Search for


TEXT SIZE

search for



CrossRef (0)
Preparation of Shark Byproduct Extract and Gellan Gum based Antibacterial Film Containing Green Tea Extract
Biomed Sci Letters 2022;28:50-57
Published online March 31, 2022;  https://doi.org/10.15616/BSL.2022.28.1.50
© 2022 The Korean Society For Biomedical Laboratory Sciences.

Jing-Gi Bak1,2,*, Jin Kim3,†,** and Seung-Ho Ohk4,†,**

1Moneykey Co., Ltd. Gwangju, 62399, Korea
2Department of Biomedical Engineering, Chonnam National University, Gwangju 61186, Korea
3Dental Healthcare & Clinical Trial Center, College of Dentistry, Chosun University, Gwangju 61452, Korea
4Department of Oral Microbiology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
Correspondence to: Jin Kim. Dental Healthcare & Clinical Trial Center, College of Dentistry, Chosun University, Gwangju 61452, Korea.
Tel: +82-62-230-6883, Fax: +82-62-608-5407, e-mail: cream4251@chosun.ac.kr
Seung-Ho Ohk. Department of Oral Microbiology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.
Tel: +82-62-530-4852, Fax: +82-62-530-4855, e-mail: shohk@chonnam.ac.kr
*Graduate student, **Professor.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
In this study, we tried to examine the possibility of developing a dental product such as tooth decay prevention and oral hygiene by manufacturing a natural polymer film for oral use. Natural polymer films were prepared from shark byproduct extract (SBE) and gellan gum (GG). As an antibacterial substance, the antibacterial activity of green tea extract against tooth decay-causing bacteria was measured. An film was prepared by adding green tea extract to the composition of SBE and GG. The mechanical, solubility, moisture content and antibacterial function of the prepared film were investigated in detail. Also, the incorporation of GTE into the SBE/GG film improved the physical performance of the film. Increasing the content of GTE improved the antioxidant and antibacterial properties of the film. Formulation of antimicrobial SBE/GG film containing green tea extract was established and these results evidently showed potential for cavity prevention products application.
Keywords : Green tea extract, Shark byproduct, Antimicrobial property, Antioxidant film
꽌 濡

肄붾줈굹 19떆뿉 留덉뒪겕 李⑹슜 쓽臾댁궗빆씠 맂吏 삤옒떎. 留덉뒪겕 李⑹슜씠 씪긽씠 릺硫댁꽌 援ш컯愿由ъ뿉 겙 愿떖씠 留롮븘吏怨 엳떎. 듅엳, 援ъ랬濡 씤븳 遺덉풄媛먯쓣 寃쏀뿕븯뒗 궗濡媛 뒛怨 엳쑝硫, 留덉뒪겕 긽떆 李⑹슜쑝濡 援ш컯 궡 솚寃 媛쒖꽑뿉 븳 愿떖궗媛 넂븘吏怨 엳떎(Seo et al., 2021). 援ъ랬쓽 썝씤쑝濡 諛붾떏쓽 諛깊깭, 援ш컯 嫄댁“利, 泥寃고븯吏 븡 援ш컯 쐞깮, 援ш컯吏덊솚 벑씠 諛쒖깮븯寃 맂떎. 留덉뒪겕 냽 援ш컯 嫄닿컯쓣 쐞븳 젣뭹 媛쒕컻씠 떎뼇빐吏怨 엳떎. 援ш컯泥寃곗젣濡 븣젮吏 由ъ뒪뀒由곗쓽 寃쎌슦 궡由ъ떎궛硫뷀떥, 硫섑넧, 떚紐, 쑀移쇰┰넧 벑 뿉꽱뀥삤씪씠 二쇱꽦遺꾩쑝濡 젣議곕릺硫 媛洹몃┛, 뀒씪釉뚮젅뒪 벑 꽭떥뵾由щ뵒뒆뿼솕臾, 뿼솕꽭떥뵾由щ뵒뒆쓣 議곗꽦쑝濡 븳 援ш컯泥寃곗젣媛 씪諛섏쟻쑝濡 븣젮졇 엳떎(Lee, 2017).

븯吏留, 씠윭븳 꽦遺꾨뱾 옣湲곌컙 궗슜떆 遺옉슜쓣 씪쑝耳 슏닔굹 궗슜옄뿉 븳 젣븳씠 뵲瑜몃떎(Giannelli et al., 2008). 솕븰臾쇱쭏쓽 븞쟾꽦뿉 븳 愿떖씠 利앷릺硫댁꽌 깮泥 궡 룆꽦씠硫, 泥쒖뿰냼옱 湲곕컲쓽 젣뭹쓣 꽑샇븯怨 엳떎. 泥쒖뿰 빆洹 諛 빆궛솕젣濡 븣젮吏 끃李(green tea)쓽 뤃由ы럹 꽦遺꾩 빆洹, 諛붿씠윭뒪 媛먯뿼 뼲젣 諛 떦눊삁諛 슚怨 벑쓽 떎뼇븳 깮由ы솢꽦쓣 굹궦떎. 듅엳, 끃李⑥텛異쒕Ъ쓽 移댄뀒궓 꽦遺꾩 異⑹튂洹(Streptococcus mutans)뿉 α-amylase 뼲젣 솢꽦쑝濡 異⑹튂 洹좎<뿉 븳 꽦옣 뼲젣뒫씠 蹂닿퀬릺뿀떎(Lim et al., 2003). 援ш컯 솚寃 媛쒖꽑뿉 쟻슜 媛뒫븳 泥쒖뿰怨좊텇옄 븘由꾩뿉 븳 뿰援ш 떎뼇솕릺怨 엳떎. 듅엳, 닔궛臾 愿젴 빐議곕쪟, 媛묎컖瑜, 洹몃━怨 뼱瑜섎궛臾(猿띿쭏, 堉 벑)뿉꽌 異붿텧맂 떒諛깆쭏쓣 씠슜븳 븘由 뿰援щ뒗 삁쟾遺꽣 떎뼇븯寃 닔뻾릺뼱 솕떎(Yu and Cho, 1997; Lee et al., 2001). 뿰怨⑥뼱瑜섏뿉 냽븯뒗 긽뼱(selachimorpha)뒗 쟾꽭怨꾩쓽 뿴뿉꽌 븳源뚯쓽 빐뼇뿉꽌 꼸由 遺꾪룷븯硫 떒諛깆쭏, 떎떦 諛 떎뼇븳 誘몃꽕엫怨 遺덊룷솕吏諛⑹궛 벑쓽 쑀슚 꽦遺꾩쑝濡 씠琉꾩졇 엳떎. 궡怨 吏뒓윭誘멸 떇슜쑝濡 벐씠硫, 洹 諛뽰쓽 猿띿쭏, 堉, 瑗щ━ 벑 遺遺 媛怨듬궛臾쇰줈 궛뾽쟻 媛移섍 넂吏留 솢슜릺吏 紐삵븯怨 엳떎(Kim et al., 2019).

