Search for


TEXT SIZE

search for



CrossRef (0)
Comparison of COVID-19 Vaccines Introduced in Korea
Biomed Sci Letters 2022;28:67-82
Published online June 30, 2022;  https://doi.org/10.15616/BSL.2022.28.2.67
© 2022 The Korean Society For Biomedical Laboratory Sciences.

Chang-Gun Lee1,* and Dongsup Lee2,†,* *

1Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea
2Department of Clinical Laboratory Science, Hyejeon College, Hongseong 32244, Korea
Correspondence to: Dongsup Lee. Department of Clinical Laboratory Science, Hyejeon College, Hongseong 32244, Korea.
Tel: +82-41-630-5342, Fax: +82-41-630-5364, e-mail: eastern3547@naver.com
*Post-Doctor, **Professor.
Received May 23, 2022; Revised June 9, 2022; Accepted June 10, 2022.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
The prevalence of SARS-CoV-2 led to inconsistent public health policies that resulted in COVID-19 containment failure. These factors resulted in increased hospitalization and death. To prevent viral spread and achieve herd immunity, the only safe and effective measure is to provide to vaccinates. Ever since the release of the SARS-CoV-2 nucleotide sequence in January of 2020, research centers and pharmaceutical companies from many countries have developed different types of vaccines including mRNA, recombinant protein, and viral vector vaccines. Prior to initiating vaccinations, phase 3 clinical trials are necessary. However, no vaccine has yet to complete a phase 3 clinical trial. Many products obtained "emergency use authorization" from governmental agencies such as WHO, FDA etc. The Korean government authorized the use of five different vaccines. The viral vector vaccine of Oxford/AstraZeneca and the Janssen showed effectiveness of 76% and 66.9%, respectively. The mRNA vaccine of Pfizer-BioNTech and Moderna showed effectiveness of 95% and 94.1%, respectively. The protein recombinant vaccine of Novavax showed an effectiveness of 90.4%. In this review, we compared the characteristics, production platform, synthesis principles, authorization, protective effects, immune responses, clinical trials and adverse effects of five different vaccines currently used in Korea. Through this review, we conceptualize the importance of selecting the optimal vaccine to prevent the COVID-19 pandemic.
Keywords : SARS-CoV-2, COVID-19, Clinical trial phases, Oxford/AstraZeneca COVID-19 vaccine, Johnson & Johnson Janssen COVID-19 vaccine, Pfizer-BioNTech COVID-19 vaccine, Moderna COVID-19 vaccine, Novavax COVID-19 vaccine
꽌濡(Introduction)

以묒쬆 湲됱꽦 샇씉湲 利앺썑援 肄붾줈굹諛붿씠윭뒪-2(severe acute respiratory syndrome coronavirus-2, SARS-CoV-2)濡 씤븳 吏덊솚씤 COVID-19 (coronavirus disease 2019) (Kim, 2020a) 2022뀈 4썡 20씪 湲곗쑝濡 쟾 꽭怨꾩쟻쑝濡 5뼲 1泥쒕쭔紐 씠긽 諛쒖깮릺뿀怨 600留뚮챸 씠긽씠 궗留앺븯쑝硫 移섎챸瑜 (fatality rate) 1.34%떎(World Health Organization, 2022). 슦由щ굹씪쓽 寃쎌슦 1,600留뚮챸 씠긽씠 諛쒖깮릺뿀쑝硫, 21,000紐 씠긽씠 궗留앺븯뿬 0.13%쓽 移섎챸瑜좎쓣 굹궡怨 엳떎(Korea Disease Control and Prevention Agency, 2022a).

꽭怨꾩쟻쑝濡 200뿬媛쒓뎅 씠긽뿉꽌 COVID-19쑝濡 씤빐 愿묐쾾쐞븳 궗쉶쟻, 寃쎌젣쟻, 洹몃━怨 臾명솕쟻쑝濡 떖媛곹븳 뵾빐瑜 珥덈옒븯쑝硫, 떖媛곹븳 씤紐낆넀떎, 깮紐낃낵 깮怨꾩뿉 떖媛곹븳 샎쓣 빞湲고븯뒗 벑 紐⑤뱺 遺꾩빞뿉꽌 吏湲덇퉴吏 寃れ뼱蹂댁 紐삵븳 洹뱀떖븳 蹂솕瑜 寃쏀뿕븯떎(Teijaro and Farber, 2021). SARS-CoV-2 媛먯뿼쓽 솗궛쓣 諛⑹븯怨 젙긽쟻씤 궣쑝濡 룎븘媛湲 쐞븳 諛⑹븞쑝濡 젙遺뿉꽌뒗 吏묐떒 紐⑥엫 湲덉, 긽떆 留덉뒪겕쓽 李⑹슜, 媛쒖씤媛 嫄곕━몢湲, 洹몃━怨 넀 뵽湲곗 媛숈 媛쒖씤쐞깮 벑쓽 궗쉶쟻 넻젣 媛쒖씤쟻 諛⑹뿭닔移 벑쓽 젙梨낆쓣 렯移섍퀬 엳쑝굹 媛옣 媛뺣젰븳 媛먯뿼쓽 솗궛諛⑹ 젙梨낆쑝濡 SARS-CoV-2뿉 븳 諛깆떊(vaccine) 젒醫낆쓣 떆뻾븯怨 엳떎. 諛깆떊 씤瑜 뿭궗긽 媛옣 꽦怨듭쟻씠硫 鍮꾩슜 슚쑉쟻씤 嫄닿컯 媛쒖엯(health interventions) 以 븯굹濡쒖뜥, 꽭怨꾨낫嫄닿린援(World Health Organization, WHO)뿉꽌뒗 "쟾 꽭怨 諛깆떊 봽濡쒓렇옩 硫댁뿭泥닿퀎瑜 媛뺥솕븯뿬 쟾 꽭怨꾩쓽 嫄닿컯怨 寃쎌젣뿉 以묐븳 룄쟾쓣 빞湲고븯뒗 옞옱쟻씤 蹂묒썝泥대줈遺꽣 닕二쇰 蹂댄샇븿쑝濡쒖뜥 留ㅻ뀈 理쒕 200~300留뚮챸쓽 깮紐낆쓣 援ы븳떎"怨 븯떎(Greenwood, 2014). 諛깆떊쓽 젒醫(vaccination or immunization) 쟻쓳硫댁뿭(adaptive immunity)쓣 젣怨듯븯硫, 媛꾨떒븯怨, 洹몃━怨 븞쟾븯뿬 媛옣 슚怨쇱쟻씤 쓽븰쟻 젒洹쇰갑떇씠떎. 諛깆떊쓽 젒醫낆 쓽猷뚯껜怨꾩쓽 궗쉶 븘닔 湲곕뒫쓽 쑀吏, 궗留앹옄 媛먯냼, 洹몃━怨 吏뿭궗쉶 쟾뙆 吏묐떒媛먯뿼쓽 李⑤떒씠씪뒗 3媛吏 紐⑺몴瑜 媛吏怨 엳떎(Teijaro and Farber, 2021).

SARS-CoV-2뿉 븳 吏묐떒硫댁뿭(population or herd immunity)쓣 삎꽦븯뿬 媛먯뿼쓽 솗궛쓣 뒭異붽퀬, 以묒쬆쑝濡쒖쓽 吏꾪뻾쓣 諛⑹븯뿬 궗留앹옄瑜 媛먯냼떆궎硫 쓽猷뚯껜怨꾨 쑀吏븯湲 쐞빐 꽭怨 媛곴뎅뿉꽌뒗 젙梨낆쟻쑝濡 諛깆떊쓣 젒醫낇븯怨 엳떎(Frederiksen et al., 2020). 븯吏留 씠윭븳 젙梨낆 蹂씠(variation)媛 떖븳 SARS-CoV-2 媛숈 諛붿씠윭뒪 媛먯뿼뿉 빐꽌뒗 쟻슜븯뒗 寃껋씠 뿬쟾엳 遺덈텇紐낇븯湲 븣臾몄뿉 삾 諛⑸쾿씤吏뒗 源딆씠 깮媛곹빐 遊먯빞 븷 슂냼 以 븯굹씠떎.

씪諛섏쟻씤 諛깆떊쓽 젣議 뵆옯뤌(platform)뿉 뵲瑜 쑀삎뿉뒗 빟룆솕 깮諛깆떊(live attenuated vaccine), 遺덊솢꽦솕/궗諛깆떊(inactivated/killed vaccine), 씠醫 諛깆떊(heterologous vaccine), 넚냼씠뱶 諛깆떊(toxoid vaccine), 鍮꾨났젣 諛붿씠윭뒪 踰≫꽣 諛깆떊(replication-deficient viral vector vaccine), 떒諛깆쭏 옱議고빀 諛깆떊(protein recombinant vaccine), DNA 湲곕컲 諛깆떊(DNA-based vaccine), 洹몃━怨 RNA 湲곕컲 諛깆떊(RNA-based vaccine) 벑 떎뼇븳 젣議곕갑떇씠 엳떎(Tregoning et al., 2020).

諛깆떊 젣議곕뒗 븞쟾꽦怨 쑀슚꽦쓣 솗씤븯湲 쐞븯뿬 듅씤쓣 諛쏅뒗 怨쇱젙씠 븘슂븯硫, 씤媛꾩쓣 긽쑝濡 3긽쓽 諛깆떊 엫긽떆뿕 떒怨(vaccine clinical trial phases)瑜 嫄곗튇 썑 諛깆떊 젒醫낆씠 媛뒫븯떎(Sharma et al., 2020). 젣1긽 엫긽떆뿕(phase 1 clinical trial) 씤媛꾩뿉寃 깉濡쒖슫 移섎즺踰뺤씠굹 諛깆떊씠 泥섏쓬쑝濡 떆뿕맆 븣 20~80紐낆쓽 嫄닿컯븳 李몄뿬옄굹, 媛걫 븫 留먭린 솚옄 以 吏썝옄瑜 긽쑝濡 븞쟾꽦 寃利 諛 理쒕 뿀슜웾(maximum tolerated dose, MTD)쓣 寃곗젙븯怨, 遺옉슜 (adverse events) 벑쓽 臾몄젣媛 諛쒗쁽븯뒗吏, 洹몃━怨 紐⑺몴濡 븯怨 엳뒗 떊泥대쐞濡 諛깆떊쓽 슚뒫씠 異⑸텇엳 쟾떖릺뒗吏瑜 愿李고븯뒗 떒怨꾩씠떎.

젣2긽 엫긽떆뿕(phase 2 clinical trial) 옞옱쟻쑝濡 諛깆떊씠 紐⑺몴濡 븯뒗 議곌굔쓣 媛吏 100~300紐낆쓽 솚옄瑜 긽쑝濡 吏덊솚 移섎즺뿉 븳 쑀슚꽦怨 媛숈 엫긽 슚怨쇰 泥섏쓬쑝濡 愿痢≫븯뒗 궗쟾 寃利 떒怨꾩씠떎. 諛깆떊쓽 닾뿬웾(dosing levels)뿉 븳 쟻젙 슜웾 諛 슜踰뺤쓣 寃곗젙븷 닔 엳쑝硫, 諛깆떊쓽 꽦怨쇰 쐞빐 뵆씪떆蹂(placebo)瑜 젣怨듬컺 솚옄援곗씠굹 湲곗〈뿉 移섎즺瑜 諛쏄퀬 엳뒗 떎瑜 洹몃9쓽 솚옄援곌낵쓽 鍮꾧탳瑜 吏꾪뻾븷 닔 엳떎. 삉븳 슚쑉꽦쓣 뙋떒븯뿬 3긽 吏꾩엯 媛뒫 뿬遺 벑쓣 뙋떒븳떎.

젣3긽 엫긽떆뿕(phase 3 clinical trial) 媛옣 겙 엫긽떆뿕씠硫 엫긽떆뿕쓽 떆媛꾩씠 紐 뀈 씠긽 嫄몃━뒗 떒怨꾨줈뜥, 젣2긽쓽 寃곌낵媛 꽦怨듭쟻씠씪硫 떎뼇븳 援媛 씤醫낆쓣 긽쑝濡 理쒖냼 닔 諛깅챸~닔 泥쒕챸쓽 吏썝옄瑜 긽쑝濡 吏꾪뻾븯硫, 諛깆떊 궗슜 솚옄瑜 긽쑝濡 븞쟾꽦 諛 쑀슚꽦 寃궗瑜 넻빐 솗利 엫긽떆뿕(confirmatory clinical trial)쓣 븯뒗 떒怨꾩씠떎. 궛異쒕맂 뜲씠꽣瑜 諛뷀깢쑝濡 諛깆떊쓽 슚怨쇱쟻씤 슜웾 닔以 諛 슜踰뺤쓣 솗利앺븯硫, 떎瑜 吏덊솚씠 엳뒗 솚옄뱾쓣 긽쑝濡 諛깆떊쓽 泥섎갑씠 媛뒫븳吏, 븘땲硫 媛뒫븯吏 紐삵븯뒗 씠쑀瑜 솗씤븯뿬 諛깆떊 젒醫낆쓽 씠씡뿉 븳 吏떇쓣 뙎怨 洹멸쾬뱾쓣 떎瑜 쐞뿕怨 鍮꾧탳븳떎. 젣3긽뿉꽌 슚怨쇨 솗利앸릺뒗 寃곌낵瑜 뼸뒗떎硫 諛깆떊쓽 슚怨쇨 엳뒗 寃껋쑝濡 媛꾩<븯뿬 떎뼇븳 援媛굹 吏뿭뿉 궗슜븷 닔 엳룄濡 誘멸뎅 떇뭹쓽빟援(Food and Drug Administration, FDA)씠굹 쑀읇쓽빟뭹泥(European Medicines Agency, EMA) 벑怨 媛숈 援媛젙遺 湲곌뿉 洹쒖젣 듅씤 떊泥(apply for approval)쓣 븷 닔 엳떎(Sharma et al., 2020).

젣4긽 엫긽떆뿕(phase 4 clinical trial) 떆뙋 썑 紐⑤땲꽣留곸쓣 븯뒗 議곗궗怨쇱젙(post-marketing surveillance, PMS)쑝濡 쑀넻怨쇱젙뿉꽌 빟쓽 슚怨쇱 遺옉슜 벑쓣 룊媛븯怨 媛쒖꽑젏쓣 李얘린 쐞븳 떒怨꾨줈, 젣3긽뿉꽌 닔뻾븯吏 紐삵븯뒗 옣湲곌컙쓽 諛깆떊 슚怨쇰 솗씤븷 닔 엳떎(Sharma et al., 2020; Kesselheim et al., 2021).

SARS-CoV-2쓽 쑀쟾쟻, 援ъ“쟻 듅꽦쓣 씠빐븯뒗 寃껋 슚怨쇱쟻씤 諛깆떊쓣 媛쒕컻븯湲 쐞븳 쟾젣 議곌굔쑝濡 2020뀈 1썡 以묎뎅뿉꽌 SARS-CoV-2쓽 쑀쟾쟻 諛곗뿴씠 理쒖큹濡 諛앺議뚮떎(Wu et al., 2020a). SARS-CoV-2뒗 쇅뵾瑜 蹂댁쑀븳 떒씪 뼇꽦媛떏 RNA 諛붿씠윭뒪(enveloped single positive-strand RNA virus)濡, 諛뺤쪖 肄붾줈굹諛붿씠윭뒪(bat coronavirus, RaTG-13), 以묒쬆 湲됱꽦 샇씉湲 肄붾줈굹諛붿씠윭뒪(SARS-CoV), 洹몃━怨 以묐룞 샇씉湲 利앺썑援 肄붾줈굹諛붿씠윭뒪(Middle East respiratory syndrome coronavirus, MERS-CoV) 媛곴컖 96%, 80%, 洹몃━怨 50% 쑀쟾쟻 꽌뿴 긽룞꽦(sequence identities)쓣 蹂댁떎(Zhou et al., 2020; Song et al., 2020).

