Search for


TEXT SIZE

search for



CrossRef (0)
Process Optimization of Nypa fruticans Wurmb Extract using Mixed Solvent and its Functional Component Analysis
Biomed Sci Letters 2022;28:34-41
Published online March 31, 2022;  https://doi.org/10.15616/BSL.2022.28.1.34
© 2022 The Korean Society For Biomedical Laboratory Sciences.

Jin Kim1,†,*, Han Sung Kim2,*, Jang Wan Son3,*, Seong Yong Moon1,4,* and Sook-Young Lee5,†,*

1Dental Healthcare & Clinical Trial Center, Chosun University, Gwangju 61452, Korea
2Him Co., Ltd, Business Incubation Center, Chosun University, Gwangju 61452, Korea
3School of Infomatics & Product Design, Chosun University, Gwangju 61452, Korea
4Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Oral and Maxillofacial Surgery, Gwangju 61452, Korea
5Marine Bio Research Center, Chosun University, Wando 59146, Korea
Correspondence to: Jin Kim. Dental Healthcare & Clinical Trial Center, Chosun University, Gwangju 61452, Korea.
Tel: +82-62-230-6883, Fax: +82-62-608-5407, e-mail: cream4251@hanmail.net
Sook-Young Lee. Marine Bio Research Center, Chosun University, Wando 59146, Korea.
Tel: +82-62-973-7662, Fax: +82-62-973-7662, e-mail: seedbank2001@hanmail.net
*Professor.
Received February 10, 2022; Revised March 29, 2022; Accepted March 30, 2022.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
In this study, conditions for extraction of functional component from Nypa fruticans wurmb was optimized. The yield by extraction with 30% ethanol (LE30, 42.12%) was higher than those hot water extraction (LDW 33.32%), 50% ethanol (LE50, 40.12%) and 70% ethanol (LE70, 34.5%). The extract was purified and analyzed by GC MS. The prevailing compounds found in extract were Cyclodecasiloxane-, pentadecanoic acid, -eicosane, undecanal and tridecanoic acid. The presence of saturated and unsaturated fatty acids in ethanolic extract vindicate the use of this plant to treat many diseases in traditional medicine. The total phenolic contents in the LDW, LE30, LE50, LE70 extract were 128±1.65 mg/g, 205±2.3 mg/g, 210±4.23 mg/g and 180±5.6 mg/g, respectively. The DPPH was highest in LE70 extract (1,000 μg/mL, 81.14%), ABTS was highest in LE50 extract (1,000 μg/mL, 84.14%). The protective effects against oxidative stress in raw 264.7 cell imparted by the LE50 extract was better than those imparted by the other extracts. The findings of the present study suggest that 50% ethanol is best solvent for extraction of Nypa fruticans Wurmb, considering yield, polyphenol content, and antioxidant activities with extraction cost.
Keywords : Nypa fruticans Wurmb, Phytochemical, Antioxidant, Cell viability
꽌 濡

쁽옱 쑀뻾븯怨 엳뒗 肄붾줈굹 諛붿씠윭뒪 媛먯뿼利 諛 떎뼇븳 吏덈퀝쑝濡 씤빐 궗엺뱾 硫댁뿭 利앹쭊뿉 룄씠 릺뒗 嫄닿컯떇뭹 諛 빟由ъ쟻 슚뒫쓣 媛吏 泥쒖뿰 냼옱뿉 븳 愿떖씠 湲됯꺽엳 뒛怨 엳떎. 떎뼇븳 泥쒖뿰옄썝쓽 솗蹂 諛 媛쒕컻 벑 怨좊媛媛移 궛뾽쑝濡 떊빟怨 湲곕뒫꽦 떇뭹, 솕옣뭹, 깮솢슜뭹쑝濡 솗릺怨 엳떎. 떇臾쇱씠 媛吏怨 엳뒗 떎뼇븳 而щ윭뒗 솕븰 臾쇱쭏濡 援ъ꽦릺뼱 엳쑝硫 씤泥댁뿉꽌 빆궛솕 뿭븷 諛 떎뼇븳 臾쇱쭏씠 꽌濡 떎瑜 빟由ъ쟻 옉슜쓣 븳떎(Koffi et al., 2010).

땲뙆빞옄(Nypa fruticans Wurmb Fruit)뒗 빞옄굹臾닿낵 떇臾쇰줈 '땲뙆뙗'씠씪怨 遺瑜닿린룄 븯硫 諛붾떎뿉꽌 옄씪뒗 紐⑥뒿씠 슦由щ굹씪쓽 二쎌닚怨 鍮꾩듂븯뿬 빐二쎌닚쑝濡 遺덈━슫떎. 留먮젅씠떆븘 諛 븘由ы 벑 룞궓븘떆븘뿉 二쇰줈 옱諛곕릺怨 엳쑝硫, 옂 二쇰줈 李⑤줈 씠슜릺硫 닔븸뿉꽌 꽕깢쓣 뼸嫄곕굹 泥쒖뿰 諛붿씠삤 뿉깂삱 뿰猷뚮굹 쓽븰쟻 紐⑹쟻쑝濡 벐씠硫 떇옱猷뚮줈 씠슜릺湲곕룄 븳떎. 듅엳, 땲뙆빞옄뿉뒗 chlorogenic acid, protocatechuic acid, kaempferol 벑 떎웾쓽 polyphenol, flavonoid 솕빀臾쇱씠 븿쑀릺뼱 엳쑝硫, 洹몄뿉 뵲瑜 빆궛솕 諛 뿼利 議곗젅 슚怨쇨 쎇뼱궃 寃껋쑝濡 蹂닿퀬릺怨 엳떎(Rahmatullah et al., 2010).

Reza et al. (2011)뿉 뵲瑜대㈃ lipopolysaccharide (LPS)뿉 쓽븳 뿼利앸컲쓳씠 쑀룄맂 留덉슦뒪 쑀옒 떇 꽭룷뿉꽌 땲뙆빞옄 뿴닔 異붿텧臾쇱쓽 泥섎━媛 NF-κB 寃쎈줈쓽 솢꽦쓣 뼲젣븯뿬 뿼利앹쓣 셿솕떆궓떎怨 蹂닿퀬븯떎. 理쒓렐 援궡뿉룄 땲뙆빞옄쓽 깮由ы솢꽦 슚뒫씠 二쇰ぉ 諛쏄린 떆옉븯硫댁꽌 씠瑜 씠슜븳 移⑥텧李 삎깭쓽 쓬슜李④ 뙋留ㅻ릺怨 엳떎. 二쇱슂 꽦遺꾩쓣 怨좊媛 媛移섎줈 솢슜븯湲 쐞븳 異붿텧 怨듭젙뿉 븳 뿰援ш 븘슂濡 븯떎.

