Search for


TEXT SIZE

search for



CrossRef (0)
Analgesic Effect of Poria cocos Extract on a Rat Model of Adjuvant-induced Arthritis
Biomed Sci Letters 2022;28:137-144
Published online June 30, 2022;  https://doi.org/10.15616/BSL.2022.28.2.137
© 2022 The Korean Society For Biomedical Laboratory Sciences.

Gil-Hyun Lee1,* , Hae-Gyung Yoon2,* , Go-Eun Choi4,* and Kyung-Yae Hyun3,†,*

1Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan 54538, Korea
2Division of Basic Science, Dong-Eui University, Busan 47340, Korea
3Department of Clinical Laboratory Science, Dong-Eui University, Busan 47340, Korea
4Department of Clinical Laboratory Science, Catholic University of Pusan, Busan 46252, Korea
Correspondence to: Kyung-Yae Hyun. Department of Clinical Laboratory Science, Dong-Eui University, Busan 47340, Korea.
Tel: +82-51-890-2683, Fax: +82-0505-182-6877, e-mail: kyhyun@deu.ac.kr
*Professor.
Received May 23, 2022; Revised June 21, 2022; Accepted June 22, 2022.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
Poria cocos is a natural substance known to have anticancer, antioxidant and anti-inflammatory effects. The aim of this study is to investigate the analgesic effects of Poria cocos extract (PCE). We evaluated the analgesic effects of PCE using adjuvant induced arthritis rat model. Male SD rats were administered intra-orally with PCE according to prescribed dosage, during 6 days. After 6 days later, serum TNF-α, IL-1β, and IL-6 levels were measured by ELISA. In our experiment, administration of PCE decreased TNF-α, IL-1β, IL-6 and PGE2 level in serum. Furthermore, it was confirmed that allodynia was relieved in evaluation of pain behavior. It was confirmed that administration of PCE reduces nociceptive pain by reducing nociceptive stimuli by acting as an anti-inflammatory drug.
Keywords : Poria cocos, Adjuvant, Pain, Nociceptive pain, TNF-α, IL-1β, IL-6
꽌 濡

넻利앹 떊泥댁“吏곸씠 넀긽맆 븣 留덈떎 깮泥댁쓽 씠긽쓣 븣由щ뒗 寃쎄퀬떊샇濡 떊泥대 蹂댄샇븯湲 쐞븳 諛⑹뼱湲곗젣씠떎. 넻利앹 옉슜 湲곗쟾뿉 뵲씪 移⑦빐꽦 넻利(nociceptive pain), 뿼利앹꽦 넻利(inflammatory pain), 떊寃쎈퀝利앹꽦 넻利(neuropathic pain)쑝濡 援щ텇릺硫, 씠 以 移⑦빐꽦 넻利앹 쑀빐닔슜泥(nociceptor)媛 뿭移 씠긽쓽 옄洹뱀쑝濡 誘쇨컧빐吏硫 뒓겮뒗 넻利앹쑝濡 湲곌퀎쟻 넻媛곸닔슜泥, 삩룄 넻媛곸닔슜泥, 떎삎 넻媛곸닔슜泥 벑뿉 쓽븯뿬 議곗젅맂떎(Woolf, 2011).

쑀빐븳 옄洹(湲곌퀎쟻 옄洹, 뿴 벑)뿉 쓽빐 넀긽맂 議곗쭅뿉꽌뒗 꽭룷留됱씠 phospholipase A (PLA)쓽 옉슜뿉 쓽빐 遺꾪빐릺뼱 arachidonic acid (AA)瑜 삎꽦븯硫, AA뒗 cyclooxygenase (COX)씪뒗 슚냼뿉 쓽븯뿬 궗릺뼱 prostaglandin (PG)瑜 삎꽦븳떎(Pardutz and Schoenen, 2010). 씠 怨쇱젙뿉꽌 넀긽 遺쐞쓽 쑀빐닔슜泥댁뿉뒗 媛먯옉(sensitization)씠 씪뼱굹 뿭移섍 궙븘吏怨 怨쇰룄븳 씎遺꾩쓣 留뚮뱺떎. 뵲씪꽌, 移⑦빐꽦 넻利 셿솕 諛⑸쾿쑝濡쒕뒗 뿼利앸컲쓳 떒怨꾩뿉꽌 諛쒖깮븯뒗 씤옄瑜 議곗젅븯뒗 諛⑸쾿씠 옄二 궗슜릺硫, Steroids 怨꾩뿴 냼뿼젣 PLA 옉슜쓣 뼲젣븯怨, non-steroidal anti-inflammatory drugs (NSAIDs)뒗 COX-2쓽 옉슜쓣 뼲젣븯뿬 寃곌뎅 PG쓽 깮꽦쓣 留됱븘꽌 뿼利앷낵 넻利앹씠 諛쒖깮븯뒗 寃껋쓣 젣뼱븷 닔 엳떎(Hunt and Mantyh, 2001).

踰꾩꽢瑜섏뿉 냽븯뒗 吏꾧퇏瑜섏쓽 씪醫낆씤 蹂듬졊(Wolfiporia extensa) 냼굹臾대 젅젣븳 썑 3~5뀈씠 寃쎄낵븳 肉뚮━ 二쇰뿉 遺젙삎쓽 洹좏빑쓣 삎꽦븯뒗 湲곗깮洹좎쓽 씪醫낆쑝濡 븣젮졇 엳떎(Choi et al., 2016). 蹂듬졊 洹좏빑쓽 궡遺 깋源붿뿉 뵲씪 쑁吏덉씠 寃ш퀬븳 諛깅났졊怨 뿰븯怨 遺뱶윭슫 쟻蹂듬졊쑝濡 援щ텇맂떎. 諛깅났졊(Poria cocos Wolf.)쓽 二쇱슂꽦遺꾩 깂닔솕臾, 臾닿린吏, 꽟쑀吏, 誘몃웾쓽 떒諛깆쭏씠硫(Shin et al., 2009), 빆궛솕슚怨(Wang et al., 2016), 빆븫슚怨(RuiDian et al., 2010), 빆뿼利앺슚怨(Lee et al., 2017), 빆슦슱슚怨(Zhang et al., 2018) 벑씠 엳떎怨 븣젮졇 엳떎. 듅엳 諛깅났졊 collagenase 솢꽦쓣 빐븿쑝濡 뵾遺二쇰쫫 媛쒖꽑뿉 슚뒫씠 엳뼱 솕옣뭹 泥쒖뿰 냼옱濡 솢슜씠 媛뒫븯硫 嫄닿컯湲곕뒫떇뭹쑝濡쒖쓽 슜룄濡 떎뼇솕媛 씠猷⑥뼱吏怨 엳떎(Jang and Lee, 2015).