SARS-CoV-2뒗 26~35 kb쓽 genome쓣 蹂댁쑀븯怨 엳쑝硫 援ъ“ 떒諛깆쭏(structural proteins)濡쒕뒗 쇅뵾 떒諛깆쭏(envelope protein, E 떒諛깆쭏), 留 떒諛깆쭏(membrane protein, M 떒諛깆쭏), 돱겢젅삤罹≪떆뱶 떒諛깆쭏(nucleocapsid protein, N 떒諛깆쭏), 洹몃━怨 뒪뙆씠겕 떦떒諛깆쭏(spike glycoprotein, S 떒諛깆쭏)쓣 蹂댁쑀븯怨 엳떎(Wu et al., 2020b). E 떒諛깆쭏怨 M 떒諛깆쭏 二쇰줈 諛붿씠윭뒪쓽 議곕┰(assembly), 諛쒖븘(budding), 洹몃━怨 鍮꾨━삩 삎깭 삎꽦(virion morphogenesis)뿉 愿뿬븯硫, N 떒諛깆쭏 諛붿씠윭뒪 genome RNA 寃고빀븯뿬 돱겢젅삤罹≪떆뱶(nucleocapsid)瑜 깮꽦븳떎(Wu et al., 2020b; Kim and Lee, 2020b). S 떒諛깆쭏 몴硫 떦떒諛깆쭏(surface glycoprotein)濡 빟 40 궪웾泥(trimers)瑜 삎꽦븯硫, S1怨 S2쓽 2媛쒖쓽 湲곕뒫꽦 냼떒쐞(functional subunits)瑜 씠슜븯뿬 닕二쇱쓽 꽭룷留됱쓣 넻븳 닔슜泥 寃고빀(receptor binding)怨 留 쑖빀뿉 以묒슂븳 뿭븷쓣 븳떎. S1 냼떒쐞뒗 닕二쇱꽭룷 몴硫댁쓽 angiotensin-converting enzyme 2 (ACE2) 닔슜泥댁 吏곸젒쟻쑝濡 긽샇옉슜븯뒗 닔슜泥 寃고빀 룄硫붿씤(receptor-binding domain, RBD)쓣 룷븿븯怨 엳뒗 諛섎㈃, S2 냼떒쐞뒗 諛붿씠윭뒪 꽭룷留됯낵 닕二 꽭룷留 궗씠뿉 쑖빀쓣 떞떦븯뒗 援ъ“쟻 猷⑦봽(structural loop)瑜 룷븿븯怨 엳떎. 씠뒗 寃곌낵쟻쑝濡 諛붿씠윭뒪 genome RNA媛 꽭룷吏 궡濡 諛⑹텧릺뼱 닕二쇱꽭룷뿉 移⑦닾븷 닔 엳룄濡 湲곗뿬븳떎. 듅엳 ACE2 닕二쇱꽭룷 닔슜泥댁 븿猿 꽭룷 꽭由 떒諛깆쭏遺꾪빐슚냼(serine protease)씤 TMPRSS2뒗 S 떒諛깆쭏 봽씪씠諛(priming)뿉 愿뿬븯硫, 씠 蹂댁“씤옄(cofactor)뒗 諛붿씠윭뒪 移⑥엯 뼲젣젣濡 궗슜 媛뒫븳 빆諛붿씠윭뒪 몴쟻(antiviral target)쑝濡 씠슜릺怨 엳떎(Turonova et al., 2020; Walls et al., 2020; Choi and Lee, 2021).

쁽옱 엫긽떆뿕 以묒씤 COVID-19 諛깆떊쓽 뵆옯뤌 二쇱슂 빆썝쑝濡쒖꽌 S 떒諛깆쭏쓣 몴쟻(target)쑝濡 븯뿬 T 꽭룷 B 꽭룷쓽 硫댁뿭諛섏쓳뿉 珥덉젏쓣 留욎텛怨 엳떎. T 꽭룷, 듅엳 CD4+ T 꽭룷(helper T cell, 룄 T 꽭룷)뒗 궗씠넗移댁씤 (cytokine)쓽 깮꽦쓣 넻븳 硫댁뿭諛섏쓳(immune responses)뿉 愿뿬븯硫, 궗씠넗移댁씤쓽 利앷뒗 吏덈퀝쓽 븙솕 愿젴씠 엳떎(Huang et al., 2020). T 꽭룷 諛섏쓳 떎瑜 肄붾줈굹諛붿씠윭뒪 媛먯뿼뿉꽌룄 媛뺣젰븯寃 쑀룄릺湲 븯吏留 씪諛섏쟻쑝濡 S 떒諛깆쭏뿉 鍮꾪빐 N 떒諛깆쭏씠 뜑 蹂댁〈릺怨 옱寃고빀 鍮덈룄媛 궙湲 븣臾몄뿉 씠瑜 몴쟻쑝濡 븯뒗 諛깆떊 媛쒕컻씠 씠猷⑥뼱吏怨 엳떎뒗 젏씠 COVID-19 諛깆떊怨쇱쓽 겙 李⑥씠젏씠떎(Sharma et al., 2020). B 꽭룷뿉 쓽븳 泥댁븸꽦 硫댁뿭諛섏쓳(humoral immune response) 媛먯뿼 썑湲 떒怨꾩뿉꽌 以묒텛쟻씤 뿭븷쓣 븯硫, 옱媛먯뿼(reinfection)쓣 뼲젣븯뒗뜲 룄씠 맂떎. SARS-CoV-2쓽 寃쎌슦뿉뒗 媛먯뿼 泥 7씪 룞븞뿉뒗 빆泥닿 굹굹吏 븡븯쑝굹 媛먯뿼 썑 2二쇱뿉꽌 3二 룞븞 利앷븯뒗 뼇긽쓣 굹궡뿀떎(Huang et al., 2020).

諛깆떊 젣議 뵆옯뤌뿉 뵲瑜 몴쟻씤 COVID-19 諛깆떊쑝濡 鍮꾨났젣 諛붿씠윭뒪 踰≫꽣 諛깆떊(non-replicating viral vector vaccine)뿉뒗 쁺援쓽 삦뒪룷뱶/븘뒪듃씪젣꽕移(Oxford/AstraZeneca) 諛깆떊, 誘멸뎅쓽 꽱(Janssen) 諛깆떊, 以묎뎅쓽 罹붿떆끂(CanSino) 諛깆떊, 洹몃━怨 理쒖큹쓽 COVID-19 諛깆떊씤 윭떆븘쓽 뒪봽닾듃땲겕 V 諛깆떊(Sputnik vaccine)씠 엳쑝硫, 遺덊솢꽦솕/궗諛깆떊(inactivated/killed vaccine)쑝濡 以묎뎅쓽 떆끂뙗(Sinopharm) 諛깆떊怨 떆끂諛(Sinovac) 諛깆떊씠 엳떎. mRNA 諛깆떊뿉뒗 誘멸뎅쓽 솕씠-諛붿씠삩뀓(Pfizer-BioNTech) 諛깆떊怨 紐⑤뜑굹(Moderna) 諛깆떊씠 엳怨, 떒諛깆쭏 옱議고빀 諛깆떊(protein recombinant vaccine)쑝濡쒕뒗 誘멸뎅쓽 끂諛붾갚뒪(Novavax) 諛깆떊씠 엳떎. 媛 諛깆떊뱾 留덈떎쓽 듅吏뺤씠 엳쑝硫, 씠뿉 븳 슚쑉꽦 諛 遺옉슜 벑뿉 븳 씠빐媛 븘슂븯떎(Frederiksen et al., 2020; Tregoning et al., 2020). 吏湲덇퉴吏 COVID-19 諛깆떊쓽 媛쒕컻怨쇱젙 湲닿툒쓣 슂븯湲 븣臾몄뿉 궗쟾 엫긽怨쇱젙쓣 깮왂븯怨, 1, 2李 엫긽떎뿕쓣 6媛쒖썡 뿬 湲곌컙 룞븞 떆뻾븯뿬 湲닿툒궗슜듅씤(emergency use authorization, EUA)쓣 떊泥븯쑝硫, 3李 엫긽떎뿕 떎젣 젒醫낆쑝濡 닔뻾븯떎. 븯吏留 2022뀈 4썡 1씪源뚯 3긽 떆뿕쓣 걹궦 諛깆떊 븘吏곴퉴吏 뾾떎.

슦由щ굹씪뿉 룄엯릺뼱 젒醫낅릺怨 엳뒗 COVID-19 諛깆떊 鍮꾨났젣 諛붿씠윭뒪 踰≫꽣 諛깆떊(non-replicating viral vector vaccine)쑝濡쒕뒗 삦뒪룷뱶/븘뒪듃씪젣꽕移 COVID-19 諛깆떊 (Oxford/AstraZeneca COVID-19 vaccine, 븘뒪듃씪젣꽕移 諛깆떊)怨 議댁뒯 븻 議댁뒯궗쓽 꽱 COVID-19 諛깆떊(Johnson & Johnson, Janssen COVID-19 vaccine, 꽱 諛깆떊)쓽 2醫낅쪟씠怨, mRNA 諛깆떊쑝濡쒕뒗 솕씠-諛붿씠삤븻뀓 COVID-19 諛깆떊(Pfizer-BioNTech COVID-19 vaccine, 솕씠 諛깆떊)怨 紐⑤뜑굹 COVID-19 諛깆떊(Moderna COVID-19 vaccine, 紐⑤뜑굹 諛깆떊)쓽 2醫낅쪟씠떎. 洹몃━怨 떒諛깆쭏 옱議고빀 諛깆떊(protein recombinant vaccine)씤 끂諛붾갚뒪 COVID-19 諛깆떊(Novavax COVID-19 vaccine, 끂諛붾갚뒪 諛깆떊)쓽 1醫낅쪟瑜 룄엯븯뿬 쁽옱 珥 5醫낅쪟쓽 諛깆떊쓣 젒醫낇븯怨 엳떎. 媛 諛깆떊뿉 뵲瑜 씪諛섏쟻씤 듅吏뺤 Table 1怨 媛숇떎.

Comparison among general characteristics of AZ, Janssen, Pfizer, Moderna and Novavax vaccine

Manufacturer Oxford-AstraZeneca vaccine Janssen vaccine Pfizer vaccine Moderna vaccine Novavax vaccine
Trade name Covishield or Vaxzevria Jcovden Comirnaty Spikevax Covovax or Nuvaxovid
Code name AZD1222 (ChAdOx1-S) JNJ-78436735 (Ad26.COV2-S) BNT162 mRNA-1273 NVX-CoV2373
Platform Viral vector Viral vector mRNA mRNA Protein recombinant
Age for vaccination 18 years and older 18 years and older 12 years and older 18 years and older 18 years and older
Composition Multidose vial Multidose vial Multidose vial Multidose vial Prefilled syringe
Number doses/interval dose 2/8~12 weeks 1 2/21 days 2/28 days 2/21 days
Dose volume/site 0.5 mL/IM 0.5 mL/IM dilute 0.3 mL/IM 0.5 mL/IM 0.5 mL/IM
Storage temperature/period 2~8℃/6 months -25 ~ -15℃/24 months -90 ~ -60℃/6 months -25 ~ -15℃/7 months 2~8℃/5 months
Distribution temperature/period 2~8℃/6 months 2~8℃/3 months -90 ~ -60℃/6 months or 2~8℃/31 days 2~8℃/30 days 2~8℃/5 months
Expiry date after opening ~30℃/6 hours 2~8℃/6 hours, 9~25℃/3 hours 2~25℃/6 hours after dilution 2~25℃/6 hours 2~8℃

Data from Korea Disease Control and Prevention Agency

Abbreviation: AZ, Oxford/AstraZeneca; IM, intramuscular injection; modRNA, nucleoside-modified mRNA



2022뀈 4썡 13씪 슦由щ굹씪쓽 諛깆떊 젒醫낇쁽솴쑝濡 1李 젒醫낆 87.7%, 2李 젒醫낆 86.7%, 3李 젒醫낆 64.2%, 洹몃━怨 4李 젒醫낆 0.6%濡 100紐낅떦 236.3쉶 젒醫낅릺뿀쑝硫, 媛 젣議고쉶궗 蹂 諛깆떊쓽 젒醫낆쑉쓣 Table 2뿉 닔濡앺븯떎(Korea Disease Control and Prevention Agency, 2022b) (Table 2). 씠윭븳 넂 젒醫낆쑉뿉룄 遺덇뎄븯怨 異⑸텇븳 엫긽떆뿕쓣 嫄곗튂吏 븡怨 젣議곕릺뿀湲 븣臾몄뿉 븞쟾꽦怨 슚뒫뿉 븳 遺덉떊, 洹몃━怨 遺옉슜 벑 뿬윭 媛吏 긽솴쑝濡 씤빐 遺덉븞媛먯 긽떦엳 넂 렪씠떎.

The vaccination rates of the 5 types introduced in Korea

Types of vaccines Total vaccination 1st vaccination 2nd vaccination 3rd vaccination 4th vaccination
AZ 20,348,861 11,097,349 9,251,383 129
Janssen 1,508,943 1,482,648 26,294 1
Pfizer 74,476,416 25,316,750 26,879,676 21,988,735 291,255
Moderna 24,179,633 6,765,729 6,589,498 10,802,039 22,367
Novavax 216,781 106,644 67,173 42,928 36
Total 120,730,634 44,769,120 42,787,730 32,860,125 313,659

Data from Korea Disease Control and Prevention Agency. April 14th, 2022

In the case of the Janssen vaccine, it is considered that the vaccination has been completed at the 1st vaccination and the 3rd vaccination is considered to be a booster shot

Abbreviation: AZ, Oxford/AstraZeneca COVID-19 vaccine; Pfizer, Pfizer-BioNTech COVID-19 vaccine



2022뀈 3썡 31씪 吏덈퀝愿由ъ껌 肄붾줈굹 19 삁諛 젒醫 꽱꽣뿉꽌 蹂닿퀬맂 슦由щ굹씪뿉꽌 諛쒖깮븳 COVID-19 諛깆떊쓽 삁諛 젒醫 씠썑 쓷븯寃 굹굹뒗 씠긽諛섏쓳쓣 遺꾩꽍븳 寃곌낵 諛쒖뿴 39℃ 씠긽, 젒醫낅쐞 넻利 3씪 씠긽, 遺湲 10 cm 씠긽, 諛쒖쟻, 援ы넗 븯猷 3쉶 씠긽, 硫붿뒪爰쇱, 洹쇱쑁넻, 몢넻, 愿젅넻, 뵾濡쒓 몴쟻씠뿀쑝硫 븣윭吏 諛쒖깮 以 븯굹瑜 留뚯”빐빞 븯뒗 媛踰쇱슫 援냼 씠긽諛섏쓳씤 寃쎌쬆 쓽떖궗濡뒗 446,480嫄, 븘굹븘씫떆뒪 눥겕(anaphylaxis shock) 쓽떖궗濡뒗 1,945嫄, 吏덈퀝愿由ъ껌뿉꽌 湲곗쓣 젙븳 以묓솚옄떎 엯썝, 깮紐 쐞以, 쁺援ъ옣븷 벑 듅蹂 愿떖 씠긽諛섏쓳(adverse event special interest, AESI)씤 以묐븳 씠긽諛섏쓳쓽 寃쎌슦 14,514嫄, 궗留앹 1,508紐낆씠뿀떎. 슦由щ굹씪뿉 룄엯맂 諛깆떊 蹂 씠긽諛섏쓳 嫄댁닔뒗 Table 3뿉 닔濡앺븯떎(Korea Disease Control and Prevention Agency, 2022c). 씠 由щ럭 끉臾(review article)뿉꽌뒗 슦由щ굹씪뿉 룄엯릺뼱 닾뿬맂 5媛吏쓽 COVID-19 諛깆떊쓽 湲곕낯젙蹂댁 듅꽦, 젣議 썝由, 諛깆떊 닾뿬뿉 뵲瑜 硫댁뿭옉슜, 듅씤, 媛먯뿼삁諛 슚怨, 諛깆떊뿉 븳 엫긽떆뿕, 洹몃━怨 遺옉슜 벑 吏湲덇퉴吏 뿰援ъ 떎뿕쓣 넻빐 諛앺吏 궡슜쓣 諛뷀깢쑝濡 媛 COVID-19 諛깆떊쓣 遺꾩꽍븯뿬 諛깆떊뿉 븳 씠빐瑜 넂씠怨좎옄 븯떎.