蹂 뿰援ъ뿉꽌뒗 떇뭹泥④臾 湲곗뿉 留욎떠 異붿텧 슜留ㅻ 臾쇨낵 二쇱젙(뿉깂삱)쓣 꽑젙븯떎. 땲뙆빞옄瑜 利앸쪟닔 뿉깂삱 냽룄뿉 뵲씪 珥덉쓬뙆 泥섎━ 怨듭젙쓣 쟻슜븳 異붿텧諛⑸쾿쑝濡 쑀슚꽦遺꾩쓽 븿웾쓣 鍮꾧탳 遺꾩꽍븯뿬 理쒖쟻쓽 異붿텧 議곌굔쓣 솗由쏀븯떎. 뵲씪꽌 땲뙆빞옄쓽 異붿텧 슜留ㅼ쓽 議곌굔쓣 룊媛븯怨, 理쒖쟻쓽 냽룄뿉꽌 땲뙆빞옄 異붿텧臾쇱쓽 꽭룷蹂댄샇 슚뒫 룊媛 빆궛솕 슚뒫 寃利앹 媛곸쥌 嫄닿컯떇뭹 諛 쓽빟뭹 媛쒕컻濡 솢슜媛移섍 넂쓣 寃껋쑝濡 湲곕맂떎.

옱猷 諛 諛⑸쾿

떎뿕 옱猷 諛 떆빟

蹂 떎뿕뿉 궗슜븳 땲뙆빞옄(Nypa fruticans Wurmb) (二) 솴湲덉넀(Gyeonggi-do, Korea)뿉꽌 2020뀈 12썡 誘몄留덉뿉꽌 梨꾩랬븳 寃껋쓣 援ъ엯븯떎. 異붿텧뿉 궗슜릺뒗 봽젅(prethanol A) 뜒궛솕븰(Seoul, Korea)뿉꽌 援ъ엯븯뿬 궗슜븯떎. 깮由ы솢꽦 痢≪젙 떆빟 Folin-Ciocalteús reagent, Gallic acid, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), 3-(4,5-dimethylthizaol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) dimethyl sulfoxide (DMSO)뒗 Sigma-Aldrich (St. Louis, MO, USA)濡쒕꽣 援ъ엯븯뿬 궗슜븯떎. 떎뿕뿉 궗슜맂 RAW264.7 꽭룷뒗 American Type Culture Collection, Manassas, VA, USA (ATCC)뿉꽌 遺꾩뼇 諛쏆븘 궗슜븯떎. 꽭룷瑜 諛곗뼇븯湲 쐞빐 Dulbeccós Modified Eaglés Medium (DMEM), penicillin (10,000 U/mL), fetal bovine serum (FBS) 떆빟 Gibco BRL, Scotland濡쒕꽣 援ъ엯븯떎. 洹 諛뽰쓽 紐⑤뱺 떆빟 젙젣 怨쇱젙 뾾씠 궗슜븯쑝硫, 3李 利앸쪟닔瑜 궗슜븯떎.

땲뙆빞옄 異붿텧臾 젣議

땲뙆빞옄뒗 쓲瑜대뒗 臾쇱뿉 3쉶 꽭泥 썑 臾쇨린瑜 젣嫄고븯怨 옄뿰嫄댁“ 떆궓 썑 遺꾩뇙湲곕 씠슜븯뿬 遺꾨쭚솕 븯떎. 利앸쪟닔 異붿텧怨 뿉깂삱 移⑥ 썑 珥덉쓬뙆 異붿텧쓣 吏꾪뻾븯뿬 異붿텧臾쇱쓣 뼸뿀떎. 利앸쪟닔 異붿텧 嫄댁“맂 땲뙆빞옄 遺꾨쭚 10 g뿉 10諛(w/v)쓽 利앸쪟닔瑜 泥④븯뿬 100℃뿉꽌 1떆媛 援먮컲湲곗뿉꽌 異붿텧븳 援(LDW)怨 嫄댁“맂 땲뙆빞옄 遺꾨쭚 10 g뿉 10諛(w/v)쓽 뿉깂삱 30%, 50%, 70% 議곗꽦쓽 슜留ㅼ뿉 媛곴컖 移⑥ 떆궓 洹몃9(LE30, LE50, LE70)쓣 珥덉쓬뙆 遺꾩궛湲(Branson 5210 ultrasonic Bath, USA)瑜 궗슜븯뿬 30 kHz뿉꽌 30遺꾧컙 珥덉쓬뙆 泥섎━瑜 蹂묓뻾븯뒗 諛⑸쾿쓣 궗슜븯떎.

異붿텧 슜븸쓣 썝떖遺꾨━(3,000 rpm, 10 min)븳 썑 긽벑븸쓣 遺꾨━븯떎. 遺꾨━맂 異붿텧븸 젙웾뿬怨쇱(No 5c, Advantec, Tokyo, Japan)濡 뿬怨쇳븳 떎쓬, 쉶쟾媛먯븬냽異뺢린(IKA, Staufen, Germany)濡 媛먯븬 냽異뺥븳 썑, 룞寃곌굔議곌린(Ilshin-BioBase, Gyeonggi-do, Korea)瑜 궗슜븯뿬 뼸 떆猷뚮 媛곴컖쓽 異붿텧 슜留ㅼ뿉 끃뿬 떎뿕쓣 吏꾪뻾븯떎.

異붿텧臾쇱쓽 GCMS뿉 쓽븳 꽦遺 遺꾩꽍

꽦遺 遺꾩꽍쓣 쐞빐 Gas Chromatography Mass Spectrometry (GCMS) 옣鍮(GC-2010, Shimadzu Co., Kyoto, Japan)瑜 솢슜븯떎. 떆猷뚮 DMSO뿉 異⑸텇엳 슜빐떆궓 썑, 1李 썝떖遺꾨━湲곕 씠슜븯뿬 遺쑀臾쇱쓣 젣嫄고븯怨 2李⑤줈 留덉씠겕濡 븘꽣濡 뿬怨 썑, 떆猷뚮 以鍮꾪븯떎. 而щ읆 BD-5 (60 mm×0.25 mm×0.25 mm), 씠룞 媛뒪(carrier gas)씤 뿬瑜(H2)媛뒪뒗 遺꾨떦 1 mL쓽 냽룄濡 쓽윭 蹂대깉쑝硫 二쇱엯援(injection) 삩룄뒗 250℃, 遺꾪븷鍮(split ratio) 10:1, 삤釉 삩룄瑜 遺꾨떦 3℃뵫 250℃源뚯 긽듅떆耳곗쑝硫, 二쇱엯웾 1 μL 議곌굔쑝濡 遺꾩꽍븯떎.