諛깅났졊 떎뼇븳 슜룄濡 솢슜릺怨 엳吏留, 쁽옱 諛깅났졊쓽 넻利 셿솕뿉 븳 뿰援щ뒗 誘명씉븳 렪씠硫 씠뿉 븳 옄猷뚮 李얘린 옒뱺 떎젙씠떎. 뵲씪꽌, 蹂 뿰援ъ뿉꽌뒗 伊먯쓽 移⑦빐꽦 넻利 룞臾쇰え뜽뿉꽌 諛깅났졊쓽 吏꾪넻슚怨쇰 솗씤븯怨좎옄 븳떎.

옱猷 諛 諛⑸쾿

떎뿕룞臾

떎뿕룞臾쇱 닔而 씛伊(Sprague-Dawley)瑜 슚李 궗씠뼵뒪(Daegu, Korea)뿉꽌 怨듦툒諛쏆븘 궗슜븯떎. 20~24℃ 삩룄 二/빞 닚솚二쇨린쓽 씪젙븳 솚寃쎌쓣 쑀吏븯硫댁꽌 臾쇨낵 궗猷뚮뒗 옄쑀濡쒖씠 怨듦툒븯떎. 옄쑀濡쒖슫 뻾룞쓣 媛뒫븯寃 븯뿬 떎뿕 쟾 뒪듃젅뒪瑜 理쒖냼솕븯떎. 룞쓽븰援 룞臾쇱쑄由ъ떖쓽쐞썝쉶쓽 듅씤 썑(A2020-008) 떎떆븯떎.

異붿텧臾쇱쓽 젣議

蹂 떎뿕뿉 궗슜맂 諛깅났졊 寃쎌긽궓룄 源빐떆 냽삊議고빀뿉꽌 젣怨듬컺븘 궗슜븯떎. 諛깅났졊쓽 異붿텧 諛⑸쾿 遺꾨쭚濡 뙆뇙븯湲곗쓽 諛⑸쾿쑝濡 70% ethanol 슜留ㅻ 떆猷 以묐웾쓽 10諛 뼇쓣 媛븯뿬 떎삩뿉꽌 24떆媛 移⑥븯뿬 긽痢듭븸怨 移⑥쟾臾쇱쓣 遺꾨━븯뿬 룞씪븳 諛⑸쾿쑝濡 3쉶 諛섎났 異붿텧븯떎. 泥쒖뿰 異붿텧臾쇱쓣 썝떖遺꾨━ 諛 뿬怨, 냽異(rotary vaccum evaporator, HS-10SP, Hanshin, Korea)븯뿬 룞寃(FD5525, Korea) 嫄댁“븯怨 씠븣 닔뱷쑉 0.35 %떎.

떆빟以鍮

DPPH (2,2 diphenyl 1-picryl hydrazyl), N-1-naphthyl ethylenediamine dihydrochloride, potassium ferricyanide, sulfanilamide, Xanthine oxidase, butylated hydroxyanisole怨 Griess regent뒗 Sigma (Louis, MO, USA)濡쒕꽣 援ъ엯븯떎. ELISA kit뒗 rat tumor necrosis factor alpha (TNF-α; ab100785, Abcam, rat), rat interleukin 1 beta (IL-1β, ab255730, Abcam, rat), interleukin 6 (IL-6, ab234570, Abcam, rat)瑜 궗슜븯떎. Incomplete Freund's adjuvant Mycobacteriun butyricum Diffo (Detroiot, MI, USA)뿉꽌 援ъ엯븯떎.

DPPH (2,2 diphenyl 1-picryl hydrazyl) free radical 냼嫄 솢꽦

쟾옄怨듭뿬뒫 Molyneux (Molyneux, 2004)쓽 諛⑸쾿쓣 닔젙븯뿬 痢≪젙븯떎. 2×104 M DPPH 500 mL 諛깅큺졊 異붿텧臾(0.01 mg/mL, 0.05 mg/mL, 0.5 mg/mL, 1.0 mg/mL, 3.0 mg/mL)쓣 媛곴컖 샎빀븳 썑 30遺 룞븞 李④킅븯뿬 諛섏쓳븳 떎쓬 517 nm뿉꽌 씉愿묐룄瑜 ELISA reader (VERSA, USA)瑜 궗슜븯뿬 痢≪젙븯떎. 珥 떎뿕 5쉶 諛섎났븯쑝硫, 쟾옄怨듭뿬뒫 100 - [(떆猷뚰샎빀援곗쓽 씉愿묐룄/臾댄샎빀援곗쓽 씉愿묐룄) × 100]쑝濡 굹궡뿀떎. 뼇꽦議곌뎔쑝濡 butylated hydroxyanisole (BHA)瑜 0.1 mg/mL쓽 냽룄濡 븯뿬 궗슜븯떎.

Xanthine oxidase (XO) 빐 솢꽦 痢≪젙

Xanthine oxidase 솢꽦 Newaz 諛⑸쾿(Newaz and Adeeb, 1998)쓣 李멸퀬븯뿬 痢≪젙븯떎. 0.1 M potassium phosphate 셿異⑹븸(pH 7.5)뿉 xanthine 2 mM쓣 끃씤 湲곗쭏븸 1 mL뿉 XO (0.25 U/mL) 100 μL 냽룄 蹂 떆猷 100 μL瑜 泥④븯怨, 議곌뎔뿉뒗 떆猷뚯븸 떊 利앸쪟닔瑜 100 μL瑜 泥④븯뿬 37℃뿉꽌 5遺꾧컙 諛섏쓳떆궓 썑, 20% trichloroacetic acid (TCA) 1 mL瑜 泥④븯뿬 諛섏쓳쓣 醫낅즺떆耳곕떎. 3,500 rpm뿉꽌 15遺꾧컙 썝떖遺꾨━븯怨 긽痢듭븸쓣 痍⑦븯뿬 깮꽦맂 uric acid쓽 씉愿묐룄瑜 290 nm뿉꽌 痢≪젙븯떎.

