Search for


TEXT SIZE

search for



CrossRef (0)
A Review of Extended STR Loci and DNA Database
Biomed Sci Letters 2022;28:157-169
Published online September 30, 2022;  https://doi.org/10.15616/BSL.2022.28.3.157
© 2022 The Korean Society For Biomedical Laboratory Sciences.

Yoonjung Cho§,* , Min Ho Lee§,* , Su Jin Kim§,* , Ji Hwan Park* and Ju Yeon Jung†,*

Forensic DNA Division, National Forensic Service, Wonju 26460, Korea
Correspondence to: Ju Yeon Jung. Forensic DNA Division, National Forensic Service, Wonju 26460, Korea.
Tel: +82-33-902-5724, Fax: +82-33-902-5946, e-mail: jjy7@korea.kr
*Researcher.
§These authors contributed equally to this work.
Received September 6, 2022; Revised September 28, 2022; Accepted September 29, 2022.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
DNA typing is the typical technology in the forensic science and plays a significant role in the personal identification of victims and suspects. Short tandem repeat (STR) is the short tandemly repeated DNA sequence consisting of 2~7 bp DNA units in specific loci. It is disseminated across the human genome and represents polymorphism among individuals. Because polymorphism is a key feature of the application of DNA typing STR analysis, STR analysis becomes the standard technology in forensics. Therefore, the DNA database (DNA-DB) was first introduced with 4 essential STR markers for the application of forensic science; however, the number of STR markers was expanded from 4 to 13 and 13 to 20 later to counteract the continuously increased DNA profile and other needed situations. After applying expanded STR markers to the South Korean DNA-DB system, it positively affected to low copy number analysis that had a high possibility of partial DNA profiles, and especially contributed to the theft cases due to the high portion of touch DNA evidence in the theft case. Furthermore, STR marker expansion not only contributed to the resolution of cold cases but also increased kinship index indicating the potential for improved kinship test accuracy using extended STR markers. Collectively, the expansion of the STR locus was considered to be necessary to keep pace with the continuously increasing DNA profile, and to improve the data integrity of the DNA-DB.
Keywords : Short tandem repeat, DNA database, CODIS, Personal identification, Forensic DNA analysis
꽌濡(Introduction)

DNA 遺꾩꽍쓽 踰뺢낵븰쟻 쓳슜 1985뀈 Alec J. Jeffreys쓽 젣븳슚냼 遺꾩젅 湲몄씠 떎삎꽦(Restriction fragment length polymorphism, RFLP) 뙣꽩솗씤 湲곗닠濡쒕꽣 떆옉릺뿀떎(Butler, 2015). DNA 젅렪씠 媛쒖씤 蹂꾨줈 듅吏뺤쟻씤 諛섎났떒쐞(repeat elements)瑜 媛뽯뒗떎뒗 젏쓣 媛쒖씤떇蹂 諛 移쒖”(kinship)솗씤뿉 쓳슜븿쑝濡쒖뜥 1986뀈 쁺援뿉꽌 諛쒖깮븳 궡씤 諛 媛뺢컙 궗嫄 빐寃곗뿉 湲곗뿬븯怨, 씠뒗 쁽옱源뚯 쑀쟾옄 吏臾(DNA fingerprinting)쓣 솢슜븳 理쒖큹쓽 踰뺢낵븰쟻 궗濡濡 씤젙맂떎(Nwawuba Stanley et al., 2020).

떎뼇븳 湲곗닠쓽 諛쒖쟾쓣 넻븯뿬 DNA 媛먯떇踰뺤 쁽옱 踰붿즲怨쇳븰닔궗(forensic case)瑜 쐞븳 쟾삎쟻 湲곗닠濡쒖꽌 蹂궗옄 떊썝솗씤, 슜쓽옄쓽 젙솗븳 媛쒖씤떇蹂 솗씤 諛 떎뼇븳 긽솴뿉꽌 젙蹂댁젣怨 뿭븷쓣 닔뻾븯怨 엳떎(Kim et al., 2020). 怨쇨굅 RFLP 떎뿕踰뺤 씠썑 RFLP 源껋쓽 諛⑹궗꽑 룞쐞썝냼媛 뿰寃곕맂 蹂듯빀 깘移(multilocus probes)쓣 솢슜븳 DNA 媛먯떇踰뺤쑝濡 諛쒖쟾븯떎(Roewer, 2013). 븯吏留 쁽옣利앷굅臾 遺꾩꽍뿉 떎슜솕릺湲곗뿉뒗 媛먯젙쓣 쐞븳 理쒖냼 DNA 븘슂웾씠 10~25 ng씠씪뒗 젏怨, 1쉶 遺꾩꽍뿉 6媛쒖썡 씠긽쓽 湲 떆媛꾩씠 냼슂맂떎뒗 젏, 씤泥댁뿉 쑀빐븳 룞쐞썝냼瑜 븘닔쟻쑝濡 궗슜빐빞 븳떎뒗 븳怨꾩젏쓣 媛吏怨 엳뿀떎(Jordan and Mills, 2021). 씠 臾몄젣뒗 씠썑 Kary Mullis쓽 以묓빀 슚냼 뿰뇙 諛섏쓳(PCR) 湲곕쾿 媛쒕컻쓣 넻븯뿬 빐寃곕릺誘濡, PCR 湲곕쾿쓽 媛쒕컻 DNA 媛먯떇踰 諛쒖쟾 뿭궗뿉꽌 겙 쓽誘몃 媛吏꾨떎(Nwawuba Stanley et al., 2020). 넂 떎삎꽦쓣 룷븿븳 듅젙 諛섎났 遺쐞瑜 PCR 湲곕쾿쑝濡 利앺룺븯뒗 怨쇱젙 쁽옱 솢諛쒗엳 궗슜 以묒씤 DNA 媛먯떇踰뺤뿉꽌 븘닔쟻씠떎(Roewer, 2013). 씠젃벏 뿬윭 諛쒖쟾쓣 嫄곗튇 쁽옱 DNA 媛먯떇 떎뼇븳 踰붿즲쓽 빐寃곌낵 웾 옱빐뿉꽌쓽 떊썝솗씤 벑 踰뺢낵븰 遺꾩빞뿉꽌 媛뺣젰븯怨 빑떖쟻씤 湲곕쾿쑝濡 씤젙맂떎(Yoo et al., 2011).

떒렪 씪젹諛섎났(Short tandem repeat, STR) 遺꾩꽍踰뺤 쁽옱 DNA 媛먯떇踰뺤쓽 몴以 湲곗닠씠떎(Nwawuba Stanley et al., 2020). STR 2~7 뿼湲곗뙇(base pair, bp)쓽 吏㏃ DNA 꽌뿴씠 듅젙 醫뚯쐞뿉꽌 뿰냽쟻쑝濡 諛섎났릺뼱 理쒕 100 돱겢젅삤씠뱶 湲몄씠瑜 援ъ꽦븳떎(Fan and Chu, 2007). 궗엺 쟾泥 寃뚮냸(genome)쓽 빟 3%瑜 李⑥븷 寃껋쑝濡 삁긽릺뒗 媛슫뜲 遺遺꾩씠 鍮꾩븫샇솕(noncoding) 쁺뿭뿉 議댁옱븯怨, 8%留뚯씠 븫샇솕(coding) 쁺뿭뿉꽌 諛쒓껄맂떎(Nwawuba Stanley et al., 2020). 씠윭븳 STR 媛 뿼깋泥댁쓽 留먮떒 遺쐞뿉 二쇰줈 궛옱릺뼱 諛섎났 닔뿉 뵲씪 떎뼇븳 由쎌쑀쟾옄(allele)媛 議댁옱븯硫 궗엺留덈떎 諛섎났 슏닔媛 떎瑜닿퀬 룆由쎌쟻쑝濡 쑀쟾릺뼱 넂 떎삎꽦쓣 媛吏꾨떎(Jobling and Gill, 2004). STR씠 媛吏뒗 떎삎꽦 STR쓣 솢슜븳 DNA 遺꾩꽍뿉 빑떖 슂냼濡 옉슜븯怨(Oldoni and Podini, 2019), PCR쓣 씠슜븯硫 뿬윭 醫낅쪟쓽 留덉빱瑜 븳踰덉뿉 떊냽엳 遺꾩꽍 媛뒫븯떎뒗 옣젏씠 엳떎(Butler, 2007). 씠 媛숈씠 떎삎꽦쓣 媛吏뒗 떎以(multiplexing) 醫뚯쐞쓽 봽濡쒗뙆씪留(profiling)쓣 씠슜븯誘濡 슦뿰븳 씪移섎 以꾩씠怨, 遺꾩꽍쓽 슚쑉꽦룄 뼢긽떆궎誘濡 쁽옱 몴以 媛먯떇踰뺤쑝濡 옄由ъ옟寃 릺뿀떎(Jordan and Mills, 2021). 肉먮쭔 븘땲씪 STR 遺꾩꽍쓣 넻븳 DNA 봽濡쒗븘(profile)쓽 넂 媛쒖씤떇蹂꾨젰쓣 넻빐 媛뺣젰븳 踰뺤쟻 利앷굅濡쒖꽌쓽 슚젰쓣 媛뽮쾶 릺뿀떎(Yoo et al., 2011).

궗엺쓽 DNA瑜 援ъ꽦븯뒗 뿼湲곗꽌뿴쓽 99.9%뒗 쑀궗븯怨, 삤吏 0.1%쓽 蹂씠(variation) 遺쐞媛 議댁옱븳떎怨 븣젮吏꾨떎(Nwawuba Stanley et al., 2020). 듅엳 긽뿼깋泥 STR 떎삎꽦씠 留ㅼ슦 넂怨 遺遺 씠삎 젒빀泥댁씠誘濡, 꽦뿼깋泥 STR蹂대떎 떇蹂꾨젰씠 썡벑엳 넂湲 븣臾몄뿉 踰뺢낵븰 遺꾩빞 뜑遺덉뼱 怨꾪넻遺꾨쪟븰뿉룄 룺꼻寃 솢슜릺怨 엳떎(Hammond et al., 1994).

STR 留덉빱쓽 媛쒕뀗 1990뀈룄 珥덉뿉 떊썝솗씤쓣 쐞븳 슚쑉쟻씤 닔떒쑝濡 泥섏쓬 湲곗닠릺뿀떎(Butler, 2006). 쁽옱 STR 遺꾩꽍 湲곗닠 뿬윭 媛쒖쓽 듅젙 STR 留덉빱뱾쓣 떎以 利앺룺븳 썑, 紐⑥꽭愿 쟾湲곗쁺룞쓣 넻빐 諛섎났 슏닔쓽 李⑥씠뿉 뵲瑜 媛 STR 醫뚯쐞쓽 由쎌쑀쟾옄瑜 솗씤븯뒗 怨쇱젙쑝濡 吏꾪뻾맂떎(Nai et al., 2012). 쟾 꽭怨꾩뿉꽌 몴以솕맂 STR 遺꾩꽍踰뺤뿉 쓽븳 DNA 봽濡쒗븘 씪移 뿬遺 諛 씪移 鍮덈룄솗씤 쁽옱 遺遺꾩쓽 援媛뿉꽌 踰뺤쟻 利앷굅濡 솢슜릺怨 엳쑝硫, 슦由щ굹씪 뵒뿏뿉씠떊썝솗씤젙蹂 뜲씠꽣踰좎씠뒪(DNA-DB)쓽 援ъ텞뿉룄 솢슜릺怨 엳떎(Hammond et al., 1994; Jobling and Gill, 2004; Butler, 2007).