젮寃(gellan gum) Pseudomonas elodea瑜 궗슜븯뿬 닚닔諛곗뼇 諛쒗슚떆耳쒖꽌 뼸 誘몄깮臾 쑀옒 泥쒖뿰 떎떦瑜섎줈 pH굹 씠삩 泥④ 벑쓣 넻빐 젮쓽 臾쇱꽦쓣 議곗젅븷 닔 엳뼱 쎇뼱궃 肄뷀똿 諛 븘由 삎꽦뒫쑝濡 빟臾 떞泥 諛 議곗쭅 옱깮 냼옱濡 떎뼇븯寃 솢슜릺硫 쓽빟뭹, 떇뭹 벑뿉 옄쑀濡寃 궗슜릺怨 엳떎(Khang et al., 2015; Park et al., 2015). 뵲씪꽌, 蹂 뿰援ъ뿉꽌뒗 긽뼱遺궛臾 異붿텧臾쇨낵 젮寃 議곗꽦 븘由꾩뿉 빆洹 湲곕뒫쓣 媛吏 끃李⑥텛異쒕Ъ쓣 떞吏떆耳 臾쇱꽦쓣 솗씤븯떎. 긽뼱遺궛臾 異붿텧臾쇱씤 떒諛깆쭏怨 젮寃쓽 理쒖쟻 냽룄瑜 꽑젙븯怨 끃李⑥텛異쒕Ъ씠 떞吏맂 븘由꾩쓽 臾쇱꽦쓣 룊媛븯怨 빆洹 諛 빆궛솕뒫쓣 룊媛븯뿬 援ш컯 궡 궗슜 媛뒫븳 븘由 냼옱濡쒖꽌쓽 솢슜 媛뒫꽦쓣 솗씤븯떎.

옱猷 諛 諛⑸쾿

옱猷

蹂 떎뿕뿉 궗슜븳 긽뼱遺궛臾(shark byproduct, SBE) 쁺泥쒕룘踰좉린뿉꽌 援ъ엯븯뿬 씠臾쇱쭏 젣嫄곕 쐞빐 3~4李⑤ 꽭泥숉븳 썑 臾쇨린瑜 理쒖냼븳쑝濡 븯뿬 깋룞떎(-40℃)뿉 蹂닿븯怨 떎뿕옱猷뚮줈 궗슜븯떎. 젮寃(Gellan gum, GG, Mw =1,000 KDa), 닔궛솕굹듃瑜(NaOH), 븘꽭듃궛(acetic acid), pepsin 벑 Sigma-Aldrich Chemical Co. (USA) 젣뭹쓣 궗슜븯떎. 끃李⑥옂(green tea extract, GTE) (二)븳떎뾽뿉꽌 援ъ엯븯뿬 異붿텧븳 썑 궗슜븯떎. 洹 諛뽰쓽 떆빟 젙젣 怨쇱젙 뾾씠 궗슜븯떎.

긽뼱遺궛臾 異붿텧臾 젣議

긽뼱遺궛臾 쑀옒 異붿텧臾쇱 뼱瑜 肄쒕씪寃 異붿텧 떆 궗슜릺뒗 Kim 벑 (2010)쓽 諛⑸쾿뿉 뵲씪 닔뻾븯떎. 긽뼱遺궛臾쇱쓣 닔꽭븯뿬 씠臾쇱쭏쓣 젣嫄고븯怨 鍮꾩퐳씪寃먯꽦 떒諛깆쭏 젣嫄곕 쐞빐 븣移쇰━ 泥섎━ 怨듭젙쓣 吏꾪뻾븯怨, 슚냼媛닔遺꾪빐瑜 넻빐 븣移쇰━瑜 泥섎━븳 썝猷뚯뿉꽌 肄쒕씪寃 異붿텧쓣 吏꾪뻾븯떎. 利, 긽뼱遺궛臾쇱뿉 븣移쇰━ 泥섎━뒗 떆猷 200 g뿉 0.2 N NaOH 슜븸쓣 떆猷 鍮 5諛(v/w) 媛븳 떎쓬 4℃뿉꽌 24떆媛 룞븞 鍮 肄쒕씪寃먯꽦 臾쇱쭏쓣 젣嫄고븯怨 2~3李⑤ 닔꽭븯떎. 슚냼媛닔遺꾪빐 怨듭젙 닔꽭븳 떆猷뚯뿉 10諛곕웾쓽 0.1%(w/v)pepsin쓣 븿쑀븯뒗 0.1 M acetic acid쓣 媛븯뿬 24떆媛 룞븞 37℃뿉꽌 援먮컲븯뿬 遺꾪빐븯떎. 遺꾪빐맂 슜븸쓣 뿬怨쇳븳 썑 85℃뿉꽌 20遺 룞븞 媛뿴븯뿬 슚냼瑜 遺덊솢꽦솕 떆궓 떎쓬 룞寃곌굔議 븯뿬 븘由꾩쓣 젣議고븯뒗 떆猷뚮줈 궗슜븯떎.