Reducing power 痢≪젙

Oyaizu쓽 諛⑸쾿(Oyaizu and dietetics, 1986)뿉 뵲씪 떆猷뚯븸 1 mL뿉 200 mM 씤궛 셿異⑹븸(pH 6.6) 諛 1% potassium ferricyanide 媛 1 mL瑜 李⑤濡 媛븳 떎쓬 50℃쓽 닔슃 긽뿉꽌 20遺꾧컙 諛섏쓳떆耳곕떎. 뿬湲곗뿉 10% TCA 슜븸쓣 1 mL 媛븯뿬 5,000 rpm뿉꽌 10遺꾧컙 썝떖遺꾨━븳 썑 뼸 긽痢듭븸 1 mL뿉 利앸쪟닔 諛 0.1%쓽 ferric chloride 媛 1 mL瑜 媛븯뿬 샎빀떆궓 썑 ELISA reader (VERSA, USA)瑜 궗슜븯뿬 700 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯쑝硫, 떆猷뚯쓽 솚썝젰 씉愿묐룄 媛믪쑝濡 굹궡뿀떎.

愿젅뿼 紐⑤뜽쓽 쑀룄 넻利앺뻾룞寃궗

愿젅뿼 룞臾쇰え뜽 Kim쓽 諛⑸쾿(Kim and Lee, 2012)쓣 닔젙븯뿬 떎뻾븯떎. Enflurane濡 룞臾쇱쓣 留덉랬긽깭븳 썑 삤瑜몄そ 諛쒕컮떏 愿젅 궡濡 100 μL쓽 Complete Freund's adjuvant (CFA) 4 mL쓣 二쇱엯븯뿬 愿젅뿼쓣 쑀諛쒖떆耳곕떎. CFA뒗 incomplete Freund's adjuvant뿉 Mycobacteriun butyricum 16 mg쓣 슜빐떆궓 썑 깮由ъ떇뿼닔 4 mL 샎빀븯뿬 留뚮뱾뿀떎.

媛 룞臾쇨뎔 젙긽議곌뎔, 議곌뎔, 떎뿕援(諛깅났졊 異붿텧臾 닾뿬웾 0.05 mg/kg, 諛깅났졊 닾뿬웾 0.2 mg/kg, 諛깅났졊 닾뿬웾 0.8 mg/kg)쑝濡 媛곴컖 伊 7留덈━濡 援ъ꽦븯떎. 룞臾쇱쓽 쑕떇湲곌컙 썑 븞젙맂 伊먮 긽쑝濡 臾쇱쭏 닾뿬 쟾 3씪 룞븞 떎뿕븯뿬 룊洹좉컪쓣 궛異쒗븯떎. 洹 썑 6씪 룞븞 諛깅났졊 異붿텧臾(Poria cocos extract, PCE) 닾뿬븳 썑 30遺 썑뿉 湲곌퀎쟻 옄洹, 깋옄洹, 뿴옄洹, 洹몃━怨 쟾湲곗옄洹뱀뿉 븳 넻利앺뻾룞룊媛瑜 10遺 媛꾧꺽쑝濡 떎떆븯떎. 6씪 썑 넻利앺뻾룞룊媛 씠썑 留덉랬 썑 룞臾쇱쓣 씗깮떆耳곗쑝硫 삁븸怨 諛쒕컮떏 議곗쭅쓣 닔吏묓븯떎. 닔吏묐맂 삁븸 썝떖遺꾨━ 썑 삁옣怨 삁泥쑝濡 議곗쭅怨 븿猿 -70℃ 깋옣怨좎뿉 蹂닿븯떎.

媛곴컖쓽 넻利앺뻾룞寃궗뿉 븳 궡슜 떎쓬怨 媛숇떎. 湲곌퀎쟻 옄洹뱀뿉 븳 넻利앺쉶뵾諛섏쓳 諛묐컮떏씠 泥좊쭩씤 넻(10×10×20 cm)뿉 伊먮 꽔怨, 寃궗 쟾 븳 떆媛 룞븞 룞臾쇱쓣 븞젙떆耳곕떎. von Frey Hair (0.40, 0.70, 1.20, 2.00, 5.50, 8.50)쓣 씠슜븯뿬 泥좊쭩 궗씠濡 Lambert (Lambert et al., 2009)쓽 up & down 諛⑸쾿쑝濡 諛쒕컮떏 옄洹 媛븳 썑 50% 쉶뵾 뿭移섎 痢≪젙븯떎.

깋옄洹뱀뿉 븳 넻利앺쉶뵾諛섏쓳 쐞 媛숈씠 븳 떆媛 룞븞쓽 븞젙떆媛꾩쓣 媛吏 썑, 99% 븘꽭넠쓣 伊 諛쒕컮떏뿉 븳 諛⑹슱 臾삵엺 썑 넻利앺쉶뵾媛 굹궇 븣源뚯쓽 옞蹂듦린瑜 痢≪젙븯떎.

쟾뿼利앹꽦 cytokine쓽 遺꾩꽍

삁븸쓽 쟾뿼利앹꽦 cytokine (TNF-α: 25, IL-1β, IL-6)쓽 냽룄瑜 ELISA kit쓽 留ㅻ돱뼹뿉 뵲씪 떎뿕쓣 떆뻾븯뿬 痢≪젙븯떎. 썝떖遺꾨━瑜 븳 삁泥쓣 寃泥대줈 씠슜븯쑝硫 寃궗 吏곸쟾源뚯 -70℃ 깋옣怨좎뿉 蹂닿븯떎.

넻怨 泥섎━

蹂 떎뿕 寃곌낵뱾 룊洹(mean) ± 몴以렪李(standard deviation, SD)濡 몴떆븯怨 떎뿕援 媛 룊洹 李⑥씠뒗 Kruskall Wallis test濡 쑀쓽꽦쓣 솗씤븳 썑 Mann Whiteny U-test瑜 씠슜븯뿬 궗썑 寃젙븯떎. P<0.05 닔以뿉꽌 쑀쓽꽦쓽 뿬遺瑜 寃利앺븯떎. 紐⑤뱺 넻怨 遺꾩꽍 SPSS (statistical package for the social science) version 18.0 봽濡쒓렇옩(SPSS Inc., Chicago, IL, USA)쓣 씠슜븯뿬 遺꾩꽍븯떎.