븳렪 媛먯젙 遺꾩꽍쓣 쐞븳 DNA 냽룄媛 쟻젙 냽룄 씠긽쑝濡 寃異쒕맂 寃쎌슦뿉뒗 씪諛섏쟻쑝濡 긽슜솕 궎듃瑜 씠슜븯뿬 쟾泥 DNA 봽濡쒗븘(full-profile)쓣 솗씤븷 닔 엳吏留, 遺꾩꽍븯怨좎옄 븯뒗 DNA쓽 냽룄媛 꼫臾 궙嫄곕굹, DNA媛 솕븰臾쇱쭏, 슚냼옉슜, 諛뺥뀒由ъ븘 벑뿉 쓽븯뿬 遺꾪빐릺뒗 寃쎌슦뿉뒗 遺遺 DNA 봽濡쒗븘(partial-profile)씠 遺꾩꽍맂떎(Coble, 2012). 利, 뼱뒓 젙룄 씠긽쑝濡 遺꾪빐맂 DNA瑜 씠슜븷 寃쎌슦, 겙 利앺룺 겕湲곕 媛뽯뒗 DNA 봽濡쒗븘 寃곌낵瑜 뼸湲 뼱졄떎(Butler, 2010). 遺꾪빐 젙룄媛 떖솕맆닔濡 吏㏃ 湲몄씠濡 援ъ꽦맂 쟻 닔쓽 DNA 봽濡쒗븘留 솗蹂대릺뼱 슦뿰엳 씪移섑븷 솗瑜좎씠 利앷븯寃 맂떎(Coble, 2012). 븯吏留, STR 醫뚯쐞 솗옣 솗蹂댄븷 닔 엳뒗 DNA 봽濡쒗븘쓽 醫뚯쐞 닔瑜 利앷떆궡쑝濡쒖뜥 슦뿰엳 씪移섑븷 솗瑜좎쓣 媛먯냼떆耳 媛쒖씤떇蹂꾨젰쓣 넂씪 닔 엳떎(Novroski et al., 2019; Nwawuba Stanley et al., 2020).

씠踰 끉臾몄뿉꽌뒗 STR 醫뚯쐞 솗옣쓽 諛곌꼍 諛 DNA-DB 슫쁺쓽 蹂솕뿉 빐 怨좎같븯떎. 뜑遺덉뼱, 醫뚯쐞 솗옣쓣 넻빐 빐寃곕맂 궗濡瑜 룷븿븳 湲띿젙쟻 슚怨쇱 醫뚯쐞 솗옣怨 愿젴맂 뼢썑 怨쇱젣 諛 諛쒖쟾 諛⑹븞쓣 젣떆븯怨좎옄 븳떎.

蹂몃줎(Main Issue)

1. STR 醫뚯쐞 솗옣쓽 諛곌꼍

1.1. 紐⑹쟻 諛 꽑젙 湲곗

2010뀈 誘멸뎅 뿰諛⑹닔궗援(Federal Bureau of Investigation, FBI)뿉꽌뒗 湲곗〈 13媛쒖쓽 넻빀 DNA 깋씤 떆뒪뀥(Combined DNA Index System, CODIS) 醫뚯쐞濡 遺꽣쓽 異붽 솗옣쓣 紐⑹쟻쑝濡 CODIS Core Loci Working Group쓣 援ъ꽦븯떎(Ge et al., 2012). 씠썑 理쒖쟻쓽 醫뚯쐞 꽑젙쓣 쐞븳 醫뚯쐞 솗옣쓽 븘슂꽦 諛 紐⑹쟻쓣 紐낇솗엳 븯떎(Ge et al., 2012).

  • 醫뚯쐞 솗옣쓽 紐⑹쟻 DNA-DB뿉 벑濡앸릺뒗 DNA 봽濡쒗븘씠 鍮좊Ⅸ 냽룄濡 利앷븿뿉 뵲씪 DNA 봽濡쒗븘쓽 슦뿰엳 씪移섑븷 솗瑜좎쓣 媛먯냼떆궎湲 쐞븿씠떎.

  • 醫뚯쐞 솗옣쓽 紐⑹쟻 DNA 봽濡쒗븘쓽 援젣쟻 샇솚꽦쓣 넂씠湲 쐞븿씠떎.

  • 醫뚯쐞 솗옣쓽 紐⑹쟻 떎醫낆옄 솗씤 벑쓣 쐞븳 媛쒖씤떇蹂꾨젰쓣 利앷떆궎湲 쐞븿씠떎.

紐⑹쟻 紐낆떆 씠썑 씠瑜 넗濡, 踰뺢낵븰 遺꾩빞뿉꽌 궗슜릺怨 엳뒗 STR 醫뚯쐞뱾뿉 愿븳 뿰援щ궡슜쓣 솗씤븯怨, 異붽 醫뚯쐞 꽑젙쓣 쐞븳 湲곗쓣 솗由쏀븯떎(Ge et al., 2012).

  • 嫄닿컯긽깭굹 吏덈퀝怨쇱쓽 뿰愿꽦씠 뾾뼱빞 븳떎.

  • 醫뚯쐞 룎뿰蹂씠쑉씠 0.3% 씠븯濡 궙븘빞 븳떎.

  • 醫뚯쐞쓽 룆由쎌꽦씠 넂븘빞 븳떎.

  • 룞씪 솗瑜좎씠 0.1% 誘몃쭔쑝濡 넂 떇蹂꾨젰쓣 媛졇빞 븳떎.

  • 踰뺢낵븰 DNA 遺꾩빞뿉꽌 援젣쟻쑝濡 궗슜릺뼱빞 븳떎.

  • 珥 沅뚯옣 醫뚯쐞 닔 씠濡쒕꽣 뼸쓣 닔 엳뒗 떇蹂꾨젰쓽 洹좏삎쓣 留욎텛뼱빞 븳떎.

  • 꽑젙릺뒗 醫뚯쐞뒗 FBI뿉꽌 솗由쏀븳 뭹吏덈낫利앷린以(QAS)瑜 뵲씪빞 븳떎.

쐞쓽 湲곗뿉 뵲씪 愿젴 醫뚯쐞 뿰援ъ뿉 븳 뿬윭 怨쇱젙쓽 룊媛瑜 嫄곗퀜, 理쒖쥌쟻쑝濡 異붽 以묒떖 醫뚯쐞瑜 꽑젙븯떎(Hares, 2015). 珥덇린쓽 솗옣 썑蹂 醫뚯쐞뱾쓣 븘슂 湲곗뿉 留욎텛뼱 媛곴컖 꽮뀡 A 꽮뀡 B濡 援щ텇븯떎(Table 1) (Ge et al., 2012). 援щ텇 씠썑 뿰援 寃곌낵 諛 援젣쟻 DB 샇솚꽦, 씠쟾 DB 援ъ텞뿉 궗슜릺뿀뜕 留덉빱 벑쓽 떎슜꽦怨 슚쑉꽦쓣 李몄“븯뿬 理쒖쥌 20媛쒕줈쓽 醫뚯쐞 솗옣쓣 씠猷⑥뿀떎(Table 2) (Ge et al., 2012).

Candidate core loci that were first suggested

Loci
Section A (Essential) D18S51 FGA D21S11 D8S1179 vWA D13S317 D16S539
D7S820 TH01 D3S1358 CSF1PO D5S818 CSF1PO
D2S1338 D19S433 D1S1656 D12S391 D2S441 D10S1248 DYS391
Section B (Preferred) TPOX D22S1045 SE33 PentaD

CODIS 20 core loci that were finally selected

Loci
CODIS 13 loci CSF1PO D3S1358 D5S818 D7S820 D8S1179 D13S31 D16S539
D18S51 D21S11 FGA TPOX vWA
Additional loci D1S1656 D2S441 D2S1338 D10S1248 D12S391 D19S433 D22S1045


1.2. 궗쉶쟻 긽솴뿉 뵲瑜 븘슂꽦

DNA-DB 슫쁺쓽 以묒슂꽦뿉 뵲씪 媛 援뿉꽌뒗 DB뿉 옣릺뒗 봽濡쒗븘 닔媛 留ㅻ뀈 젏젏 뜑 利앷븯怨 엳떎. 씠윭븳 蹂솕瑜 쟾쟻쑝濡 蹂댁뿬二쇰뒗 븳 삁濡 以묎뎅쓣 뱾 닔 엳떎. 以묎뎅뿉꽌뒗 떎瑜 援媛뱾 蹂대떎 긽쟻쑝濡 뒭 2005뀈遺꽣 援媛 슫쁺 DNA-DB쓽 슫쁺쓣 떆옉븯吏留, 2018뀈 援媛 諛쒗몴뿉 뵲瑜대㈃ 씠誘 6,800留뚭컻쓽 DNA 봽濡쒗븘쓽 벑濡앹쓣 셿猷뚰븯뿬 誘멸뎅怨 쁺援쓣 꽆뼱꽣怨, 꽭怨꾩쟻쑝濡 媛옣 겙 DNA-DB瑜 援ъ텞븯寃 릺뿀쑝硫 袁몄엳 利앷븯뒗 異붿꽭씠떎(Bernotaite, 2020). 씠젃벏 媛 援뿉꽌뒗 遺꾩꽍 寃곌낵媛 슦뿰엳 씪移섑븷 솗瑜좎씠 뜑슧 利앷릺뒗 臾몄젣뿉 吏곷㈃븯怨 엳떎. 肉먮쭔 븘땲씪 援젣솕릺뒗 궗쉶 遺꾩쐞湲 냽뿉꽌 궗嫄 빐寃곗쓣 쐞븳 援젣 怨듭“ 븘슂꽦 삉븳 利앷븯怨 엳쑝誘濡, 媛곴뎅쓽 뜲씠꽣 샇솚꽦쓣 뼢긽떆궎湲 쐞븳 吏냽쟻씤 STR 醫뚯쐞 솗옣씠 뿰援щ릺뼱빞 븯뒗 寃껋씠떎(Butler, 2015). 븳렪 쑀怨(堉, 移섏븘 벑), 솕옱궗嫄 利앷굅臾, 젒珥됱쬆嫄곕Ъ 諛 옣湲곕몄젣궗嫄 利앷굅臾 벑뿉꽌 솗蹂대릺뒗 DNA뒗 誘몃웾(low copy number, LCN)씠硫댁꽌 遺꾪빐(degraded)맂 DNA씪 媛뒫꽦씠 겕떎(Martin et al., 2006). 怨좊졊솕 궗쉶뿉꽌 룆嫄곗 怨좊┰뿉 쓽빐 怨좊룆궗媛 利앷븿쑝濡쒖뜥 떆떊씠 諛⑹튂릺怨 遺뙣릺뒗 寃쎌슦 諛 빐뼇씠굹 빞궛 벑뿉꽌 諛쒓껄릺뒗 쑀빐 떆猷뚯쓽 媛먯젙 쓽猶곌 利앷븯怨 엳떎. 삉븳, 諛⑺솕 궗嫄댁쓽 利앷, 湲고썑 蹂솕濡 씤븳 솕옱쓽 뼇긽 蹂솕, 吏뒫솕맂 踰붿즲濡 씤븳 DNA 쎕넀 踰붿즲 諛 젒珥됱쬆嫄곕Ъ쓽 鍮덈룄媛 젏李 利앷븯뒗 궗쉶쟻 긽솴쓣 怨좊젮빐蹂 븣, 씠윭븳 쑀삎쓽 利앷굅臾쇰줈遺꽣 DNA 봽濡쒗븘 솗蹂 끂젰 븘닔쟻씠떎.