SDS-PAGE瑜 넻븳 떒諛깆쭏 subunit 솗씤

SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis)瑜 씠슜븯뿬 긽뼱遺궛臾 異붿텧臾쇱쓽 떒諛깆쭏 subunit쓽 議곗꽦쓣 愿李고븯떎(Laemmli, 1970). 7.5% polyacrylamide gels (running gel)쓣 slab 寃붿슜 쑀由ы뙋뿉 異⑹쟾븯怨, 洹 긽遺뿉 5% polyacrylamide gels (stacking gel)쓣 異⑹쟾븯떎. 긽삩뿉꽌 2떆媛 룞븞 諛⑹튂븯뿬 怨좊텇옄瑜 以묓빀떆궓 썑, tracking dye 룞웾쓽 떆猷뚮 샎빀븯떎. 100℃뿉꽌 5遺꾧컙 諛섏쓳떆궓 떎쓬 떒諛깆쭏웾씠 50 μg 릺룄濡 議곗젣븳 떆猷뚮 寃 긽遺뿉 異⑹쟾떆궎怨 200 V, 80 mA쓽 議곌굔뿉꽌 쟾湲곗쁺룞쓣 吏꾪뻾븯떎. 쟾湲곗쁺룞씠 걹궃 썑 Coomassie Blue R 250 슜븸쑝濡 뿼깋븳 떎쓬 깉깋, 嫄댁“븯뿬 떒諛깆쭏 諛대뱶瑜 솗씤븯떎.

끃李⑥텛異쒕Ъ 젣議 諛 꽦遺 遺꾩꽍

끃李⑥옂 30 g쓣 70% 뿉깂삱 100 mL뿉 移⑥떆耳 珥덉쓬뙆 泥섎━瑜 30遺꾧컙 40 kHz濡 吏꾪뻾븯떎. 珥덉쓬뙆 泥섎━맂 異붿텧臾쇱 뿬怨쇳븯뿬 媛먯븬 냽異뺥븯떎. 냽異뺣맂 異붿텧臾쇱 룞寃곌굔議 썑 遺꾨쭚삎깭濡 蹂닿븯뿬 떎뿕뿉 궗슜븯떎. 끃李⑥텛異쒕Ъ(GTE)쓽 꽦遺 遺꾩꽍 GC-MASS (GC-2010, Shimadzu Co., Japan)瑜 솢슜븯떎. 異붿텧臾쇱쓣 DMSO뿉 異⑸텇엳 슜빐떆궓 썑, 썝떖遺꾨━湲곕 씠슜븯뿬 遺쑀臾쇱쓣 젣嫄고븯怨 긽痢듭븸쓣 떎由곗 븘꽣濡 뿬怨쇳븯뿬 떆猷뚮 以鍮꾪븯떎. 而щ읆 BD-5 (60 mm×0.25 mm×0.25 mm)瑜 궗슜븯怨, 씠룞 媛뒪 鍮꾩쑉 1 mL/min, 二쇱엯援 삩룄뒗 250℃, split ratio 10:1, 삩룄뒗 50~300℃/3℃ 듅삩쑝濡 二쇱엯웾 1 μL 議곌굔쑝濡 遺꾩꽍쓣 븯떎.

끃李⑥텛異쒕Ъ 떞吏 븘由 젣議

븘由꾩쓣 젣議고븯湲 쐞빐 삁鍮꾩떎뿕쓣 넻빐 SBE/GG 슜븸뿉 떎뼇븳 媛냼젣(怨쇰떦, 湲由ъ꽭濡, 옄떦 諛 냼瑜대퉬넧)瑜 샎빀븯뿬 븘由꾩쓣 젣議고븯떎. 꽑뻾뿰援щ 넻빐 냼瑜대퉬넧쓣 꽑젙븯뿬 븘由꾩쓣 젣議고븯떎. 븘由꾪삎꽦슜븸 SBE (2%) GG (2%)쓣 利앸쪟닔 100 mL뿉꽌 80℃ 삩룄뿉꽌 援먮컲븯뿬 슜빐븯怨 긽삩뿉꽌 洹좎쭏솕 썑, 15遺 룞븞 珥덉쓬뙆 泥섎━븯떎. 珥덉쓬뙆 泥섎━(degassing)濡 샎빀臾쇱쓽 湲고룷瑜 젣嫄곗떆궓 썑, 냼瑜대퉬넧 10 mg怨 GTE쓣 50 mg怨 100 mg쓽 냽룄濡 媛곴컖 泥④븯뿬 30遺 룞븞 援먮컲븯떎. 理쒖쥌 슜븸 25 mL뵫쓣 뀒봽濡 肄뷀똿 뵆젅씠듃뿉 罹먯뒪똿븯怨 긽삩뿉꽌 16떆媛 룞븞 嫄댁“떆耳곕떎. 嫄댁“ 썑 SBE/GG-GTE50, SBE/GG-GTE100 議곗꽦 留됱쓣 d-PBS濡 媛援 븳 썑, 3李 利앸쪟닔濡 2~3踰 꽭泥숉븯뿬 븘由꾩쓣 젣議고븯떎. 븘由꾩 긽삩 긽뒿룄 50% 議곌굔쓽 梨붾쾭뿉 蹂닿븯뿬 떎뿕뿉 떆슜븯떎.

씤옣 媛뺣룄 諛 떊옣瑜

븘由꾩쓽 씤옣媛뺣룄(tensile strenth, TS) 떊옣瑜(elongation at break, E) ASTM Standard Method D882-91 諛⑸쾿(ASTM, 1993)뿉 뵲씪 Instron Universal Testing Machine (Model 4484, Instron Co., USA)쓣 궗슜븯뿬 痢≪젙븯떎. 痢≪젙 쟾 븘由꾩 긽뒿룄 諛 삩룄媛 50% 25℃濡 議곗젅릺뒗 빆삩 빆뒿湲곗뿉꽌 48떆媛 옣븯뿬 닔遺 븿웾쓣 議곗젅븳 떎쓬, 2.5× 7 cm쓽 겕湲곕줈 젅떒븯뿬 븳 떆猷 떦 4踰 諛섎났 痢≪젙븯떎.

븘由꾩쓽 닔遺 븿웾 諛 슜빐룄 痢≪젙

닔遺꾪븿웾(moisture content)쓽 寃쎌슦 2×2 cm2 移섏닔쓽 븘由꾩쓣 移웾븯怨 븘由 떆猷뚮 105℃뿉꽌 24떆媛 嫄댁“븯떎. 떎쓬 떇뿉 엯븯뿬 닔移섑솕 븯떎. W0 떆猷 珥덇린 嫄댁“ 吏덈웾(g)씠怨, W1 깦쓽 理쒖쥌 嫄댁“ 吏덈웾(g)씠떎. 紐⑤뱺 떎뿕 꽭 踰 씠긽 닔뻾븯떎.