寃 怨

DPPH free radical 냼嫄 솢꽦 寃곌낵

蹂듬졊 異붿텧臾 DPPH radical 냼嫄곕뒫쓣 痢≪젙븯떎. 蹂듬졊 異붿텧臾쇱씠 紐⑤몢 냽룄 쓽議댁쟻쑝濡 利앷븯쑝硫, 媛곴컖 0.01 mg/mL뿉꽌뒗 21.25±0.50%, 0.05 mg/mL뿉꽌뒗 45.31±0.81%, 0.5 mg/mL뿉꽌뒗 67.34±2.13%, 1.0 mg/mL뿉꽌뒗 82.58±2.57%, 3.0 mg/mL뿉꽌뒗 87.62±1.82%쓽 솢꽦쓣 蹂댁떎. 3 mg/mL쓽 냽룄뿉꽌 뼇꽦議곌뎔씤 BHA 쑀궗븳 냼嫄 솢꽦(93.02±2.30%)쓣 蹂댁떎(Fig. 1).

Fig. 1. DPPH free radical scavenging activities of ethanol extract from PCE. The total experiment was repeated 5 times, and the electron donating ability was expressed as 100 - [(absorbance of the sample mixed group/absorbance of the unmixed group) × 100]. As a positive control, butylated hydroxyanisole (BHA) was used. The data were expressed as the mean ± SD (n=5).

Xanthine oxidase (XO) 빐 솢꽦 痢≪젙 寃곌낵

蹂듬졊 異붿텧臾쇱쓣 媛곴컖 0.01 mg/mL, 0.05 mg/mL, 0.5 mg/mL, 1.0 mg/mL, 3.0 mg/mL쓽 냽룄濡 泥섎━븯怨 xanthine oxidase (XO)쓽 빐 솢꽦쓣 痢≪젙븳 寃곌낵(Fig. 2), 3 mg/mL쓽 怨좊냽룄뿉꽌 蹂듬졊 異붿텧臾쇱쓽 빐쑉씠 67.12±0.89%쑝濡 媛옣 넂븯쑝硫, 뼇꽦議곌뎔씤 BHA (72.59±1.20%) 쑀궗븳 닔移섎 蹂댁떎. 븘吏덉궛뿼(Nitric oxide, NO) 냼嫄곕뒫 냽룄쓽議댁쟻쑝濡 利앷븯뒗 寃쏀뼢씠 엳뿀떎.

Fig. 2. Xanthine oxidase inhibition rate of ethanol extract from PCE. At the concentration of 3 mg/mL, the inhibition rate of PCE was the highest, and the nitrite scavenging ability tended to increase in a concentration-dependent manner. The data were expressed as the mean ± SD (n=5).

Reducing power 痢≪젙 寃곌낵

Fig. 3 蹂듬졊 異붿텧臾쇱쓣 媛곴컖 0.01 mg/mL, 0.05 mg/mL, 0.5 mg/mL, 1.0 mg/mL, 3.0 mg/mL쓽 냽룄濡 泥섎━븯怨 솚썝젰쓣 痢≪젙븳 寃곌낵씠떎. 솚썝젰 媛곴컖쓽 泥섎━냽룄뿉꽌 5.62±0.12%, 11.21±0.18%, 22.51±0.59%, 48.28±0.65%, 60.21±0.77%씠뿀쑝硫, 뼇꽦議곌뎔뿉꽌뒗 91.56±0.59%쓽 솚썝젰쓣 蹂댁떎. 3.0 mg/mL쓽 냽룄濡 泥섎━ 썑쓽 媛믪씠 뼇꽦議곌뎔怨 媛옣 쑀궗븯떎.

Fig. 3. Reducing power of ethanol extract from PCE. These are the results of measuring the reducing power of the PCE at concentrations of 0.01 mg/mL, 0.05 mg/mL, 0.5 mg/mL, 1.0 mg/mL, and 3.0 mg/mL, respectively. The data were expressed as the mean ± SD (n=5).

넻利앺뻾룞寃궗 寃곌낵

湲곌퀎쟻씤 옄洹뱀뿉 븳 넻利앺뻾룞룊媛뿉 븳 寃곌낵뒗 Table 1怨 媛숇떎. CFA瑜 二쇱엯븳 紐⑤뱺 룞臾쇱 愿젅뿼 쑀諛 솗씤쓣 쐞븯뿬 쑁븞寃궗, 嫄룰린룊媛, 넻利앺룊媛瑜 떎떆븯뿬 넻怨쇳븳 媛쒖껜留 떎뿕뿉 씠슜븯떎(data not shown). CFA濡 愿젅뿼留 쑀諛쒗븳 CFA援곗뿉꽌 6씪 룞븞 鍮꾩듂븳 뼇긽쓽 Withdrawal threshold (g) 媛믪쓣 媛議뚮떎. 蹂듬졊 異붿텧臾 0.05 mg /kg 寃쎄뎄 닾뿬援곗 3씪李⑤꽣 CFA援곌낵 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠瑜 蹂댁쑝硫, 0.8 mg/kg 寃쎄뎄 닾뿬援곗씤 寃쎌슦뒗 1씪李⑤꽣 쑀쓽븳 李⑥씠瑜 蹂댁씠湲 떆옉븯떎.

Effects of PCE on mechanical allodynia in adjuvant-induced SD rats

Experimental groups Withdrawal threshold (g)
0 day 1 days 2 days 3 days 4 days 5 days 6 days
Control (n=7) 18.25±4.77 17.38±3.45 18.41±3.34 17.29±3.07 17.41±3.97 17.61±3.88 17.59±3.91
CFA (n=7) 7.18±0.82 7.58±0.57 7.21±0.97 7.01±0.57 6.58±0.40 5.58±0.32 5.61±0.44
CFA+PCE (n=7)
0.05 mg/kg
7.32±0.91 8.17±1.06 8.58±2.57 10.58±2.10 9.87±1.99 11.11±1.50** 10.98±0.87**
CFA+PCE (n=7)
0.2 mg/kg
7.40±0.56 8.69±1.20 10.44±1.07* 12.58±0.97** 13.58±1.28** 14.78±2.02** 15.08±1.50**
CFA+PCE (n=7)
0.8 mg/kg
7.28±0.44 9.40±0.68* 12.40±0.82** 14.40±1.52** 15.40±1.82** 16.40±2.55** 17.70±3.62**