2. DNA-DB 슫쁺

2.1. 醫뚯쐞 솗옣뿉 쓽븳 媛곴뎅쓽 DNA-DB 蹂솕

Alec J. Jeffreys媛 DNA 媛먯떇 湲곗닠쓣 궗嫄 닔궗뿉 쟻슜븳 씠옒濡, 1995뀈 쁺援뿉꽌 꽭怨 理쒖큹濡 踰뺣쪧뿉 洹쇨굅븳 踰붿즲옄 DNA-DB瑜 꽕由쏀븯뿬 슫쁺븯湲 떆옉뻽怨, 留롮 踰붿즲궗嫄 빐寃곗뿉 룄씠 릺硫댁꽌 DNA-DB뒗 鍮꾩빟쟻씤 꽦옣쓣 嫄곕벊빐 솕떎. 2019뀈룄 湲곗쑝濡, 씤꽣뤃 쉶썝援 194媛쒓뎅 以 쓳떟븳 130媛쒓뎅뿉 븳 議곗궗 寃곌낵 89媛쒖쓽 援媛媛 寃쎌같 닔궗뿉 DNA 媛먯떇 湲곗닠쓣 씠슜 以묒씠硫 70媛쒖쓽 援媛뿉꽌뒗 떎젣濡 寃깋씠 媛뒫븳 DNA-DB瑜 슫쁺 以묒쑝濡 솗씤릺뿀떎. 삉븳 31媛쒓뎅뿉꽌뒗 떎醫낆옄 DNA-DB룄 슫쁺 以묒씠떎. 씠뱾 DNA-DB뿉 닔濡앸맂 DNA 봽濡쒗븘 넻怨꾩뿉 怨듦컻맂 옄猷뚮쭔 빟 1,500留 媛쒖뿉 씠瑜대뒗 寃껋쑝濡 솗씤릺怨, 넻怨꾩뿉뒗 젣쇅맂 誘멸뎅, 쁺援 벑 二쇱슂 援媛뱾쓽 옄猷뚮 怨좊젮븳떎硫 썾뵮 뜑 留롮 DNA 봽濡쒗븘뱾씠 쟾 꽭怨 DNA-DB뿉 닔濡앸릺뼱 엳쓣 寃껋쑝濡 異붿젙맂떎(INTERPOL, 2019).

꽭怨 理쒖큹濡 DNA-DB 떆뒪뀥쓣 援ъ텞븯뿬 슫쁺븳 쁺援뿉꽌 珥덉갹湲 궗슜븯뜕 STR 醫뚯쐞뒗 珥 4媛쒕줈 1꽭 STR 醫뚯쐞(TH01, vWA, FES/FPS 諛 F13A1)濡 遺꾨쪟맂떎 (Butler, 2012; Butler, 2015). 씠썑 6媛쒕줈 솗옣맂 2꽭 STR 醫뚯쐞(FGA, TH01, vWA, D8S1179, D18S51 諛 D21S11)瑜 援ъ꽦븯硫 '쁺援 援由 DNA 뜲씠꽣踰좎씠뒪(United Kingdom National DNA Database, UK NDNAD)' 슫쁺쓣 떆옉븯떎 (Butler and Hill, 2012; Butler, 2015).

1995뀈 UK NDNAD쓽 꽕由 씠썑 1998뀈 誘멸뎅뿉꽌뒗 13媛쒖쓽 STR 以묒떖 醫뚯쐞(TH01, vWA, FGA, D8S1179, D18S51, D21S11, CSF1PO, TPOX, D3S1358, D5S818, D7S820, D13S317 諛 D16S539)瑜 룷븿븯뒗 FBI쓽 '援媛 쑀쟾옄 젙蹂 깋씤 떆뒪뀥(The National DNA Index System, NDIS)'쓣 슫쁺븯떎(Butler, 2015; Nwawuba Stanley et al., 2020). 誘멸뎅쓽 DNA-DB뒗 吏뿭(Local DNA Index System, LDIS), 二(State DNA Index System, SDIS) 諛 援媛(NDIS)쓽 꽭 媛吏 怨꾩링쑝濡 援ъ꽦맂떎. 洹몃━怨 쐞쓽 꽭 媛吏 닔以쓽 DNA-DB뒗 삎궗 궗踰 젙蹂 떆뒪뀥 愿묒뿭 꽕듃썙겕(Criminal Justice Information System Wide Area Network)瑜 넻빐 븿猿 꽕듃썙겕濡 뿰寃곕릺뼱 엳떎. LDIS뿉꽌뒗 媛 吏뿭쓽 媛먯젙씤뱾씠 DNA 봽濡쒗븘쓣 엯젰븯怨 吏뿭 궡 궗嫄닿낵 씪移섑븯뒗 빆紐⑹쓣 寃깋븷 닔 엳떎. 吏뿭 닔以뿉꽌 떆옉맂 DNA 봽濡쒗븘 二(SDIS) 諛 援媛(NDIS) 닔以쑝濡 쟾넚 諛 닔濡앸맆 닔 엳쑝硫 DNA 젙蹂대 꽌濡 鍮꾧탳븷 닔 엳떎(Butler, 2015; Nwawuba Stanley et al., 2020). 誘멸뎅 NDIS뒗 2004뀈源뚯 200留 DNA 봽濡쒗븘쓣 솗蹂댄븳 씠썑뿉룄 怨꾩냽빐꽌 諛쒖쟾빐 굹媛붾떎. 洹 寃곌낵 2021뀈 10썡 湲곗 NDIS뿉뒗 14,836,490媛쒖쓽 踰붿즲옄, 4,513,955媛쒖쓽 援ъ냽뵾쓽옄, 1,144,255媛쒖쓽 利앷굅臾 DNA 봽濡쒗븘씠 닔濡앸릺뼱 엳怨, FBI쓽 넻怨꾩뿉 뵲瑜대㈃ 씠瑜 넻빐 574,343嫄 씠긽쓽 궗嫄댁쓣 닔궗븯뒗뜲 룄쓣 以 寃껋쑝濡 異붿궛맂떎(FBI, 2021).

쐞뿉꽌 꽕紐낇븳 諛붿 媛숈씠 誘멸뎅뿉꽌뒗 NDIS 슫쁺쓣 쐞빐 FBI뿉꽌 13媛쒖쓽 몴以 STR 쑀쟾옄 醫뚯쐞瑜 吏젙븯怨, 洹 씠썑 DB쓽 겕湲곌 利앷븿뿉 뵲씪 슦뿰엳 씪移섑븷 媛뒫꽦씠 넂븘吏怨 엳뿀떎. DB 寃깋 떆 諛쒖깮븯뒗 슦諛쒖쟻씤 씪移 쁽긽쓣 빐냼븯怨 떊썝솗씤쓣 쐞븳 쑀쟾옄 醫뚯쐞쓽 떇蹂꾨젰쓣 넂씠뒗 寃껋 臾쇰줎, 援젣쟻 DB쓽 샇솚꽦쓣 쐞빐 2017뀈 1썡쓣 湲곗쑝濡 몴以 쑀쟾옄 以묒떖 醫뚯쐞(core loci)瑜 湲곗〈 13媛쒖뿉꽌 20媛쒕줈 솗옣븯떎(Gill et al., 2006; Hares, 2015).

媛 援뿉꽌 쁽옱 궗슜 以묒씤 STR 以묒떖 醫뚯쐞 젙蹂대뒗 몴 媛숇떎(Table 3) (Butler, 2006; Samantha et al., 2015; Dang et al., 2020). 쁺援뿉꽌뒗 1꽭 以묒떖 醫뚯쐞 씠썑 6媛쒖쓽 2꽭 以묒떖 醫뚯쐞(SGM)濡 솗옣븯怨, 쁽옱 17媛쒖쓽 以묒떖 醫뚯쐞(DNA17)쓣 怨듭떇쟻쑝濡 솢슜븯怨 엳떎(Butler, 2006; Hares, 2015). 쑀읇뿉꽌뒗 쑀읇 몴以 以묒떖 醫뚯쐞 EES12瑜 꽑젙븯뿬 쑀읇 援媛 媛꾩쓽 援쓽 뜲씠꽣 怨듭쑀븯뒗 뜲쓽 뼱젮쓣 以꾩씠怨좎옄 븯떎(Butler, 2006; Hares, 2015). 以묎뎅뿉꽌뒗 援媛 DB 슫쁺뿉 愿젴맂 긽꽭븳 젙蹂닿 怨듭떇쟻쑝濡 誘멸났媛쒖씤 긽솴씠吏留, 吏湲덇퉴吏 怨듦컻맂 옄猷뚮 諛뷀깢쑝濡 솗옣맂 20媛 CODIS 醫뚯쐞瑜 룷븿븳 異붽 醫뚯쐞瑜 븿猿 솢슜븯뿬 援媛 DB瑜 슫쁺븯뒗 寃껋쑝濡 삁긽븷 닔 엳떎(Wang et al., 2018; Bernotaite, 2020). 븳援뿉꽌룄 誘멸뎅怨 룞씪븯寃 쁽옱 CODIS 醫뚯쐞瑜 룷븿븳 20媛쒖쓽 醫뚯쐞瑜 솢슜븯뿬 DB瑜 슫쁺 以묒씠떎(Jung et al., 2017; Kim et al., 2021).

STR core loci that are currently being used in several countries

United Kingdom European Standard United States China Korea
TH01 TH01 TH01 TH01 TH01
FGA FGA FGA FGA FGA
vWA vWA vWA vWA vWA
D3S1358 D3S1358 D3S1358 D3S1358 D3S1358
D8S1179 D8S1179 D8S1179 D8S1179 D8S1179
D18S51 D18S51 D18S51 D18S51 D18S51
D21S11 D21S11 D21S11 D21S11 D21S11
D16S539 D16S539* D16S539 D16S539 D16S539
D1S1656 D1S1656 D1S1656 D1S1656 D1S1656
D2S1338 D2S1338* D2S1338 D2S1338 D2S1338
D2S441 D2S441 D2S441 D2S441 D2S441
D10S1248 D10S1248 D10S1248 D10S1248 D10S1248
D12S391 D12S391 D12S391 D12S391 D12S391
D22S1045 D22S1045 D22S1045 D22S1045 D22S1045
D19S433 D19S433* D19S433 D19S433 D19S433
SE33 SE33*
CSF1PO CSF1PO CSF1PO
TPOX TPOX TPOX
D5S818 D5S818 D5S818
D13S317 D13S317 D13S317
D7S820 D7S820 D7S820
D6S1043
Penta D
Penta E

*Loci that can be further analyzed to improve discrimination power apart from the core loci



쁽옱뒗 CODIS 20媛 醫뚯쐞 ESS12 醫뚯쐞媛 룷븿릺뼱 룊洹 15~22媛쒖쓽 A-STR 醫뚯쐞瑜 遺꾩꽍븷 닔 엳룄濡 怨좎븞맂 긽슜솕 궎듃瑜 留롮 굹씪뿉꽌 궗슜 以묒뿉 엳떎(Butler, 2015). 媛곴뎅뿉꽌쓽 긽슜솕 궎듃 궗슜쑝濡 씤븯뿬, 媛곴뎅쓽 DNA 젙蹂댁쓽 洹쒓꺽솕媛 씠猷⑥뼱졇 援젣쟻쑝濡 怨듭쑀븷 닔 엳뒗 湲고쉶 諛 媛곴뎅 DB 媛꾩쓽 샇솚꽦 삉븳 利앷븯寃 릺뿀떎(Butler, 2015; Jordan and Mills, 2021).

2.2. 援궡 DNA-DB 媛쒖슂

슦由щ굹씪뿉꽌뒗 2010뀈 7썡 26씪 뵒뿏뿉씠떊썝솗씤젙蹂댁쓽 씠슜 諛 蹂댄샇뿉 愿븳 踰뺣쪧(씠븯 "DNA踰")씠 떆뻾릺硫댁꽌, 떊썝솗씤젙蹂대 닔濡 • 愿由ы븯硫 긽샇 鍮꾧탳瑜 넻븯뿬 떊냽븯寃 踰붿씤쓣 듅젙븯뿬 寃嫄고븯뒗 븳렪 궗嫄닿낵 臾닿븳 슜쓽옄瑜 諛곗젣븯硫 씤沅뚯쓣 샊샇븷 닔 엳뒗 젣룄媛 援ъ텞릺뿀떎. 쁽옣利앷굅臾 諛 援ъ냽뵾쓽옄 DNA 봽濡쒗븘 援由쎄낵븰닔궗뿰援ъ썝(씠븯 援怨쇱닔)뿉꽌 슫쁺븯뒗 뵒뿏뿉씠떊썝솗씤떆뒪뀥(DNA identification management system, DIMS)뿉, 닔삎씤 DNA 봽濡쒗븘 寃李곗껌뿉꽌 슫쁺븯뒗 븳援 DNA 뜲씠꽣踰좎씠뒪(Korea DNA database, KODNAD)뿉 蹂닿릺뼱 긽샇 媛꾩쓽 뿰怨꾨 넻빐 寃깋씠 닔뻾릺怨 엳떎. 씠윭븳 DNA-DB 젣룄 슫쁺쓣 넻븯뿬, 理쒓렐뿉뒗 30뿬 뀈媛 誘몄젣濡 궓븘엳뜕 솕꽦 뿰뇙궡씤궗嫄댁쓽 吏꾨쾾쓣 洹쒕챸븳 寃껋쓣 鍮꾨’븯뿬 떎뼇븳 옣湲곕몄젣궗嫄댁쓣 빐寃고븷 닔 엳뿀떎.

