Search for


TEXT SIZE

search for



CrossRef (0)
T Cell Immune Responses against SARS-CoV-2 in the With Corona Era
Biomed Sci Letters 2022;28:211-222
Published online December 31, 2022;  https://doi.org/10.15616/BSL.2022.28.4.211
© 2022 The Korean Society For Biomedical Laboratory Sciences.

Ji-Eun Oh†,*

Department of Biomedical Laboratory Science, Far East University, Chungbuk-do 27601, Korea
Correspondence to: Ji-Eun Oh. Department of Biomedical Laboratory Science, Far East University, 76-32 Daehakgil, Gamgok-myeon, Eumseong-gun, Chungbuk-do 27601, Korea.
Tel: +82-43-879-3668, Fax: +82-43-880-3876, e-mail: ohjieun8078@gmail.com
*Professor.
Received October 24, 2022; Revised November 16, 2022; Accepted November 17, 2022.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
After more than two years of efforts to end the corona pandemic, a gradual recovery is starting in countries with high vaccination rates. Easing public health policies for a full-fledged post-corona era, such as lifting the mandatory use of outdoor mask and quarantine measures in entry have been considered in Korea. However, the continuous emergence of new variants of SARS-CoV-2 and limitations in vaccine efficacy still remain challenging. Fortunately, T cells and memory T cells, which are key components of adaptive immunity appear to contribute substantially in COVID-19 control. SARS-CoV-2 specific CD4+/CD8+ T cells are induced by natural infection or vaccination, and rapid induction and activation of T cells is mainly associated with viral clearance and attenuated clinical severity. In addition, T cell responses induced by recognition of a wide range of epitopes were minimally affected and conserved against the highly infectious subsets of omicron variants. Polyfunctional SARS-CoV-2 specific T cell memory including stem cell-like memory T cells were also developed in COVID-19 convalescent patients, suggesting long lasting protective T cell immunity. Thus, a robust T-cell immune response appears to serve as a reliable and long-term component of host protection in the context of reduced efficacy of humoral immunity and persistent mutations and/or immune escape.
Keywords : COVID-19, SARS-CoV-2, Omicron variants, Vaccines, T cell, Memory T cell, T-cell immune response, Host protection
꽌 濡

2019뀈 留 以묒쬆湲됱꽦샇씉湲곗쬆썑援곗쓣 씪쑝궎뒗 썝씤遺덈챸쓽 떊醫낆퐫濡쒕굹諛붿씠윭뒪(2019-nCoV)쓽 蹂닿퀬 씠썑, 肄붾줈굹 뙩뜲誘 醫낆떇쓣 쐞븯뿬 끂젰븳 吏 2뀈뿬 留뚯뿉 쟻뼱룄 諛깆떊 젒醫낅쪧씠 넂 援媛뱾쓣 以묒떖쑝濡 떒怨꾩쟻 씪긽쉶蹂 (Living with COVID-19)씠 떆옉릺怨 엳떎(Lu et al., 2020). 슦由щ굹씪룄 뼹留 쟾 떎쇅 留덉뒪겕 李⑹슜 쓽臾 諛 엯援 諛⑹뿭 議곗튂瑜 빐젣븯怨 떎궡 留덉뒪겕 李⑹슜 쓽臾 빐젣瑜 怨좊젮븯뒗 벑 蹂멸꺽쟻씤 룷뒪듃 肄붾줈굹 떆瑜 쐞븳 젙梨낆쓣 룄엯븯怨 엳떎(以묐蹂 蹂대룄옄猷, 22. 9. 23). 2022뀈 9썡 留 쁽옱源뚯, 쟾 꽭怨 肄붾줈굹 솗吏꾩옄뒗 빟 6.1뼲 紐, 궗留 빟 652留 紐, 理쒖냼 1쉶 諛깆떊쓣 닾뿬 諛쏆 씤援щ뒗 빟 54뼲 紐(쟾 꽭怨 씤援ъ쓽 빟 68%)씠硫, 슦由щ굹씪쓽 寃쎌슦, 늻쟻 솗吏꾩옄 빟 2,477留 紐, 궗留 28,406紐, 3李 늻쟻 젒醫낆옄 33,600,655紐낆쑝濡 씤援щ鍮 65.5%쓽 諛깆떊 젒醫낅쪧쓣 蹂댁씠怨 엳떎(https://covid19.who.int/; http://ncov.kdca.go.kr/). 떊냽븳 諛붿씠윭뒪쓽 룞젙怨 깮臾쇳븰쟻 듅꽦쓽 씠빐, 吏꾨떒踰 諛 諛깆떊怨 移섎즺젣쓽 媛쒕컻濡 떖媛곹븳 씤紐낆넀떎怨 궗쉶, 寃쎌젣쟻 鍮꾩슜 긽떦엳 以꾩뼱뱾怨 엳吏留 씠젣뒗 깉濡쒖슫 蹂醫 諛붿씠윭뒪뱾쓽 異쒗쁽怨 諛깆떊 슚뒫쓽 븳怨 벑씠 꽆뼱빞 븷 怨쇱젣濡 궓븘엳뒗 긽솴씠떎(Lu et al., 2020; Kaur and Gupta, 2020; Rahimi et al., 2021; Garcia-Beltran et al., 2021).