Each point represents the mean ± SEM. *P < 0.05, **P<0.01 compared with the CFA group



Table 2뒗 깋옄洹뱀뿉 븳 伊먯쓽 諛섏쓳뿉 븳 寃곌낵씠떎. CFA援곗뿉 鍮꾧탳븯뿬 蹂듬졊 異붿텧臾 0.05 mg/kg 寃쎄뎄 닾뿬援곗 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠瑜 蹂댁씠吏 紐삵븯떎. 蹂듬졊 異붿텧臾 0.2 mg/kg怨 0.8 mg/kg援곗 CFA援곌낵 鍮꾧탳븯뿬 媛곴컖 3씪吏몃꽣 2씪吏몃꽣 쑀쓽븳 李⑥씠瑜 蹂댁씠湲 떆옉븯떎.

Effects of PCE on cold and heat allodynia in adjuvant-induced SD rats

Experimental groups Duration of withdrawal responses (sec)
0 day 1 days 2 days 3 days 4 days 5 days 6 days
Control (n=7) 83.10±3.87 84.05±4.11 82.09±4.55 84.29±5.03 85.20±6.10 87.00±6.12 83.17±4.89
CFA (n=7) 67.58±4.52 67.08±3.88 65.09±4.70 67.05±5.05 66.19±4.40 65.89±5.12 65.60±5.71
CFA+PCE (n=7)
0.05 mg/kg
67.20±3.90 69.77±4.14 70.89±2.08 69.58±5.54 69.07±3.8 71.74±3.20 70.98±5.01
CFA+PCE (n=7)
0.2 mg/kg
68.19±4.00 68.60±3.03 71.04±3.07 74.01±2.08* 73.88±3.01 74.00±2.52* 75.11±1.99**
CFA+PCE (n=7)
0.8 mg/kg
69.10±5.62 69.01±1.66 73.80±1.19* 75.77±1.08* 74.81±0.91* 74.40±4.10* 77.05±2.02**

Each point represents the mean ± SEM. *P < 0.05, **P<0.01 compared with the CFA group



쟾뿼利앹꽦 cytokine 痢≪젙 寃곌낵

삁븸뿉꽌 IL-1β, TNF-α, IL-6瑜 ELISA 諛⑸쾿쓣 씠슜븯뿬 痢≪젙븯떎(Fig. 4). CFA援곗쓽 IL-1β, TNF-α, IL-6 냽룄뒗 媛곴컖 153.28±8.91 pg/mL, 146.21±8.09 pg/mL, 76.52±3.81 pg/mL씠쑝硫, 젙긽議곌뎔怨 鍮꾧탳븯뿬 긽떦엳 利앷릺뼱 엳쓬쓣 븣 닔 엳떎. IL-1β씤 寃쎌슦 PCE 0.05 mg/kg援, PCE 0.2 mg/kg援, 洹몃━怨 PCE 0.8 mg/kg援곗쓽 냽룄媛 媛곴컖 87.52±3.68 pg/mL, 58.68±2.65 pg/mL, 31.88±1.55 pg/mL씠쑝硫, 냽룄 쓽議댁쟻쑝濡 以꾩뼱뱾뿀떎. TNF-α뒗 PCE 0.05 mg/kg援(91.56±4.51 pg/mL), PCE 0.2 mg/kg援(77.68±4.12 pg /mL), 洹몃━怨 PCE 0.8 mg/kg援(57.18±2.08 pg/mL) 냽룄濡 뿭떆 냽룄 쓽議댁쟻쑝濡 以꾩뼱뱶뒗 寃쏀뼢씠 엳뿀떎. IL-6 뿭떆 留덉갔媛吏濡 냽룄 쓽議댁쟻쑝濡 以꾩뼱뱶뒗 寃쏀뼢씠 엳뿀吏留 PCE 0.8 mg/kg援(36.06±1.59 pg/mL)뿉꽌留 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠瑜 蹂댁떎.

Fig. 4. Pro-inflammatory cytokines level in serum. Pro-inflammatory cytokine in treat groups were significantly lower than those of the CFA group. *P<0.05, **P<0.01, compared with the CFA group)
怨 李

蹂 뿰援щ뒗 떎뼇븳 遺꾩빞뿉꽌 솢슜 以묒씤 諛깅났졊쓽 넻利앹셿솕젣 솢슜쓽 媛뒫꽦쓣 솗씤븯怨좎옄 떎뻾븯쑝硫, 떎뿕 寃곌낵 愿젅뿼 넻利앸룞臾쇰え뜽뿉꽌 諛깅났졊 異붿텧臾쇱쓽 寃쎄뎄 닾뿬뒗 쑀빐옄洹뱀뿉 쓽븳 넻利앹쓣 뿼利앸컲쓳쓣 빐븯誘濡 寃쎄컧떆궓떎뒗 궗떎쓣 솗씤븯떎.