슦由щ굹씪뒗 DNA-DB뿉 닔濡앸릺뒗 DNA 떊썝솗씤젙蹂댁 踰붿즲옄쓽 씤쟻 젙蹂대 遺꾨━븯뿬 媛곴컖 룆由쎈맂 DB濡 愿由ы븯怨, DNA 떊썝솗씤젙蹂댁뿉꽌뒗 怨좎쑀쓽 떇蹂꾨쾲샇留 遺뿬븯怨 씤쟻 젙蹂대 룷븿떆궎吏 븡뒗 벑쓽 諛⑸쾿쑝濡 媛쒖씤쓽 궗깮솢 蹂댄샇뿉룄 理쒖꽑쓽 끂젰쓣 떎븯怨 엳떎(Jang et al., 2021).

援궡 DNA-DB뿉뒗 踰붿즲쁽옣 벑, 援ъ냽뵾쓽옄 벑 諛 닔삎씤 벑쓽 DNA 떊썝솗씤젙蹂닿 닔濡앸릺뼱 愿由щ릺怨 엳떎. 踰붿즲쁽옣 벑쓽 DNA 떊썝솗씤젙蹂대뒗 2020뀈 12썡 31씪 湲곗 珥 139,311嫄댁씠 닔濡앸릺뿀怨, 씠뒗 DNA踰 젣7議곗뿉 뵲씪 梨꾩랬 릺뿀쑝硫, 踰 떆뻾 씠쟾뿉꽌遺꽣 蹂댁쑀븯怨 엳뜕 30,338嫄댁쓣 룷븿븳떎. 쁽옱 닔濡앸릺뼱 엳뒗 踰붿즲쁽옣 벑쓽 DNA 떊썝솗씤젙蹂대뒗 븘吏 떊썝씠 솗씤릺吏 븡 寃껊뱾씠怨, 벑濡 씠썑 떊썝씠 솗씤맆 寃쎌슦 DB뿉꽌 利됱떆 궘젣릺怨 엳떎. 궡씤, 꽦룺뻾, 媛뺣룄 벑 媛뺣젰 궗嫄대뱾씠 吏냽쟻쑝濡 뒛뼱굹怨, 궗嫄 빐寃곗뿉 怨쇳븰쟻 利앷굅쓽 븘슂꽦 諛 DNA 利앷굅쓽 以묒슂꽦씠 利앷븿뿉 뵲씪 DB뿉 닔濡앸릺뒗 踰붿즲쁽옣 벑 DNA 떊썝솗씤젙蹂댁쓽 닔룄 袁몄엳 利앷븯뒗 異붿꽭씠떎(Fig. 1) (Jang et al., 2021).

Fig. 1. Number of uploaded DNA profiles from crime scene evidences (2000. 1. 1~2020. 12. 31).

2020뀈 12썡 31씪 湲곗쑝濡 닔삎씤 벑 諛 援ъ냽뵾쓽옄 벑 DB뿉 닔濡앸맂 踰붿즲옄쓽 닔뒗 珥 254,719紐낆씠떎(Fig. 2). 닔삎씤 벑씠 DNA踰 젣5議곗뿉 뵲瑜 DNA 媛먯떇떆猷 梨꾩랬긽옄뱾濡쒖꽌 遺덇뎄냽 썑 吏뺤뿭 • 湲덇퀬 • 移섎즺媛먰샇 泥섎텇 벑쓣 諛쏆 떎삎 솗젙옄 踰뚭툑 • 吏묓뻾쑀삁 • 議곌굔遺꽑怨좎쑀삁 벑쓣 諛쏆 옄뱾쓣 留먰븯怨, 援ъ냽뵾쓽옄 벑 DNA踰 젣5議곗뿉 뵲瑜 二꾨 踰뷀븯뿬 援ъ냽맂 뵾쓽옄 삉뒗 移섎즺媛먰샇踰뺤뿉 뵲씪 蹂댄샇 援ъ냽맂 移섎즺媛먰샇 긽옄씤 옄뱾濡쒖꽌, 媛곴컖 184,957紐낃낵 69,762紐낆씠 DB뿉 닔濡앸릺뿀떎(Jang et al., 2021).

Fig. 2. Number of uploaded DNA profiles from crime scene evidences (2000. 1. 1~2020. 12. 31).

2020뀈 12썡 31씪源뚯 닔삎씤 벑怨 踰붿즲쁽옣 벑 DNA-DB 媛 긽샇寃깋 寃곌낵 珥 172,920嫄댁쓽 踰붿즲쁽옣 벑쓣 닔삎씤 벑怨 寃깋븯뿬 珥 10,243嫄댁쓽 떊썝쓣 솗씤뻽怨, 200,743紐낆쓽 닔삎씤 벑쓣 踰붿즲쁽옣 벑怨 寃깋븯뿬 珥 15,652嫄댁쓽 愿젴궗嫄댁쓣 솗씤뻽떎(Table 4) (Jang et al., 2021). 삉븳 援ъ냽뵾쓽옄 벑怨 踰붿즲쁽옣 벑쓽 긽샇寃깋 寃곌낵 珥 172,920嫄댁쓽 踰붿즲쁽옣 벑쓣 援ъ냽뵾쓽옄 벑怨 寃깋븯뿬 珥 9,434嫄댁쓽 떊썝쓣 솗씤뻽怨, 75,640紐낆쓽 援ъ냽뵾쓽옄 벑쓣 踰붿즲쁽옣 벑怨 寃깋븯뿬 珥 13,739嫄댁쓽 愿젴궗嫄댁쓣 솗씤뻽떎(Table 5) (Jang et al., 2021). 쐞 媛숈 踰붿즲옄뱾쓽 DNA 떊썝솗씤젙蹂대뒗 DB뿉 닔濡앸릺뒗 踰붿즲쁽옣 벑怨 떎떆媛꾩쑝濡 뿰怨 諛 寃깋릺怨, 씪移 嫄댁씠 솗씤릺硫 떊냽븯寃 쉶蹂대릺뼱 踰붿씤쓽 듅젙 諛 궗嫄 빐寃곗뿉 湲곗뿬븯怨 엳떎.

DNA-DB matching status between prisoners and crime scene evidences (2010. 7. 26~2020. 12. 31)

Year Crime scene → Prisoners Prisoners → Crime scene
Searches (Cases) Matches (Cases) Searches (People) Matches
Prisoners (People) Crime scene (Cases)
2010~2011 15,828 1,196 32,964 4,632 7,522
2012 26,636 1,415 18,068 1,172 1,806
2013 16,722 877 19,053 1,032 1,385
2014 14,085 724 19,219 641 781
2015 13,614 760 16,279 444 520
2016 15,141 850 20,901 668 783
2017 17,184 1,070 21,531 649 717
2018 18,641 1,128 20,597 667 782
2019 18,215 1,194 17,898 669 767
2020 16,854 1,029 14,233 504 589
Total 172,920 10,243 200,743 11,078 15,652

DNA-DB matching status between suspects in custody and crime scene evidences (2010. 7. 26~2020. 12. 31)

Year Crime scene → Suspects in custody Suspects in custody → Crime scene
Searches (Cases) Matches (People) Matches (Cases) Searches (Cases) Matches (People) Matches (Cases)
2010~2011 15,828 519 673 17,472 2,101 3,195
2012 26,636 1,180 1,510 9,289 1,416 2,076
2013 16,722 514 652 8,107 1,405 2,127
2014 14,085 537 673 7,382 1,064 1,422
2015 13,614 605 764 7,314 823 1,157
2016 15,141 690 791 6,596 690 994
2017 17,184 884 1,005 5,602 518 640
2018 18,641 929 1,112 4,807 559 767
2019 18,215 990 1,158 4,799 504 750
2020 16,854 949 1,096 4,272 426 611
Total 172,920 7,797 9,434 75,640 9,506 13,739


2.3. 醫뚯쐞 솗옣뿉 쓽븳 援궡 DNA-DB 蹂솕

援궡뿉꽌뒗 DB 愿由ъ쐞썝쉶 諛 떎臾댁쐞썝쉶뿉꽌 솗옣 醫뚯쐞쓽 룄엯 諛 寃깋 떆뒪뀥 援ъ텞뿉 븯뿬 끉쓽븯쑝硫, (踰뺤쟻 • 쑄由ъ쟻) 寃넗瑜 嫄곗퀜 븳誘쇨뎅쓽 DNA-DB 醫뚯쐞 솗옣씠 寃곗젙릺뿀떎. 씠썑 2018뀈 1썡遺꽣 怨듭떇쟻쑝濡 솗옣 醫뚯쐞媛 룷븿맂 20媛 醫뚯쐞媛 DNA-DB뿉 닔濡앸릺뼱, 寃깋쓣 떆뻾븯怨 엳떎. 솗옣맂 醫뚯쐞瑜 룄엯븳 DNA-DB 떆뒪뀥 슫쁺쓣 넻븯뿬 씠썑 궗嫄 빐寃곗뿉 룄쓣 以 궗濡뱾씠 蹂닿퀬릺怨 엳떎(Jung et al., 2017).

븳렪 醫뚯쐞 솗옣쑝濡 씤빐 媛먯젙 諛 DB 슫쁺뿉 二쇱쓽빐빞 븷 젏뱾룄 諛쒖깮븳떎. 醫뚯쐞 솗옣뿉 뵲씪 떆뿕븷 닔 엳뒗 긽 醫뚯쐞媛 뒛뼱굹硫댁꽌 DB 닔濡 湲곗뿉 異⑹”릺뒗 쁽옣利앷굅臾쇱뿉 븳 遺꾩꽍 寃곌낵媛 利앷븯寃 릺뼱 怨쇨굅뿉 鍮꾪빐 DB뿉 닔濡 諛 寃깋릺뒗 DNA 봽濡쒗븘쓽 닔媛 利앷뻽떎. 씠瑜 넻빐 遺遺 醫뚯쐞留 寃異쒕릺뜑씪룄 닔濡 諛 寃깋씠 媛뒫븯뿬 뜑 留롮 궗嫄대뱾쓣 빐寃고븷 닔 엳뒗 湲띿젙쟻 슚怨쇰 媛吏怨 엳떎. 떎留, 遺遺 醫뚯쐞뱾쓽 닔濡앹씠 뒛뼱굹寃 릺硫 遺遺꾩씪移섏씤 寃깋 寃곌낵媛 利앷븯寃 릺怨 씠윭븳 遺遺꾩씪移 寃깋 寃곌낵 以묒뿉뒗 異붽쟻씤 寃넗瑜 슂援ы븯뒗 寃쎌슦룄 엳쑝誘濡 DB쓽 슫쁺뿉 엳뼱꽌 二쇱쓽媛 븘슂븷 寃껋쑝濡 蹂댁씤떎.