MC(%)=W0W1W0×100%

븘由 슜빐룄(water solubility, WS)뒗 ASTM (1983) 諛⑸쾿뿉 뵲씪 떆猷 50 mg쓣 30 mL 利앸쪟닔媛 뱾뼱엳뒗 썝떖遺꾨━슜 뒠釉뚯뿉 24떆媛 룞븞 떞洹쇰떎. 뒠釉뚮 9,000 rpm뿉꽌 15遺꾧컙 썝떖遺꾨━ 븯떎. 洹 썑, 105℃삤釉먯뿉꽌 12떆媛 씠썑 臾닿쾶瑜 痢≪젙븳떎, WS뒗 떎쓬 떇뿉 엯븯뿬 닔移섑솕 븯떎. W1 븘由꾩쓽 珥덇린 臾닿쾶씠硫, W2뒗 슜빐릺吏 븡 嫄댁“맂 臾닿쾶씠떎.

WS(%)=W1W2W1×100%

븘由꾩쓽 빆洹 룊媛

異붿텧臾 븿쑀 븘由꾩쓽 빆洹좏솢꽦 Lim 벑 (2009)쓽 諛⑸쾿쓣 蹂삎븯뿬 痢≪젙븯떎. 솴깋룷룄긽 援ш퇏(Staphylococcus aureus, S. aureus)怨 異⑹튂洹(Streptococcus mutans, S. mutans) 洹좎<뒗 37℃뿉꽌 24떆媛 룞븞 理쒖쥌 諛뺥뀒由ъ븘 냽룄뒗 106 ~107 CFU/mL 냽룄濡 LB broth (Difco Inc., USA)뿉꽌 諛곗뼇븯떎. 諛뺥뀒由ъ븘쁽긽븸 硫멸퇏 硫몃큺쓣 씠슜븯뿬 諛곗뿉 洹좎씪븯寃 遺꾪룷떆耳곕떎. 븘由꾪삎꽦슜븸(75 μL)瑜 硫멸퇏맂 뵒뒪겕뿉 쟻븯떆耳곕떎. 뵒뒪겕瑜 젒醫낅맂 뵆젅씠듃뿉 넃怨 37℃뿉꽌 24떆媛 룞븞 諛곗뼇븯떎. 諛곗뼇 썑, 뵒뒪겕 二쇰 뼲젣 쁺뿭쓽 吏곴꼍 뵒吏꽭 罹섎━띁(Model 500-181-20, Mitutoyo Corp., Japan)瑜 궗슜븯뿬 痢≪젙븯떎.

븘由꾩쓽 빆궛솕뒫 룊媛

빆궛솕뒫 痢≪젙쓣 쐞빐 븘由꾩텛異쒖슜븸쓣 젣議고븯떎. 븘由 30 mg쓣 3 mL 利앸쪟뒋뿉 셿踰쏀엳 슜빐떆耳 DPPH 빐뒫怨 ABTS 씪뵒而 냼嫄고솢꽦 떎뿕뿉 궗슜븯떎. DPPH 씪뵒移쇱냼嫄고솢꽦 1,1-Diphenyl-2-picrylhydrazyl (DPPH)뿉 븳 쟾옄怨듭뿬 솢꽦쑝濡 굹궡뿀떎. 96 well plate뿉 媛 異붿텧臾쇱쓣 뿉깂삱 70%뿉 씗꽍븳 슜븸 100 μL DPPH 슜븸(4×10-4 M in ethanol) 100 μL瑜 꽔怨 샎빀븯뿬 떎삩뿉꽌 30遺꾧컙 諛섏쓳떆궓 썑 ELISA reader (EL 340 Biokinetics Reader, Bio-Tek Instrument, USA)瑜 씠슜븯뿬 517 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 떆猷뚯쓽 솢꽦 떆猷 臾댁꺼媛援ъ뿉 븳 떆猷 泥④援ъ쓽 씉愿묐룄 鍮(%)濡 怨꾩궛븯떎.

ABTS radical쓣 씠슜븳 빆궛솕젰 痢≪젙 7 mM 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulphonic acid) diammonium salt (ABTS) 슜븸怨 2.45 mM potassium persulfate瑜 샎빀븯뿬 떎삩쓽 븫냼뿉 16떆媛 蹂닿븳 썑 734 nm뿉꽌 씉愿묐룄媛 0.7媛 릺룄濡 利앸쪟닔濡 議곗젙븳 슜븸쓣 궗슜븯떎. ABTS 슜븸뿉 룞웾쓽 떆猷뚯븸쓣 샎빀븯뿬 떎삩뿉꽌 1遺꾧컙 諛섏쓳떆궓 떎쓬 734 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎. 씪뵒移쇱냼嫄고솢꽦 떆猷 臾댁꺼媛援ъ뿉 븳 떆猷 泥④援ъ쓽 씉愿묐룄 鍮(%)濡 怨꾩궛븯떎.

寃곌낵 諛 怨좎같

긽뼱遺궛臾 異붿텧臾쇱쓽 떒諛깆쭏 듅꽦

긽뼱遺궛臾쇰줈遺꽣 異붿텧븳 렔떊 媛슜솕 떒諛깆쭏쓽 subunit쓽 議곗꽦怨 議곌뎔쑝濡 쑁긽 쑀옒 肄쒕씪寃먯씤 bovine achilles tendon쓽 떒諛깆쭏 subunit쓽 議곗꽦 Fig. 1怨 媛숇떎. 議곌뎔 肄쒕씪寃먯쓽 뙣꽩쓽 寃쎌슦 α1, α2쓽 諛대뱶瑜 媛吏뒗 heterotype쓽 tropocollagen씠뿀쑝硫, β 諛대뱶쓽 씠룞룄媛 愿李곕릺뿀떎.

Fig. 1. SDS-polyacrylamide gel electrophoresis of extracted protein and molecular weight markers. Lane1, the extracted collagen of bovine achilles tendon; Lane 2, the extracted collagen of SBE.