The number of adverse events by vaccines introduced in Korea

Total cases Mild adverse events Anaphylaxis shock AESI Deaths
AZ 109,486 103,830 (94.83%) 331 (0.30%) 4,894 (4.47%) 431 (0.39%)
Janssen 8,847 8,444 (95.44%) 54 (0.61%) 335 (3.79%) 14 (0.16%)
Pfizer 235,444 225,998 (95.99%) 1,260 (0.54%) 7,344 (3.12%) 842 (0.36%)
Moderna 110,288 107,841 (97.78%) 292 (0.26%) 1,938 (1.76%) 217 (0.20%)
Novavax 382 367 (96.07%) 8 (2.09%) 3 (0.79%) 4 (1.05%)
Total 464,447 446,480 (96.13%) 1,945 (0.42%) 14,514 (3.13%) 1,508 (0.32%)

Data from Korea Disease Control and Prevention Agency. March 31st, 2022.

Abbreviation: AESI, adverse event special interest; AZ, Oxford/AstraZeneca COVID-19 vaccine; Pfizer, Pfizer-BioNTech COVID-19 vaccine


蹂몃줎(Main issue)

1. 諛붿씠윭뒪 踰≫꽣 諛깆떊(viral vector vaccines)

紐⑹쟻 빆썝쓽 쑀쟾옄(target gene)瑜 옱議고빀(recombination) 븳 썑 꽭룷슫諛섏껜(carrier)濡 떎瑜 諛붿씠윭뒪瑜 踰≫꽣濡 씠슜븯뒗 諛깆떊 젣議 뵆옯뤌쓽 븳 쑀삎씠떎. 留롮 뿰援щ줈 寃利앸릺뼱吏 諛붿씠윭뒪瑜 씠슜븯湲 븣臾몄뿉 紐⑹쟻 쑀쟾옄瑜 꽭룷濡 븞젙쟻쑝濡 쟾떖븷 닔 엳쑝硫 紐⑹쟻 빆썝뿉 븳 빆泥대 슚怨쇱쟻쑝濡 삎꽦븯怨, 蹂닿怨 쑀넻씠 렪由ы븯떎뒗 옣젏씠 엳떎(Anderson et al., 2000). 젣議 湲곕쾿쓽 湲곗큹 湲곗닠 1980뀈뿉 媛쒕컻릺뿀쑝굹 洹쒕え쓽 엫긽떎뿕씠 吏꾪뻾맂 諛붽 뾾뿀湲 븣臾몄뿉 COVID-19뿉 씠瑜대윭 泥섏쓬쑝濡 媛쒕컻諛⑹떇씠 떆룄맂 諛깆떊씠떎. SARS-CoV-2뿉 븳 諛깆떊 븘뜲끂諛붿씠윭뒪(adenovirus)瑜 踰≫꽣(vector)濡 씠슜븯湲 븣臾몄뿉 븘뜲끂諛붿씠윭뒪 옄泥닿 쇅遺 빆썝쑝濡 옉슜븯뿬 씠뿉 븳 硫댁뿭씠 깮꽦릺뼱 2李 諛 3李 젒醫낆쓣 븯쓣 寃쎌슦 媛덉닔濡 諛깆떊쓽 슚뒫씠 媛먯냼븳떎뒗 븳怨꾩젏씠 엳떎. 삉븳 븘吏곴퉴吏 븣젮吏吏 븡 諛깆떊쓽 遺옉슜뿉 븳 옞옱쟻 쐞뿕꽦쑝濡 궓븘 엳떎(Nunneley, 2020).

1.1. 삦뒪룷뱶/븘뒪듃씪젣꽕移 肄붾줈굹-19 諛깆떊(Oxford/AstraZeneca COVID-19 vaccine)

쁺援쓽 삦뒪룷뱶 븰(Oxford University)怨 뒪썾뜶쓽 젣빟쉶궗씠吏留 諛깆떊 媛쒕컻쓽 寃쏀뿕씠 쟾 뾾뿀뜕 븘뒪듃씪젣꽕移(AstraZeneca) 궗媛 怨듬룞쑝濡 媛쒕컻븳 COVID-19 諛깆떊씠떎. 븘뒪듃씪젣꽕移댁 怨듬룞 媛쒕컻븯湲 쟾뿉 삦뒪룷뱶 븰 궛븯쓽 젣꼫 뿰援ъ냼(The Jenner Institute)뿉꽌뒗 MERS -CoV뿉 븳 諛깆떊(ChAdOx1-MERS)쓣 媛쒕컻븯怨 엳뿀쑝硫, 젣1긽 엫긽떆뿕 吏꾪뻾 以묒뿉 엳뿀떎. 븯吏留 洹 以묒뿉 COVID-19씠 諛쒖깮븯뿬 쟾 꽭怨꾩쟻씤 뙩뜲誘 긽솴씠 릺怨 SARS-CoV-2쓽 쑀쟾옄 뿼湲곗꽌뿴씠 諛앺吏硫댁꽌 媛쒕컻 以묒씠뿀뜕 븘뜲끂諛붿씠윭뒪 踰≫꽣(adenovirus vector) 븞쓽 쑀쟾옄 뿼湲곗꽌뿴쓣 MERS-CoV뿉꽌 SARS-CoV-2濡 蹂寃쏀븯뿬 媛쒕컻븯寃 릺뿀떎. 삦뒪룷뱶 븰뿉꽌 븘뒪듃씪젣꽕移댁궗 怨듬룞 媛쒕컻븯湲 쟾 肄붾뱶紐낆 ChAdOx1-nCoV-19씠뿀쑝硫, 怨듬룞 媛쒕컻紐낆 AZD1222씠떎.

씠 諛깆떊쓽 옣젏쑝濡쒕뒗 mRNA 諛깆떊뿉 鍮꾪빐 蹂닿怨 슫넚씠 렪由ы븯怨 湲곗〈쓽 諛깆떊 깮궛떆꽕뿉꽌룄 뿼湲곗꽌뿴留 젣怨듬컺쑝硫 깮궛씠 媛뒫븯떎뒗 젏씠떎. 諛깆떊쓽 젣議 鍮꾩슜 빟 US 3~4떖윭濡 젒醫 媛寃 삉븳 떎瑜 諛깆떊뿉 鍮꾪빐 긽떦엳 졃븯湲 븣臾몄뿉 냼뱷 援媛뿉꽌뒗 븘뒪듃씪젣꽕移 諛깆떊쓽 쓽議대룄媛 넂떎.

1.1.1. 諛깆떊 젣議 썝由

諛붿씠윭뒪 踰≫꽣뒗 씤媛꾩뿉寃뚮뒗 利앹긽씠 굹굹吏 븡怨 移⑦뙩吏뿉寃뚮쭔 샇씉湲 媛먯뿼쓣 쑀諛쒗븯뒗 븘뜲끂諛붿씠윭뒪뿉꽌 蹂듭젣뿉 븘슂븳 쑀쟾옄 씪遺瑜 궘젣븳 蹂삎맂 鍮꾨났젣 移⑦뙩吏 븘뜲끂諛붿씠윭뒪(modified, non-replication chimpanzee adenovirus Oxford, ChAdOx1)瑜 궗슜븯떎(Voysey et al., 2021a; van Doremalen et al., 2020).

踰≫꽣 븞뿉 SARS-CoV-2쓽 옱議고빀 S 떒諛깆쭏(recombinant spike protein)쓽 쟾泥 쑀쟾옄 뿼湲곗꽌뿴(full gene sequence)쓣 궫엯븳 썑 踰≫꽣瑜 넻빐 꽭룷 궡뿉 쟾떖릺硫 媛먯뿼맂 꽭룷뿉꽌 S 떒諛깆쭏쓣 諛쒗쁽븯뿬 룄 T 꽭룷媛 硫댁뿭諛섏쓳쓣 쑀諛쒗븯嫄곕굹, 삉뒗 빆썝젣떆꽭룷(antigen presenting cell, APC)媛 踰≫꽣씤 븘뜲끂諛붿씠윭뒪瑜 룷떇븯뿬 빆썝젣떆瑜 븯硫 룄 T 꽭룷媛 씠瑜 씤떇븯뿬 硫댁뿭 삎꽦쓣 쑀룄븯뒗 諛⑹떇쑝濡 媛쒕컻릺뿀떎(Voysey et al., 2021a; van Doremalen et al., 2020). 븘뜲끂諛붿씠윭뒪 踰≫꽣뒗 떎뼇븳 꽭룷瑜 媛먯뿼떆耳 꽭룷룆꽦 T 꽭룷(cytotoxic T cell)쓽 硫댁뿭諛섏쓳쓣 쑀諛쒗븷 닔 엳怨, 룎뿰蹂씠쓽 쐞뿕씠 궙쑝硫, 硫댁뿭利앷컯 蹂댁“젣(adjuvant)쓽 궗슜 뾾씠 硫댁뿭썝꽦(immunogenicity)쓣 利앷떆궗 닔 엳뼱 떎뼇븳 쑀쟾옄쓽 쟾떖 留ㅺ컻泥대줈뜥 媛옣 留롮씠 솢슜릺怨 엳떎(Anderson et al., 2000). 븯吏留 諛붿씠윭뒪 踰≫꽣 옄泥댁뿉룄 硫댁뿭諛섏쓳씠 삎꽦릺뼱 젒醫 슏닔媛 利앷븯硫 硫댁뿭젰씠 븯릺뒗 떒젏씠 엳湲 븣臾몄뿉 삦뒪룷뱶 븰뿉꽌뒗 씤媛 븘뜲끂諛붿씠윭뒪(human infected adenovirus)媛 븘땶 移⑦뙩吏 븘뜲끂諛붿씠윭뒪(chimpanzee infected adenovirus)瑜 궗슜븯뿬 硫댁뿭썝꽦쓣 넂씠뒗 諛⑺뼢쑝濡 媛쒕컻븯寃 릺뿀떎.

1.1.2. 듅씤

삦뒪띁뱶 븰뿉꽌뒗 꽭怨꾨 긽쑝濡 븳 怨듦툒, 洹좊벑꽦, 洹몃━怨 냼뱷怨 以묎컙냼뱷 援媛뿉 븳 솗젙諛곕텇(commitment)쓣 紐⑺몴濡 븯湲 븣臾몄뿉 븘뒪듃씪젣꽕移댁뒗 諛깆떊쑝濡 씤븳 寃쎌젣쟻 씠씡쓣 뼸쓣 닔 뾾뒗 鍮꾩쁺由 諛깆떊(nonprofit vaccine)쓣 議곌굔쑝濡 怨꾩빟쓣 븯怨, 寃곌뎅 쟾 꽭怨꾧 洹 삙깮쓣 諛쏄쾶 릺뿀떎.

2021뀈 12썡 30씪 쁺援뿉꽌 泥섏쓬쑝濡 EUA쓣 諛쏆븯쑝硫 2021뀈 1썡 4씪 泥 踰덉㎏ 諛깆떊씠 젒醫낅릺뿀떎(James and Nick, 2020). 씠썑 珥 35媛쒓뎅뿉꽌 湲닿툒궗슜듅씤, 議곌굔遺 뿀媛(異붽쟻쑝濡 엫긽떆뿕쓽 寃곌낵瑜 젣異쒗븯뒗 議곌굔쑝濡 뿀媛), 洹몃━怨 듅濡듅씤(젒醫낅긽뿉꽌뒗 젣쇅)쓣 諛쏆븯쑝硫 슦由щ굹씪뿉꽌뒗 2021뀈 2썡 26씪 議곌굔遺 뿀媛瑜 諛쏆븯떎. 2021뀈 1썡源뚯 쟾 꽭怨 170뿬媛쒓뎅 씠긽뿉 븘뒪듃씪젣꽕移 諛깆떊 25뼲 룄뒪(dose) 씠긽 異쒖떆릺뿀떎(Department of Health and Social Care, 2022).

1.1.3. 二쇱슂 엫긽떆뿕(clinical trials)怨 COVID-19 媛먯뿼삁諛 슚怨

븘뒪듃씪젣꽕移 諛깆떊 WHO뿉꽌 COVID-19 諛깆떊쓽 꽑몢 二쇱옄씪뒗 룊媛瑜 諛쏆쑝硫 MERS-CoV뿉 븳 떆뿕쓣 븿猿 씤젙諛쏆븘 젣1긽 엫긽떆뿕쓣 嫄곗튂吏 븡怨 룞臾쇱떎뿕 썑 怨㏓컮濡 1/2긽 엫긽떆뿕뿉 룎엯븯쑝硫, 諛깆떊 젣議곗궗 蹂대떎 媛옣 鍮좊Ⅸ 2020뀈 5썡留 엫긽 2/3 긽뿉 吏꾩엯븯떎.

젣1/2 엫긽떆뿕 寃곌낵뒗 議곌린 듅씤쓣 쐞빐 以묎컙떎뿕 寃곌낵瑜 "AZD1222 vaccine met primary efficacy endpoint in preventing COVID-19" 젣紐⑹쑝濡 뼵濡좎쓣 넻빐 諛쒗몴븯떎. 1李⑥뿉 鍮꾪빐 2李 젒醫 썑 썾뵮 떎웾쓽 以묓솕빆泥닿 깮꽦릺뼱 諛깆떊쑝濡쒖꽌쓽 슚怨쇰 엯利앺븯쑝硫, 씪諛섏쟻씤 媛踰쇱슫 遺옉슜留 굹궗怨 떖媛곹븳 遺옉슜 굹굹吏 븡븯떎. 븯吏留 븘뜲끂諛붿씠윭뒪瑜 踰≫꽣濡 궗슜븯湲 븣臾몄뿉 븘뜲끂諛붿씠윭뒪뿉 븳 빆泥대룄 삎꽦릺뼱 諛깆떊 2李 젒醫 떆 빆泥 삎꽦뿉 븳 諛⑺빐 슂씤씠 맆 닔 엳떎怨 뼵湲됲븯떎. 珥 諛깆떊쓽 슚뒫 70%濡 굹궗떎(Folegatti et al., 2020).