遺꾩꽍맂 醫뚯쐞 닔 利앷뿉 뵲씪 닔諛섎릺뒗 STR 遺꾩꽍 궎듃 媛 遺덉씪移(discordance, DC) 諛쒖깮쓽 利앷뒗 遺덇뵾븳 쁽긽씠떎. 2018뀈 솗옣 醫뚯쐞 룄엯쓣 쟾썑濡 2016뀈 1썡遺꽣 2019뀈 10썡源뚯 젒닔맂 21,160嫄댁쓽 援ъ냽뵾쓽옄 떆猷뚮 遺꾩꽍븳 寃곌낵, 醫뚯쐞 솗옣 쟾 DC 諛쒖깮 嫄댁씠 29嫄(0.28%)뿉꽌 醫뚯쐞 솗옣 썑 67嫄(0.63%)濡 빟 2諛 利앷븳 寃껋쑝濡 솗씤릺뿀떎. 議곗떆猷뚯쓽 寃쎌슦 DNA쓽 뼇씠 異⑸텇븯뿬 鍮꾧탳쟻 紐낇솗엳 DC쓽 諛쒖깮쓣 솗씤븷 닔 엳吏留, 쁽옣利앷굅臾쇱쓽 寃쎌슦 떆猷뚯쓽 긽깭뿉 뵲씪 由쎌쑀쟾옄 媛 遺덇퇏삎 諛 由쎌쑀쟾옄 궫엯/깉씫 벑씠 諛쒖깮븷 닔 엳쑝誘濡, 뜲씠꽣 遺꾩꽍뿉 뼱젮씠 엳쓣 닔 엳떎. 뵲씪꽌 DNA 뜲씠꽣 遺꾩꽍 떆뿉 STR 醫뚯쐞뿉 뵲瑜 DC 諛쒖깮 鍮꾩쑉 諛 諛쒖깮 삎깭瑜 媛먯븞븯뿬 뜲씠꽣 빐꽍쓽 삤瑜섎 理쒖냼솕븯湲 쐞빐 끂젰빐빞 븷 寃껋쑝濡 궗猷뚮맂떎. 삉븳 DNA 떊썝솗씤젙蹂대뱾쓣 DB뿉 닔濡 諛 寃깋 떆 硫대엳 寃넗븯怨, DC濡 씤븳 듅젙 醫뚯쐞쓽 遺덉씪移 媛뒫꽦쓣 怨좊젮븯뿬 븘슂븳 寃쎌슦 媛먯젙씤뱾뿉寃 뜲씠꽣쓽 옱寃넗 諛 옱遺꾩꽍 슂泥쓣 넻빐 DNA-DB쓽 臾닿껐꽦쓣 쑀吏븯湲 쐞븳 끂젰씠 븘슂븷 寃껋쑝濡 뙋떒맂떎(Kim et al., 2020).

2.4. 쑄由 諛 踰뺤쟻 寃넗

1990뀈 以묐컲遺꽣 踰붿즲옄 DNA-DB 꽕由쎌뿉 븯뿬 뿬윭 李⑤ 끉쓽媛 씠猷⑥뼱議뚯留, 二쇨 遺꽌 諛 DB 슫쁺怨 愿由 梨낆엫 벑쓽 빀쓽 怨쇱젙뿉꽌쓽 臾몄젣瑜 씠쑀濡 踰 젣젙 臾댁궛릺뿀떎. 븯吏留 씠썑 怨꾩냽빐꽌 궗쉶쟻 씠紐⑹쓣 걚뒗 媛뺣젰 궗嫄댁씠 諛쒖깮븯硫 씠뿉 쓳븯湲 쐞븳 踰 젣젙 븘슂뿉 븳 옱끉쓽媛 씠猷⑥뼱吏硫, 2009뀈 12썡 DNA踰뺤씠 넻怨쇰릺뿀떎(Cho, 2010; Jung et al., 2021).

DNA踰 젣젙 씠쟾遺꽣 끉씠 릺뜕 媛쒖씤쓽 씤沅 蹂댁옣 痢〓㈃뿉 븳 끉 뿬쟾엳 議댁옱븯怨 엳뒗 긽솴씠떎. 뵲씪꽌 젣젙맂 DNA踰뺤뿉꽌뒗 씠뿉 븳 끉쓣 셿솕븯硫댁꽌룄 踰붿즲 닔궗, 踰붿즲 삁諛, 援誘쇱쓽 沅뚯씡 蹂댄샇瑜 紐⑹쟻쑝濡 븯湲 쐞븯뿬 DNA 떊썝솗씤젙蹂댁쓽 닔吏, 씠슜, 蹂댄샇뿉 愿젴븳 궡슜쓣 紐낆떆븯怨 엳떎(Cho, 2010; Kim, 2012; Jung et al., 2017). 踰뺣쪧뿉꽌뒗 DNA 떊썝솗씤젙蹂댁쓽 닔吏 諛 泥섎━, 젙蹂댁쓽 쑀異 諛 삤궓슜 諛⑹瑜 쐞븳 궡슜쓣 二쇰줈 떎猷⑥뼱, DNA 媛먯떇떆猷뚯쓽 梨꾩랬 諛 DNA 젙蹂 愿由ъ 젙蹂 씠슜뿉 뵲瑜 씤媛꾩쓽 議댁뾼꽦怨 媛쒖씤쓽 궗깮솢씠 移⑦빐릺吏 븡룄濡 떆梨낆쓣 留덈젴븯怨, DNA 젙蹂댁뿉뒗 媛쒖씤떇蹂 씠쇅쓽 吏덈퀝 삉뒗 쑀쟾 젙蹂닿 룷븿릺吏 븡룄濡 洹쒖젙븯怨 엳떎. 뵲씪꽌 씠윭븳 洹쒖젙 궡뿉꽌 DNA-DB 슫쁺 媛쒖씤떇蹂꾨쭔쓣 紐⑹쟻쑝濡 븯怨 媛쒖씤쓽 씡紐낆꽦쓣 蹂댁옣븯뿬 슫쁺릺怨 엳떎(Cho, 2010; Jung et al., 2021). 2021뀈 蹂닿퀬맂 醫뚯쐞 솗옣쓽 쑄由ъ쟻 • 踰뺤쟻 寃넗 뿰援ъ뿉꽌뒗 솗옣 醫뚯쐞瑜 룷븿븳 STR 醫뚯쐞뱾씠 媛쒖씤쓽 궗깮솢 移⑦빐 媛뒫꽦씠 뾾怨, 踰뺤쟻쑝濡쒕룄 鍮꾨꽦쓽 썝移숈뿉 諛섑븯吏 븡뒗 寃껋쑝濡 뙋떒븯떎(Cho, 2010).

3. 醫뚯쐞 솗옣쓽 湲띿젙쟻 슚怨

3.1. 궗嫄 빐寃 궗濡

3.1.1. 遺遺 봽濡쒗븘 寃異쒕쪧 뼢긽

DNA-DB 寃깋 寃곌낵 씪移섎줈 쉶蹂댄븯湲 쐞빐꽌뒗 DNA-DB 슫쁺吏移⑥꽌뿉 뵲씪, 理쒖냼 9媛쒖쓽 씪移섑븯뒗 STR 醫뚯쐞媛 븘슂븯怨, 9媛 誘몃쭔씠뜑씪룄 媛쒖씤떇蹂 吏닔媛 5.0×1010 씠긽씤 寃쎌슦 닔濡 諛 寃깋씠 媛뒫븯떎(Jung et al., 2020). DNA 떊썝솗씤젙蹂 愿由ъ쐞썝쉶뿉꽌 2018뀈 1썡 2씪遺꽣 20媛쒕줈 솗옣맂 STR 醫뚯쐞瑜 쟻슜븯湲곕줈 寃곗젙븳 뮘, 2018뀈 1뀈媛 쓽猶곕맂 援ъ냽뵾쓽옄 DNA 봽濡쒗븘쓣 寃깋븯뿬 쁽옣利앷굅臾 DNA 봽濡쒗븘怨 씪移섑븳 궗嫄 以묒뿉꽌 쁽옣利앷굅臾 DNA 봽濡쒗븘씠 醫뚯쐞 솗옣쓣 넻빐 DNA-DB 닔濡 湲곗뿉 룄떖븳 궗濡 뿰援ш 닔뻾릺뿀怨, 醫뚯쐞 솗옣쓣 넻븯뿬 吏곸젒쟻 궗嫄 빐寃곗씠 맂 궗濡媛 1뀈媛 珥 28嫄댁쑝濡 蹂닿퀬릺뿀떎. 궗嫄댁쓽 쑀삎 蹂 遺꾨쪟 寃곌낵 젅룄 궗嫄댁씠 82%濡 媛옣 넂 鍮꾩쑉쓣 李⑥븯怨, 쁽옣利앷굅臾 쑀삎 젒珥됱쬆嫄곕Ъ씠 86%濡 蹂닿퀬릺뿀떎(Jung et al., 2020). 젒珥됱쬆嫄곕Ъ DNA 냽룄媛 궙븘 遺遺 봽濡쒗븘 寃異 媛뒫꽦씠 넂 쑀삎쓽 利앷굅臾쇱씠怨, 醫뚯쐞 솗옣쓣 넻빐 遺遺 寃異 媛뒫꽦씠 넂븘졇 궗嫄댁쓽 빐寃곗뿉 룄쓣 以 닔 엳쓬쓣 蹂댁뿬二쇰뒗 궗濡씠떎.

2013뀈遺꽣 2015뀈源뚯(3뀈) 젅룄 궗嫄댁쓽 利앷굅臾 쑀삎 異붿꽭瑜 遺꾩꽍븳 끉臾몄뿉 쓽븯硫 留ㅻ뀈 씤泥 遺꾨퉬臾 쑀삎쓽 利앷굅臾쇱 媛먯냼븯뒗 諛섎㈃ 젒珥됱쬆嫄곕Ъ씠 겙 룺쑝濡 利앷븯뒗 뼇긽씠 愿李곕릺뿀怨(Jung et al., 2017), 젅룄 궗嫄대퓧 븘땲씪 怨쇨굅뿉 鍮꾪빐 踰붿즲媛 젏李 쓷쟻쓣 궓湲곗 븡쑝젮뒗 吏뒫쟻 뼇긽쓣 蹂댁엫뿉 뵲씪 젒珥됱쬆嫄곕Ъ뿉꽌쓽 DNA 봽濡쒗븘 솗蹂 以묒슂꽦씠 而ㅼ怨 엳떎(Han et al., 2013). 뵲씪꽌 STR 醫뚯쐞 솗옣뿉 쓽빐 젒珥됱쬆嫄곕Ъ뿉꽌 DNA 봽濡쒗븘 솗蹂 媛뒫꽦씠 넂븘吏먯뿉 뵲씪 뜑슧 궗嫄 빐寃곗뿉 湲곗뿬븷 닔 엳쓣 寃껋쑝濡 湲곕맂떎.

뜑遺덉뼱, 쐞 궗濡 뿰援 28嫄 以묒뿉뒗 샎빀 DNA삎뿉꽌 1씤쓽 DNA 봽濡쒗븘쓣 異붿젙븳 꽦踰붿즲 궗嫄댁씠 룷븿릺뿀떎(Jung et al., 2020). 샎빀 DNA삎 洹 옄泥대줈뒗 DNA-DB뿉꽌 寃깋씠 遺덇뒫븯怨, 씠썑 踰붿씤씠 듅젙릺뿀쓣 븣 샎빀삎뿉 룷븿릺뒗吏 뿬遺瑜 뙋떒븷 닔 엳떎. DNA-DB瑜 넻븳 寃깋 뻾쐞뒗 샎빀 DNA삎쑝濡쒕꽣 1씤쓽 DNA 봽濡쒗븘쓣 異붿젙븷 닔 엳뼱빞 媛뒫븯怨, 샎빀 鍮꾩쑉, DNA 냽룄 諛 由쎌쑀쟾옄 뼇긽 벑뿉 뵲씪 醫뚯쐞 蹂꾨줈 異붿젙쓽 젙솗꽦씠 떖씪吏 닔 엳떎. 利, 醫뚯쐞 솗옣 샎빀 DNA삎쑝濡쒕꽣 異붿젙릺뒗 DNA 봽濡쒗븘쓽 醫뚯쐞 닔瑜 利앷떆궡뿉 뵲씪 떇蹂꾨젰 諛 젙솗꽦쓽 뼢긽뿉룄 룄씠 맆 닔 엳쓬쓣 蹂댁뿬以떎.