렔떊쑝濡 媛슜솕 떆궓 긽뼱遺궛臾 異붿텧臾쇱 꽭 媛쒖쓽 諛대뱶媛 愿李곕릺뿀떎. α1-chain怨 β-components 諛 γ-components쓽 肄쒕씪寃 궗뒳씠 愿李곕릺뿀떎. Bovine achilles tendon type I collagen쓽 pattern怨쇰뒗 떎냼 α1, α2쓽 씠룞룄媛 떖옄쑝硫, β-components瑜 媛吏怨 엳뿀떎.

뼱(Plecoglossus altivelis)쓽 堉덉뿉꽌 異붿텧븳 collagen쓽 寃쎌슦 遺꾩옄 궡쇅뿉 crosslinked components媛 留롮븘 媛 α chain씠 遺덈챸솗븯떎怨 蹂닿퀬븯떎(Nagail and Suzuki, 2000). 삉 怨좊벑뼱 猿띿쭏 collagen α1 chain 븯굹留뚯쓣 媛吏뒗 homotype쓽 tropocollagen떎(Kimura et al., 1988).

Minke whale (B. acutorostrata) unesu nileperch (L. niloticus) 猿띿쭏 collagen 긽뼱猿띿쭏 collagen쓽 寃쎌슦 媛숈씠 α1怨 α2瑜 媛吏뒗 heterotype쓽 tropocollagen 諛대뱶媛 蹂닿퀬릺뿀떎(Muyonga et al., 2004; Nagai et al., 2008). 븳렪 yellowfin tuna (T. albacares), brownstripe red snapper (L. vitta), black drum (P. cromis) sheepshead seabream (A. probatocephalus) collagen α1怨 α2-chain怨 β γ-components媛 솗씤릺뿀떎(Ogawa et al., 2003; Jongjareonrak et al., 2005).

끃李⑥텛異쒕Ъ쓽 꽦遺

Fig. 2뒗 뿉깂삱 70%濡 異붿텧븳 끃李⑥텛異쒕Ъ쓽 GC-MASS濡 꽦遺 遺꾩꽍쓣 吏꾪뻾븳 寃곌낵 移댄럹씤(caffeine) 꽦遺꾩씠 떎웾 븿쑀릺뼱 엳쓬쓣 솗씤븯떎(Matsuzaki and Hara, 1985). 뤃由ы럹怨꾩뿉 냽븯뒗 Phenol, caffeine, decanoic acid쓽 꽦遺꾩씠 솗씤릺뿀떎. 듅엳 caffeine acid 꽦遺꾩씠 96%씤 寃껋쓣 솗씤븯떎(Table 1). 而ㅽ뵾뿉꽌 빆洹좊젰쓣 媛뽯뒗 꽦遺꾩뿉 븳 뿰援ъ뿉꽌 移댄럹씤쓽 寃쎌슦 궗긽洹좊쪟(filamentous fungi)뿉 븯뿬 빆洹좎옉슜쓣 蹂댁씠硫 怨고뙜씠媛 留뚮뱾뼱궡뒗 븘뵆씪넚떊(aflatoxin)쓽 깮궛쓣 뼲젣븳떎(Buchanan and Fletcher, 1978). 옣洹(E. coli O157:H7)뿉꽌 0.25~2.00% 냽룄쓽 移댄럹씤 꽦遺꾩씠 빆洹좎옉슜쓣 굹깉떎(Ibrahim et al., 2006). 而ㅽ뵾, 끃李 솉李 벑쓽 移⑥텧李⑤뒗 떆猷 異붿텧뿉 궗슜븳 슜留 諛 샎빀 鍮꾩쑉뿉 뵲瑜 二쇱슂 빆洹좊젰뿉 李⑥씠瑜 굹궡吏留, 媛 移⑥텧李⑥쓽 移댄럹씤 븿웾뿉 뵲씪 媛곴린 떎瑜 빆洹 슚怨쇰 蹂댁씠寃 릺뒗 寃껋쑝濡 깮媛곷맂떎.

Chemical compositions of green tea extract (GTE) by gas chromatography-mass spectrometry (GC-MS) analysis

Peak Compound name Formular Real.Time (min) Area (%)
1 Tridecane C13H28 17.7 0.75
2 2-Isopropyl-5-methyl-1-heptanol C11H24O 22.63 0.6
3 Phenol C6H6O 30.85 0.3
4 Propanoic acid C3H6O2 34.03 0.83
5 Caffeine C8H10N4O2 42.84 96.9
6 n-Decanoic acid C10H20O2 47.14 0.62


Fig. 2. Gas chromatography-mass spectrometry (GC-MS) analysis of green tea extract (GTE).

븘由꾩쓽 臾쇱꽦 듅꽦

SBE/GG 議곗꽦 븘由꾩쓽 씤옣媛뺣룄瑜 痢≪젙븳 寃곌낵, GTE쓽 異붿텧臾쇱씠 떞吏릺뿀쓣 븣, 뜑 넂 씤옣瑜좎쓣 솗씤븯떎(Fig. 4). 씠윴 寃곌낵뒗 끃李⑥텛異쒕Ъ 궡뿉 깂땶궛(tannic acid)諛 移댄럹씤궛(caffeine acid)쓽 꽦遺꾩씠 븘由꾩쓽 怨좊텇옄 궡쓽 솕빀臾쇱뿉 媛援먮 씪쑝궎뒗 寃껋쑝濡 궗猷뚮맂떎(Natarajan et al., 2013). SBE/GG 븘由꾩 6.01 MPa, SBE/GG-GTE 50 議곗꽦 븘由꾩 9.029 MPa, SBE/GG-GTE 100 議곗꽦 븘由꾩 10.569 MPa쑝濡 愿李곕릺뿀떎. 삦뵾떒諛깆쭏 議곗꽦쓽 븘由꾩뿉꽌 끃李⑥텛異쒕Ъ씠 0.5%씪 븣 9.01 MPa, 1.0%씪 븣 11.21 MPa, 1.5%씪 븣 5.15 MPa濡 利앷븯떎 媛먯냼븯뒗 寃쏀뼢쓣 蹂댁떎. 씪젙 냽룄쓽 끃李⑥텛異쒕Ъ씠 븿쑀맖뿉 뵲씪 븘由꾩쓽 씤옣媛뺣룄 諛 臾쇱꽦뿉 븳 蹂솕뒗 蹂 뿰援ъ 룞씪븳 뿰援 寃곌낵瑜 굹깉떎(Yang et al., 2015).