珥 뤃由ы럹 븿웾 痢≪젙

媛 異붿텧 떆猷 0.1 mL뿉 利앸쪟닔 6.4 mL 2 N Folin-Ciocalteu 떆빟 0.3 mL瑜 泥④븯怨 20% Na2CO3 (Junsei Chemical Co., Tokyo, Japan) 1 mL瑜 媛븯뿬 2떆媛 룞븞 諛⑹튂븯떎. 諛섏쓳臾쇱쓽 씉愿묐룄뒗 725 nm뿉꽌 UV/Vis-spectrophotometer (U-1800, Hitachi Co., Tokyo, Japan)瑜 궗슜븯뿬 痢≪젙븯怨 gallic acid (GAE)瑜 씠슜븳 몴以怨≪꽑쑝濡 뼇쓣 솚궛븯떎.

DPPH radical 냼嫄곕뒫

媛 떆猷뚯뿉 븳 DPPH radical 냼嫄고솢꽦 517 nm뿉꽌 UV/Vis-spectrophotometer濡 痢≪젙븯떎(Blois, 1958). 땲뙆빞옄 異붿텧臾 諛 뼇꽦 議곌뎔쑝濡 궗슜븳 0.1% ascorbic acid (AA) 슜븸 0.1 mL瑜 DPPH 슜븸 0.3 mL 븿猿 5珥 룞븞 vortex mixer濡 샎빀븯뿬 泥④븳 썑, 씠瑜 30遺꾧컙 븫냼뿉꽌 諛섏쓳떆耳 씉愿묐룄瑜 痢≪젙븯떎. 議곌뎔 떆猷 떊 뿉깂삱 0.1 mL瑜 泥④븯뿬 議곌뎔뿉 븳 씉愿묐룄쓽 媛먯냼 鍮꾩쑉濡 굹궡뿀떎.

Scavenging activity (%)=Control O.D.-Sample O.D./Control O.D.×100

ABTS •+ radical 냼嫄곕뒫

ABTS 슜븸 7 mM ABTS 2.45 mM K2S2O8瑜 샎빀빐 16떆媛 룞븞 븫냼뿉 蹂닿븯뿬 以鍮꾪븯쑝硫, OD 媛믪씠 0.700±0.005뿉 룄떖븯寃 DW濡 씗꽍븯떎(Re et al., 1999). 媛 냽룄 蹂 땲뙆빞옄 異붿텧臾 諛 뼇꽦 議곌뎔 0.1 mL 3.9 mL쓽 ABTS 슜븸쓣 샎빀븳 썑 23℃뿉꽌 6遺꾧컙 諛섏쓳떆궎硫댁꽌 734 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 뼇꽦 議곌뎔 0.1% ascorbic acid (AA)쓣 궗슜븯쑝硫 ABTS 씪뵒移 냼嫄곕뒫 떎쓬쓽 떇뿉 뵲씪 怨꾩궛븯떎.

Scavenging activity (%)=Control O.D.-Sample O.D./Control O.D.×100

異붿텧臾쇱쓽 꽭룷룆꽦 룊媛

땲뙆빞옄 異붿텧臾쇱뿉 꽭룷룆꽦쓣 痢≪젙븯湲 쐞빐 MTT assay瑜 씠슜븯뿬 痢≪젙븯떎. RAW264.7 꽭룷瑜 96-well plate뿉 1×104 cells/well씠 릺룄濡 遺꾩<븯뿬 24떆媛 룞븞 諛곗뼇 썑 땲뙆빞옄 異붿텧臾쇱쓣 냽룄 蹂꾨줈 100 μL 泥섎━븯뿬 24떆媛 諛곗뼇븯떎. 꽭룷 깮議댁쑉 룊媛瑜 쐞븯뿬 well 떦 10 μL쓽 MTT (5 mg/mL)쓣 泥④븯뿬 4떆媛 룞븞 諛섏쓳떆耳곕떎. 깮꽦맂 formazan쓣 끃씠湲 쐞빐꽌 DMSO瑜 100 μL 뵫 泥④븯怨 1떆媛 썑 microplate reader瑜 씠슜븯뿬 517 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎.

H2O2뿉 쓽븳 꽭룷쓽 넀긽쑝濡쒕꽣 꽭룷蹂댄샇 룊媛

硫댁뿭꽭룷 RAW264.7瑜 씠슜븳 꽭룷蹂댄샇 룊媛뒗 Hwang 벑 (2010)쓽 諛⑸쾿쓣 쓳슜븯떎. RAW264.7 꽭룷瑜 96-well plate뿉 1×104 cells/well씠 릺룄濡 遺꾩<븯뿬 24떆媛 룞븞 諛곗뼇븯떎. 諛곗뼇맂 RAW264.7 꽭룷瑜 깉濡쒖슫 諛곗濡 援먰솚븳 떎쓬 H2O2 1.5 mM 諛 땲뙆빞옄 異붿텧臾쇱쓣 냽룄 蹂꾨줈 泥섎━븯뿬 12떆媛 룞븞 諛곗뼇븯떎. 諛곗뼇 셿猷 썑, MTT (5 mg/mL) 슜븸쓣 媛 well뿉 10 μL 뵫 泥④븯怨 4떆媛 룞븞 諛곗뼇븯뿬 MTT媛 솚썝릺룄濡 븯떎. 씠썑 긽벑븸쓣 셿쟾엳 젣嫄고븯怨 DMSO 100 μL瑜 媛 well뿉 泥④븳 썑, 10遺꾧컙 諛섏쓳떆耳 formazan 寃곗젙쓣 셿쟾엳 슜빐븳 떎쓬 microplate瑜 씠슜븯뿬 540 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎.

넻怨꾩쿂由

蹂 뿰援ъ쓽 紐⑤뱺 떎뿕 寃곌낵뒗 3쉶 씠긽 諛섎났븯뿬 痢≪젙븯쑝硫 룊洹좉컪(mean)怨 몴以렪李(standard deviation, SD)濡 굹깉떎. 議곌뎔怨 떎뿕援 궗씠쓽 넻怨꾪븰쟻 쑀쓽꽦 寃젙 Student's t-test濡 鍮꾧탳븯쑝硫 *P<0.05 씠븯씤 寃껉낵 **P<0.01 씠븯씤 寃껊쭔 쑀쓽븳 寃껋쑝濡 븯떎.