Voysey 벑뿉 쓽븳 떎뿕뿉 쓽븯硫 씪遺 諛깆떊 젒醫낆옄뱾뿉寃뚯꽌뒗 슒떒꽦 泥숈닔뿼(transverse myelitis), 40℃ 씠긽쓽 怨좎뿴(fever), 洹몃━怨 議곌뎔뿉꽌뒗 슜삁꽦 鍮덊삁(hemolytic anemia) 벑쓽 떖媛곹븳 遺옉슜씠 諛쒖깮븯吏留 궗留앹옄뒗 뾾뿀떎怨 蹂닿퀬릺뿀쑝硫, 떖媛곹븳 遺옉슜(serious adverse event)쓽 넻怨꾩쑉 0.7%떎(Voysey et al., 2021b). 9썡 9씪 AZD1222 諛깆떊 2李 젒醫 諛쏆 쁺援씤씠 젒醫 14씪 썑 슒떒꽦 泥숈닔뿼씠 諛쒖깮릺뼱 엫긽떆뿕씠 以묐떒릺뿀뒗뜲 FDA뿉 씠뿉 븳 蹂닿퀬瑜 븯吏 븡븯湲 븣臾몄뿉 諛깆떊쓽 떊猶곕룄媛 븯씫븯쑝硫, 븘뒪듃씪젣꽕移댁뿉꽌뒗 55媛쒖쓽 엫긽떆뿕쓣 뜑 븯뒗 寃껋쑝濡 寃곕줎吏뿀吏留 寃곌뎅 FDA쓽 듅씤쓣 諛쏆 紐삵븯떎(Voysey et al., 2021a). 洹 썑 쁺援쓽 룆由 議곗궗湲곌뎄뿉꽌 슒떒꽦 泥숈닔뿼怨 諛깆떊 臾닿븯떎怨 寃곕줎쓣 궡由щ㈃꽌 엫긽떆뿕쓣 怨꾩냽븯寃 릺뿀吏留 寃곌낵쟻쑝濡쒕뒗 솕씠쓽 BNT162b2媛 쁺援 궡뿉꽌 癒쇱 湲닿툒궗슜듅씤쓣 넻怨쇳븯寃 릺뿀떎.

젣2/3긽 엫긽떆뿕뿉꽌뒗 몴以슜웾(standard-dose)쓣 2쉶 젒醫낆쑝濡 怨쇱젙(protocol)쓣 닔젙븯떎. 뿰졊蹂꾨줈 떎뼇븳 洹몃9쓣 떆뿕븯쑝硫, 諛깆떊쓽 슚쑉 76%濡 굹깉떎. 1李 젒醫 썑 遺옉슜 떖媛곹븯吏 븡븯吏留 異붽 젒醫 씠썑뿉 뜑 留롪퀬 떎뼇븳 遺옉슜씠 굹궗떎(Ramasamy et al., 2021).

1.1.4. 遺옉슜(adverse effects)

엫긽떆뿕뿉꽌 媛옣 쓷븳 遺옉슜 몢넻(headache), 援ы넗(vomiting), 꽕궗(diarrhea), 諛쒖뿴(fever), 遺醫(swelling), 二쇱궗遺쐞 넻利앷낵 諛쒖쟻(injection-site pain and redness), 삤떖(nausea), 洹몃━怨 궙 삁냼뙋 닔移(low levels of blood platelets) 벑쑝濡 寃쎈명븯쑝硫, 젒醫 썑 硫곗튌 썑뿉뒗 궗씪議뚮떎. 留ㅼ슦 뱶臾 寃쎌슦(10留뚮챸 떦 1紐)濡 궙 삁냼뙋 뼇怨 븿猿 삁쟾(thrombus, blood clots)씠 利앷븯뒗 궗濡룄 엳뿀쑝硫 빟 1%뒗 由쇳봽젅 利앸(enlarged lymph nodes), 떇슃 媛먯냼(decreased appetite), 쁽湲곗쬆(dizziness), 議몄쓬(sleepiness), 諛쒗븳(sweating), 蹂듯넻(abdominal pain), 媛젮(itching), 洹몃━怨 諛쒖쭊(rash) 벑씠 諛쒖깮븯떎(Ramasamy et al., 2021).

젒醫 썑 諛쒖깮븳 떖媛곹븳 遺옉슜(serious adverse events)쑝濡쒕뒗 삁쟾깋쟾꽦 吏덊솚(thromboembolic events), 삁냼뙋 媛먯냼利앹쓣 룞諛섑븳 삁쟾利(thrombosis with thrombocytopenia syndrome, TTS), 뿤뙆由 쑀룄 삁냼뙋 媛먯냼利(heparin-induced thrombocytopenia), 옄媛硫댁뿭 뿤뙆由 쑀룄 삁냼뙋 媛먯냼利(autoimmune heparin-induced thrombocytopenia), 紐⑥꽭삁愿 늻異 利앺썑援(capillary leak syndrome), 떖洹쇱뿼(myocarditis), 떖留됱뿼(pericarditis), 븘굹븘씫떆뒪(anaphylaxis), 洹몃━怨 Guillain-Barré 利앺썑援(Guillain-Barré syndrome)씠 솗씤릺뿀떎. 듅엳 TTS뒗 젇 뿬꽦 젒醫낆옄뿉寃뚯꽌 二쇰줈 諛쒖깮븯떎(Greinacher et al., 2021). 븘굹븘씫떆뒪뒗 쁺援뿉꽌 500留뚭굔쓽 젒醫 떆 41嫄댁쓽 궗濡濡 쑀읇 쓽빟뭹泥(EMA)뿉꽌 蹂닿퀬릺뿀떎. Guillain-Barré 利앺썑援곗 留ㅼ슦 뱶臾 遺옉슜쑝濡 諛깆떊쓽 젙蹂댁뿉 寃쎄퀬瑜 異붽븯寃 릺뿀떎. 90꽭 씠긽쓽 끂씤뿉꽌뒗 硫댁뿭끂솕(immunosenescence)濡 씤븯뿬 諛깆떊쓽 슚怨쇨 쁽엳 媛먯냼븯쑝硫, 紐⑥꽭삁愿 늻異 利앺썑援곗쓣 븪怨 엳뒗 솚옄뿉寃 닾뿬븷 떆뿉뒗 씪遺 移섎챸쟻씤 寃곌낵瑜 珥덈옒븯湲 븣臾몄뿉 궗슜쓣 沅뚯옣븯吏 븡뒗떎(Greinacher et al., 2021; European Medicines Agency, 2021a). 뒪럹씤 벑쓽 씪遺 援媛뿉꽌뒗 젇 痢듭뿉寃 굹궗뜕 留ㅼ슦 뱶臾 遺옉슜뿉 븳 슦젮濡 끂씤 痢듭뿉寃뚮뒗 궗슜쓣 젣븳븯떎(The Guardian, 2021a).

1.2. 議댁뒯 븻 議댁뒯 꽱 COVID-19 諛깆떊(Johnson & Johnson, Janssen COVID-19 vaccine)

誘멸뎅쓽 젣빟쉶궗씤 議댁뒯 븻 議댁뒯(Johnson & Johnson)궗 怨꾩뿴궗씤 꽱(Janssen)궗媛 媛쒕컻븳 COVID-19 諛깆떊쑝濡, 슦由щ굹씪뿉꽌 븘뒪듃씪젣꽕移 諛깆떊怨 솕씠 諛깆떊뿉 씠뼱 3踰덉㎏濡 젒醫낆씠 듅씤맂 COVID-19 諛깆떊씠떎. 諛깆떊 젣議 뵆옯뤌 븘뒪듃씪젣꽕移 諛깆떊怨 留덉갔媛吏濡 諛붿씠윭뒪 踰≫꽣瑜 씠슜븯怨, 떎瑜 COVID-19 諛깆떊怨쇱쓽 媛옣 겙 李⑥씠젏 젒醫 슏닔媛 1쉶濡 젒醫 썑 빟 14씪 씠썑遺꽣 삁諛 슚怨쇨 굹궃떎뒗 젏씠떎(Centers for Disease Control and Prevention, 2021a).

1.2.1. 諛깆떊 젣議 썝由

븘뒪듃씪젣꽕移 諛깆떊쓽 젣議 뵆옯뤌怨 媛숈 諛붿씠윭뒪 踰≫꽣諛⑹떇쑝濡, 븘뒪듃씪젣꽕移 諛깆떊怨쇱쓽 李⑥씠젏 씤媛꾩뿉寃 寃곕쭑뿼(conjunctivitis)쓣 쑀諛쒗븯뒗 씤媛 븘뜲끂諛붿씠윭뒪(human adenovirus-D26, Ad26)瑜 踰≫꽣濡 궗슜븯떎뒗 젏씠떎. 鍮꾨났젣 Ad26뿉 SARS-CoV-2쓽 蹂삎맂 S 떒諛깆쭏쓽 쑀쟾옄瑜 룷븿븯뿬 젣議고븯떎(U.S. Food and Drug Administration, 2021a). 븘뒪듃씪젣꽕移 諛깆떊怨 留덉갔媛吏濡 쉷뱷硫댁뿭씠 쑀諛쒕릺뒗뜲, 씤泥댁뿉 二쇱엯맂 諛깆떊 궡쓽 븘뜲끂諛붿씠윭뒪媛 떇꽭룷 媛숈 빆썝젣떆꽭룷뿉 쓽빐 룷떇맂 썑 S 떒諛깆쭏 빆썝쓣 꽭룷留됱뿉 젣떆븯硫 룄 T 꽭룷媛 씤떇븯뿬 B 꽭룷瑜 솢꽦솕떆耳 빆泥닿 깮꽦릺뒗 泥댁븸꽦 硫댁뿭諛섏쓳쓣 쑀諛쒗븳떎.

1.2.2. 듅씤

2021뀈 2썡 27씪 FDA뿉 쓽빐 湲닿툒궗슜듅씤떊泥쓣 諛쏆븯쑝硫(U.S. Food and Drug Administration, 2021b), 쟾 꽭怨꾩쟻쑝濡 슦由щ굹씪瑜 鍮꾨’븯뿬 110媛쒓뎅뿉꽌 궗슜듅씤씠 릺뿀떎. 2020뀈 12썡 8씪 쁺援뿉꽌 꽭怨 理쒖큹濡 젒醫낆씠 떆옉릺뿀쑝硫 슦由щ굹씪뿉꽌뒗 2021뀈 4썡 10씪遺꽣 30꽭 씠긽쓽 삁鍮꾧뎔, 誘쇰갑쐞 썝, 援 愿젴 醫낆궗옄 벑쓣 슦꽑젒醫 긽쑝濡 젒醫낆쓣 떆옉븯떎.

1.2.3. 二쇱슂 엫긽떆뿕(clinical trials)怨 COVID-19 媛먯뿼삁諛 슚怨

2021뀈 1썡 29씪 蹂닿퀬뿉 쓽븯硫 諛깆떊 젒醫 1쉶瑜 닾뿬븯쓣 븣 28씪 썑 삁諛 슚怨쇰뒗 66%, 떖媛곹븳 利앹긽쓽 삁諛⑹ 85%, 洹몃━怨 엯썝씠굹 궗留앹쓣 삁諛⑺븯뒗 뜲 100%쓽 슚怨쇨 엳쑝硫, 1쉶 닾뿬濡 理쒖냼 6媛쒖썡 룞븞 삁諛 슚怨쇨 엳떎怨 諛쒗몴븯떎(Salzman, 2021). 1쉶 젒醫낆뿉 鍮꾪빐 2쉶 젒醫 떆 뜑 넂 삁諛⑸뒫젰쓣 蹂댁씠吏留, 2李 젒醫 떆 븘뒪듃씪젣꽕移댁 留덉갔媛吏濡 踰≫꽣씤 븘뜲끂諛붿씠윭뒪뿉 븳 빆泥대줈 씤빐 SARS-CoV-2뿉 븳 諛깆떊쓽 슚뒫씠 븯릺뒗 떒젏씠 엳떎.

1.2.4. 遺옉슜(adverse effects)

2021뀈 4썡 21씪源뚯 CDC쓽 諛깆떊 遺옉슜 蹂닿퀬 떆뒪뀥 (Vaccine Adverse Events Reporting System, VAERS)쓽 蹂닿퀬 寃곌낵 798留뚰쉶媛 닾뿬맂 떆젏뿉꽌 97%媛 떖媛곹븳 遺옉슜씠 뾾뿀떎怨 諛쒗몴븯떎(Shay et al., 2021). 遺옉슜쓽 遺遺꾩 寃쎈명븯嫄곕굹 以묎컙 젙룄怨, 젒醫 2~3씪留뚯뿉 쉶蹂듬릺뿀떎. 媛옣 쓷븳 遺옉슜 二쇱궗遺쐞 넻利앷낵 諛쒖쟻, 뵾濡(fatigue), 몢넻, 洹쇱쑁넻(myoalgia), 삤븳(chill), 諛쒖뿴, 삤떖 벑씠뿀떎(Shay et al., 2021). 留ㅼ슦 뱶臾쇱留 TTS Guillain-Barré 利앺썑援곗쓽 궗濡 媛숈 移섎챸쟻씤 遺옉슜(遺遺 50 誘몃쭔쓽 꽦씤 뿬꽦뿉寃뚯꽌 諛쒖깮)쑝濡 씤빐 CDC FDA뿉꽌 씪떆쟻쑝濡 궗슜쓣 以묐떒븯怨 mRNA 諛깆떊쓣 슦꽑쟻쑝濡 젒醫낇븷 寃껋쓣 沅뚭퀬븯떎(MacNeil et al., 2021).

洹 썑뿉룄 븘굹븘씫떆뒪瑜 룷븿븳 븣윭吏(allergy) 諛섏쓳씠 젒醫 썑 1떆媛 씠궡뿉 諛쒖깮븯湲곕룄 븯쑝硫, 4紐 以 3紐낆씠 궗留앺븯뒗 떖媛곹븳 遺옉슜씤 뇤젙留λ룞삁쟾利앸룄 蹂닿퀬릺뿀떎(Cines and Bussel, 2021). 삉븳 Guillain-Barré 利앺썑援곕룄 諛쒖깮븷 닔 엳쓣 媛뒫꽦쓣 諛곗젣븯吏 紐삵븯뿬 젣뭹 젙蹂댁뿉 寃쎄퀬瑜 異붽븯떎. 寃곌뎅 2022뀈 5썡 CDC뒗 씠濡 씤븳 떖媛곹븳 遺옉슜쑝濡 씤빐 꽱 諛깆떊쓣 18꽭 씠븯뿉寃 젒醫낆쓣 湲덉븯떎(U.S. Food and Drug Administration, 2022).