Fig. 4. Tensile strength of shark byproduct /gellan gum (SBE/GG) composite films containing various amounts of green tea (GTE).

빆洹 븘由꾩쓽 닔遺 븿웾 諛 슜빐꽦 룊媛瑜 吏꾪뻾븯떎(Fig. 3). GTE媛 븿쑀맂 븘由꾩뿉꽌 닔遺 븿쑀웾씠 議곌뎔 븘由꾨낫떎 넂 寃껋쓣 솗씤븯떎. 씠뒗 GTE뿉 議댁옱븯뒗 뤃由ы럹쓽 닔궛湲곌 닔遺꾧낵 寃고빀븯뿬 닔遺꾨웾쓣 利앷떆궎뒗 寃껋쑝濡 궗猷뚮맂떎(Nouri and Mohammadi, 2014). 슜빐룄 痢≪젙 寃곌낵 GTE媛 븿쑀맂 븘由꾩뿉꽌 뜑 넂 슜빐룄瑜 愿李고븯쑝硫, 긽뼱遺궛臾 異붿텧臾쇱씤 떒諛깆쭏쓽 븿웾씠 넂쓣닔濡 슜빐룄媛 궙븘吏뒗 寃쏀뼢쓣 愿李고븯떎. 삉븳, GTE媛 븿쑀맂 븘由꾩씠 닔긽뿉꽌 슜빐릺硫댁꽌 슜빐룄媛 利앷릺뒗 寃껋쓣 솗씤븯쑝硫, 議곌뎔뿉 鍮꾪빐 뜑 留롮 닔냼寃고빀쓣 븯湲 븣臾몄씠씪怨 뙋떒맂떎. 븘由 議곗꽦 臾쇱쭏뿉꽌 긽뼱遺궛臾쇱쓽 떒諛깆쭏쓽 鍮꾩쑉씠 넂쓣닔濡 GTE 닔냼寃고빀 諛 냼닔꽦 寃고빀씠 利앷븿뿉 뵲씪 닔遺꾩씠 移⑦닾븷 닔 엳뒗 遺遺꾩씠 以꾩뼱뱾뼱 슜빐룄媛 媛먯냼븯뒗 寃쏀뼢쓣 愿李고븷 닔 엳뿀떎. 씠윭븳 寃곌낵 쑀궗븯寃 삦뵾떒諛깆쭏 議곗꽦뿉 떎뼇븳 媛援먯젣瑜 泥④븯뿬 臾쇱꽦쓣 룊媛븳 뿰援ъ뿉꽌 뤃由ы럹 꽦遺꾩쓽 븿웾씠 利앷맖뿉 뵲씪 떒諛깆쭏 寃고빀뿉 쁺뼢쓣 二쇱뼱 씤옣媛뺣룄 벑쓣 뼢긽떆궓 寃곌낵 쑀궗븿쓣 굹궦떎(Yang et al., 2015).

Fig. 3. Moisture sorption and water solubility analysis of shark byproduct /gellan gum (SBE/GG) composite films containing various amounts of green tea (GTE).

븘由꾩쓽 빆洹좎꽦

移섏븘愿젴 吏덊솚쓣 씪쑝궎뒗 洹 以 S. mutans뒗 移섏븘硫댁뿉 遺李⑺븯뿬 利앹떇 諛 궛 깮꽦 怨쇱젙쓣 嫄곗튂硫댁꽌 移섏븘슦떇쓣 쑀諛쒗븯뒗 洹좎씠떎(Hamada et al., 1984). S. aureus뒗 嫄닿컯븳 궗엺쓽 鍮꾧컯씠굹 씤썑쓽 젏留, 뵾遺뿉 엳뒗 젙긽 꽭洹좎킑쑝濡 湲고쉶 媛먯뿼쓣 넻빐 援냼 諛 쟾떊 媛먯뿼쓣 쑀諛쒗븯뒗 洹좎쑝濡 솕냽꽦 媛먯뿼쓽 80% 씠긽쓣 李⑥븯뒗 媛먯뿼꽦 吏덊솚쓽 二쇱슂븳 썝씤洹좎씠떎(Chung and Lee, 1993). 씠윭븳 꽭洹좊뱾쓽 鍮꾩쑉씠 利앷븯硫댁꽌 移섏<뿼쑝濡 吏꾪뻾맂떎(Assev et al., 1989).

GTE瑜 泥④븳 SBE/GG 븘由꾩쓽 S. mutans, S. aureus뿉 븳 빆洹좏솢꽦 寃곌낵, GTE 泥④ 뼇씠 利앷븷닔濡 誘몄깮臾쇱쓽 깮옣쓣 뼲젣븯뒗 뒫젰씠 鍮꾨븯寃 利앷븯뒗 寃껋쓣 솗씤븷 닔 엳뿀떎(Fig. 5).

Fig. 5. Antimicrobial activity of shark byproduct /gellan gum (SBE/GG) composite films containing various amounts of green tea (GTE) against S. mutans and S. aureus by disc diffusion test. Average diameter (mm) of the inhibition zones. Data are expressed as mean ± standard error of the mean. Paper disc 6 mm.

씠뒗 GTE쓽 뤃由ы럹 꽦遺꾩씠 誘몄깮臾쇱쓽 DNA, RNA 궗뿉 쁺뼢쓣 겮移섎ʼn 꽭룷遺꾩뿴쓣 諛⑺빐븯湲 븣臾몄뿉 誘몄깮臾쇱쓽 깮옣씠 뼲젣맂떎怨 뙋떒맂떎(Kumudavally et al., 2008). Kim 벑 (2006)쓽 뿰援ъ뿉꽌 soy protein isolate 議곗꽦 븘由꾩뿉 GTE瑜 泥④븯뿬 빆洹좎꽦쓣 룊媛븳 寃곌낵, GTE 븿웾씠 利앷븷닔濡 S. mutans S. aureus쓽 깮옣 뼲젣뒫씠 뼢긽릺뿀쑝硫, 蹂 뿰援ъ 쑀궗븳 寃곌낵瑜 蹂댁떎.