寃 怨

異붿텧臾 닔쑉 룊媛

異붿텧 슜留ㅼ뿉 뵲瑜 땲뙆빞옄 異붿텧 닔쑉 媛곴컖 LDW (33.32%) < LE70 (34.5%) < LE50 (40.12%) < LE30 (42.12%) 닚쑝濡 솗씤릺뿀떎. 異붿텧 슜留 諛 議곌굔뿉 뵲씪 異붿텧 꽦遺꾩쓽 븿웾씠 떖씪吏硫, 쑀슚꽦遺꾩쓽 븿웾뿉 쁺뼢쓣 二쇰뒗 寃껋쓣 솗씤븯떎(Bobade, 2019). 땲뙆빞옄 異붿텧臾쇱쓽 寃쎌슦 뿉깂삱 鍮꾩쑉씠 30%씪 븣 룞寃곌굔議 썑 뼸뒗 怨좏삎遺꾩쓽 븿웾씠 理쒕떎.

異붿텧臾쇱쓽 GCMS 꽦遺

GC-MS 遺꾩꽍 寃곌낵 利앸쪟닔(LDW) 諛 뿉깂삱(LE30, LE50, LE70)쓣 슜留ㅻ줈 異붿텧븯뿬 뼸 媛슜꽦 怨좏삎遺꾩쓽 깮由ы솢꽦 솕빀臾쇱쓽 꽦遺꾩쓣 솗씤븯떎(Table 1). 4醫낅쪟쓽 異붿텧臾쇱뿉꽌 Cyclodecasiloxane怨, pentadecanoic acid 솕빀臾쇱씠 슦꽭븯寃 議댁옱븯떎. Cyclodecasiloxane-, eicosamethyl 솕빀臾쇱 빆瑜섎쭏떚뒪, 媛꾨낫샇 諛 빆寃쎈젴怨 媛숈 뿬윭 깮臾쇳븰쟻 듅꽦쓣 媛뽯뒗 깮由ы솢꽦 솕빀臾쇰줈 븣젮졇 엳떎(Bobade, 2019).

GC-MS analysis of various solution extract of Nypa fruticans wurmb

No Retention time Chemical constituents %, area
LDW LE30 LE50 LE70
1 18.345 5-Hydroxymethylfurfural 22.8 8.88 18.52 12.36
2 20.808 Tridecane, 1-iodo- 10.63 4.71 3.64
3 20.817 Sulfurous acid, hexyl octyl ester 5.25
4 29.39 Undecane, 3,8-dimethyl- 3.82
5 29.89 Eicosane 4.34
6 29.88 Dodecane, 2,6,11-trimethyl- 4.3
7 32.67 Undecanoic acid 1.97
8 37.99 Octadecane, 6-methyl- 4.3
9 40.06 Nonanoic acid 2.18
10 41.23, 54.67, 62.17 Cyclononasiloxane, octadecamethyl- 15.48 21.48 6.48
11 42.076 Undecanal 3.64
12 46.16, 50.67, 71.6 Cyclodecasiloxane, eicosamethyl- 14.87 15.74 9.86 5.31
13 46.808 Pentadecanoic acid 31.78 30.15 25.25 29.47
14 48.774 trans-2-Dodecen-1-ol 9.11
15 48.778 Heptadecanal 7.75 4.95
16 50.665 Cyclooctasiloxane,hexadecamethyl- 5.38 5
17 53.2 Octadecanoic acid 6.71 16.64
18 53.4 Tridecanoic acid 12.06
19 58.42 Citronellol epoxide (R or S) 3.16
20 58.56 Iron, tetracarbonyl (pyridine)- 0.64
21 68.718 1,2-Ethanediamine 6.79


Pentadecanoic acid뒗 룷솕 吏諛⑹궛쑝濡 옄뿰怨꾩뿉꽌 뱶臾쇨쾶 議댁옱븯硫 빟由ъ쟻 꽦吏덉쓣 媛吏 寃껋쑝濡 븣젮졇 엳쑝硫, LDW (31.78%), LE30 (30.15%), LE70 (29.47%), LE50 (25.25%) 닚쑝濡 븿쑀웾씠 愿李곕릺뿀떎. 鍮꾪뙆옂뿉꽌 40%媛 꽆뒗 pentadecanoic acid 꽦遺꾩씠 솗씤릺뿀떎(Shin et al., 2003). 삉븳, 떇臾, 떇뭹, 씤媛꾪삁泥 諛 議곕쪟쓽 궗궛臾쇰줈 븣젮졇 엳쑝硫 以묒슂븳 깮깭븰쟻 湲곕뒫쓣 媛吏怨 엳떎.

珥 뤃由ы럹 븿웾 痢≪젙

떇臾쇨퀎뿉 꼸由 遺꾪룷릺뼱 엳뒗 2李 궗궛臾 以 븯굹濡 럹꽦 솕빀臾쇱 뵆씪蹂대끂씠뱶 깂땶씠 二쇱꽦遺꾩씠怨 phenolic hydroxyl (OH)湲곕 媛吏誘濡 떒諛깆쭏 諛 湲고 嫄곕 遺꾩옄뱾怨 돺寃 寃고빀븯硫 빆궛솕, 빆븫 벑쓽 떎뼇븳 깮由ы솢꽦쓣 媛吏꾨떎(Kim et al., 2012).

異붿텧 슜留ㅼ뿉 뵲瑜 땲뙆빞옄 異붿텧臾쇱쓽 珥 뤃由ы럹쓽 븿웾 Table 2 媛숇떎. 뤃由ы럹 븿웾 利앸쪟닔 슜留ㅼ뿉꽌 128±1.65 mg/g濡 媛옣 궙 媛믪쓣 솗씤븯떎. 삉븳, 뿉깂삱쓽 鍮꾩쑉씠 50% (LE50)씤 議곌굔뿉꽌 210±4.23 mg/g쑝濡 媛옣 넂븯떎. 뿉깂삱쓽 鍮꾩쑉씠 30% (LE30)씪 븣 205±2.3 mg/g쑝濡 LE50씪 븣 鍮꾩듂븳 븿웾씠 솗씤릺뿀떎(Table 2). 슱湲 諛 솴湲 異붿텧 슜留ㅼ뿉 뵲瑜 뤃由ы럹쓽 븿웾 뿴닔 異붿텧臾 蹂대떎 쑀湲 슜留 異붿텧臾쇱뿉꽌 뜑 넂 븿웾쓣 굹궡뼱 蹂 뿰援 寃곌낵 쑀궗븯떎(Park et al., 2013; Lim et al., 2019). 蹂 뿰援ъ뿉꽌 럹솕빀臾 븿웾씠 媛옣 留롮씠 븿쑀맂 洹몃9 뿉깂삱 30% 50%濡 異붿텧븳 떆猷 洹몃9씠 利앸쪟 異붿텧(LDW) 洹몃9蹂대떎 넂 빆궛솕 솢꽦 슚怨쇨 굹궇 寃껋쑝濡 궗猷뚮맂떎.