뙩뜲誘 珥덇린 湲곕뻽뜕 옄뿰 媛먯뿼怨 諛깆떊뿉 쓽븳 吏묐떒硫댁뿭(herd immunity)쓽 媛뒫꽦 遺덊닾紐낇븯硫, 쁽옱 슦꽭醫낆씤 삤誘명겕濡(Omicron, B.1.1.529)怨 洹 븯쐞 蹂쐞뱾뿉 븳 諛깆떊 슚뒫 媛먯뿼쓽 李⑤떒蹂대떎뒗 二쇰줈 以묒쬆룄 궗留앸쪧쓣 궙異붾뒗 뜲 湲곗뿬븯뒗 벏븯떎(Vardhana et al., 2022). 理쒓렐 뿬윭 뿰援ъ뿉꽌 媛먯뿼 삉뒗 諛깆떊 젒醫 썑 以묓솕빆泥닿 3~4媛쒖썡쓽 諛섍컧湲곕줈 媛먯냼븯硫 뿬윭 蹂씠泥댁뿉 븳 諛깆떊 슚뒫쓽 媛먯냼媛 蹂닿퀬릺怨 엳떎(Goel et al., 2021; Kustin et al., 2021; Tang et al., 2021; Wheatley et al., 2021). 怨꾩젅꽦 肄붾줈굹諛붿씠윭뒪 媛먯뿼뿉꽌 愿李곕릺뒗 씪떆쟻 泥댁븸꽦 諛섏쓳怨 留덉갔媛吏濡 SARS-CoV-2 媛먯뿼 썑 깮꽦맂 以묓솕빆泥대뒗 삤옒 吏냽릺吏 紐삵븯뒗 寃껋쑝濡 굹궗떎(Callow et al., 1990; Ibarrondo et al., 2020). 삉븳 mRNA 諛깆떊(BNT162b2, mRNA-1273) 젒醫 썑 깮꽦맂 빆泥 닔以룄 6媛쒖썡 젙룄 쑀吏릺뿀쑝굹 洹 씠썑뿉뒗 떆媛꾩씠 吏궓뿉 뵲씪 媛먯냼븯怨 씠윭븳 媛먯냼 뼇긽 2李 遺뒪꽣 젒醫 썑뿉룄 鍮꾩듂븯寃 愿李곕릺뿀떎(Doria-Rose et al., 2021; Naaber et al., 2021). 듅엳 뿬윭 뿰援ъ뿉꽌 蹂씠泥 뒪뙆씠겕 궡쓽 룎뿰蹂씠뿉 쓽븳 泥댁븸꽦 硫댁뿭쓽 쁽븳 넀긽쓣 꽕紐낇븯怨 엳떎(Garcia-Beltran et al., 2021; Wang et al., 2021a). 誘멸뎅뿉꽌뒗 뜽 媛먯뿼씠 利앷븯뜕 떆湲곗뿉 利앹긽 媛먯뿼뿉 븳 mRNA 諛깆떊 諛⑹뼱 슚怨쇨 94.3%뿉꽌 65.5%濡 媛먯냼븯怨 諛깆떊 젒醫 4~6媛쒖썡 씠썑 뜽 媛먯뿼뿉 븳 諛깆떊 슚뒫씠 媛곴컖 mRNA 諛깆떊 42~ 57%, AZD1222, 47.3%濡 媛먯냼맖쓣 蹂닿퀬븯떎(Fiolet et al., 2022). 삤誘명겕濡 蹂씠쓽 寃쎌슦뿉뒗, mRNA-1273 2쉶 젒醫 썑 3媛쒖썡 븞뿉 蹂댄샇쑉 40% 誘몃쭔쑝濡 뼥뼱吏硫 꽭 踰덉㎏ 遺뒪꽣 젒醫 吏곹썑 ~ 70% 蹂댄샇쑉뿉꽌 60씪 씠썑뿉뒗 ~ 45%濡 媛먯냼븯뒗 寃껋쑝濡 굹궗떎(Tseng et al., 2022). 뜑슧씠 理쒓렐 쑀뻾븯怨 엳뒗 삤誘명겕濡 븯쐞 蹂씠씤 BA.2.12 BA.4/BA.5뒗 BA.1 媛먯뿼쑝濡 깮꽦맂 빆泥댁뿉 븯뿬 겕寃 빆꽦쓣 굹궡硫 삤誘명겕濡좎쓽 議곗긽 洹좎<뿉 븳 泥댁븸꽦 硫댁뿭議곗감 깉異쒗븯怨 엳떎(Cao et al., 2022). 씎誘몃∼寃뚮룄 3李 遺뒪꽣 젒醫낆 뜽 삤誘명겕濡 蹂씠 紐⑤몢뿉꽌 ~ 99% 젙룄쓽 以묒쬆솕 삁諛⑺슚怨쇰 쑀吏븯뒗 寃껋쑝濡 굹궗떎(Tseng et al., 2022). 뵲씪꽌 諛깆떊씠 뿬쟾엳 媛먯뿼 諛 떖媛곹븳 吏덈퀝怨 궗留앸쪧쓽 삁諛⑹뿉 븘닔쟻씤 諛⑹뼱 닔떒 엫뿉뒗 遺꾨챸븯굹 鍮좊Ⅸ 吏꾪솕 냽룄濡 異쒗쁽븯뒗 蹂씠泥대뱾쓽 蹂댄샇뿉뒗 뿭遺議깆쑝濡 蹂댁씤떎.