2. mRNA 諛깆떊(mRNA vaccines)

SARS-CoV-19뿉 븯뿬 理쒖큹濡 룄엯맂 젣議 뵆옯뤌 諛깆떊쑝濡 솕씠 諛깆떊怨 紐⑤뜑굹 諛깆떊씠 엳떎. mRNA 諛깆떊 뵆옯뤌 湲곕쾿 15뀈 쟾遺꽣 뿬윭 諛붿씠삤 쉶궗뿉꽌 씤뵆猷⑥뿏옄 諛붿씠윭뒪(influenza virus), 吏移 諛붿씠윭뒪(zika virus, ZIKV), 愿묎껄蹂 諛붿씠윭뒪(rabies virus) 벑쓣 긽쑝濡 뿰援щ릺怨 엳뿀쑝硫, 蹂묒썝泥댁쓽 쑀쟾옄 뿼湲곗꽌뿴(target gene sequence)留 諛앺吏硫 떊냽븯怨 媛꾨떒븯寃 젣議고븷 닔 엳怨 諛깆떊쓽 媛쒕컻湲곌컙쓣 떒異뺥븷 닔 엳떎뒗 옣젏 븣臾몄뿉 뼢썑 깉濡쒖슫 쑀뻾蹂묒씠굹 븘吏 셿꽦릺吏 紐삵븳 蹂묒썝泥댁뿉 븳 諛깆떊쓽 젣議곗뿉 鍮좊Ⅴ寃 씤瑜섍 쓳븷 닔 엳뒗 湲곗닠濡 媛곴킅諛쏆븘솕떎. 紐⑤뜑굹궗쓽 寃쎌슦 몴쟻빆븫移섎즺젣濡쒖꽌 mRNA뿉 븳 젣議 湲곗닠쓣 씠誘 媛뽰텛怨 엳뿀湲 븣臾몄뿉 SARS-CoV-19뿉 븳 諛깆떊쓣 48떆媛 留뚯뿉 꽕怨(design)븯떎.

mRNA 諛깆떊 DNA 諛깆떊씠굹 떎瑜 諛깆떊뱾뿉 鍮꾪빐 꽕怨꾧 돺怨 젣議곌 鍮좊Ⅴ硫, 삉븳 쟾넻쟻씤 諛깆떊 젣議곕쾿씤 궗諛깆떊씠굹 깮諛깆떊怨 媛숈씠 빆썝쓣 吏곸젒쟻쑝濡 씤泥댁뿉 二쇱엯븯뒗 寃껋씠 븘땲湲 븣臾몄뿉 媛먯뿼쓽 쐞뿕꽦씠 뾾뼱 씤泥댁뿉 臾댄빐븯怨 떒諛깆쭏씠 삎꽦맂 썑 냼硫몃릺뒗 옣젏씠 엳떎. 븯吏留 RNA 옄泥댁쓽 遺덉븞젙븳 援ъ“濡 씤빐 硫댁뿭쓽 諛쒖깮씠 떎냼 鍮꾪슚쑉쟻씠怨, 돺寃 蹂吏덈릺嫄곕굹 뙆愿대릺硫, 솚寃쎌뿉 痍⑥빟븯뿬 -90 ~ -70℃濡 옣븯뿬빞 븯怨 슫넚, 臾쇰쪟 諛 蹂닿씠 긽떦엳 뼱졄떎뒗 떒젏씠 엳떎(Zhang et al., 2019). 쟾떖泥대줈 궗슜릺뒗 吏吏덈굹끂엯옄(lipid nanoparticle, LNP)뒗 빟 100 nm쓽 겕湲곕줈 SARS-CoV-2쓽 S 떒諛깆쭏 mRNA瑜 罹≪뒓솕(encapsulated)븯뿬 蹂댄샇븯怨 꽭룷 궡遺濡 룄엯(cell entry)릺뒗 寃껋쓣 룙뒗 諛섎㈃ 븣윭吏媛 쑀諛쒕맆 닔룄 엳쑝硫, 빆썝쓽 mRNA媛 룄엯맂 꽭룷뒗 硫댁뿭꽭룷(꽭룷룆꽦 T 꽭룷)뿉 쓽빐 怨듦꺽쓣 諛쏆쓣 닔 엳湲 븣臾몄뿉 옄媛硫댁뿭吏덊솚씠 엳뒗 솚옄뿉寃 痍⑥빟븯떎(Walsh et al., 2020).

硫댁뿭諛섏쓳쓽 썝由щ뒗 SARS-CoV-19쓽 S 떒諛깆쭏뿉 븳 mRNA瑜 젣議고븯뿬 쟾떖泥댁씤 LNP뿉 궫엯 썑 씤泥댁뿉 二쇱엯븯硫 꽭룷 궡濡 mRNA媛 씠룞릺뼱 꽭룷 궡뿉꽌 S 떒諛깆쭏쓽 踰덉뿭(translation) 怨쇱젙쓣 嫄곗퀜 꽭룷留됱뿉 諛쒗쁽릺硫 룄 T 꽭룷濡쒕꽣 湲곗뼲 B 꽭룷(memory B cell)쓽 諛섏쓳씠 솢꽦솕릺뼱 硫댁뿭옉슜쓣 쑀룄븳떎(Goel et al., 2021).

2.1. 솕씠-諛붿씠삤븻뀓 COVID-19 諛깆떊(Pfizer-BioNTech COVID-19 vaccine)

룆씪쓽 깮紐낃났븰 湲곗뾽씤 諛붿씠삤븻뀓궗媛 誘멸뎅쓽 젣빟쉶궗씤 솕씠 怨듬룞 媛쒕컻븳 COVID-19 諛깆떊씠떎. 媛쒕컻紐낆 BNT162b2씠硫, 援젣씪諛섎챸(international nonproprietary name, INN) tozinameran, 洹몃━怨 젣뭹紐낆 Corminaty (COVID-19, community and immunity)씠떎(European Medicines Agency, 2022a).

2.1.1. 諛깆떊 젣議 썝由

SARS-CoV-2쓽 몴硫댁뿉꽌 諛쒓껄릺뒗 S 떒諛깆쭏쓽 쟾泥 湲몄씠(full-length)쓽 룎뿰蹂씠 삎깭瑜 븫샇솕븯뒗 蹂삎맂 nucleoside-modified mRNA (modRNA)瑜 궗슜븯쑝硫, modRNA 뿼湲곗꽌뿴 4,284 돱겢젅삤씠뱶씠떎(Gaebler and Nussenzweig, 2020).

2.1.2. 듅씤

2020뀈 12썡 2씪, 쁺援 솕씠 諛깆떊뿉 븳 湲닿툒궗슜듅씤쓣 뻽쑝硫, 씠뒗 쑀읇 理쒖큹쓽 諛깆떊 湲닿툒궗슜듅씤씠떎(National Health Service, 2022). 2020뀈 12썡 8씪 쁺援뿉꽌 泥 諛깆떊 젒醫낆씠 떆옉릺뿀쑝硫, 씠썑 빟 40뿬媛쒖쓽 援媛뿉꽌 湲닿툒듅씤, 뿀媛 洹몃━怨 議곌굔遺 뿀媛 듅씤쓣 諛쏆븯떎. 슦由щ굹씪뿉꽌뒗 2021뀈 3썡 05씪 議곌굔遺 뿀媛瑜 諛쏆븯쑝硫 誘멸뎅뿉꽌뒗 2021뀈 8썡 23씪 16꽭 씠긽쓣 젒醫낅긽쑝濡 듅씤맂 理쒖큹쓽 COVID-19 諛깆떊씠떎. 쁽옱뒗 珥 144媛쒓뎅뿉꽌 듅씤릺뿀떎(Howard, 2021).

2.1.3. 二쇱슂 엫긽떆뿕(clinical trials)怨 COVID-19 媛먯뿼삁諛 슚怨

젣1/2긽 엫긽떆뿕 Nature 吏뿉 諛쒗몴븯떎. 1쉶 젒醫낆쑝濡 異⑸텇븳 빆泥 삎꽦쓣 굹궡吏 紐삵븯뿬 異붽 젒醫낆씠 諛섎뱶떆 븘슂븯떎怨 븯쑝硫, 닔슜泥 寃고빀 룄硫붿씤 寃고빀빆泥대뒗 2李 젒醫 썑 媛옣 넂븯怨, 以묓솕빆泥 뿭떆 2李 젒醫 썑媛 媛옣 넂 寃곌낵瑜 굹깉떎(Mulligan et al., 2020).

2020뀈 11썡 솕씠뒗 옄泥 留ㅺ굅吏꾩쓣 넻빐 3긽 떎뿕 寃곌낵瑜 諛쒗몴븯떎. 諛깆떊쓽 슚뒫 94.6%怨 FDA뿉 湲닿툒궗슜듅씤 떊泥쓣 븷 닔 엳寃 릺뿀떎怨 븯쑝硫, 굹궗뜕 遺옉슜 씪諛섏쟻씤 뵾濡, 몢넻, 洹몃━怨 諛쒖뿴 벑씠뿀떎怨 蹂닿퀬뻽떎(Pfizer, 2020). 씠뒪씪뿕뿉꽌 1諛 50留뚮챸뿉 빐 떎젣 젒醫 湲곕줉쑝濡 굹궃 솕씠 諛깆떊쓽 슚뒫 1李 젒醫 14~20씪 썑뿉뒗 46%, 21~27씪 썑뿉뒗 60%쑝硫, 2李 젒醫 7씪썑뿉뒗 94%쓽 媛먯뿼삁諛 슚怨쇰 굹궡뼱 엫긽떆뿕쓽 寃곌낵 쑀궗븯떎(Dagan et al., 2021).

2.1.4. 遺옉슜(adverse effects)

젣3긽 엫긽떆뿕뿉꽌 떖媛곹븳 遺옉슜쓽 諛쒖깮瑜좎 궙븯떎. 媛踰쇱슫 遺옉슜쑝濡쒕뒗 二쇱궗遺쐞 넻利앷낵 醫낆갹(injection-site pain and swelling), 꽕궗, 뵾濡, 洹쇱쑁넻, 삤븳, 愿젅넻 (arthralgia), 諛쒖뿴, 洹몃━怨 삤떖 벑쑝濡 紐⑤몢 젒醫 썑 硫곗튌 궡濡 쉶蹂듬릺뿀떎. 二쇱궗遺쐞 넻利앷낵 諛쒖뿴쓽 寃쎌슦 2李 젒醫 썑 諛쒖깮 鍮덈룄媛 뜑 利앷븯떎(Mulligan et al., 2020; Centers for Disease Control and Prevention, 2022).

떖洹쇱뿼怨 떖궘뿼쓽 諛쒖깮 궗濡뒗 二쇰줈 젇 궓옄뿉寃뚯꽌 留롮씠 굹궗쑝硫, 1李 젒醫 썑蹂대떎 2李 젒醫 썑뿉 뜑 留롮씠 諛쒖깮븯怨 遺遺 옄뿰 移섏쑀媛 릺뿀떎. 씠뒪씪뿕뿉꽌 솕씠 諛깆떊 젒醫 썑 떖洹쇱뿼씠 諛쒖깮븳 鍮꾩쑉 10留뚮챸 떦 1.16紐낆씠뿀쑝硫, 떖洹쇱뿼 옄뿰 諛쒖깮쑉 10留뚮챸 떦 10~22紐낆씠湲 븣臾몄뿉 諛쒖깮븳 떖洹쇱뿼怨 諛깆떊怨쇰뒗 긽愿씠 뾾뿀떎怨 삁痢≫븯떎(Vogel and Frankel, 2021). 誘멸뎅 CDC뿉꽌뒗 2020뀈 12썡 100留뚮챸 떦 11.1紐낆쓽 븘굹븘씫떆뒪媛 諛쒖깮븯떎怨 蹂닿퀬뻽쑝硫, 洹 以 71%뒗 젒醫 썑 15遺 씠궡뿉 利앹긽씠 굹궗怨 紐⑤몢 쉶蹂듬릺뿀떎(Centers for Disease Control and Prevention, 2021b).

2.2. 紐⑤뜑굹 COVID-19 諛깆떊(Moderna COVID-19 vaccine)

誘멸뎅쓽 諛붿씠삤 뀒겕濡쒖 踰ㅼ쿂湲곗뾽(startup)씤 紐⑤뜑굹궗, 誘멸뎅 援由 븣윭吏 · 媛먯뿼蹂 뿰援ъ냼(National Institute of Allergy and Infectious Diseases), 洹몃━怨 쓽깮紐 泥⑤떒 뿰援ш컻諛쒖껌(Biomedical Advanced Research and Development Authority)뿉 쓽빐 媛쒕컻릺뿀떎.

젣뭹紐낆 mRNA1273, INN elasomeran, 洹몃━怨 긽뭹紐낆 Spikevax濡, 솕씠 諛깆떊怨 룞씪븳 뵆옯뤌쓣 궗슜븯湲 븣臾몄뿉 以묓솕빆泥댁쓽 깮꽦쑝濡 씤븳 슚뒫, 삁諛 슚怨, 洹몃━怨 遺옉슜 벑뿉꽌 쑀궗븳 젏씠 留롫떎. 諛섎㈃뿉 李⑥씠젏 -25 ~ -15℃뿉꽌 6媛쒖썡 룞븞 옣씠 媛뒫븯誘濡 슫넚怨 쑀넻뿉꽌 寃쎌젣쟻씠硫, 18꽭 씠긽뿉꽌留 닾뿬媛 媛뒫븯怨 닾뿬媛꾧꺽 4二쇱씠떎(European Medicines Agency, 2022b).

2.2.1. 諛깆떊 젣議 썝由

솕씠 諛깆떊怨 媛숈씠 SARS-CoV-2쓽 S 떒諛깆쭏쓣 븫샇솕븯뒗 modRNA濡 援ъ꽦맂 mRNA 諛깆떊쑝濡, LNP뿉 罹≪뒓솕븯떎. mRNA-1273 꽭룷 븞쑝濡 뱾뼱媛硫 꽭룷쓽 젙긽쟻씤 궗怨쇱젙쓣 넻빐 議곕㈃냼룷泥(rough endoplasmic reticulum)뿉꽌 듅젙 떒諛깆쭏쓣 깮꽦븯룄濡 쑀룄븯湲 쐞빐 븫샇솕맂떎. LNP뿉 뱾뼱 엳뒗 SARS-CoV-2쓽 S 떒諛깆쭏 mRNA뒗 蹂몃옒쓽 븘誘몃끂궛 뿼湲곗꽌뿴뿉꽌 2媛쒕 봽濡ㅻ┛(prolin)쑝濡 븞젙솕떆궓 룎뿰蹂씠(K986P V987P)媛 룷븿릺뼱 엳떎(Jackson, 2020). SARS-CoV-2쓽 S 떒諛깆쭏쓣 꽭룷留됱뿉 몴吏븯硫 룄 T 꽭룷媛 씤떇븯뿬 硫댁뿭泥닿퀎媛 쑀룄릺뼱 씠뿉 븳 슚怨쇱쟻씤 빆泥대 깮꽦븯寃 맂떎.

2.2.2. 듅씤

쁽옱 EMA 誘멸뎅 벑 39媛 援媛 WHO뿉꽌 湲닿툒궗슜듅씤쓣 諛쏆븯쑝硫 쁽옱 슦由щ굹씪瑜 룷븿븯뿬 85媛쒓뎅뿉꽌 듅씤릺뿀떎. 誘멸뎅뿉꽌뒗 2020뀈 12썡 21씪 諛깆떊쓽 궗슜뿉 븳 젙떇듅씤(formal approval)쓣 諛쏆븯떎. 슦由щ굹씪뿉꽌뒗 븘뒪듃씪젣꽕移 諛깆떊, 솕씠 諛깆떊, 洹몃━怨 꽱 諛깆떊뿉 씠뼱 4踰덉㎏濡 듅씤맂 COVID-19 諛깆떊씠硫, 2021뀈 6썡 15씪 理쒖쥌寃곌낵蹂닿퀬꽌瑜 젣異쒗븯뒗 議곌굔쑝濡 議곌굔遺 뿀媛 듅씤쓣 諛쏆븯떎.

2.2.3. 二쇱슂 엫긽떆뿕(clinical trials)怨 COVID-19 媛먯뿼삁諛 슚怨

3留뚮챸쓽 젣3긽 엫긽떆뿕 以묎컙寃곌낵(interim analysis)뿉꽌뒗 94.5%쓽 삁諛 슚怨쇰 굹깉떎. 遺옉슜쑝濡 2李 젒醫 썑 뵾濡(9.7%), 洹쇱쑁넻(8.9%), 愿젅넻(5.2%), 몢넻(4.5%), 넻利(4.1%), 二쇱궗遺쐞 諛쒖쟻(2.0%) 벑씠 蹂닿퀬릺뿀쑝굹, 떒湲곌컙뿉 냼떎릺뿀떎(Meo et al., 2021).