빆洹 븘由꾩쓽 빆궛솕뒫

끃李⑥뿉뒗 移댄럹씤 쇅뿉 移댄뀒궓, 깂땶, 겕濡쒕줈븘, 鍮꾪誘 C 벑 떎뼇븳 쑀슚 꽦遺꾩씠 留롮씠 븿쑀릺뼱 엳쑝硫, 移댄뀒궓瑜 以 뿉뵾媛猷곕줈移댄뀒궓 媛덈젅씠듃쓽 븿웾씠 넂븘 빆궛솕젰씠 넂떎怨 븣젮졇 엳떎(Qusti et al., 2010). GTE瑜 泥④븳 SBE/GG 議곗꽦 븘由꾩쓽 DPPH radical 냼嫄곕뒫 寃곌낵, GTE媛 50 mg 諛 100 mg씠 泥④맂 븘由 슜븸뿉꽌 媛곴컖 94±1.41, 98±1.24%쓽 빆궛솕뒫쓣 愿李고븯떎. GTE 泥④ 뼇씠 利앷븷닔濡 DPPH radical 냼嫄곕뒫룄 利앷븯떎(Fig. 6). 씠뒗 GTE뿉 議댁옱븯뒗 뤃由ы럹쓽 닔궛湲곌 DPPH radical怨 諛섏쓳릺뼱 빆궛솕뒫쓣 굹깉떎(Choi et al., 2003).

Fig. 6. Antioxidant activity of shark byproduct /gellan gum (SBE/GG) composite films containing of green tea (GTE). DPPH radical and ABTS radical assay.

삉븳, ABTS 뼇씠삩 냼嫄 痢≪젙諛⑸쾿 吏슜꽦 솚썝臾쇱쭏醫낅쪟쓽 빆궛솕젣 닔냼 怨듭뿬 빆궛솕젣 紐⑤몢瑜 痢≪젙븷 닔 엳떎. SBE/GG 議곗꽦 GTE媛 50 mg 諛 100 mg씠 泥④맂 븘由 슜븸뿉꽌 媛곴컖 82.3±2.05, 97.3±1.69%쓽 빆궛솕뒫쓣 愿李고븯떎. 移쒖닔꽦怨 냼닔꽦 紐⑤몢뿉 쟻슜씠 媛뒫븯湲 븣臾몄뿉 DPPH 諛⑸쾿蹂대떎 뜑 誘쇨컧븯寃 빆궛솕 뒫젰쓣 븣븘蹂 닔 엳뒗 諛⑸쾿쑝濡 븣젮졇 엳떎.

Wang 벑 (2013)쓽 뿰援ъ뿉꽌룄 궎넗궛 議곗꽦 븘由꾩뿉 끃李⑥텛異쒕Ъ쓣 泥④븯쓣 븣 씠 쑀궗븳 寃곌낵瑜 蹂댁떎. 씠윭븳 寃곌낵뒗 떇뭹 룷옣뿉 쟻슜븯쓣 븣 吏諛⑹궛솕瑜 빐븯뿬 옣꽦쓣 넂씪 닔 엳쓣 寃껋쑝濡 궗猷뚮맂떎. Lee 벑 (2015)쓽 뿰援ъ뿉꽌룄 移댄뀒궓(catechin) ECGC媛 二쇱슂 꽦遺꾩씤 끃李⑥쓽 ABTS radical 냼嫄곕뒫쓣 痢≪젙븳 寃곌낵, 10 ppm쓽 寃쎌슦 냼嫄곕뒫씠 빟 80% 씠긽쑝濡 빆궛솕뒫씠 엳쓬쓣 蹂닿퀬븳 諛 엳떎. 鍮꾪誘 E 鍮꾧탳븳 끃李⑥텛異쒕Ъ IC50쓽 寃곌낵 끃李⑥텛異쒕Ъ 29.3 μg/mL, 鍮꾪誘퍮뒗 234.4 μg/mL濡 鍮꾧탳쟻 넂 빆궛솕뒫쓣 솗씤븷 닔 엳뿀떎(Yun et al., 2001).

뵲씪꽌 蹂 뿰援 寃곌낵, GTE瑜 泥④븳 SBE/GG 븘由꾩쓽 紐⑤뱺 臾쇱꽦怨 빆궛솕, 빆洹좏솢꽦쓣 怨좊젮뻽쓣 븣 GTE 100 mg瑜 泥④ 떆 援ш컯 궡 빆洹 湲곕뒫쓣 뼢긽 떆궗 닔 엳뒗 븘由 議곌굔쑝濡 뙋떒맂떎. 씠윭븳 븘由꾩 떇뭹, 쓽빟뭹, 誘몄슜 궛뾽뿉 솢슜 媛뒫븳 湲곕뒫꽦 븘由꾩쑝濡 떎뼇븳 궛뾽솕瑜 湲곕븷 닔 엳떎.

ACKNOWLEDGEMENT

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant number: 2020Rll1A3072936).

