46.
  18. Lee SI. The level of antioxidant enzymes in red blood cells of patients with chronic obstructive pulmonary disease. Tuberc Respir Dis. 1997. 44: 104-113.
    CrossRef
  19. Lillehoj EP, Kato K, Lu W, Kim KC. Cellular and Molecular Biology of Airway Mucins. Int Rev Cell Mol Biol. 2013. 139-202.
    Pubmed KoreaMed CrossRef
  20. Mutschler E, Derendorf H. Drug actions. 1995. pp. 410. CRC press, Inc. Boca Raton, Florida.
  21. Nieva Moreno MI, Isla MI, Sampietro ARSampietro AR et al. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol. 2000. 71: 109-114.
    Pubmed CrossRef
  22. Re R, Pellegrini N, Proteggente AProteggente A et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999. 26: 1231-1237.
    Pubmed CrossRef
  23. Rogers DF, Barnes PJ. Treatment of airway mucus hypersecretion. Ann Med. 2006. 38: 116-125.
    Pubmed CrossRef
  24. Yoo CY, Kim SY, Park JW, Sung SA, Kim DA, Pakr JH, Xuan SH, Park SN. Antioxidant and Cellular Protective Activities of Ecklonia cava extracts against Reactive Oxyegen Species. J Soc Cosmet Sci Korea. 2015. 41: 287-294.
    CrossRef