Total phenolic contents of Nypa fruticans wurmb by various solution extract

Samples Total polyphenol contents (GAE mg/g)
LDW 128±1.65
LE30 205±2.3
LE50 210±4.23
LE70 180±5.6

The values represent mean ± SD of triplicate determinations. LDE, hot-water extract; LE30, 30% ethanol extract; LE50, 50% ethanol extract; LE70, 70% ethanol extract



DPPH radical 냼嫄곕뒫

DPPH radical 떆빟 吏숈 蹂대씪깋뿉 옄쑀 씪뵒而щ줈 솕븰쟻쑝濡 븞젙맂 닔슜꽦 솕빀臾쇰줈 븣젮졇 엳떎. DPPH 떆빟 빆궛솕 솢꽦쓣 媛吏 臾쇱쭏怨 諛섏쓳븯硫 뼇꽦옄-씪뵒移 냼嫄곕뒫뿉 쓽빐 끂깋쑝濡 깉깋릺硫 517 nm뿉꽌 愿 씉닔 꽦吏덉쓣 諛뷀깢쑝濡 빆궛솕 솢꽦쓣 痢≪젙븷 닔 엳떎. 125, 250, 500 諛 1,000 μg/mL 냽룄쓽 LDW, LE30, LE50, LE70瑜 議곌뎔 AA 鍮꾧탳븳 DPPH 씪뵒而 냼嫄곕뒫 痢≪젙 寃곌낵뒗 Fig. 1怨 媛숇떎. 媛 異붿텧臾쇰뱾쓽 빆궛솕 솢꽦 냽룄 쓽議댁쟻쑝濡 利앷븯뒗 寃쏀뼢쓣 愿李고븯쑝硫 LE70 異붿텧臾 1,000 μg/mL뿉꽌 81.14%쓽 DPPH 씪뵒而 냼嫄곕뒫쓣 솗씤븯떎. 議곌뎔씤 AA媛 100 μg/mL씪 븣, 70.42±1.2%濡 땲뙆빞옄 LE30, LE50 異붿텧臾쇱쓽 500 μg/mL 냽룄씪 븣 빐뒫씠 鍮꾩듂븳 寃껋쓣 솗씤븯떎.

Fig. 1. DPPH radical scavenging activity of Nypa fruticans wurmb extract. DPPH radical scavenging analysis was performed to investigate. The antioxidant effects of Nypa fruticans wurmb at varying concentration levels of 125 μg/mL, 250 μg/mL, 500 μg/mL, 1,000 μg/mL. Each value presents the mean ± standard deviation (n=3). Asterisks indicate a significant increment in DPPH scavenging activity compared with controls (*P<0.05).

ABTS •+ radical 냼嫄곕뒫

ABTS 냽+ 씪뵒移 냼嫄곕뒫쓽 룊媛뒗 potassium persulfate 諛섏쓳뿉 쓽빐 깮꽦맂 ABTS 냽+ 옄쑀 씪뵒移쇱씠 빆궛솕 슚뒫쓣 媛吏 깮由ы솢꽦 臾쇱쭏뿉 쓽빐 젣嫄곕릺뼱 泥끃깋씠 깉깋릺뒗 寃껋쓣 씠슜븯뒗 썝由ъ씠떎(Lee et al., 2012). 125, 250, 500 諛 1,000 μg/mL 냽룄쓽 LDW, LE30, LE50, LE70瑜 ABTS 냽+ 씪뵒移 냼嫄곕뒫쓣 痢≪젙븳 寃곌낵뒗 Fig. 2 媛숇떎. 땲뙆빞옄 異붿텧臾쇱쓣 125, 250, 500 諛 1,000 μg/mL 냽룄濡 泥섎━븯쓣 븣 遺遺꾩쓽 냽룄뿉꽌 ABTS 씪뵒移 냼嫄곕뒫씠 넂寃 愿李곕릺뿀떎. 利앸쪟닔濡 異붿텧븳 떆猷뚮낫떎 뿉깂삱 異붿텧 떆猷뚯뿉꽌 쟾泥댁쟻쑝濡 넂 냼嫄곕뒫씠 愿李곕릺뿀떎. DPPH 씪뵒移쇨낵 鍮꾧탳븯뿬 ABTS 씪뵒移 냼嫄고솢꽦씠 넂 씠쑀뒗 ABTS 씪뵒移 냼嫄고솢꽦뿉꽌 洹뱀꽦怨 鍮꾧레꽦 臾쇱쭏쓽 솢꽦씠 紐⑤몢 痢≪젙릺怨, 씪뵒移 삉븳 뼇씠삩 씪뵒移쇱쓽 듅吏뺤쓣 媛吏怨 엳뒗 諛섎㈃ DPPH 씪뵒移 냼嫄고솢꽦뿉꽌뒗 옄쑀 씪뵒移쇱쓣 湲곗쭏濡 씠슜븯湲 븣臾몄씤 寃껋쑝濡 궗猷뚮맂떎(Andrzej and Olszowy, 2013).

Fig. 2. ABTS radical scavenging activity of Nypa fruticans wurmb extract. ABTS radical scavenging analysis was performed to investigate. The antioxidant effects of Nypa fruticans wurmb at varying concentration levels of 125 μg/mL, 250 μg/mL, 500 μg/mL, 1,000 μg/mL. The appropriate amount of ascorbic acid was used as a positive control (AA). Each value presents the mean ± standard deviation (n=3). Asterisks indicate a significant increment in ABTS scavenging activity compared with controls (*P<0.05, **P<0.01).

異붿텧臾쇱쓽 꽭룷룆꽦 룊媛

땲뙆빞옄 異붿텧臾쇱쓣 RAW 264.7 꽭룷뿉 뿬윭 냽룄(0~ 1,000 μg/mL)濡 24떆媛 泥섎━븳 썑 MTT assay瑜 닔뻾븳 寃곌낵뒗 Fig. 3怨 媛숇떎. 쓽猷뚭린湲 깮臾쇳븰쟻 븞쟾꽦 떆뿕 洹쒓꺽쑝濡 떆뿕븳 寃곌낵 1,000 μg/mL쓽 냽룄뿉꽌룄 꽭룷 깮議댁쑉씠 80% 씠긽쑝濡 鍮꾧탳쟻 븞쟾븿쓣 븣 닔 엳뿀떎. 媛 異붿텧臾쇱쓽 1,000 μg/mL뿉꽌 LDW, LE30, LE50, LE70 媛곴컖 86±1.3%, 82.1±4.2%, 82±3.2% 諛 81±3.2%濡 痢≪젙릺뿀떎.