3留뚮챸쓣 긽쑝濡 젣3긽 엫긽떆뿕쓽 理쒖쥌寃곌낵뿉꽌 諛깆떊쓽 理쒖쥌 슚뒫 94.1%씪怨 諛쒗몴븯떎. 媛踰쇱슫 遺옉슜쑝濡 二쇱궗遺쐞 넻利, 뵾濡쒓컧, 洹쇱쑁넻, 愿젅넻, 몢넻, 二쇱궗遺쐞 諛쒖쟻 벑씠뿀쑝硫, 떖媛곹븳 遺옉슜 굹굹吏 븡븯떎. 씠 寃곌낵濡쒖뜥 紐⑤뜑굹뒗 FDA뿉 湲닿툒궗슜듅씤 떊泥쓣 븯寃 맂떎(Businesswire.com, 2020).

紐⑤뜑굹 諛깆떊쑝濡 씤븳 빆泥 쑀吏 떎뿕뿉꽌 以묓솕빆泥대뒗 紐⑤뱺 뿰졊뿉꽌 3媛쒖썡媛 쑀吏릺뿀쑝硫(Widge et al., 2021), 젒醫 썑 209씪(빟 6媛쒖썡)씠 吏궃 썑 빆泥 쑀吏뿉 븳 떎뿕뿉꽌룄 RBD 寃고빀빆泥 諛 以묓솕빆泥닿 뼱뒓 젙룄 媛먯냼븯湲곕뒗 븯吏留 뿬쟾엳 쑀吏릺怨 엳뿀떎(Doria-Rose, 2021).

쁽옱源뚯뒗 18꽭 씠긽쓽 꽦씤뿉꽌留 뿰援ш 吏꾪뻾릺뿀吏留, 0~11꽭 12~17꽭쓽 슚뒫怨 븞쟾꽦쓣 痢≪젙븯뒗 뿰援ш 吏꾪뻾 以묒씠떎(Jenco, 2021).

2.2.4. 遺옉슜(adverse effects)

媛옣 쓷븳 遺옉슜쑝濡 二쇱궗遺쐞 넻利(pain at the injection site), 뵾濡, 몢넻, 洹쇱쑁넻, 벑씠뿀쑝硫 2씪 씠궡뿉 냼떎릺뿀怨, 諛깆떊 젒醫 썑 媛 7씪 씠궡뿉 諛쒖깮븯떎. 떎留 븘윭떆닠(filler procedure)쓣 諛쏆 궗엺뿉寃뚮뒗 뼹援대醫낆씠 諛쒖깮븯怨, 二쇰줈 2李 젒醫 썑 遺옉슜씠 뜑 留롮씠 諛쒖깮븯떎(World Health Organization, 2021).

誘멸뎅 CDC뿉꽌뒗 紐⑤뜑굹 諛깆떊쓣 닾뿬븳 빟 4諛깅쭔紐낆쓣 긽쑝濡 100留뚰쉶 떦 2.5嫄(10紐)쓽 븘굹븘씫떆뒪媛 VAERS뿉 蹂닿퀬릺뼱, 二쇱궗 썑 빟 15遺 젙룄쓽 愿李곗쓣 沅뚭퀬뻽떎. 븘굹븘씫떆뒪媛 諛쒖깮븳 궗엺 紐⑤몢 뿬옄떎(Team CC-R, U.S. Food and Drug Administration, 2021a). 2021뀈 6썡 23씪 誘멸뎅 CDC뒗 100留뚮챸 떦 13紐(二쇰줈 16꽭 씠긽쓽 궓꽦)뿉꽌 떖洹쇱뿼씠굹 떖留됱뿼씠 諛쒖깮븿쓣 솗씤븯쑝굹, 遺遺 쟻젅븳 移섎즺 쑕떇쓣 痍⑦븯쓣 寃쎌슦 鍮좊Ⅴ寃 쉶蹂듬릺뿀떎怨 蹂닿퀬뻽떎(Oster et al., 2022).

3. 떒諛깆쭏 옱議고빀 諛깆떊(protein recombinant vaccine)

떒諛깆쭏 옱議고빀 諛깆떊 硫댁뿭諛섏쓳쓣 쑀諛쒗븯뒗 諛붿씠윭뒪쓽 듅젙 떒諛깆쭏 쑀쟾옄 援ъ꽦떒쐞(viral subunits)瑜 쑀쟾쟻쑝濡 議곗옉(genetically engineered)븯뿬 옱議고빀 븯뒗 湲곕쾿씠떎. 硫댁뿭諛섏쓳쓣 쑀룄븯湲 쐞븯뿬 몴쟻 蹂묒썝泥댁쓽 씪遺 듅젙 떒諛깆쭏留뚯쓣 遺꾨━븯뿬 궗슜븯怨, 洹 옄泥대 빆썝쑝濡 젣떆븿쑝濡쒖뜥 硫댁뿭諛섏쓳씠 씠猷⑥뼱吏꾨떎. 諛깆떊 떒諛깆쭏쓣 븫샇솕븯뒗 몴쟻 쑀쟾옄뒗 떎瑜 諛붿씠윭뒪, 꽭洹, 吏꾧퇏 삉뒗 諛곗뼇以묒씤 꽭룷뿉 궫엯븯뿬 議곗옉맂떎. 씠윭븳 뵆옯뤌쓣 빀꽦 빆썝 諛깆떊(synthetic antigen vaccine) 삉뒗 援ъ꽦떒쐞 諛깆떊(subunit vaccine)씠씪怨좊룄 븳떎(Wadman, 2020a).

씠 諛깆떊 媛먯뿼쓽 쐞뿕씠 嫄곗쓽 뾾쑝硫 닔떗 뀈媛 븞쟾븯寃 궗슜빐 삩 쟾넻쟻씤 뵆옯뤌씠씪뒗 젏뿉꽌 븞쟾꽦怨 떊猶곕룄媛 넂떎뒗 옣젏씠 엳뒗 諛섎㈃ 슚怨쇱쟻씤 硫댁뿭쓣 湲곕븯湲 뼱졄怨 媛쒕컻씠 뼱졄떎뒗 떒젏씠 엳떎. B삎 媛꾩뿼 諛깆떊(hepatitis B vaccine), 옄沅곴꼍遺븫 諛깆떊, 洹몃━怨 씤뵆猷⑥뿏옄 諛깆떊 벑쓽 씪諛섏쟻씤 諛깆떊씠 씠 諛⑸쾿쓣 궗슜븯怨 엳쑝硫, COVID-19 諛깆떊쑝濡쒕뒗 끂諛붾갚뒪媛 엳떎.

3.1. 끂諛붾갚뒪 COVID-19 諛깆떊(Novavax COVID-19 vaccine)

끂諛붾갚뒪궗 媛먯뿼蹂 鍮꾪깭꽭 쁺떊 뿰빀(Coalition for Epidemic Preparedness Innovations)뿉 쓽빐 媛쒕컻맂 떒諛깆쭏 옱議고빀 諛깆떊(protein recombinant vaccine)씤 COVID-19 諛깆떊씠떎(Leo, 2021). 씤룄뿉꽌 깮궛븳 젣뭹紐낆 Covovax, 洹 쇅 빐쇅뿉꽌 깮궛릺뒗 젣뭹紐낆 Nuvaxovid 삉뒗 NVX-CoV2373濡쒕룄 뙋留ㅻ릺硫, 슦由щ굹씪뿉꽌뒗 Nuvaxovid pre-filled syringe씪뒗 젣뭹紐낆쑝濡 깮궛릺怨 엳떎. 슦由щ굹씪뿉꽌뒗 SK 諛붿씠삤궗씠뼵뒪뿉꽌 쐞긽 깮궛쓣 떞떦븯怨 엳떎.

씠 諛깆떊쓽 옣젏 떎瑜 諛깆떊泥섎읆 빐룞븯嫄곕굹 씗꽍븯뒗 벑쓽 遺媛쟻씤 젅李④ 븘슂븯吏 븡븘 렪由ы븯硫, 깋옣삩룄씤 2~8℃뿉꽌 蹂닿씠 媛뒫븯뿬 닔넚怨 蹂닿쓽 렪씠꽦씠 醫뗪퀬, mRNA 諛깆떊怨 媛숈 珥덉삩 깋룞 떆뒪뀥씠 遺議깊븳 媛쒕컻룄긽援媛쓽 젒醫낆뿉 湲곗뿬븷 닔 엳떎뒗 젏씠떎. 삉븳 떒諛깆쭏 옱議고빀 諛깆떊쓽 寃쎌슦 遺옉슜씠 寃쎈명븯뿬 mRNA 諛깆떊쓽 떖洹쇱뿼씠굹 떖留됱뿼, 諛붿씠윭뒪 踰≫꽣 諛깆떊쓽 삁쟾 삉뒗 삁냼뙋 媛먯냼利 媛숈 떖媛곹븳 遺옉슜쓣 슦젮븯뿬 COVID-19 諛깆떊쓣 젒醫낇븯吏 븡 寃쎌슦 씠뿉 븯뿬 끂諛붾갚뒪 諛깆떊쓽 젒醫낆쓣 沅뚭퀬븷 닔 엳떎.

3.1.1. 諛깆떊 젣議 썝由

諛붿씠윭뒪 쑀궗 엯옄 諛깆떊(virus-like particle vaccine)쑝濡 몴쁽릺뒗 옱議고빀 굹끂엯옄 諛깆떊(recombinant nanoparticle vaccine)씠떎(Chung et al., 2020). 蹂삎맂 SARS-CoV-2 S 떒諛깆쭏쓽 쑀쟾옄瑜 룷븿븯뒗 怨듯븰쟻 baculovirus (engineered baculovirus)瑜 깮꽦븿쑝濡쒖뜥 젣議곕맂떎. S 떒諛깆쭏씠 꽭룷쓽 ACE2 닔슜泥댁 寃고빀븯湲 쐞빐꽌뒗 furin怨 TMPRSS2씪뒗 슚냼뿉 쓽빐 S1怨 S2濡 遺꾪빐릺뼱빞 븯뒗뜲, 씠 諛깆떊 S1怨 S2濡 遺꾪빐릺뒗 寃껋쓣 留됯린 쐞빐 3媛쒖쓽 湲猷⑦誘(glutamine) 븘誘몃끂궛쓣 移섑솚븯쑝硫, 씠瑜 븞젙솕떆궎湲 쐞븯뿬 986-987踰덉쓽 븘誘몃끂궛쓣 봽濡ㅻ┛쑝濡 蹂寃쏀븯떎(Hotez and Bottazzi, 2022). Sf9 굹諛⑹꽭룷(Sf9 moth cell)뿉 SARS-CoV-2瑜 諛곗뼇븯硫, 씠 꽭룷媛 S 떒諛깆쭏쓣 꽭룷留됱뿉 몴吏(presentation)븯寃 릺硫, 몴吏맂 S 떒諛깆쭏쓣 異붿텧븯뿬 빟 50 nm쓽 빀꽦 吏吏 굹끂 엯옄(synthetic lipid nanoparticle)뿉 議곕┰맂떎. 理쒕 14媛쒖쓽 S 떒諛깆쭏씠 룷븿맂떎(Wadman, 2020a). 씠 諛깆떊뿉뒗 泥쒖뿰 怨꾨㈃솢꽦젣(surfactant)씤 궗룷땶怨 硫댁뿭利앷컯 蹂댁“젣(saponin-based adjuvant)씤 Matrix-M씠 룷븿릺뼱 엳떎(Wadman, 2020b).

3.1.2. 듅씤

2021뀈 12썡 17씪 WHO뿉꽌 湲닿툒궗슜듅씤쓣 諛쏆븯怨, 12썡 20씪 쑀읇쓽빟뭹泥뿉꽌룄 꽦씤뿉 븳빐 젒醫낆쓣 듅씤븯떎. 쁽옱 슦由щ굹씪瑜 룷븿븯뿬 37媛쒓뎅뿉꽌 듅씤릺뿀떎. 슦由щ굹씪뿉꽌뒗 2022뀈 1썡 12씪 븳援 떇뭹쓽빟뭹븞젙泥섏뿉꽌 議곌굔遺 뿀媛瑜 븯뿬 2썡 14씪遺꽣 援궡 젒醫낆쓣 떆옉븯떎(Ministry of Food and Drug Safety of Korea, 2022).

3.1.3. 二쇱슂 엫긽떆뿕(clinical trials)怨 COVID-19 媛먯뿼삁諛 슚怨

씪諛섏쟻쑝濡 떒諛깆쭏 옱議고빀 諛깆떊 硫댁뿭 슚怨쇨 넂吏 븡떎怨 븣젮졇 엳吏留 씠 諛깆떊 2020뀈 8썡 諛쒗몴맂 젣1긽 엫긽떆뿕 寃곌낵뿉꽌 젒醫 3二 썑遺꽣 異⑸텇븳 뼇쓽 以묓솕빆泥닿 삎꽦릺뿀쑝硫, 2李 異붽 젒醫 썑 異⑸텇븳 뼇쓽 빆泥닿 삎꽦릺뿀떎怨 蹂닿퀬뻽떎. 븯吏留 遺옉슜쓽 鍮덈룄 삉븳 2李 젒醫 썑 利앷븯뒗뜲, 硫댁뿭利앷컯젣濡 궗슜븯뒗 Matrix-M씠 썝씤쑝濡 吏紐⑸릱떎(Heath et al., 2021).

2020뀈 12썡 젣1/2긽 엫긽떆뿕뿉꽌 솕씠 諛깆떊씠굹 紐⑤뜑굹 諛깆떊蹂대떎 삤엳젮 넂 以묓솕빆泥댁쓽 깮꽦쓣 굹깉떎. 二쇱슂 遺옉슜쑝濡쒕뒗 二쇱궗遺쐞 븬넻怨 넻利(injection site tenderness and pain), 洹쇱쑁넻, 뵾濡, 몢넻, 愿젅넻씠뿀쑝硫, 諛쒖뿴 굹굹吏 븡븯怨 슜삁쁽긽룄 굹굹吏 븡븘 떖媛곹븳 遺옉슜 뾾뿀떎怨 蹂닿퀬뻽떎(Keech et al., 2020).

2021뀈 1썡 끂諛붾갚뒪뿉꽌 諛쒗몴븳 以묎컙寃곌낵(interim results) 옄猷뚯뿉 쓽븯硫 쁺援뿉꽌 15,000紐낆쓽 떎뿕寃곌낵 89.3%쓽 삁諛 슚怨쇰 굹깉쑝硫, 궓븘봽由ъ뭅怨듯솕援(South Africa)뿉꽌뒗 踰좏蹂씠(Beta variant, lineage B.1.351)뿉 빐 빟 50~60%쓽 슚뒫쓣 蹂댁떎怨 諛쒗몴븯떎. 二쇱슂 遺옉슜쑝濡쒕뒗 젒醫낅쐞 븬넻怨 넻利, 몢넻, 洹쇱쑁넻, 뵾濡, 愿젅넻, 洹몃━怨 諛쒖뿴 벑씠뿀떎(Shinde et al., 2021). 궓븘봽由ъ뭅 怨듯솕援뿉꽌 踰좏蹂씠瑜 긽쑝濡 떎뿕븳 씠쑀뒗 洹 떦떆 踰좏蹂씠媛 쑀뻾븯湲 븣臾몄씠뿀떎.