떎뻾엳룄 COVID-19뿉꽌 쟻쓳 硫댁뿭쓽 빑떖 꽦遺꾩씤 T 꽭룷 諛 湲곗뼲 T 꽭룷뱾씠 諛붿씠윭뒪쓽 젣嫄곗 以묒쬆룄瑜 媛먯냼떆궎뒗뜲 긽떦븳 湲곗뿬瑜 븯怨 엳뒗 寃껋쑝濡 蹂댁씤떎. 듅엳 씠윭븳 꽭룷뱾 옄뿰 媛먯뿼怨 諛깆떊 젒醫 썑 쑀룄릺硫 궙 吏덈퀝 以묒쬆룄 긽愿愿怨꾧 엳뿀떎(Long et al., 2020a; Tan et al., 2021; Dan et al., 2021; Sette and Crotty, 2021). 삉븳 諛깆떊 젒醫낆쓣 븳 긽옄뿉꽌 떎뼇븳 VOC (Variants of Concern)뿉 븳 씤떇, 洹몃━怨 湲곗뼲 T 꽭룷 諛섏쓳쓣 룷븿븳 T 꽭룷쓽 硫댁뿭 諛섏쓳쓽 뼇怨 吏덉씠 嫄곗쓽 룞씪븿씠 諛앺議뚮떎(Gao et al., 2022; Keeton et al., 2022; Jeong et al., 2022). 以묓솕빆泥댁 蹂씠泥댁뿉 쓽븯뿬 諛깆떊 슚뒫씠 媛먯냼븯뒗 긽솴뿉꽌 씠쟾뿉 媛먯뿼릺뿀嫄곕굹 諛깆떊 젒醫낆쓣 諛쏆 媛쒖씤뱾뿉寃뚯꽌 愿李곕릺뒗 궙 以묒쬆룄 엯썝쑉 T 꽭룷뿉 쓽븳 쟻쓳 硫댁뿭쓽 옞옱쟻씤 뿭븷쓣 떆궗븳떎怨 븯寃좊떎(Ferguson et al., 2021; Wolter et al., 2022). 삉븳 吏덈퀝 以묒쬆룄뿉 愿怨꾩뾾씠 湲곗뼲 T 꽭룷媛 깮꽦맂떎뒗 寃곌낵뒗 T 꽭룷媛 썑냽 媛먯뿼怨 利앹긽 媛먯뿼쓣 留됱븘 誘몃옒뿉 異쒗쁽븷 닔 엳뒗 蹂씠泥대뱾뿉 븳 옣湲 쟻쓳 硫댁뿭 諛섏쓳뿉룄 湲곗뿬븷 寃껋씠씪뒗 留ㅻ젰쟻씤 媛꽕뿉 룄떖븳떎(Peng et al., 2020; Rodda et al., 2021). 씠 醫낆꽕뿉꽌뒗 SARS-CoV-2 蹂댄샇 硫댁뿭怨 깉濡쒖슫 蹂씠泥 諛⑹뼱뿉 以묒슂 씤옄濡 옉슜븯뒗 T 꽭룷 硫댁뿭 諛섏쓳쓽 理쒓렐 吏떇뿉 愿븯뿬 以묒젏쟻쑝濡 궡렣蹂닿퀬 COVID-19 硫댁뿭 넻젣뿉 湲곗뿬븯뒗 T 꽭룷 硫댁뿭 諛섏쓳쓽 룷愿꾩쟻씤 씠빐瑜 諛뷀깢쑝濡 諛깆떊 諛 移섎즺젣 媛쒕컻뿉 깉濡쒖슫 愿젏쓣 젣떆븯怨좎옄 븳떎.