DPPH뒗 吏숈 蹂대씪깋쓣 쓣뒗 븞젙븳 free radical濡쒖꽌 Proton-radical scavenger뿉 쓽븯뿬 깉깋릺뒗 듅꽦쓣 媛吏怨 엳뼱 빆궛솕 솢꽦쓣 쑁븞쑝濡 愿李고븷 닔 엳떎(Kedare et al., 2011). 삉븳 떎뼇븳 泥쒖뿰 냼옱濡쒕꽣 빆궛솕 臾쇱쭏쓽 쟾옄怨듭뿬뒫쓣 痢≪젙븯뒗뜲 留롮씠 씠슜릺怨 엳뒗뜲 씠븣 쟾옄怨듭뿬뒫 씤泥댁쓽 free radical쓣 젣嫄고븯뿬 끂솕瑜 뼲젣븯뒗 옉슜쓣 븳떎(Embuscado et al., 2015). 洹몃━怨 free radical쓽 젣嫄곕뒗 씤泥 궡 궛솕뒪듃젅뒪瑜 以꾩뿬 二쇱뼱 뿼利앷낵 愿젴맂 吏덊솚 셿솕뿉룄 슚怨쇨 엳쓬씠 븣젮졇 엳떎(Mittal et al., 2014). 蹂 뿰援ъ뿉꽌 諛깅났졊쓽 radical scavenger 젣嫄곕뒫 3.0 mg/mL援곗뿉꽌 뼇꽦議곌뎔怨 鍮꾩듂븳 寃곌낵瑜 蹂댁쑝硫 씠뒗 怨쇨굅 뿰援щ뱾(Wu et al., 2004)怨 씪留μ긽넻븳떎. Xanthine oxidase뒗 purin, pyrimidine, heterocyclic compound쓽 궗뿉 愿뿬븯뒗 슚냼濡 궗궛臾쇱씤 xanthine, hypoxanthine뿉꽌 uric acid, oxygen free radical瑜 삎꽦븳떎. 씠븣 삎꽦맂 oxygen free radical뒗 泥대궡 二쇱슂 臾쇱쭏쓽 궛솕쟻 넀긽쓣 쑀諛쒗븯硫 끂솕, 븫, 떖삁愿 吏덊솚 벑쓽 썝씤씠 맂떎(George and Struthers, 2009). 씠 슚냼뒗 궛냼遺꾩옄瑜 닔냼닔슜泥대줈 씠슜븯誘濡 씠瑜 빐븯硫 free radical 깮꽦씠 뼲젣릺뼱 빆궛솕, 빆뿼利, 빆끂솕 벑쓽 슚怨쇰 湲곕븷 닔 엳떎(Song et al., 2003; Sabán-Ruiz et al., 2013). 蹂 뿰援ъ뿉꽌룄 Xanthine oxidase 빐 솢꽦 蹂듬졊 異붿텧臾쇱쓽 냽룄 쓽議댁쟻쑝濡 利앷븯쑝硫 씠濡 넗濡 빆궛솕瑜 넻븳 빆뿼利앺슚怨쇰 삁긽븷 닔 엳떎. Ferreira (Ferreira et al., 2007) 벑뿉 뵲瑜대㈃ 솚썝젰 potassium ferricyanide reduction method瑜 궗슜븳 솕빀臾쇱쓽 솚썝젰쓣 룊媛븯硫, 씉愿묐룄뒗 떆猷뚯쓽 솚썝젰쓣 굹궡怨 씪諛섏쟻쑝濡 reductone쓽 議댁옱 뿰愿씠 엳뒗 寃껋쑝濡 蹂닿퀬릺怨 엳떎. KS (KS et al., 2010) 벑 솚썝젰怨 DPPH radical 냼嫄곕뒫 留ㅼ슦 쑀궗븳 긽愿愿怨꾨 媛吏꾨떎怨 蹂닿퀬븯뒗뜲 蹂 뿰援ъ뿉꽌룄 DPPH radical 냼嫄곕뒫씠 넂 솢꽦쓣 蹂댁뜕 諛깅났졊쓽 솚썝젰 0.8 mg/mL쓽 냽룄뿉꽌룄 議곌뎔씤 BSA 쑀쓽쟻씤 李⑥씠瑜 蹂댁씠吏 븡怨 넂 빆궛솕뒫쓣 蹂댁뿬 媛숈 寃곌낵瑜 蹂댁떎.

CFA 쑀룄꽦 愿젅뿼 瑜섎쭏떚뒪 愿젅뿼쓣 룊媛븯湲 쐞븯뿬 옄二 벐씠뒗 紐⑤뜽씠吏留, 蹂 뿰援ъ뿉꽌뒗 諛쒕컮떏 愿젅뿉 씠瑜 二쇱엯븯뿬 뿼利앹꽦 넻利앹쓣 쑀諛쒗븯뿬 넻利 뿭移섏뿉 븳 룊媛瑜 븯떎. 떎뿕쟻쑝濡 쑀諛쒕맂 넻利앹쓽 移섎즺슚怨쇰 愿李고븯뒗뜲 씠吏덊넻(allodynia)怨 넻媛곴낵誘(hyperalgesia)쓽 諛⑸쾿씠 옄二 씠슜릺怨 엳떎(Sandkuhler, 2009). 씠吏덊넻 젙긽쟻씤 긽깭뿉꽌뒗 넻利앹쓣 쑀諛쒗븷 닔 뾾뒗 옄洹뱀쑝濡 넻利앹씠 쑀諛쒕릺뒗 긽깭瑜 쓽誘명븯硫, 蹂 뿰援ъ뿉꽌뒗 von Frey filament瑜 궗슜븯뿬 옄洹뱀뿉 븳 쉶뵾諛섏쓳쓣 痢≪젙븯떎. 씠吏덊넻 뿴옄洹뱀뿉 쓽빐꽌룄 쑀諛쒕릺湲 븣臾몄뿉 븘꽭넠쓣 씠슜븳 깋媛곸옄洹뱀쓣 媛븯뿬 쉶뵾諛섏쓳 삉븳 痢≪젙븯떎. 湲곌퀎쟻 씠吏덊넻 寃궗 寃곌낵, 쑀諛 쟾뿉뒗 紐⑤뱺 떎뿕援곗뿉꽌 von Frey filament쓽 넂 뿭移 媛믪쓣 솗씤븷 닔 엳뿀쑝굹(data not shown) 쑀諛 썑뿉뒗 紐⑤뱺 떎뿕援곗뿉꽌 filament쓽 뿭移 媛믪씠 湲됯꺽엳 궙븘吏먯쓣 蹂 닔 엳뿀떎. 씠윭븳 씠쑀뒗 諛쒕컮떏쓽 뿼利앷낵 넻利앹씠 떖빐吏먯뿉 뵲씪 諛쒕컮떏쓽 誘쇨컧솕瑜 珥덈옒븯湲 븣臾몄씠씪怨 깮媛곷릺뼱吏꾨떎. 삉븳, 諛깅났졊 異붿텧臾 寃쎄뎄 닾뿬 썑 떆媛꾩씠 吏궇닔濡 諛쒕컮떏쓽 뿭移 媛믪씠 利앷븯뒗 寃껋쑝濡 蹂댁븘 뿼利앷낵 넻利앸컲쓳씠 媛먯냼릺怨 엳쓬쓣 솗씤븷 닔 엳뿀떎. 듅엳 6씪吏몄뿉뒗 filament쓽 뿭移 媛믪씠 넻怨꾩쟻쑝濡 쑀쓽븯寃 利앷븿쓣 솗씤븷 닔 엳뿀떎(P<0.01) (Table 1). 깋옄洹뱀뿉 븳 諛섏쓳 삉븳 湲곌퀎쟻 옄洹뱀쓽 寃곌낵 쑀궗븳 뼇긽쓣 蹂댁떎. 듅엳 怨좊냽룄쓽 0.8 mg/kg 닾뿬援곗뿉 떎瑜 援곗뿉 鍮꾪븯뿬 쎇뼱궃 넻利 寃쎄컧슚怨쇨 엳쓬쓣 솗씤븷 닔 엳뿀떎(Table 2). 理쒓렐뿉뒗 吏꾪넻 諛 吏꾧꼍젴, 빆뿼利 벑쓽 슚怨쇨 엳뒗 떎뼇븳 泥쒖뿰臾쇱쭏쓣 씠슜븯뿬 NSAIDs쓣 떊븯뿬 移섎즺쟻씤 以묒옱濡 떎떆븯쓣 寃쎌슦 뿬윭 遺옉슜 뾾씠 솚옄뿉寃 쟻슜븷 닔 엳뼱꽌 媛곴킅諛쏄퀬 엳쑝硫(Simon and Evan Prince, 2017), 諛깅났졊 異붿텧臾쇰룄 洹몃윭븳 뿭븷쓣 닔뻾븷 닔 엳쓣 寃껋씠씪 湲곕맂떎.