쁺援뿉꽌 씠猷⑥뼱吏 2021뀈 6썡 諛쒗몴맂 젣3긽 엫긽떆뿕뿉꽌뒗 1李 젒醫 2二 썑 83.4%, 2李 젒醫 1二 썑 89.7%쓽 슚뒫쓣 굹깉떎. 끂씤痢듭뿉꽌뒗 88.9%쓽 슚뒫쓣 굹깉떎(Heath et al., 2021; Novavax, 2021).

삉븳 2021뀈 12썡 誘멸뎅怨 硫뺤떆肄붿뿉꽌 30,000紐낆쓣 긽쑝濡 젣3긽 떆뿕븳 寃곌낵뒗 2李 젒醫 썑 諛깆떊쓽 媛먯뿼삁諛 슚怨쇰뒗 90.4%, 以묐벑룄 以묒쬆吏덊솚怨 궗留앹쓽 삁諛⑹ 100%쓽 슚怨쇰 굹깉쑝硫, 씠뒗 mRNA 諛깆떊怨 鍮꾩듂븳 슚뒫씠뿀떎(Dunkle et al., 2022).

3.1.4. 遺옉슜(adverse effects)

媛옣 쓷븳 遺옉슜쑝濡 二쇱궗遺쐞 븬넻怨 넻利, 몢넻, 洹쇱쑁넻, 뵾濡, 愿젅넻, 諛쒖뿴, 삤떖, 洹몃━怨 援ы넗 벑씠뿀쑝硫 遺遺 寃쎌쬆씠굹 利앸벑利앹쑝濡 2씪 씠궡뿉 궗씪議뚮떎(European Medicines Agency, 2021b). 洹 쇅뿉 떖媛곹븳 遺옉슜 蹂닿퀬맂 諛붽 뾾떎.

怨좎같(Discussion)

COVID-19 諛깆떊 SARS-CoV-2 媛먯뿼쑝濡 씤븳 떖媛곹븳 吏덈퀝씠굹 궗留앹쓣 삁諛⑺븯뒗 뜲 媛옣 슚怨쇱쟻씤 諛⑸쾿씠吏留 떎瑜 醫낅쪟쓽 諛깆떊怨 留덉갔媛吏濡 媛먯뿼쓽 삁諛⑹씠 셿쟾븯吏 븡湲 븣臾몄뿉 諛깆떊쓣 젒醫 諛쏆븯떎 븯뜑씪룄 SARS-CoV-2뿉 옱媛먯뿼맆 媛뒫꽦 빆긽 議댁옱븳떎. 誘멸뎅쓽 CDC뿉꽌뒗 諛깆떊 젒醫낆쓣 諛쏆븯쓬뿉룄 遺덇뎄븯怨 COVID-19뿉 媛먯뿼릺뼱 씤뿉寃 쟾뙆젰쓣 媛뽯뒗 긽깭씤 룎뙆媛먯뿼(breakthrough infection)쓽 넻怨꾨 媛깆떊븯뿬 諛쒗몴븯怨 엳떎. CDC뿉꽌뒗 諛깆떊 젒醫낆씠굹 遺뒪꽣 젒醫 긽깭뿉 뵲씪 쁺뼢쓣 誘몄튂뒗 뿬윭 媛吏 슂씤뱾濡 씤빐 젙솗븳 빐꽍 뼱졄吏留 諛깆떊 젒醫낆옄뿉 鍮꾪빐 誘몄젒醫낆옄뒗 媛먯뿼 솗瑜좎씠 2.8諛 젙룄 쐞뿕꽦씠 엳쑝硫, 궗留앹 10諛 젙룄 넂떎怨 븯떎. 룎뙆媛먯뿼 諛쒖깮쑉 젏李⑥쟻쑝濡 媛먯냼븯怨 엳뒗 異붿꽭瑜 蹂댁씠怨 엳쑝硫 룎뙆媛먯뿼 궗濡쓽 70% 씠긽씠 65꽭 씠긽쓽 끂씤씠뿀떎(Piano Mortari, 2021).

COVID-19 諛깆떊쓣 젒醫낇븯쓣 寃쎌슦 1李 젒醫낆뿉꽌뒗 빟 3.4諛, 2李 젒醫낇븳 寃쎌슦 빟 60.9諛곗쓽 궗留앹옄媛 媛먯냼븯떎. 1李 젒醫낆옄 鍮꾧탳븯뿬 2李 젒醫낆옄뒗 18.2諛 궗留앹옄媛 媛먯냼븯쑝硫, 2李 젒醫낆옄쓽 寃쎌슦 룎뙆媛먯뿼쑝濡 640紐낆쓽 궗留앹옄(쟾泥 궗留앹옄쓽 1.2%)媛 諛쒖깮븯떎(The Guardian, 2021b). 룎뙆媛먯뿼쓽 썝씤쑝濡쒕뒗 쁽옱 紐⑤뱺 諛깆떊쓽 젒醫낆 洹쇱쑁궡 젒醫(intramuscular injection)쑝濡 닚솚怨(circulatory system)뿉꽌 泥댁븸꽦 硫댁뿭諛섏쓳쓣 쑀룄(IgM怨 IgG)븳떎. 븯吏留, 샇씉湲곗쓽 寃쎌슦 젏留됰㈃뿭怨(mucosal immune system)뿉꽌 遺꾨퉬릺뒗 IgA媛 슦꽭븯湲 븣臾몄뿉 샇씉湲 媛먯뿼씠 二쇰맂 寃쎈줈씤 COVID-19쓽 諛깆떊 젏留됰㈃뿭源뚯뒗 옒 쑀룄븯吏 紐삵븯뿬 룎뙆媛먯뿼씠 諛쒖깮븳떎怨 異붿젙븳떎(Centers for Disease Control and Prevention, 2021c).

SARS-CoV-2뿉 媛먯뿼릺뿀뜕 궗엺뿉 븳 諛깆떊 젒醫낆쓽 뿬遺뿉 븳 끉臾몃룄 諛쒗몴릺뿀떎. 29紐낆쓣 긽쑝濡 솕씠 諛깆떊쓣 젒醫낇븳 썑 寃고빀빆泥댁쓽 뼇쓣 痢≪젙븳 寃곌낵 1李 젒醫낆뿉룄 誘멸컧뿼옄媛 2李 젒醫낇븳 뼇蹂대떎 뜑 留롮 寃고빀빆泥닿 삎꽦릺뼱 媛먯뿼 뿬遺 愿怨꾩뾾씠 諛깆떊쓣 젒醫낇븯뒗 寃껋씠 醫뗫떎뒗 寃곕줎쓣 룄異쒗븯떎(Anderson, 2021). 븯吏留 諛깆떊 젒醫낆쓣 븯吏 븡븯쓣 寃쎌슦뿉룄 SARS-CoV-2 媛먯뿼 썑 以묓솕빆泥댁쓽 쑀吏湲곌컙 77~132씪씠뿀吏留 湲곗뼲꽭룷濡 씤빐 1뀈씠 吏궃 썑뿉룄 硫댁뿭젰쓣 쑀吏븯怨 엳뒗 寃껋쑝濡 굹궗떎(Guo et al., 2022).

COVID-19뿉 媛먯뿼맂 궗엺뱾 珥덇린 S 떒諛깆쭏뿉 븳 寃고빀빆泥댁 以묓솕빆泥대뒗 떆媛꾩씠 媛덉닔濡 빟媛꾩뵫 媛먯냼븯吏留 빟 8媛쒖썡(240씪)源뚯 빆泥닿 쑀吏릺怨 엳뿀쑝硫, 湲곗뼲꽭룷쓽 뼇 3媛쒖썡 젙룄뿉 理쒓퀬젏(peak)瑜 씠猷⑥뿀怨 8媛쒖썡씠 吏궃 썑뿉룄 媛먯냼맖씠 뾾씠 怨꾩냽쟻쑝濡 쑀吏릺怨 엳뿀떎(Dan et al., 2021). 湲곗뼲꽭룷뿉 븳 씎誘몃줈슫 뿰援ш껐怨쇰줈 17뀈 쟾 SARS-CoV뿉 媛먯뿼맂 썑 셿移섎맂 궗엺뱾쓣 긽쑝濡 삁븸쓣 梨꾩랬븯뿬 씠 諛붿씠윭뒪뿉 븳 6媛쒖쓽 빆썝쓣 二쇱엯븯뿬 T 꽭룷媛 솢꽦솕릺뿀쓣 븣 깮꽦릺뒗 궗씠넗移댁씤씤 媛먮쭏-씤꽣럹濡(gamma-interferon, INF-γ)쓽 깮꽦쓣 痢≪젙븯뒗뜲 씪遺 빆썝뿉 빐 INF-γ瑜 깮꽦븯떎뒗 蹂닿퀬媛 엳떎. 씠뒗 쑀궗븳 諛붿씠윭뒪씤 SARS-CoV-2 삉븳 옣湲곗쟻쑝濡 硫댁뿭젰쓣 쑀吏븷 媛뒫꽦씠 엳떎뒗 젏쓣 떆궗븳떎. 씠瑜 솗씤븯湲 쐞빐 吏꾪뻾맂 뿰援ъ뿉 쓽븯硫 룞씪븳 솚옄쓽 삁븸꽭룷뿉 SARS-CoV-2瑜 媛먯뿼떆耳 INF-γ 遺꾨퉬瑜 痢≪젙븯쓣 븣 SARS-CoV뿉 鍮꾪빐 빟媛 媛먯냼븯湲곕뒗 븯吏留 SARS-CoV-2뿉룄 INF-γ媛 遺꾨퉬릺뿀떎(Le Bert et al., 2020). 씠뒗 SARS-CoV뿉 媛먯뿼릺뿀뜕 궗엺 셿쟾븯吏뒗 븡吏留 SARS-CoV-2뿉 빐 뼱뒓 젙룄 삤옖 湲곌컙 룞븞 硫댁뿭젰쓣 蹂댁쑀븯怨 엳쓬쓣 븣 닔 엳떎.

諛깆떊뿉 븳 젒醫낆쓣 爰쇰━뒗 媛옣 겙 씠쑀뒗 遺옉슜씠떎. 씠 由щ럭뿉꽌뒗 슦由щ굹씪뿉 룄엯맂 5媛吏 諛깆떊쓽 遺옉슜뿉 빐꽌룄 媛곴컖 꽌닠븯떎. 븯吏留 留롮 끉臾몃뱾뿉꽌 굹궃 옄猷뚮뱾뿉꽌뒗 遺옉슜씠 떎냼 엳뜑씪룄 COVID-19쓽 쐞뿕뿉 뵲瑜 옞옱쟻씤 뵾빐濡쒕꽣 옄떊쓣 蹂댄샇븷 닔 엳뒗 媛옣 媛뺣젰븯硫 쁽紐낇븳 諛⑸쾿 諛깆떊쓽 젒醫낅퓧씠씪뒗 寃곌낵瑜 룄異쒗븯怨 엳떎. 諛깆떊쓽 젒醫낆쑝濡 뼸뒗 슚쑉꽦怨 쑀씡꽦뱾씠 옞옱쟻 쐞뿕꽦쓣 뒫媛븯硫, 씠뒗 떖洹쇱뿼씠굹 떖留됱뿼怨 媛숈 떖媛곹븳 湲곗吏덊솚쓣 븪怨 엳뒗 솚옄쓽 寃쎌슦굹 엫궛遺뿉꽌룄 삁쇅뒗 븘땲뿀떎(Kandeil, 2021). 삉븳 SARS-CoV-2뒗 蹂씠媛 떖븳 諛붿씠윭뒪씠湲 븣臾몄뿉 怨꾩냽쟻쑝濡 꽭怨 媛곴뎅쑝濡쒕꽣 蹂醫낅뱾씠 諛쒖깮븷 媛뒫꽦씠 겕怨 씠뿉 븳 泥 諛⑸쾿쑝濡 遺뒪꽣 꺑(booster shot)쓣 沅뚭퀬븯怨 엳떎.

씠 由щ럭뿉꽌뒗 슦由щ굹씪뿉 룄엯맂 5媛吏 諛깆떊뿉 븳 듅꽦怨 媛쒖슂, 諛깆떊쓽 젣議 썝由, 듅씤, 媛먯뿼삁諛 슚怨, 엫긽떆뿕 끉臾, 洹몃━怨 遺옉슜뿉 븯뿬 鍮꾧탳븯떎. 씠뒗 쟾 꽭怨꾩쟻 쑀뻾蹂묒뿉 븳 諛깆떊쓽 슚뒫쓣 븣由ш퀬, 뼢썑 諛쒖깮븷吏 紐⑤Ⅴ뒗 깉濡쒖슫 媛먯뿼蹂묒뿉 빐 鍮좊Ⅸ 諛깆떊쓽 젣議곌 븘슂븿쓣 끉怨좏븳떎.

ACKNOWLEDGEMENT

This research was supported by Hyejeon College grant.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