蹂 濡

1. COVID-19 硫댁뿭諛섏쓳쓽 듅吏

1.1. SARS-CoV-2뿉 븳 꽑泥 硫댁뿭 諛섏쓳

鍮꾪듅씠쟻 臾쇰━ · 솕븰쟻 옣踰쎌쓽 넀긽쑝濡 諛붿씠윭뒪뿉 끂異쒕맂 꽭룷뒗 媛뺣젰븳 I삎 씤꽣럹濡(interferon, IFN) 諛섏쓳쓣 쑀룄븿쑝濡쒖뜥 珥덇린 빆諛붿씠윭뒪 硫댁뿭 봽濡쒓렇옩쓣 솢꽦솕떆궓떎. 씠윭븳 꽑泥 硫댁뿭 諛섏쓳 諛붿씠윭뒪뿉 븳 1李 諛⑹뼱 湲곗쟾엫怨 룞떆뿉 쟻쓳 硫댁뿭 諛섏쓳쓣 쑀룄븯뿬 슚怨쇱쟻쑝濡 쇅遺 빆썝쓣 젣嫄고븯뒗 湲곕뒫쓣 븳떎. 뼱由곗씠 젇 꽦씤쓣 룷븿븯뿬 SARS-CoV-2 媛먯뿼옄쓽 80%媛 臾댁쬆긽 삉뒗 寃쎌쬆 媛먯뿼엫쓣 怨좊젮븷 븣 꽑泥 硫댁뿭씠 諛붿씠윭뒪 젣嫄곗쓽 긽떦 遺遺꾩쓣 떞떦븯怨 엳쓣 寃껋쑝濡 異붿륫맂떎(꽭怨 蹂닿굔 湲곌뎄, https://www.who.int/; Pierce et al., 2021).