3.1.2. 옣湲곕몄젣궗嫄 빐寃

2021뀈 蹂닿퀬맂 諛붿뿉 뵲瑜대㈃, 醫뚯쐞 솗옣쑝濡 DNA-DB 寃깋 寃곌낵 씤빐 닔삎씤 벑怨 씪移섑븳 궗濡媛 蹂닿퀬릺뿀쑝硫, 2001뀈 뿬븘媛뺢컙 옣湲곕몄젣궗嫄, 2003뀈~2006뀈 10쉶뿉 嫄몄퀜 諛쒖깮븳 뿰뇙 媛뺣룄媛뺢컙 궗嫄댁씠 빐떦릺뿀떎(Jung et al., 2021). 援怨쇱닔뿉꽌 遺꾩꽍맂 DNA 봽濡쒗븘 以묒뿉꽌 2010뀈 踰붿즲옄 DNA-DB쓽 踰뺣쪧솕 씠쟾뿉 遺꾩꽍맂 궗嫄대뱾 以 쁽옱 DNA-DB 닔濡 諛 寃깋 湲곗뿉 誘몄튂吏 紐삵븯뒗 9醫뚯쐞 誘몃쭔쑝濡 議댁옱븯뒗 옣湲곕몄젣궗嫄 DNA 봽濡쒗븘씠 2015뀈 3썡쓣 湲곗쑝濡 1,801嫄댁씠 議댁옱븯떎. 씠뒗 떦떆 遺꾩꽍 湲곕쾿쓽 醫뚯쐞 닔 寃異 븳怨꾩뿉 쓽븳 寃껋쑝濡 援怨쇱닔뿉꽌뒗 1,801嫄댁쓣 궗嫄댁쓽 쑀삎 蹂꾨줈 遺꾨쪟븯怨, 媛뺣룄 • 궡씤 벑뿉 빐떦븯뒗 쑀삎-I(131嫄), 媛뺢컙 벑뿉 빐떦븯뒗 쑀삎-II(858嫄) 諛 젅룄 벑뿉 빐떦븯뒗 쑀삎-III(812嫄)쓣 떒怨꾩쟻쑝濡 옱遺꾩꽍븯쑝硫, 솗옣 醫뚯쐞媛 룷븿맂 STR 利앺룺 궎듃瑜 씠슜븯뿬 쁽 湲곗닠뿉꽌 理쒕븳쓽 醫뚯쐞 닔瑜 솗蹂댄븯怨좎옄 븯떎. 2018뀈룄 源뚯 吏꾪뻾맂 쑀삎-I쓽 옱遺꾩꽍 寃곌낵뿉 쓽븯硫, 131嫄 以묒뿉꽌 56.5%뿉 빐떦븯뒗 74嫄댁쓽 DNA 봽濡쒗븘씠 9醫뚯쐞 씠긽쑝濡 뾽洹몃젅씠뱶릺뿀쑝硫, 씠以 5嫄댁 닔삎씤怨 씪移섑븯뿬 궗嫄댁씠 빐寃곕맂 寃껋쑝濡 솗씤릺뿀떎. 씠 媛숈 寃곌낵뒗 쑀삎-I뿉 븳젙맂 寃곌낵吏留, 媛뺣룄, 궡씤 벑 媛뺣젰 궗嫄댁뿉 븳 옣湲곕몄젣궗嫄 닔궗뿉 湲곗뿬븯쓬쓣 븣 닔 엳쑝硫, 쑀삎-II 諛 III뿉 빐떦븯뒗 嫄댁뿉 븳 꽦怨쇨 諛섏쁺맂떎硫 옣湲곕몄젣 빐寃곗쓽 湲곗뿬룄媛 겕寃 利앷븷 寃껋쑝濡 궗猷뚮맂떎.

3.2. 媛議깃怨 遺꾩꽍쓽 젙솗꽦 뼢긽

DNA 遺꾩꽍踰뺤 媛먯젙臾 DNA 듅젙 媛쒖씤쓽 DNA 봽濡쒗븘쓣 鍮꾧탳븯뒗 踰붿즲 궗嫄댁뿉쓽 쓳슜 씠쇅뿉, 媛쒖씤 떊썝솗씤 遺꾩빞뿉룄 솢諛쒗엳 궗슜 以묒씠떎. 븯吏留 媛쒖씤떇蹂꾨젰 뼢긽 벑쓽 紐⑹쟻쑝濡 袁몄엳 STR 醫뚯쐞쓽 솗옣씠 씠猷⑥뼱議뚯留, 媛議깃怨 솗씤 紐⑹쟻쓽 遺꾩꽍뿉꽌뒗 뿬쟾엳 異붽醫뚯쐞 솗옣쓽 븘슂꽦씠 젣湲곕릺怨 엳怨, 媛議깃怨 遺꾩꽍쓽 젙솗꽦 뼢긽뿉 븳 湲띿젙쟻 媛뒫꽦씠 蹂닿퀬릺怨 엳떎(Novroski et al., 2019).

븳援씤쓣 긽쑝濡 븳 怨쇨굅 뿰援ъ뿉 뵲瑜대㈃ 遺꾩꽍뿉 솢슜릺뒗 STR 醫뚯쐞媛 13媛쒖뿉꽌 20媛쒕줈 솗옣릺뿀쓣 븣, 媛쒖껜떇蹂꾨젰(power of discrimination, PD) 0.9163쑝濡 뼢긽릺뿀쑝硫, 媛쒖껜媛 뵒뿏뿉씠삎씠 씪移섑븷 솗瑜(probability of match, PM) 媛믪 2.5963×10-23, 移쒖옄愿怨 遺꾩꽍쓽 吏몴媛 릺뒗 諛곗젣 솗瑜(power of exclusion, PE) 媛믪 0.99999995濡 씠쟾 13媛 STR쓣 醫뚯쐞濡 궗슜뻽쓣 븣쓽 PM 媛(2.8090×10-14)怨 PE 媛(0.99995)蹂대떎 썾뵮 떇蹂꾨젰씠 뼢긽맂 寃껋쓣 솗씤븯떎(Kim et al., 2017). 삉븳 21媛쒖쓽 STR 醫뚯쐞瑜 궗슜븯쓣 븣 吏묐떒 궡 룞씪媛쒖껜 異쒗쁽 솗瑜(probability of identity, PI) 媛믪 10媛쒖쓽 STR 醫뚯쐞瑜 궗슜뻽쓣 븣쓽 PI 媛믪씤 4.93×10-14뿉꽌 21媛쒖쓽 솗옣 醫뚯쐞 궗슜쑝濡 씤븯뿬 9.66×10-25쑝濡 以꾩뼱뱶뒗 寃껋쓣 솗씤븯떎(Hwang et al., 2013). PE 媛 삁뿰愿怨 뙋젙 湲곗쑝濡 궗슜릺뒗 슦룄鍮(likelihood ratio, LR)쓽 뿰愿꽦쓣 遺꾩꽍븳 怨쇨굅 뿰援ъ뿉 뵲瑜대㈃ LR = 1/(1-PE)씠誘濡 PE 媛믨낵 LR 鍮꾨 愿怨꾧 꽦由쏀븯怨, 醫뚯쐞 솗옣쑝濡 씤븯뿬 삁뿰 愿怨꾧 븘땶 寃쎌슦쓽 PE 媛믪씠 媛먯냼맖뿉 뵲씪 LR 媛믪쓽 媛먯냼濡 씤븯뿬 媛議깃怨 遺꾩꽍뿉 븳 젙솗꽦쓣 넂씪 닔 엳떎뒗 젏쓣 븣 닔 엳떎(Slooten and Egeland, 2014).

떎젣濡 븳援씤쓣 긽쑝濡 븳 뿰援 寃곌낵뿉꽌 13媛 STR 醫뚯쐞 궗슜怨 20媛 STR 醫뚯쐞 궗슜 떆, 遺紐-옄떇 愿怨꾩 삎젣愿怨꾩쓽 LR 遺꾪룷 洹몃옒봽뿉꽌 濡쒓렇 以묒븰媛(median LR)씠 利앷븯뒗 諛⑺뼢(슦痢)쑝濡 씠룞븯쑝硫, 씠뒗 뿰愿꽦씠 뾾뒗 洹몃9 媛꾩쓽 LR 洹몃옒봽 以묒꺽릺뒗 遺遺꾩씠 以꾩뼱뱾뼱 삁뿰 愿怨꾧 뾾뒗 愿怨꾨 援щ텇븯뒗 뒫젰씠 뼢긽릺뿀쓬쓣 솗씤븯떎(Yang et al., 2013). 利, STR 醫뚯쐞 솗옣쓣 쟻슜븳 媛議깃怨 遺꾩꽍 떆, 삁뿰愿怨 뙆븙뿉 븳 젙솗꽦쓣 뼢긽떆궓떎뒗 寃곕줎쓣 뼸쓣 닔 엳뿀떎(Yang et al., 2013).

4. 怨쇱젣 諛 諛쒖쟾 諛⑹븞

4.1. 룎뿰蹂씠 뿰援

STR 醫뚯쐞뿉꽌 諛쒖깮븯뒗 룎뿰蹂씠뒗 媛쒖씤쓽 떊썝솗씤쓣 뼱졄寃 留뚮뱶뒗 슂씤 以 븯굹씠떎. DNA 蹂듭젣媛 吏꾪뻾릺뒗 룞븞 媛떏 誘몃걚윭吏 쁽긽씠굹 遺덇퇏벑븳 뿼깋泥 援먯감 쁽긽씠 씪뼱굹寃 릺硫, STR 諛섎났 닔媛 利앷 삉뒗 媛먯냼릺뼱 룎뿰蹂씠濡 굹굹寃 릺뒗뜲, 꽭떦 룎뿰蹂씠쑉씠 10-6 ~ 10-2쑝濡 넂 렪씠湲 븣臾몄뿉 룎뿰蹂씠濡 씤븯뿬 遺紐⑥ 옄떇씠 怨듭쑀븯뒗 由쎌쑀쟾옄瑜 李얠 紐삵븯뒗 寃쎌슦룄 諛쒖깮븳떎(Fan and Chu, 2007; Mardini et al., 2013; Nwawuba Stanley et al., 2020). 룎뿰蹂씠뒗 媛 씤醫 諛 援媛뿉 뵲씪꽌룄 떎瑜닿쾶 굹굹誘濡 븳援 씠쇅뿉룄 以묎뎅, 釉뚮씪吏, 硫뺤떆肄, 븘젣瑜대컮씠옍, 꽣궎 벑쓽 援媛뿉꽌뒗 듅젙 씤醫낆뿉꽌 諛쒖깮븯뒗 STR 醫뚯쐞 蹂 룎뿰蹂씠뿉 븳 뿰援щ 솢諛쒗엳 吏꾪뻾 以묒뿉 엳떎(Mardini et al., 2013; Kim et al., 2021).