쑀빐븳 옄洹뱀씠 媛빐吏硫 꽭룷媛 뙆愿대릺怨 넀긽맂 議곗쭅쓣 쉶蹂듭떆궎湲 쐞븳 뿼利앸컲쓳쓽 寃곌낵 cytokine, bradykinin (BK), prostaglandin (PG), histamine, serotonin 벑 뿼利앸Ъ吏덈뱾씠 留뚮뱾뼱吏뒗뜲 씠뱾 紐⑤몢 쑀빐媛먯닔湲곗뿉 옉슜븯뿬 洹 솢룞쓣 利앷떆궎怨 엫긽쟻씤 利앹긽쑝濡쒖꽌쓽 넻利앹쓣 쑀諛쒗븯뒗 븳렪 硫댁뿭꽭룷뱾뿉룄 옉슜븯뿬 떎瑜 留ㅺ컻臾쇱쭏뱾쓣 쑀由ы븯寃 맂떎(Schaible and Richter, 2004). 씠 以 듅엳 BK cytokine쓽 긽샇옉슜씠 以묒슂븳뜲 씠뱾 쑀빐媛먯닔湲곗쓽 솢꽦쓣 利앷떆궗 肉 븘땲씪 IL-1β뒗 BK쓽 닔슜泥대 利앷떆궎怨 BK쓽 솢꽦 궗궛臾쇱쓣 利앷떆궎硫 씠 궗궛臾쇱 떎떆 IL-1β쓽 mRNA쓽 諛쒗쁽쓣 利앷떆궓떎(Ferreira et al., 1993; Schaible and Richter, 2004). 뵲씪꽌 BK cytokine쓽 긽샇옉슜씠 뿼利앹꽦 넻利앹뿉 엳뼱꽌 以묒슂븳 뿭븷쓣 븳떎. 蹂 뿰援ъ뿉꽌뒗 씠윭븳 쟾뿼利앹꽦 궗씠넗移댁씤쓽 냽룄 蹂솕瑜 異붿쟻븯뿬 뿼利앸컲쓳뿉 엳뼱꽌 諛깅났졊쓽 뿭븷쓣 꽕紐낇븯怨좎옄 븯떎(Fig. 4). 떎뿕 寃곌낵 3媛쒖쓽 궗씠넗移댁씤씠 諛깅났졊 異붿텧臾 寃쎄뎄 닾뿬援곗뿉꽌 긽떦엳 븯릺뼱 엳쓬쓣 븣 닔 엳쑝硫 씠윭븳 뼇긽 넻利앷꼍媛 슚怨쇱쓽 寃쏀뼢怨 룞씪븿쓣 븣 닔 엳뿀떎. 삉븳 諛깅났졊쓽 떎뼇븳 遺쐞瑜 씠슜븳 怨쇨굅 뿰援щ뱾(Chen et al., 2004; Jeong et al., 2014; Wu et al., 2018)뿉꽌쓽 諛깅났졊 빆뿼利 떎뿕 寃곌낵 쑀궗븿쓣 븣 닔 엳뿀떎.

蹂 뿰援щ뒗 諛깅났졊쓽 넻利앷꼍媛 슚怨쇱뿉 븳 寃利앹쓣 쐞븯뿬 꽕怨꾨릺뿀쑝硫, 諛깅났졊쓽 빆궛솕 빆뿼利앺슚怨쇰 湲곕컲쑝濡 쑀빐꽦 옄洹뱀뿉 븳 寃쎄컧슚怨쇨 엳떎뒗 궗떎쓣 솗씤븷 닔 엳뒗 떎뿕씠뿀떎. 쁽옱 留뚯꽦넻利앹뿉 쓽븳 슦슱利앹쓽 슚뒫뿉 븳 룞떆 뿰援ш 솢諛쒗엳 吏꾪뻾릺怨 엳쓬쓣 怨좊젮빐 蹂 븣 諛깅났졊 異붿텧臾쇱쓽 留뚯꽦뿼利앷낵 슦슱利앹쓽 룞떆슚怨쇱뿉 븳 寃利앹씠 뼢썑 궓寃⑥쭊 怨쇱젣씠떎.