Fig. 3. Effect of extracts on Nypa fruticans wurmb on cell viability of RAW264.7 cells. RAW264.7 cells were treated with extracts on Nypa fruticans wurmb at varying concentration levels 125 μg/mL, 250 μg/mL, 500 μg/mL, 1,000 μg/mL. The values are expressed as the means ± standard deviation of three individual experiments. Statistically significant differences are marked with an asterisk compared to the untreated group (*P<0.05, **P<0.01).

H2O2뿉 쓽븳 꽭룷쓽 넀긽쑝濡쒕꽣 꽭룷蹂댄샇 룊媛

솢꽦궛냼쓽 씪醫낆씤 H2O2뒗 泥섏쓬뿉 hydroxyl radical濡 諛붾뚭퀬, 씠寃껋씠 궛냼 臾쇰줈 쟾솚릺湲 쟾뿉뒗 꽭룷뿉 媛뺣젰븳 궛솕 뒪듃젅뒪瑜 二쇱뼱 꽭룷 넀긽쓣 媛냽솕떆궓떎. 씠뒗 떊寃쎈꽦 吏덊솚씤 븣痢좏븯씠癒몃퀝, 뙆궓뒯蹂 諛 끂솕 벑怨쇰룄 諛젒븳 愿젴씠 엳뼱 빆궛솕 湲곗옉쓣 넻븳 꽭룷蹂댄샇媛 뿼利앹쭏솚뿉 以묒슂븳 뿭븷쓣 븳떎(Emi et al., 2002).

꽭룷蹂댄샇 슚怨쇰뒗 紐⑤뱺 떆猷뚯뿉꽌 1.5 mM H2O2 泥④援(65.3±2.3%) 鍮꾧탳븳 寃곌낵 꽭룷蹂댄샇쑉씠 쑀쓽쟻쑝濡 利앷븯뒗 寃껋쓣 솗씤븯떎. 議곌뎔 ascorbic acid (AA)援곗쓽 寃쎌슦 95±1.35%濡 꽭룷蹂댄샇쑉쓣 솗씤븯떎.

利앸쪟닔 異붿텧臾(LDW) 500 μg/mL 냽룄뿉꽌 68.6±1.92%濡 굹궗怨 LE30, LE50, LE70쓽 떆猷 500 μg/mL瑜 泥섎━븳 援곗뿉꽌 媛곴컖 86±0.6%, 89±0.11% 諛 85±0.05%濡 굹궗떎. 뿉깂삱 異붿텧臾쇱쓽 紐⑤뱺 援곗뿉꽌 125 μg/mL쓽 냽룄뿉꽌 70%媛 꽆뒗 넂 꽭룷 깮議댁쑉씠 愿李곕릺뿀떎(Fig. 4).

Fig. 4. Effects of extracts on Nypa fruticans wurmb on H2O2 (1.5 mM) induced oxidative damage production RAW 264.7 cells. RAW 264.7 cells were treated the indicated concentrations of Nypa fruticans wurmb extracts treated with H2O2 20 μL. After 24 h incubation, the amounts of oxidative damage were measured by MTT assay. The appropriate amount of ascorbic acid was used as a positive control (AA). Results are represented as mean ± standard deviation. Asterisks indicate a significant increment in cell viability compared with cells treated with H2O2 only (*P<0.05, **P<0.01).

뵆씪蹂대끂씠뱶怨 꽦遺꾩씤 baicalein씠 븿쑀맂 솴湲 異붿텧臾쇱쓽 寃쎌슦 100 μg/mL 냽룄뿉꽌 紐⑤몢 1.5 mM H2O2 議곌뎔뿉 鍮꾪빐 17.72~41.63%濡 넂 솢꽦쓣 굹궡뿀쑝硫, 80% 硫뷀깂삱 異붿텧臾쇱씠 85.11%濡 꽭룷蹂댄샇 슚怨쇨 媛옣 넂寃 굹굹 H2O2濡쒕꽣 넀긽맂 꽭룷瑜 蹂댄샇븯뒗 슚怨쇨 媛옣 슦닔븳 寃껋쓣 솗씤븯떎.

蹂 뿰援ъ뿉꽌룄 LDW蹂대떎 LE30, LE50, LE70 異붿텧臾쇱뿉꽌 뜑 넂 꽭룷蹂댄샇 슚怨쇨 굹궃 寃껋쓣 솗씤븯떎.

怨 李

땲뙆빞옄(Nypa fruticans wurmb) 誘몄留 留밴濡쒕툕 떇臾쇰줈 뿼利앷컻꽑, 빆궛솕, 빆뿼利 벑쓽 슚뒫씠 엳뒗 寃껋쑝濡 븣젮졇 엳쑝硫 깮由ы솢꽦 臾쇱쭏濡 chlorogenic acid, protocatechuic acid, kaempferol怨 媛숈 떎웾쓽 polyphenol, flavonoid 솕빀臾쇱씠 븿쑀릺뼱 엳떎(Reza et al., 2011). 땲뙆빞옄뒗 援궡뿉 2015뀈 8썡뿉 떇뭹 옱猷 諛 솕옣뭹 썝猷뚮줈 궗슜 媛뒫빐吏먯뿉 뵲씪 떎뼇븳 뿰援ш 吏꾪뻾릺뿀吏留 異붿텧 怨듭젙뿉 뵲瑜 꽦遺꾩뿉 븳 뿰援ш 誘명씉븯뿬 蹂 뿰援ъ뿉꽌뒗 利앸쪟닔, 뿉깂삱 30%, 50%, 70% 슜留ㅻ줈 珥덉쓬뙆 옣移섎 솢슜븯뿬 뼸 異붿텧臾쇱쓽 깮由ы솢꽦 꽦遺꾩뿉 븳 뿰援щ 닔뻾븯떎. 씤吏꾩뫁 諛 蹂듬텇옄쓽 寃쎌슦 뿉깂삱 냽룄媛 40%씪 븣 媛슜꽦 怨좏삎遺 닔쑉씠 媛옣 넂쑝硫 異붿텧 떆媛꾨낫떎 떆猷뚯뿉 븳 슜留 鍮꾩쑉 諛 냽룄뿉 쁺뼢쓣 諛쏅뒗 寃껋쑝濡 蹂닿퀬릺뿀떎(Kim, 2014). 媛슜꽦 怨좏삎遺 븿웾 썝猷뚮굹 썝猷뚯쓽 媛怨 듅꽦뿉 뵲씪 떖씪吏硫 슜留ㅼ쓽 鍮꾩쑉怨 냽룄뿉 뵲씪 쁺뼢쓣 諛쏅뒗 寃껋쓣 븣 닔媛 엳뿀떎(Yoon et al., 2003).