媛議깃怨 씪移 湲곗 젙由쎌뿉 엳뼱꽌, STR 醫뚯쐞쓽 솗옣뿉 뵲瑜 룎뿰蹂씠 벑쓽 諛섏쁺씠 븘슂븯떎. 醫뚯쐞 蹂 룎뿰蹂씠쑉쓣 솗瑜 媛믪뿉 諛섏쁺븯怨, 룎뿰蹂씠濡 씤븳 諛곗젣 湲곗쓣 寃곗젙븯湲 쐞빐꽌뒗 솗옣맂 醫뚯쐞瑜 넗濡 븳援씤 吏묐떒 궡 STR 룎뿰蹂씠 뿰援ш 븘슂븯떎. 씠뿉, 理쒓렐 븳援뿉꽌룄 愿젴 뿰援ш 닔뻾릺뿀怨 뿰援 寃곌낵 쟾泥 303 媛援ъ쓽 10.89% 鍮꾩쑉濡 珥 36媛쒖쓽 룎뿰蹂씠媛 蹂닿퀬릺뿀떎(Mardini et al., 2013). 룎뿰蹂씠뒗 D1S1656, D2S441, D2S1338, FGA, CSF1PO, SE33, D7S820, vWA, D12S391, Penta E, D21S11, Penta D, D22S1045 珥 14媛쒖쓽 醫뚯쐞뿉꽌 愿李곕릺뿀怨, 듅엳 SE33쓽 룎뿰蹂씠쑉(1.28%)씠 媛옣 넂븯怨 뮘瑜 씠뼱 Penta E, D12S391뿉꽌쓽 룎뿰蹂씠 愿李곗쑉씠 넂븯떎(Kim et al., 2021). CODIS 醫뚯쐞뿉꽌 諛쒖깮븳 22媛쒖쓽 룎뿰蹂씠 以 12媛(54.5%)뒗 湲곗〈 13媛 CODIS STR 醫뚯쐞뿉 빐떦븯吏留, 10媛(45.5%)뒗 솗옣맂 7媛쒖쓽 CODIS STR 醫뚯쐞뿉 빐떦맖쑝濡쒖뜥 솗옣 醫뚯쐞 삉븳 湲곗〈 醫뚯쐞 닔以쓽 넂 룎뿰蹂씠쑉쓣 蹂댁떎(Kim et al., 2021). 씠뒗 醫뚯쐞 솗옣怨 뜑遺덉뼱 븳援씤 吏묐떒 궡 룎뿰蹂씠 뿰援ш 븘슂븳 씠쑀瑜 蹂댁뿬以떎. 뜑遺덉뼱, CODIS 20 醫뚯쐞뿉 誘 룷븿릺뒗 Penta E, Penta D 諛 SE33 醫뚯쐞뿉꽌룄 쟾泥 36媛 룎뿰蹂씠쓽 38.9%씤 14媛쒖쓽 룎뿰蹂씠瑜 솗씤븯떎. 뵲씪꽌 CODIS 醫뚯쐞뒗 븘땲吏留 떊썝솗씤쓣 쐞빐 遺꾩꽍릺뒗 醫뚯쐞씠誘濡 씠뱾 醫뚯쐞 삉븳 룎뿰蹂씠 뿰援 벑뿉 룷븿맆 븘슂媛 엳떎(Kim et al., 2021). 빐떦 뿰援ъ뿉뒗 545媛쒖쓽 trio(遺-紐-옄) 꽭듃瑜 遺꾩꽍뿉 솢슜븯吏留, 媛議깃怨 씪移 湲곗쓽 젙由쎌뿉 솢슜뿉뒗 蹂대떎 留롮 trio 꽭듃媛 븘슂븯硫, 씠 쇅쓽 援궡 STR 룎뿰蹂씠 뿰援 궗濡뒗 誘몄쭊븳 긽솴씠떎. 븳援씤 吏묐떒 궡 trio 꽭듃瑜 닔吏묓븯怨, STR 醫뚯쐞 솗옣뿉 뵲瑜 醫뚯쐞 蹂 룎뿰蹂씠 뿰援 닔뻾쓣 넻빐 떊썝솗씤쓽 젙솗꽦쓣 넂씠怨 룎뿰蹂씠瑜 諛섏쁺븳 諛곗젣 湲곗쓣 솗由쏀븷 븘슂媛 엳떎.

4.2. 湲곗〈 궎듃쓽 寃곌낵 遺덉씪移 洹밸났

쁽옱 STR 遺꾩꽍 궎듃쓽 긽슜솕뿉 뵲씪 룞씪 STR 醫뚯쐞瑜 遺꾩꽍븷 닔 엳뒗 궎듃媛 뿬윭 쉶궗뿉꽌 異쒖떆릺뿀떎. 洹몃━怨 援怨쇱닔뿉꽌뒗 DNA 遺꾩꽍쓽 臾닿껐꽦 利앸챸 諛 援먯감 寃利앹쓣 紐⑹쟻쑝濡 룞씪 醫뚯쐞뿉 븯뿬 떎瑜 궎듃瑜 궗슜븯뿬 以묐났 솗씤븯怨 엳쑝硫, 醫뚯쐞 솗옣 씠쟾怨 솗옣 씠썑쓽 DNA-DB 뿰냽꽦쓣 怨좊젮븯뿬 궎듃媛 꽑젙릺뿀떎(Kim et al., 2020). 留뚯씪 STR 醫뚯쐞瑜 씤吏븯뒗 봽씪씠癒 遺쐞뿉 떒씪뿼湲곕삎(SNP)씠 諛쒖깮븯뿬 由쎌쑀쟾옄 쑀떎(allele drop-out)濡 遺꾩꽍릺嫄곕굹, off-ladder濡 遺꾩꽍릺뒗 寃쎌슦, 삉뒗 봽씪씠癒 寃고빀 遺쐞뿉 寃곗떎 삉뒗 궫엯씠 씪뼱굹 옒紐삳맂 쑀쟾옄삎씠 깮꽦릺뒗 寃쎌슦뿉뒗 궎듃 媛꾩쓽 遺덉씪移 쁽긽(DC)씠 諛쒖깮븯寃 맂떎(Li et al., 2014; Gill et al., 2015; Kim et al., 2020). 뵲씪꽌 援궡쇅뿉꽌 DC뿉 븳 떎뼇븳 醫뚯쐞 諛 긽솴뿉 븳 뿰援ш 吏꾪뻾 以묒씠떎(Li et al., 2014; Kim et al., 2020).

STR 궎듃 궡 醫뚯쐞 닔媛 利앷뻽쓬뿉룄 遺덇뎄븯怨 떎以 利앺룺쓣 넻븳 DNA 봽濡쒗븘 寃異쒕쪧씠 뼢긽맂 씠쑀뒗 利앺룺 궎듃쓽 Taq polymerase, 踰꾪띁 벑쓽 媛쒖꽑怨 뜑遺덉뼱 씪젙븳 利앺룺 궛臾쇱쓽 겕湲곕 쑀吏븯湲 쐞븳 삎愿 뙣꼸쓽 닔 利앷 諛 봽씪씠癒 쐞移섏쓽 옱議곗젙 븣臾몄씠떎. 媛 쉶궗뿉꽌뒗 湲곗〈 DNA-DB 솗옣 醫뚯쐞쓽 DNA-DB 샇솚꽦쓣 쐞빐 봽씪씠癒 쐞移섏쓽 옱議곗젙쓣 理쒖냼솕 븯쑝굹, 씪遺 議곗젙씠 遺덇뵾븯誘濡 DC 媛뒫꽦씠 議댁옱븳떎. 씠뿉 DC 臾몄젣 빐寃곗쓣 쐞빐 솗옣 궎듃 湲곗〈 궎듃 媛꾩쓽 遺덉씪移, 솗옣 궎듃 媛꾩쓽 遺덉씪移 벑쓽 뿰援ш 븘슂븯硫 씠瑜 넻빐 DNA 遺꾩꽍쓽 臾닿껐꽦씠 利앷맆 寃껋쑝濡 湲곕븳떎.

寃곕줎(Conclusion)

蹂 끉臾몄뿉꽌뒗 쁽옱 DNA 媛먯떇뿉 몴以쑝濡 씠슜릺뒗 STR 遺꾩꽍踰뺢낵 씠瑜 諛뷀깢쑝濡 슫쁺릺怨 엳뒗 DNA-DB뿉 븳 湲곕낯쟻 궡슜쓣 湲곗닠븯떎. 삉븳 굹궇씠 利앷븯뒗 DNA-DB 궡쓽 봽濡쒗븘뿉 쓳븯湲 쐞븳 STR 醫뚯쐞 솗옣쓽 븘슂꽦怨 솗옣 궗濡瑜 넻븳 醫뚯쐞 솗옣쓽 湲띿젙쟻 슚怨 諛 洹밸났빐빞 븯뒗 긽솴뿉 븳 끉쓽瑜 븿쑝濡쒖뜥, 븵쑝濡쒖쓽 슚怨쇱쟻씤 DNA-DB 슫쁺 떆뒪뀥쓣 쐞빐 븘슂븳 뿰援 諛⑺뼢 삉븳 젣떆븯떎.

쁺援뿉꽌 媛옣 癒쇱 4媛쒖쓽 STR 醫뚯쐞瑜 씠슜븳 DNA-DB媛 援ъ텞릺怨, 씠썑 誘멸뎅뿉꽌뒗 13媛쒖쓽 STR 醫뚯쐞瑜 꽑젙븯뿬 DB瑜 슫쁺븯떎. DB 슫쁺쓣 넻븯뿬 援媛 닔以쑝濡 DNA 젙蹂대 꽌濡 鍮꾧탳븷 닔 엳寃 릺뼱 닔궗뿉 겕寃 湲곗뿬븷 닔 엳뿀吏留 利앷븯뒗 봽濡쒗븘 닔濡 씤븳 븳怨꾩젏쓣 媛吏寃 릺뿀떎. 뵲씪꽌 醫뚯쐞 솗옣쓽 紐⑹쟻怨 븘슂꽦뿉 洹쇨굅븳 紐낇솗븳 湲곗뿉 뵲씪, 뿬윭 뿰援 寃곌낵瑜 醫낇빀븯뿬 理쒖쥌 20媛쒕줈 STR 醫뚯쐞瑜 솗옣븯떎. 븯吏留 뿬쟾엳 媛곴뎅 DB뿉 옣릺뒗 봽濡쒗븘 닔뒗 鍮좊Ⅴ寃 利앷븯뿬, 꽑젙 醫뚯쐞瑜 씠슜븳 遺꾩꽍 寃곌낵媛 슦뿰엳 씪移섑븯寃 맆 솗瑜 삉븳 뜑슧 넂븘吏怨 엳떎. 肉먮쭔 븘땲씪 LCN 떆猷 諛 援젣 怨듭“쓽 븘슂꽦 삉븳 利앷븯怨 엳뒗 뿬윭 궗쉶쟻 긽솴뿉꽌 STR 醫뚯쐞 솗옣 뿰援щ뒗 뿬쟾엳 臾몄젣 빐寃곗쓣 쐞븳 븘닔쟻 슂냼濡 뿬寃⑥怨 엳떎.

슦由щ굹씪뿉꽌뒗 2010뀈 DNA 踰 떆뻾 씠썑 DNA-DB瑜 슫쁺븯怨, 닔궗뿉 쟻洹 솢슜븯뿬 솕꽦 뿰뇙궡씤궗嫄 吏꾨쾾 洹쒕챸怨 媛숈 떎뼇븳 옣湲곕몄젣궗嫄댁쓽 빐寃곗뿉 솢슜븯떎. 뵲씪꽌 DNA 利앷굅쓽 以묒슂꽦씠 袁몄엳 利앷릺뼱 DNA-DB뿉 닔濡앸릺뒗 봽濡쒗븘 닔룄 袁몄엳 利앷븯怨, 씠뿉 뵲씪 2018뀈 씠썑遺꽣뒗 怨듭떇쟻쑝濡 솗옣맂 20媛쒖쓽 醫뚯쐞媛 DNA-DB뿉 닔濡앸릺뼱 솢슜릺怨 엳떎. 씠뒗 쁽옱 誘멸뎅뿉꽌 씠슜 以묒씤 CODIS 20 以묒떖 醫뚯쐞 룞씪븳 醫뚯쐞濡, 넂 媛쒖씤떇蹂꾨젰쓣 媛吏怨 엳湲 븣臾몄뿉 鍮좊Ⅸ 냽룄濡 DNA-DB뿉 異뺤쟻릺뒗 DNA 봽濡쒗븘뱾쓽 슦뿰엳 씪移섑븷 솗瑜좎씠 쁽엳 媛쒖꽑릺뿀怨, 湲곗〈 CODIS 13 醫뚯쐞뿉 援젣쟻 샇솚꽦씠 넂 7媛쒖쓽 醫뚯쐞瑜 異붽븯뿬 쁺援, 쑀읇, 以묎뎅 벑 援媛뱾怨쇰룄 15媛 怨듯넻 醫뚯쐞瑜 怨듭쑀븯誘濡 援젣솕릺뒗 궗쉶뿉꽌 援젣 怨듭“뿉룄 쟻빀븳 닔以쓣 媛뽰텛뿀떎.

솗옣맂 20媛 醫뚯쐞 遺꾩꽍쓣 넻븯뿬 빐寃곕맂 궗濡瑜 遺꾩꽍븯쓣 븣, 씠윭븳 솢슜 二쇰줈 젅룄 궗嫄 諛 젒珥 媛먯젙臾, LCN 떆猷뚮 씠슜븳 遺꾩꽍뿉꽌 궗嫄 빐寃곗뿉 寃곗젙쟻 湲곗뿬瑜 븷 닔 엳뿀떎뒗 젏쓣 솗씤븯떎. 삉븳 怨쇨굅 誘몄젣 궗嫄 DNA瑜 솗옣맂 醫뚯쐞濡 옱遺꾩꽍 썑 DNA-DB 寃깋 寃곌낵 踰붿즲옄 봽濡쒗븘(닔삎씤 벑, 援ъ냽뵾쓽옄 벑)怨 씪移섑븳 궗濡媛 蹂닿퀬릺뼱 옣湲곕몄젣궗嫄댁쓽 빐寃 媛뒫꽦쓣 솗씤븯쑝硫, 솗옣 醫뚯쐞瑜 씠슜븷 븣, 媛쒖씤 떊썝솗씤 諛 媛議깃怨 솗씤 遺꾩빞뿉꽌쓽 젙솗꽦 삉븳 뼢긽맆 寃껋쑝濡 湲곕븯怨 엳떎.