References
  1. Anderson M, Stec M, Rewane ARewane A et al. SARS-CoV-2 antibody responses in infection-naive or previously infected individuals after 1 and 2 doses of the BNT162b2 vaccine. JAMA Netw Open. 2021. 4: e2119741.
    Pubmed KoreaMed CrossRef
  2. Anderson RD, Haskell RE, Xia H, Roessler BJ, Davidson BL. A simple method for the rapid generation of recombinant adenovirus vectors. Gene Ther. 2000. 7: 1034-1038.
    Pubmed CrossRef
  3. Businesswire.com. Moderna announces primary efficacy analysis in phase 3 COVE study for Its COVID-19 vaccine candidate and filing today with U.S. FDA for emergency use authorization. https://www.businesswire.com/news/home/20201130005506/en/Moderna-Announces-Primary-Efficacy-Analysis-in-Phase-3-COVE-Study-for-Its-COVID-19-Vaccine-Candidate-and-Filing-Today-with-U.S.-FDA-for-Emergency-Use-Authorization. as of 2020. 11. 30.
  4. Centers for Disease Control and Prevention (CDC). Johnson & Johnson's Janssen COVID-19 Vaccine Information. https://www.cdc.gov/vaccines/covid-19/info-by-product/janssen/index.html. as of 2021a. 3. 29.
  5. Centers for Disease Control and Prevention (CDC). Pfizer-BioNTech COVID-19 vaccine (also known as Comirnaty) overview and safety. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/Pfizer-BioNTech.html. as of 2022. 5. 20. -48.
  6. Centers for Disease Control and Prevention (CDC). Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Pfizer-BioNTech COVID-19 Vaccine-United States, December2020. 14-23. https://www.cdc.gov/mmwr/volumes/70/wr/mm7002e1.htm?s_cid=mm7002e1_w. as of 2021b. 1. 6.
    Pubmed KoreaMed CrossRef
  7. Centers for Disease Control and Prevention (CDC). The possibility of COVID-19 after vaccination: Breakthrough infections. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/effectiveness/why-measure-effectiveness/breakthrough-cases.html#anchor_1636141727968. as of 2021c. 12. 17.
  8. Choi DO, Lee KM. Development of COVID-19 neutralizing antibody (NAb) detection kits using the S1 RBD protein of SARS-CoV-2. Korean J Clin Lab Sci. 2021. 53: 257-265.
    CrossRef
  9. Chung YH, Beiss V, Fiering SN, Steinmetz NF. COVID-19 vaccine frontrunners and their nanotechnology design. ACS Nano. 2020. 14: 12522-12537.
    Pubmed KoreaMed CrossRef
  10. Cines DB, Bussel JB. SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia. N Engl J Med. 2021. 384: 2254-2256.
    Pubmed KoreaMed CrossRef
  11. Dagan N, Barda N, Kepten EKepten E et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med. 2021. 384: 1412-1423.
    Pubmed KoreaMed CrossRef
  12. Dan JM, Mateus J, Kato YKato Y et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021. 371: eabf4063.
    Pubmed KoreaMed CrossRef
  13. Department of Health and Social Care. One year anniversary of UK deploying Oxford-AstraZeneca vaccine. https://www.gov.uk/government/news/one-year-anniversary-of-uk-deploying-oxford-astrazeneca-vaccine. as of 2022. 1. 4.
  14. Doria-Rose N, Suthar MS, Makowski MMakowski M et al. Antibody persistence through 6 months after the second dose of mRNA-1273 vaccine for Covid-19. N Engl J Med. 2021. 384: 2259-2261.
    Pubmed KoreaMed CrossRef
  15. Dunkle LM, Kotloff KL, Gay CLGay CL et al. Efficacy and safety of NVX-CoV2373 in adults in the United States and Mexico. N Engl J Med. 2022. 386: 531-543.
    Pubmed KoreaMed CrossRef
  16. European Medicines Agency (EMA). Vaxzevria: EMA advises against use in people with history of capillary leak syndrome. https://www.ema.europa.eu/en/news/vaxzevria-ema-advises-against-use-people-history-capillary-leak-syndrome. as of 2021a. 6. 11.
  17. European Medicines Agency (EMA). Comirnaty. https://www.ema.europa.eu/en/medicines/human/EPAR/comirnaty. as of 2022a. 3. 12.
  18. European Medicines Agency (EMA). Spikevax (previously COVID-19 Vaccine Moderna). https://www.ema.europa.eu/en/medicines/human/EPAR/spikevax. as of 2022b. 5. 12.
  19. European Medicines Agency (EMA). Nuvaxovid. https://www.ema.europa.eu/en/medicines/human/EPAR/nuvaxovid. as of 2021b. 12. 23.
  20. Folegatti PM, Ewer KJ, Aley PKAley PK et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020. 396: 467-478.
    Pubmed KoreaMed CrossRef
  21. Frederiksen LSF, Zhang Y, Foged C, Thakur A. The long road toward COVID-19 herd immunity: Vaccine platform technologies and mass immunization strategies. Front Immunol. 2020. 11: 1817.
    Pubmed KoreaMed CrossRef
  22. Gaebler C, Nussenzweig MC. All eyes on a hurdle race for a SARS-CoV-2 vaccine. Nature. 2020. 586: 501-502.
    Pubmed CrossRef
  23. Goel RR, Apostolidis SA, Painter MMPainter MM et al. Distinct antibody and memory B cell responses in SARS-CoV-2 naive and recovered individuals following mRNA vaccination. Sci Immunol. 2021. 6: eabi6950.
    Pubmed KoreaMed CrossRef
  24. Greenwood B. The contribution of vaccination to global health: Past, present and future. Philos Trans R Soc Lond B Biol Sci. 2014. 369: 20130433.
    Pubmed KoreaMed CrossRef
  25. Greinacher A, Thiele T, Warkentin TEWarkentin TE et al. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med. 2021. 384: 2092-2101.
    Pubmed KoreaMed CrossRef
  26. Guo L, Wang G, Wang YWang Y et al. SARS-CoV-2-specific antibody and T-cell responses 1 year after infection in people recovered from COVID-19: A longitudinal cohort study. Lancet Microbe. 2022. 3: e348-e356.
    Pubmed KoreaMed CrossRef
  27. Heath PT, Galiza EP, Baxter DNBaxter DN et al. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N Engl J Med. 2021. 385: 1172-1183.
    Pubmed KoreaMed CrossRef
  28. Hotez PJ, Bottazzi ME. Whole Inactivated Virus and Protein-Based COVID-19 Vaccines. Annu Rev Med. 2022. 73: 55-64.
    Pubmed CrossRef
  29. Howard J. FDA grants full approval to Pfizer/BioNTech Covid-19 vaccine, opening door to more vaccine mandates. https://edition.cnn.com/2021/08/23/health/fda-approval-pfizer-covid-vaccine/index.html. as of 2021. 8. 23.
  30. Huang AT, Garcia-Carreras B, Hitchings MDTHitchings MDT et al. A systematic review of antibody mediated immunity to coronaviruses: Antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. medRxiv. 2020. 20065771.
    Pubmed KoreaMed CrossRef
  31. Jackson LA, Anderson EJ, Rouphael NGRouphael NG et al. An mRNA vaccine against SARS-CoV-2-Preliminary report. N Engl J Med. 2020. 383: 1920-1931.
    Pubmed KoreaMed CrossRef
  32. James G, Nick T. Covid-19: Oxford-AstraZeneca coronavirus vaccine approved for use in UK. https://www.bbc.com/news/health-55280671. as of 2020. 12. 30.
  33. Jenco J. Moderna testing COVID-19 vaccine in children under 12. https://publications.aap.org/aapnews/news/12031. as of 2021. 3. 16.
  34. Kandeil A, Mostafa A, Hegazy RRHegazy RR et al. Immunogenicity and safety of an inactivated SARS-CoV-2 vaccine: Preclinical studies. Vaccines (Basel). 2021. 9: 214.
    Pubmed KoreaMed CrossRef
  35. Keech C, Albert G, Cho ICho I et al. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020. 383: 2320-2332.
    Pubmed KoreaMed CrossRef
  36. Kesselheim AS, Darrow JJ, Kulldorff MKulldorff M et al. An overview of vaccine development, approval, and regulation, with implications for COVID-19. Health Aff. 2021. 40: 25-32.
    Pubmed CrossRef
  37. Kim MW. A review of recent trend of COVID-19 infection and correlation with pulmonary function. Biomed Sci Lett. 2020a. 26: 127-135.
    CrossRef
  38. Kim EJ, Lee DS. Coronaviruses: SARS, MERS and COVID-19. Korean J Clin Lab Sci. 2020b. 52: 297-309.
    CrossRef
  39. Korea Disease Control and Prevention Agency. Cases of COVID-19 in Korea 2022a. http://ncov.mohw.go.kr/bdBoardList_Real.do.
  40. Le Bert N, Tan AT, Kunasegaran KKunasegaran K et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020. 584: 457-462.
    Pubmed CrossRef
  41. Leo L. Hope to launch Covovax by September, says Serum Institute CEO. https://www.livemint.com/companies/news/hope-to-launch-covovax-by-september-says-serum-institute-ceo-11616834205232.html. as of 2021. 5. 27.
  42. MacNeil JR, Su JR, Broder KRBroder KR et al. Updated recommendations from the advisory committee on immunization practices for use of the Janssen (Johnson & Johnson) COVID-19 vaccine after reports of thrombosis with thrombocytopenia syndrome among vaccine recipients-United States, April 2021. https://www.cdc.gov/mmwr/volumes/70/wr/mm7017e4.htm. as of 2021. 4. 30.
    Pubmed KoreaMed CrossRef
  43. Meo SA, Bukhari IA, Akram J, Meo AS, Klonoff DC. COVID-19 vaccines: Comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna vaccines. Eur Rev Med Pharmacol Sci. 2021. 25: 1663-1669.
    Pubmed CrossRef
  44. Ministry of Food and Drug Safety of Korea. Press release in Ministry of Food and Drug Safety of Korea. file:///C:/Users/ajoumg/Downloads/1.12+%EB%B0%94%EC%9D%B4%EC%98%A4%EC%9D%98%EC%95%BD%ED%92%88%EC%A0%95%EC%B1%85%EA%B3%BC+%EB%93%B1.pdf. as of 2022. 1. 12.
  45. Mulligan MJ, Lyke KE, Kitchin NKitchin N et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020. 586: 589-593.
    Pubmed CrossRef
  46. National Health Service (NHS). Coronavirus vaccine. https://www.nhs.uk/conditions/coronavirus-covid-19/coronavirus-vaccination/coronavirus-vaccine/. as of 2022. 5. 12.
  47. Novavax. Novavax publishes results of United Kingdom phase 3 clinical trial in New England Journal of Medicine, demonstrating high levels of efficacy of COVID-19 vaccine. https://ir.novavax.com/2021-06-30-Novavax-Publishes-Results-of-United-Kingdom-Phase-3-Clinical-Trial-in-New-England-Journal-of-Medicine,-Demonstrating-High-Levels-of-Efficacy-of-COVID-19-Vaccine?sf146717139=1. as of 2021. 6. 30.
  48. Nunneley CE. COVID-19 vaccine candidates: 6 front-runners. https://abcnews.go.com/Health/covid-19-vaccine-candidates-front-runners/story?id=69881230. as of 2020. 4. 1.
  49. Oster ME, Shay DK, Su JRSu JR et al. Myocarditis cases reported after mRNA-based COVID-19 vaccination in the US from December 2020 to August 2021. Jama. 2022. 327: 331-340.
    Pubmed KoreaMed CrossRef
  50. Pfizer. Pfizer and BioNTech conclude phase 3 study of COVID-19 vaccine candidate, meeting all primary efficacy endpoints. https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-conclude-phase-3-study-covid-19-vaccine. as of 2020. 11. 18.
  51. Piano Mortari E, Russo C, Vinci MRVinci MR et al. Highly specific memory B cells generation after the 2nd dose of BNT162b2 vaccine compensate for the decline of serum antibodies and absence of mucosal IgA. Cells. 2021. 10: 2541.
    Pubmed KoreaMed CrossRef
  52. Ramasamy MN, Minassian AM, Ewer KJEwer KJ et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet. 2021. 396: 1979-1993.
    Pubmed KoreaMed CrossRef
  53. Salzman S. Johnson & Johnson single-shot vaccine 85% effective against severe COVID-19 disease. https://web.archive.org/web/20210201092739/https://abcnews.go.com/Health/johnson-johnson-single-shot-vaccine-85-effective-severe/story?id=75557358. as of 2021. 1. 29.
  54. Sharma O, Sultan AA, Ding H, Triggle CR. A review of the progress and challenges of developing a vaccine for COVID-19. Front Immunol. 2020. 11: 585354.
    Pubmed KoreaMed CrossRef
  55. Shay DK, Gee J, Su JRSu JR et al. Safety monitoring of the Janssen (Johnson & Johnson) COVID-19 vaccine - United States, March-April 2021. MMWR Morb Mortal Wkly Rep. 2021. 70: 680-684.
    Pubmed CrossRef
  56. Shinde V, Bhikha S, Hoosain ZHoosain Z et al. Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021. 384: 1899-1909.
    Pubmed KoreaMed CrossRef
  57. Song GS, Lee YR, Kim SMKim SM et al. Laboratory diagnosis of coronavirus disease 19 (COVID-19) in Korea: Current status, limitation, and challenges. Korean J Clin Lab Sci. 2020. 52: 284-295.
    CrossRef
  58. Team CC-R. U.S. Food and Drug Administration. Allergic reactions including anaphylaxis after receipt of the first dose of Moderna COVID-19 vaccine - United States, December 21, 2020-January 10, 2021. MMWR Morb Mortal Wkly Rep. 2021. 70: 125-129.
    Pubmed KoreaMed CrossRef
  59. Teijaro JR, Farber DL. COVID-19 vaccines: Modes of immune activation and future challenges. Nat Rev Immunol. 2021. 21: 195-197.
    Pubmed KoreaMed CrossRef
  60. The Guardian. Spain, Belgium and Italy restrict AstraZeneca Covid vaccine to older people. https://www.theguardian.com/society/2021/apr/08/spain-belgium-and-italy-restrict-astrazeneca-covid-vaccine-to-older-people. as of 2021a. 4. 8.
  61. The Guardian. Fully vaccinated people account for 1.2% of England's Covid-19 deaths. https://www.theguardian.com/world/2021/sep/13/fully-vaccinated-people-account-for-12-of-englands-covid-19-deaths. as of 2021b. 9. 13.
  62. Tregoning JS, Brown ES, Cheeseman HMCheeseman HM et al. Vaccines for COVID-19. Clin Exp Immunol. 2020. 202: 162-192.
    Pubmed KoreaMed CrossRef
  63. Turonova B, Sikora M, Schurmann CSchurmann C et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science. 2020. 370: 203-208.
    Pubmed KoreaMed CrossRef
  64. U.S. Food and Drug Administration. FDA Briefing document Janssen Ad26.COV2.S vaccine for the prevention of COVID-19. https://www.fda.gov/media/146217/download. as of 2021a. 2. 26.
  65. U.S. Food and Drug Administration. FDA issues emergency use authorization for third COVID-19 vaccine. https://web.archive.org/web/20210318174827/https://www.fda.gov/news-events/press-announcements/fda-issues-emergency-use-authorization-third-covid-19-vaccine. as of 2021b. 2. 27.
  66. U.S. Food and Drug Administration. Coronavirus (COVID-19) Update: FDA Limits Use of Janssen COVID-19 Vaccine to Certain Individuals. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-limits-use-janssen-covid-19-vaccine-certain-individuals. as of 2022. 5. 5.
  67. van Doremalen N, Lambe T, Spencer ASpencer A et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020. 586: 578-582.
    Pubmed KoreaMed CrossRef
  68. Vogel G, Frankel JC. Israel reports link between rare cases of heart inflammation and COVID-19 vaccination in young men. https://www.science.org/content/article/israel-reports-link-between-rare-cases-heart-inflammation-and-covid-19-vaccination. as of 2021. 6. 1.
    CrossRef
  69. Voysey M, Clemens SAC, Madhi SAMadhi SA et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021a. 397: 99-111.
    Pubmed KoreaMed CrossRef
  70. Voysey M, Costa Clemens SA, Madhi SAMadhi SA et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: A pooled analysis of four randomised trials. Lancet. 2021b. 397: 881-891.
    Pubmed KoreaMed CrossRef
  71. Wadman M. Novavax launches pivotal U.S. trial of dark horse COVID-19 vaccine after manufacturing delays. https://www.science.org/content/article/novavax-launches-pivotal-us-trial-dark-horse-covid-19-vaccine-after-manufacturing. as of 2020a. 12. 28.
    CrossRef
  72. Wadman M. The long shot. Science. 2020b. 370: 649-653.
    Pubmed CrossRef
  73. Walls AC, Park YJ, Tortorici MATortorici MA et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020. 181: 281-292 e6.
    Pubmed KoreaMed CrossRef
  74. Walsh EE, Frenck RW Jr. , Falsey AR, et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N Engl J Med. 2020. 383: 2439-2450.
    Pubmed KoreaMed CrossRef
  75. Widge AT, Rouphael NG, Jackson LAJackson LA et al. Durability of responses after SARS-CoV-2 mRNA-1273 vaccination. N Engl J Med. 2021. 384: 80-82.
    Pubmed KoreaMed CrossRef
  76. World Health Organization (WHO). Weekly epidemiological update on COVID-19-20 April 2022. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---20-april-2022. as of 2022. 4. 20.
  77. World Health Organization (WHO). Background document to the WHO interim recommendations for use of the mRNA-1273 vaccine (Moderna), 3 February 2021. http://apps.who.int/iris/handle/10665/339218. as of 2021. 2. 3.
  78. Wu F, Zhao S, Yu BYu B et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020a. 579: 265-269. -8.
    Pubmed KoreaMed CrossRef
  79. Wu A, Peng Y, Huang BHuang B et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020b. 27: 325-328. -11.
    Pubmed KoreaMed CrossRef
  80. Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019. 10: 594.
    Pubmed KoreaMed CrossRef
  81. Zhou P, Yang XL, Wang XGWang XG et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020. 579: 270-273.
    Pubmed KoreaMed CrossRef