ACKNOWLEDGEMENT

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2019S1A5C2A04081101).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

References
  1. Chen YY, Chang HM. Antiproliferative and differentiating effects of polysaccharide fraction from fu-ling (Poria cocos) on human leukemic U937 and HL-60 cells. Food and Chemical Toxicology. 2004. 42.5: 759-769.
    Pubmed CrossRef
  2. Choi SH, Lee SJ, Jo WS, Choi JW, Park SC. Comparison of ingredients and antioxidant activity of the domestic regional Wolfiporia extensa. The Korean Journal of Mycology. 2016. 44: 23-30.
    CrossRef
  3. Embuscado ME. Spices and herbs: Natural sources of antioxidants-a mini review. Journal of Functional Foods. 2015. 18: 811-819.
    CrossRef
  4. Ferreira IC, Baptista P, Vilas-Boas M, Barros L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast portugal: Individual cap and stipe activity. Food Chemistry. 2007. 100: 1511-1516.
    CrossRef
  5. Ferreira S, Lorenzetti B, Poole S. Bradykinin initiates cytokine-mediated inflammatory hyperalgesia. British Journal of Pharmacology. 1993. 110: 1227.
    Pubmed KoreaMed CrossRef
  6. George J, Struthers AD. Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vascular Health and Risk Management. 2009. 5: 265.
    Pubmed KoreaMed CrossRef
  7. Hunt SP, Mantyh PW. The molecular dynamics of pain control. Nature Reviews Neuroscience. 2001. 2: 83-91.
    Pubmed CrossRef
  8. Jang YA, Lee JT. The evaluation of antioxidant, anti-inflammatory, and anti-aging of extract solvent and Poria cocos by parts. Kor J Aesthet Cosmetol. 2015. 13: 377-383.
  9. Jeong JW, Lee HH, Han MH, Kim GY, Hong SH, Park C, Choi YH, Medicine A. Ethanol extract of Poria cocos reduces the production of inflammatory mediators by suppressing the nf-kappab signaling pathway in lipopolysaccharide-stimulated raw 264.7 macrophages. Complementary and Alternative Medicine. 2014. 14: 1-8.
    Pubmed KoreaMed CrossRef
  10. Kedare SB, Singh RP. Genesis and development of dpph method of antioxidant assay. Journal of Food Science and Technology. 2011. 48: 412-422.
    Pubmed KoreaMed CrossRef
  11. Kim HO, Lee SI. Experimental animal models for rheumatoid arthritis: Methods and Applications. Journal of Rheumatic Diseases. 2012. 19: 189-195.
    CrossRef
  12. KS J, Ramesh C, inivasa T Sr, Raghu KL. Comparative studies on dpph and reducing power antioxidant properties in aqueous extracts of some common fruits. Journal of Pharmacy Research. 2010. 3: 2378-2380.
  13. Lambert GA, Mallos G, Zagami AS. Von frey's hairs-a review of their technology and use-a novel automated von frey device for improved testing for hyperalgesia. Journal of Neuroscience Methods. 2009. 177: 420-426.
    Pubmed CrossRef
  14. Lee S, Lee D, Lee SO, Ryu JY, Choi SZ, Kang KS, Kim KH. Anti-inflammatory activity of the sclerotia of edible fungus, Poria cocos wolf and their active lanostane triterpenoids. Journal of Functional Foods. 2017. 32: 27-36.
    CrossRef
  15. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxidants &. Redox Signaling. 2014. 20: 1126-1167.
    Pubmed KoreaMed CrossRef
  16. Molyneux P. The use of the stable free radical dpph for estimating antioxidant activity. J Sci. 2004. 26: 211-219.
  17. Newaz MA, Adeeb NNN. Detection of xanthine oxidase in human plasma. Medical Journal of Malaysi. 1998. 53: 70-75.
    Pubmed
  18. Oyaizu M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics. 1986. 44: 307-315.
    CrossRef
  19. Pardutz A, Schoenen J. Nsaids in the acute treatment of migraine: A review of clinical and experimental data. Pharmaceuticals. 2010. 3: 1966-1987.
    Pubmed KoreaMed CrossRef
  20. RuiDian K, ShunFa L, Yi C, ChuRong J, QiaGuang S. Analysis of chemical composition of polysaccharides from Poria cocos wolf and its anti-tumor activity by NMR spectroscopy. Carbohydrate Polymers. 2010. 80: 31-34.
    CrossRef
  21. Sab찼n-Ruiz J, Alonso-Pacho A, Fabregate-Fuente M, Gonzalez-Quevedo C. Xanthine oxidase inhibitor febuxostat as a novel agent postulated to act against vascular inflammation. Anti-Inflammatory &. Anti-Allergy Agents in Medicinal Chemistry. 2013. 12: 94-99.
    Pubmed CrossRef
  22. Sandkuhler J. Models and mechanisms of hyperalgesia and allodynia. Physiological Reviews. 2009. 89: 707-758.
    Pubmed CrossRef
  23. Schaible HG, Richter F. Pathophysiology of pain. Langenbeck's Archives of Surgery. 2004. 389: 237-243.
    Pubmed CrossRef
  24. Shin YJ, Kim KS, Park GS. Texture and sensory characteristics of fish paste containing white Poria cocos wolf powder. Korean Journal of Food and Cookery Science. 2009. 25: 119-125.
  25. Simon JP, Evan Prince S. Natural remedies for non-steroidal anti-inflammatory drug릋nduced toxicity. Journal of Applied Toxicology. 2017. 37: 71-83.
    Pubmed CrossRef
  26. Song YS, Kim SH, Sa JH, Jin C, Lim CJ, Park EH. Anti-angiogenic, antioxidant and xanthine oxidase inhibition activities of the mushroom phellinus linteus. Journal of Ethnopharmacology. 2003. 88: 113-116.
    Pubmed CrossRef
  27. Wang N, Zhang Y, Wang X, Huang X, Fei Y, Yu Y, Shou D. Antioxidant property of water-soluble polysaccharides from Poria cocos wolf using different extraction methods. Journal of Ethnopharmacology. 2016. 83: 103-110.
    Pubmed CrossRef
  28. Woolf CJ. Central sensitization: Implications for the diagnosis and treatment of pain. Pain. 2011. 152: S2-S15.
    Pubmed KoreaMed CrossRef
  29. Wu K, Fan J, Huang X, Wu X, Guo C. Hepatoprotective effects exerted by Poria cocos polysaccharides against acetaminophen-induced liver injury in mice. International Journal of Biological Macromolecules. 2018. 114: 137-142.
    Pubmed CrossRef
  30. Wu SJ, Ng LT, Lin CC. Antioxidant activities of some common ingredients of traditional chinese medicine, angelica sinensis, lycium barbarum and Poria cocos. Phytotherapy Research. 2004. 18: 1008-1012.
    Pubmed CrossRef
  31. Zhang W, Chen L, Li P, Zhao J, Duan J. Antidepressant and immunosuppressive activities of two polysaccharides from Poria cocos (schw.) wolf. Journal of Biological Macromolecules. 2018. 120: 1696-1704.
    Pubmed CrossRef