珥덉쓬뙆 異붿텧 쟾넻쟻쑝濡 궗슜븯뜕 뿴닔 異붿텧踰뺤쓽 떒젏씤 옣떆媛 媛뿴濡 씤븳 쑀슜 꽦遺 뙆愿 諛 媛슜꽦遺 쐞二쇱쓽 異붿텧 벑쓣 諛⑹븷 肉 留 븘땲씪 異붿텧 떆媛꾩쓣 떒異뺥븯怨, 넂 異붿텧 닔쑉怨 깮由ы솢꽦 슚怨쇰 湲곕븷 닔 엳뒗 異붿텧諛⑸쾿씠떎(Lee et al., 2017). 異붿텧 슜留 諛 諛⑸쾿뿉 뵲씪 떇臾쇱쓽 쑀슚꽦遺꾩쓽 븿쑀웾씠 떖씪吏꾨떎(Park et al., 2013). LE30 떆猷뚯뿉꽌 eicosane, undecanal, tridecanoic acid怨 솕빀臾쇱씠 32.1%媛 꽆寃 寃異쒕릺뿀쑝硫, 빆蹂씠썝꽦怨 빆궛솕꽦怨 긽愿愿怨꾧 엳뒗 솕빀臾쇱쓽 쑀슚꽦遺꾩씠 떎瑜 援곗뿉 鍮꾪빐 떎웾 寃異쒕맂 寃껋쓣 솗씤븯떎(Yoon et al., 2003).

蹂 뿰援ъ뿉꽌 꽑젙븳 슜留ㅻ뒗 利앸쪟닔 뿉깂삱 30%, 50% 諛 70% 議곗꽦쓽 샎빀 슜留ㅻ 씠슜븯쑝硫 뿉깂삱 30% (LE30) 議곗꽦뿉꽌 異붿텧 닔쑉씠 媛옣 넂븯떎. 뤃由ы럹 븿웾 痢≪젙怨 빆궛솕 뿰援ъ뿉꽌 뿉깂삱 30% 50% 슜留ㅻ 궗슜븳 議곌굔뿉꽌 넂 빆궛솕뒫씠 愿李곕릺뿀떎. 議곌뎔쑝濡 꽑젙븳 ascorbic acid (AA) 100 μg/mL쓣 泥섎━븳 援곌낵 LE30쓽 500 μg/mL쓣 泥섎━븳 援곗뿉꽌 쑀궗븳 빆궛솕 媛믪쓣 솗씤븯떎. 쁽옱源뚯 럹怨 빀꽦 빆궛솕젣씤 butylated hydroxytoluene (BHT) 諛 butylated hydroxyanisole (BHA)媛 넂 빆궛솕꽦 슚怨쇰 蹂댁씠怨 媛믪씠 졃븯뿬 寃쎌젣꽦룄 쎇뼱굹湲 븣臾몄뿉 꼸由 궗슜릺뼱 솕떎. 븯吏留, 씠뱾쓽 씤泥댁뿉 븳 쑀빐꽦씠 蹂닿퀬릺硫댁꽌 怨 궗슜씠 젏李⑤줈 以꾩뼱뱾怨 엳뼱 씤泥댁뿉 臾댄빐븯怨 빆궛솕 슚怨쇨 넂 泥쒖뿰 빆궛솕젣瑜 李얜뒗 寃껋씠 젅떎엳 슂援щ릺怨 엳떎(Park et al., 2003). 빐븞 떇臾쇰줈 옒 븣젮吏 븿珥덈 留덉씠겕濡쒖썾씠釉 異붿텧 옣移섎줈 異붿텧븳 寃쎌슦 뿴닔 異붿텧蹂대떎 뿉깂삱濡 異붿텧뻽쓣 寃쎌슦 뜑 넂 DPPH 씪뵒而 냼嫄곕뒫씠 蹂닿퀬맂 諛 엳떎(Kim, 2015).

Song et al. (2007)뿉 뵲瑜대㈃ 븿珥 뿉깂삱 異붿텧臾쇱쓽 냽룄媛 500 μg/mL씪 븣, ABTS 냼嫄곕뒫 47.9%濡 愿李곕릺뿀떎. 떎뿕 寃곌낵瑜 넻빐 吏吏 怨쇱궛솕 뼲젣, DPPH 씪뵒移 냼嫄고솢꽦, 솚썝젰 슚怨쇱뿉꽌 珥 럹 븿웾怨 빆궛솕뒫씠 긽愿愿怨꾧 뾾쑝硫, 럹 븿웾씠 빆궛솕뒫뿉 誘몄튂뒗 슚怨쇱쓽 젙룄媛 떎瑜대떎怨 蹂닿퀬븯떎(Song et al., 2007). 紐⑤뱺 빆궛솕 吏몴媛 뤃由ы럹 븿웾뿉 쁺뼢쓣 諛쏅뒗 寃껋 븘땲硫, 뤃由ы럹 쇅뿉 떎瑜 臾쇱쭏씠 쁺뼢쓣 以 닔 엳쓬쓣 떆궗븳떎.

땲뙆빞옄 異붿텧臾쇱쓽 紐⑤뱺 援곗뿉꽌 꽭룷룆꽦 寃곌낵 媛 異붿텧臾쇱뿉꽌 80% 씠긽쓽 꽭룷 깮議댁쑉쓣 솗씤븯떎. 씠윭븳 寃곌낵瑜 諛뷀깢쑝濡 젙긽 꽭룷瑜 궛솕쟻 뒪듃젅뒪濡쒕꽣 蹂댄샇븷 닔 엳뒗吏瑜 궡렣蹂댁븯떎. H2O2뒗 궛냼瑜 씠슜븳 꽭룷 궡 샇씉 怨쇱젙뿉꽌 젙긽쟻쑝濡 깮꽦릺뒗 臾쇱쭏씠硫, 떎뼇븳 꽭룷 떎뿕뿉꽌 궛솕쟻 뒪듃젅뒪瑜 깮꽦븯뒗 옄洹뱀썝쑝濡 솢슜맂떎(Bi et al., 2008).

H2O2瑜 꽭룷뿉 泥섎━븯뿬 媛뺣젰븳 궛솕 뒪듃젅뒪瑜 以 꽭룷뿉꽌 뿉깂삱 異붿텧 떆猷뚭 利앸쪟닔 異붿텧臾 泥섎━ 援곕낫떎 뜑 넂 꽭룷蹂댄샇 슚怨쇰 굹깉떎. Park et al. (2003)쓽 뿰援ъ뿉꽌 O2濡쒕꽣 쑀룄맂 꽭룷留됲뙆愿대뒗 솴湲 異붿텧臾쇱쓽 솢꽦꽦遺꾩씤 baicalein씠 꽭룷蹂댄샇 슚怨쇰 굹궡뿀怨 洹 諛곕떦泥댁씤 baicalin ascorbate 泥④뿉 쓽빐 긽듅쟻쑝濡 ROS뿉 빆븯뿬 꽭룷瑜 蹂댄샇븳떎怨 蹂닿퀬븯떎(Park et al., 2003).