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

References
  1. Assev S, Scheie AA, Rolla G. Potential of xylitol, mannitol, and sorbose to inhibit metabolismin Streptococcus sobrinus OMZ 176. J Dent Res. 1989. 68: 1729-1731.
  2. ASTM. Standard test method for water vapor transmission of material. 1983. E 96-80, Annual Book of ASTM Standard, USA.
  3. ASTM. Standard test method for tensile properties of plastics. 1993. D638M, Annual Book of ASTM Standard, USA.
  4. Buchanan RL, Fletcher AM. Methylxanthine inhibition of aflatoxin production. J Food Sci. 1978. 43: 654-655.
    CrossRef
  5. Choi YM, Kim MH, Shin JJ, Park JM, Lee JS. The antioxidant activities of the some commercial teas. J Kor Soc Nutr. 2003. 32: 723-727.
    CrossRef
  6. Chung KS, Lee HJ. Studies of nasal carriage and antimicrobial susceptibility test of Staphylococcus aureus in college students and general hospital personnel in Incheon city. J Environ Health Sci. 1993. 19: 71-76.
  7. Giannelli M, Chellini F, Margheri M, Tonelli P, Tani A. Effect of chlorhexidine digluconate on different cell types: a molecular and ultrastructural investigation. Toxicol In Vitro. 2008. 22: 308-317.
    Pubmed CrossRef
  8. Hamada S, Koga T, Ooshima T. Virulence factors of Streptococcus mutans and dental caries prevention. J Dent Res. 1984. 63: 407-411.
    Pubmed CrossRef
  9. Ibrahim SA, Salameh MM, Phetsomphou S, Yang H, Seo CW. Application of caffeine, 1,3,7-trimethylxantine to control Escherichia coli O157:H7. Food Chem. 2006. 99: 654-650.
    CrossRef
  10. Jongjareonrak A, Benjakul S, Visessanguan W, Nagai T, Tanaka M. Isolation and characterization of acid and pepsin-solubilised collagens from the skin of brownstripe red snapper (Lutjanus vitta). Food Chem. 2005. 93: 475-484.
    CrossRef
  11. Khang G, Lee SK, Kim HN, Silva-Correia J, Gomes ME, Viegas CAA, Dias IR, Oliveira JM, Reis RL. Biological evaluation of intervertebral disc cells in different formulations of gellan gum-based hydrogels. J Tissue Eng Regen Med. 2015. 9: 265-275.
    Pubmed CrossRef
  12. Kim J, Lee CM, Lee SY. Preparation and evaluation of shark byproduct-based tissue adhesive containing chitosan. J Chitin Chitosan. 2019. 24: 173-178.
    CrossRef
  13. Kim JW, Kim DK, Kim MJ, Kim SD. Extraction and bleaching of acid- and pepsin-soluble collagens from shark skin and muscle. J Korean Soc Food Preserv. 2010. 17: 91-99.
  14. Kim KM, Lee BY, Kim YT, Choi SG, Lee J, Cho SY. Development of antimicrobial edible film incorporated with green tea extract. Food Sci Biotechnol. 2006. 15: 478-481.
  15. Kumudavally KV, Phanindrakumar HS, Tabassum A, Radhakrishna K, Bawa AS. Green tea-a potential preservative for extending the shelf life of fresh mutton at ambient temperature (25±2꼦). Food Chem. 2008. 107: 426-433.
    CrossRef
  16. Kimura S, Zhu XP, Matsui R, Shijoh M, Takamizawa S. Characterization of fish muscle type 뀪 collagen. J Food Sci. 1988. 53: 1315-1318.
    CrossRef
  17. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970. 227: 680-685.
    Pubmed CrossRef
  18. Lee BJ. Contemporary Update of Mouth Rinse. J Korean Acad Conserv Dent. 2017. 55: 180-188.
  19. Lee JH, Lee JH, Park JM. Manufacture of antimicrobial paper using food preservative. J Korea TAPPI. 2001. 33: 81-86.
  20. Lee KE, Lee ES, Kang SG. Antioxidant and tyrosinase inhibitory effects of the extract mixtures of Perilla frutescens, Houttuynia cordata and Camellia sinensis. J Soc Cosmet Sci Korea. 2015. 41: 173-180.
    CrossRef
  21. Lim GO, Hong YH, Song KB. Effect of various plasticizers and ferulic acid on the physical properties of Gelidium corneum film. J Korean Soc Food Sci Nutr. 2009. 38: 727-731.
    CrossRef
  22. Lim SH, Seo JS, Yoon YJ, Kim KW, Yoo SO. Effect of leaf-extract from Camellia sinensis and seed extract from Casia tora on viability of Mutans Streptococci isolated from the interface between orthodontic brackets and tooth surfaces. Kor J Orthod. 2003. 33: 381-389.
  23. Matsuzaki T, Hara Y. Antioxidative activity of tea leaf catechins. Nippon Nogeikagaku Kaishi. 1985. 59: 129-134.
    CrossRef
  24. Muyonga JH, Cole CGB, Duodu KG. Characterisation of acid soluble collagen from skins of young and adult nileperch (Lates niloticus). Food Chem. 2004. 85: 81-89.
    CrossRef
  25. Nagai T, Suzuki N, Nagashima T. Collagen from common minke whale (Balaenoptera acutorostrata) unesu. Food Chem. 2008. 111: 296-301.
    Pubmed CrossRef
  26. Nagai T, Suzuki N. Preparation and characterization of several fish bone collagens. J Food Biochem. 2000. 24: 427-436.
    CrossRef
  27. Natarajan V, Krithica N, Madhan B, Sehgal PK. Preparation and properties of tannic acid cross-linked collagen scaffold and its application in wound healing. J Biomed Mater Res B Appl Biomater. 2013. 101: 560-567.
    Pubmed CrossRef
  28. Nouri L, Mohammadi Nafchi A. Antibacterial, mechanical, and barrier properties of sago starch film incorporated with betel leaves extract. Int J Biol Macromol. 2014. 66: 254-259.
    Pubmed CrossRef
  29. Ogawa M, Moody MW, Portier RJ, Bell J, Schexnayder MA, Losso JN. Biochemical properties of black drum and sheepshead seabream skin collagen. J Agric Food Chem. 2003. 51: 8088-8092.
    Pubmed CrossRef
  30. Park H, Kim HY, Kwon SY, Khang G, Kim YS. Regeneration of intervertebral disc using gellan sponge loading PLGA microspheres. Polym Korea. 2015. 39: 144-150.
    CrossRef
  31. Qusti SY, Abo-khatwa AN, Bin MA. Screening of antioxidant activity and phenolic content of selected food items cited in the holly quran. Eur J Biol Sci. 2010. 2: 40-51.
  32. Seo JC, Ko K, Bae SD, Moon SH, Kwon BA. A Study on the characteristics of bad breath in office workers according to mask melection. J. Digit Converg. 2021. 19: 439-446.
  33. Wang L, Dong Y, Men H, Tong J, Zhou J. Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocoll. 2013. 32: 35-41.
    CrossRef
  34. Yang HJ, Lee JH, Lee JH, Song KB. Characterization of a corn fiber protein film containing green tea extract. J Appl Biol Chem. 2015. 58: 145-151.
    CrossRef
  35. Yu HC, Cho YH. US food packaging system and management status. Food Sci Ind. 1997. 30: 164-174.
  36. Yun YP, Park JB, Heo MY. Protective effects of green tea catechins and (-)-epigallocatechin gallate on reactive oxygen species-induced oxidative stress. Yakhak Hoeji. 2001. 45: 101-107.