STR 醫뚯쐞 솗옣 씠썑 슦由ш 洹밸났빐빞 븷 怨쇱젣뱾룄 諛쒖깮븳떎. STR 醫뚯쐞 궡뿉꽌 諛쒖깮븯뒗 룎뿰蹂씠 뿰援 諛 STR 醫뚯쐞 遺꾩꽍 궎듃 媛 寃곌낵 遺덉씪移섏뿉 븳 뿰援ш 븘슂븯떎. STR 룎뿰蹂씠뒗 떊썝솗씤뿉 뼱젮슫 슂씤쑝濡 옉슜븷 닔 엳쑝硫, 媛議깃怨 씪移 湲곗쓣 젙由쏀븯湲 쐞븳 紐⑹쟻쑝濡 쁽옱 뿬윭 援媛뿉꽌 솗옣맂 醫뚯쐞瑜 넗濡 STR 룎뿰蹂씠뿉 븳 뿰援ш 吏꾪뻾 以묒씠떎. 肉먮쭔 븘땲씪 STR 醫뚯쐞 遺꾩꽍 궎듃 媛꾩쓽 寃곌낵 遺덉씪移섏뿉 븳 뿰援щ룄 遺꾩꽍 寃곌낵쓽 臾닿껐꽦 엯利앹쓣 쐞븯뿬 븘닔쟻씠떎.

뵲씪꽌 씠踰 珥앹꽕뿉꽌뒗 쁽 긽솴뿉꽌 STR 醫뚯쐞쓽 솗옣씠 븘닔쟻씠硫, 솗옣맂 醫뚯쐞瑜 DNA-DB 슫쁺뿉 쟻洹 솢슜븿쑝濡쒖뜥 궗嫄 빐寃 湲곗뿬쑉 뼢긽 諛 媛議깃怨 遺꾩꽍 젙솗꽦 뼢긽쑝濡 씤븳 꽦怨 룄異쒖씠 媛뒫븿쓣 떆궗븳떎.

ACKNOWLEDGEMENT

This work was supported by the Korean government and by a grant (NFS2022DNA03) from the Forensic Research Program of the National Forensic Service (NFS).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

References
  1. Bernotaite A. Building of the world's largest DNA database: The china case. Forensic DNA Typing: Principles, Applications and Advancements. 2020. pp. 639-658.
    CrossRef
  2. Butler JM. Genetics and genomics of core short tandem repeat loci used in human identity testing. J Forensic Sci. 2006. 51: 253-265.
    Pubmed CrossRef
  3. Butler JM. Short tandem repeat typing technologies used in human identity testing. Biotechniques. 2007. 43: ii-v.
    Pubmed CrossRef
  4. Butler JM. Chapter 14 - forensic challenges: Degraded DNA, mixtures, and lcn, in fundamentals of forensic DNA typing. 2010. Academic Press. San Diego.
    CrossRef
  5. Butler JM. Chapter 8 - DNA databases: Uses and issues, in advanced topics in forensic DNA typing: Methodology. 2012. Academic Press. San Diego.
    CrossRef
  6. Butler JM. The future of forensic DNA analysis. Philos Trans R Soc Lond B Biol Sci. 2015. 370.
    Pubmed KoreaMed CrossRef
  7. Butler JM, Hill CR. Biology and genetics of new autosomal str loci useful for forensic DNA analysis. 2012. CRC Press. Florida.
    CrossRef
  8. Cho SY. Critical Review on Law about 'The Use and Protection of DNA Identification Information'. Korean Criminological Review. 2010. 21: 223-258.
  9. Coble MD. Capillary electrophoresis of ministr markers to genotype highly degraded DNA samples. Methods Mol Biol. 2012. 830: 31-42.
    Pubmed CrossRef
  10. Dang Z, Liu Q, Zhang G, Li S, Wang D, Pang Q, Yang D, Li C, Cui W, Wang Y. Population genetic data from 23 autosomal str loci of huaxia platinum system in the jining han population. Mol Genet Genomic Med. 2020. 8: e1142.
    Pubmed KoreaMed CrossRef
  11. Fan H, Chu JY. A brief review of short tandem repeat mutation. Genomics Proteomics Bioinformatics. 2007. 5: 7-14.
    Pubmed KoreaMed CrossRef
  12. Ge J, Eisenberg A, Budowle B. Developing criteria and data to determine best options for expanding the core codis loci. Investig Genet. 2012. 3: 1.
    Pubmed KoreaMed CrossRef
  13. Gill P, Fereday L, Morling N, Schneider PM. The evolution of DNA databases--recommendations for new european str loci. Forensic Sci Int. 2006. 156: 242-244.
    Pubmed CrossRef
  14. Gill P, Haned H, Bleka O, Hansson O, Dorum G, Egeland T. Genotyping and interpretation of str-DNA: Low-template, mixtures and database matches-twenty years of research and development. Forensic Sci Int Genet. 2015. 18: 100-117.
    Pubmed CrossRef
  15. Hammond HA, Jin L, Zhong Y, Caskey CT, Chakraborty R. Evaluation of 13 short tandem repeat loci for use in personal identification applications. Am J Hum Genet. 1994. 55: 175-189.
    Pubmed KoreaMed
  16. Han SN, Kim JY, Park JH, Ahn HJ. Statistical analysis on DNA profiling success rates of touched evidences. Korean Journal of Forensic Sciences. 2013. 7: 105-110.
  17. Hares DR. Selection and implementation of expanded codis core loci in the united states. Forensic Sci Int Genet. 2015. 17: 33-34.
    Pubmed CrossRef
  18. Hwang JH, Han SY, Cho NS. Population genetic data and concordance study for the powerplex esi17 system and the ampf/str identifilertm kit in koreans. Korean Journal of Forensic Sciences. 2013. 7: 265-271.
  19. Jang JH, Lee BT, Woo GM, Oh HH, Jung OH, Choi YK, Kim DH, Woo YM, Lee JK, Kim JM, Park SJ, Lee DS, Lee WH, Kim JY, Park JH, Lee JY. The 2021 annual report of DNA Identification Database, 2021.
  20. Jobling MA, Gill P. Encoded evidence: DNA in forensic analysis. Nat Rev Genet. 2004. 5: 739-751.
    Pubmed CrossRef
  21. Jordan D, Mills DE. Past, present, and future of DNA typing for analyzing human and non-human forensic samples. Frontiers in Ecology and Evolution. 2021. 9: 646130.
    CrossRef
  22. Jung JY, Cho EH, Lee KM, Ahn ER, Hong SB, Lee DS, Lim SK. Settlement of larceny case by additional DNA typing of crime scene evidences. Journal of Scientific Criminal Investigation. 2017. 11: 137-142.
    CrossRef
  23. Jung KW, Cho SH, Woo GM. A study on the usefulness of STR marker extension in DNA database operation and long-term development plan. New Trends in Forensic Science. 2021. 24-63.
  24. Jung JY, Ryo GH, Kim JY, Ahn ER, Moon SH, Kang PW, Choi DH. Matching arrestees to crime scene DNA profiles by expanding DNA identification database loci. The Journal of Police Science. 2020. 20: 171-183.
  25. Kim JY, Jung JY, Lee MJ, Jang MH, Moon SH, Lee WH, Lim HJ, Sung HY, Choi DH. Study for discordance occurrence ratio analysis according to the expansion of forensic DNA database and the change of str analysis kit. Korean Journal of Forensic Sciences. 2020. 23: 25-31.
  26. Kim JY, Kim HJ, Lee JH, Kim HS, Kim ES. Mutation cases in the korean population using 23 autosomal str loci analysis. Biomedical Science Letters. 2021. 27: 105-110.
    CrossRef
  27. Kim S, Park HC, Kim JS, Nam Y, Kim HY, Park J, Chung UH, Lee JM, Lim SK, Park SJ. Allele frequency data of 20 str loci in 2000 korean individuals. Forensic Science International Genetics. 2017. 6: e65-e68.
    CrossRef
  28. Kim SG. Using DNA Information in DNA Databases for Crime Prevention: Current Issues and Future Directions. Korean Criminological Review. 2012. 23: 259-284.
  29. Li F, Xuan J, Xing J, Ding M, Wang B, Pang H. Identification of new primer binding site mutations at th01 and d13s317 loci and determination of their corresponding str alleles by allele-specific pcr. Forensic Science International:. Genetics. 2014. 8: 143-146.
    Pubmed CrossRef
  30. Mardini AC, Rodenbusch R, Schumacher S, Chula FG, Michelon CT, Gastaldo AZ, Maciel LP, de Matos Almeida SE, da Silva CM. Mutation rate estimates for 13 str loci in a large population from rio grande do sul, southern brazil. Int J Legal Med. 2013. 127: 45-47.
    Pubmed CrossRef
  31. Martin P, Oscar G, Cristina A, Pilar G, Alonso A. Application of mini-str loci to severely degraded casework samples. International Contress Series. 2006. 41: 522-525.
    CrossRef
  32. Nai YH, Powell SM, Breadmore MC. Capillary electrophoretic system of ribonucleic acid molecules. J Chromatogr A. 2012. 1267: 2-9.
    Pubmed CrossRef
  33. Novroski NMM, Wendt FR, Woerner AE, Bus MM, Coble M, Budowle B. Expanding beyond the current core str loci: An exploration of 73 str markers with increased diversity for enhanced DNA mixture deconvolution. Forensic Sci Int Genet. 2019. 38: 121-129.
    Pubmed CrossRef
  34. Nwawuba Stanley U, Mohammed Khadija A, Bukola AT, Omusi Precious I, Ayevbuomwan Davidson E. Forensic DNA profiling: Autosomal short tandem repeat as a prominent marker in crime investigation. Malays J Med Sci. 2020. 27: 22-35.
    Pubmed KoreaMed CrossRef
  35. Oldoni F, Podini D. Forensic molecular biomarkers for mixture analysis. Forensic Sci Int Genet. 2019. 41: 107-119.
    Pubmed CrossRef
  36. Roewer L. DNA fingerprinting in forensics: Past, present, future. Investig Genet. 2013. 4: 22.
    Pubmed KoreaMed CrossRef
  37. Samantha JO, Kathryn LL, Peter JT. Evaluation of the agcu expressmarker 16 and 22 pcr amplification kits using biological samples applied to fta micro cards in reduced volume direct pcr amplification reactions. Journal of Forensic Science and Medicine. 2015. 1: 3-7.
    CrossRef
  38. Slooten KJ, Egeland T. Exclusion probabilities and likelihood ratios with applications to kinship problems. Int J Legal Med. 2014. 128: 415-425.
    Pubmed CrossRef
  39. Wang M, Wang Z, He G, Jia Z, Liu J, Hou Y. Genetic characteristics and phylogenetic analysis of three chinese ethnic groups using the huaxia platinum system. Sci Rep. 2018. 8: 2429.
    Pubmed KoreaMed CrossRef
  40. Yang IS, Lee HY, Park SJ, Yang WI, Shin KJ. Analysis of kinship index distributions in koreans using simulated autosomal str profiles. Korean Journal of Legal Medicine. 2013. 37: 57-65.
    CrossRef
  41. Yoo SY, Cho NS, Park MJ, Seong KM, Hwang JH, Song SB, Han MS, Lee WT, Chung KW. A large population genetic study of 15 autosomal short tandem repeat loci for establishment of korean DNA profile database. Mol Cells. 2011. 32: 15-19.
    Pubmed KoreaMed CrossRef