삉븳, glutamate濡 쑀룄맂 꽭룷뿉꽌 긽諛깊뵾 뿉깂삱 異붿텧臾 10 μg/mL 냽룄뿉꽌 빟븳 솢꽦쓣 蹂댁吏留 硫뷀깂삱 異붿텧臾 10 μg/mL 냽룄뿉꽌 70% 씠긽쓽 넂 솢꽦쓣 蹂댁뿬 떊寃쎌꽭룷蹂댄샇 슚怨쇰 굹궡뿀떎(Lim et al., 2019).

寃곌낵쟻쑝濡 땲뙆빞옄 異붿텧臾쇱 利앸쪟 異붿텧蹂대떎 뿉깂삱 30~50%쓣 씠슜븳 異붿텧臾쇱쓽 議곗꽦씠 깮由ы솢꽦씠 뜑 넂 寃껋쓣 솗씤븯떎. 씠뒗 뿉깂삱 50% 議곗꽦뿉 슜留ㅻ뒗 땲뙆빞옄쓽 쑀슜 꽦遺꾩뿉 슜異쒖씠 利앹쭊릺怨, 珥덉쓬뙆 怨듭젙쓣 넻빐 땲뙆빞옄 쑀슜 꽦遺꾩쓽 닔쑉 뼢긽 諛 떊臾쇱쭏 슜異쒕줈 떇뭹, 솕옣뭹, 쓽빟쇅뭹 벑뿉 떎뼇븳 궛뾽援곗쑝濡 솢슜븷 닔 엳쓣 寃껋쑝濡 궗猷뚮맂떎.

ACKNOWLEDGEMENT

Following are results of a study on the "Leaders in INdustry-university Cooperation +" Project, supported by the Ministry of Education and National Research Foundation of Korea.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

References
  1. Andrzej L, Olszowy DM. The importance of solvent type in estimating antioxidant properties of phenolic compounds by ABTS assay. European Food Research and Technology. 2013. 236: 1099-1105.
    CrossRef
  2. Bi J, Jiang B, Liu JH, Lei C, Zhang XL, An LJ. Protective effects of catalpol against H2O2-induced oxidative stress in astrocytes primary cultures. Neuroscience Letters. 2008. 442: 224-227.
    Pubmed CrossRef
  3. Bobade AF. GC-MS Analysis of bioactive compound in ethanolic extract of Pithecellobium dulce leaves. American Society of Plastic Surgeons. 2019. 3: 8-13.
    CrossRef
  4. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958. 181: 1199-1200.
    CrossRef
  5. Emi II, Yoichi K, Ikuko M, Masato A, Norio O. Glial Cells Protect Neurons Against Oxidative Stress via Transcriptional Up-Regulation of the Glutathione Synthesis. Journal of Neurochemistry. 2002. 72: 2334-2344.
    Pubmed CrossRef
  6. Hwang YG, Lee JJ, Kim AR, Lee MY. Chemical Components and antioxidative effects of Eriobotrya japonica Lindl. Leaf. International Journal of Life Sciences. 2010. 20: 1625-1633.
    CrossRef
  7. Kim IR. Antioxidant and Pro-oxidant Activities of Hamcho (Salicornia herbacea L.). The Korean Journal of Food and Nutrition. 2015. 28: 40-46.
    CrossRef
  8. Lee JJ, Park DH, Lee WY. Optimization of microwave-assisted extraction process of Hordeum vulgare L.by response surface methodology. Korean Joutnal of Food Preservation. 2017. 24: 949-956.
    CrossRef
  9. Kim SN, Kim MR, Cho SM, Kim SY, Kim JB, Cho YS. Antioxidant activities and determination of phenolic compounds isolated from oriental plums (soldam, oishiwase and formosa). Nutrition Research and Practice. 2012. 6: 277-285.
    Pubmed KoreaMed CrossRef
  10. Koffi E, Sea T, Dodeh Y, Soro S. Effect of solvent type on extraction of polyphenols from twenty three ivorian plants. J Anim Plant Sci.. 2010. 5: 550-558.
  11. Lim MJ, Gu YR, Hong JH. Extraction solvent-dependent antioxidant activities and cancer cell growth inhibitory effects of Scutellaria baicalensis extracts. Korean Journal of Food Preservation. 2019. 26: 566-575.
    CrossRef
  12. Lee S, You Y, Kim K, Park J, Jeong C, Jhon DY, Jun W. Antioxidant activities of native Gwangyang Rubus coreanus Muq. Journal of the Korean Society of Food Science and Nutrition. 2012. 41: 327-332.
    CrossRef
  13. Rahmatullah M, Sadeak SMI, Bachar SC. Brine Shrimp Toxicity Study of different Bangladeshi Medicinal Plants. Advances in Natural and Applied Sciences. 2010. 4: 163-173.
  14. Park JJ, Lee JM, Jun WJ. Radical scavenging and anti-obesity effects of various extracts from turmeric (Curcuma longa L.). Journal of the Korean Society of Food Science and Nutrition. 2013. 42: 1908-1914.
    CrossRef
  15. Park SN. Antioxidative properties of Baicalein, component from Scuteliaria baicalensis Gerogi and its application of cosmetic (뀪). Journal of Industrial and Engineering Chemistry. 2003. 14: 657-665.
  16. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 1999. 26: 1231-1237.
    Pubmed CrossRef
  17. Reza H, Haq VM, Das AK, Rahman S, Jahan R, Rahmatullah M. Aanti-hyperglycemic and antinociceptive activity of methanol leaf and stem extract of Nypa fruticans Wurmb. Pakistan Journal of Pharmaceutical Sciences. 2011. 24: 485-488.
  18. Shin SY, Kang MY, Nam SH. Correlation of Lipid Soluble Compounds of Colored Rices and its Mutagenicity, Antimutagenicity and Antioxidativity. Journal of Applied Biological Chemistry. 2003. 46: 214-219.
  19. Song HS, Kim DP, Jung YH, Lee MK. Antioxidant activities of red Hamcho (Salicornia herbacea L.) against lipid peroxidation and the formation of radicals. The Journal of Nutrition and Health. 2007. 20: 150-157.
  20. Yoon SR, Jeong YJ, Lee GD, Kwon JH. Changes in phenolic compounds properties of Rubi fructus extract depending on extraction conditions. Journal of the Korean Society of Food Science and Nutrition. 2003. 32: 338-345.
    CrossRef