SARS-CoV 諛 MERS-CoV쓽 뿰援ъ뿉 뵲瑜대㈃ 꽭룷 궡 諛붿씠윭뒪 RNA뒗 뙣꽩 씤떇 닔슜泥(pattern recognition receptor, PRR)씤 넧 쑀궗 닔슜泥(Toll-like receptor, TLR) 삉뒗 젅떚끂궛 쑀룄꽦 쑀쟾옄 I (retinoic acid-inducible gene 1, RIG-1) 諛 쓳깋醫 遺꾪솕 愿젴 쑀쟾옄 5 (melanoma differentiation-associated protein 5, MDA5)뿉 쓽븯뿬 씤떇맂떎(Sa Ribero et al., 2020; Totura et al., 2015). 씠윭븳 蹂묒썝泥 愿젴 遺꾩옄 뙣꽩(pathogen-associated molecular pattern, PAMP)怨 닕二쇱쓽 PRR 媛꾩쓽 긽샇옉슜 닚李⑥쟻씤 떎슫뒪듃由 떊샇 罹먯뒪耳씠뱶瑜 넻븯뿬 NF-κB 諛 씤꽣럹濡 議곗젅씤옄(interferon regulatory factor 3/interferon regulatory factor 7, IRF3/IRF7)瑜 솢꽦솕븯怨 媛곴컖 쟾뿼利앹꽦 궗씠넗移댁씤 諛 I삎 씤꽣럹濡좎쓽 諛쒗쁽쓣 쑀룄븳떎. 遺꾨퉬맂 I삎 씤꽣럹濡좎 떎떆 씤꽣럹濡 옄洹 쑀쟾옄(interferon stimulated gene, ISG)쓽 諛쒗쁽쓣 쑀룄븿쑝濡쒖뜥 諛붿씠윭뒪 蹂듭젣瑜 諛⑺빐븯怨 빆諛붿씠윭뒪 諛섏쓳쓣 利앺룺떆궓떎(Khosroshahi et al., 2021).

븯吏留 怨쇰룄븳 諛붿씠윭뒪 遺븯, I삎 씤꽣럹濡 깮궛쓣 李⑤떒븯뒗 諛붿씠윭뒪 硫댁뿭 쉶뵾 湲곗쟾怨 씠濡 씤븳 쟾뿼利앹꽦 궗씠넗移댁씤 諛 耳紐⑥뭅씤 벑쓽 利앷뒗 以묒쬆 COVID-19 솚옄뿉꽌 룓쓽 遺쟻젅븳 뿼利 諛섏쓳쓣 씪쑝궎硫 ARDS, 룓遺醫 諛 떎湲곌 遺쟾 벑쑝濡 諛쒖쟾븯湲곕룄 븳떎(Sa Ribero et al., 2020; Kim and Lee, 2020; Mehta et al., 2020). 뿬윭 뿰援ъ뿉꽌 利앷맂 삁븸 궡 뿼利 몴吏옄, IL-1, IL-6, IL-8, TNF, IFNγ, GM-CSF, CCL2, CCL3, CXCL10 벑쓽 利앷, 룓, 떖옣, 由쇳봽젅 벑쑝濡 꽑泥 硫댁뿭 꽭룷뱾쓽 移⑥쑄 諛 怨쇳솢꽦씠 吏덈퀝쓽 以묒쬆룄 諛 궗留앷낵 愿젴씠 엳뒗 寃껋쑝濡 굹궗떎(Merad and Martin, 2020; Rodrigues et al., 2020). 媛먯뿼 珥덇린쓽 떊냽븯硫 쟻젅븳 닔以쓽 I삎 씤꽣럹濡좎뿉 쓽븳 꽑泥 硫댁뿭 諛섏쓳 諛붿씠윭뒪 媛먯뿼 젣뼱쓽 꽦뙣瑜 寃곗젙븯뒗 以묒슂 슂씤쑝濡 옉슜븯뒗 寃껋쑝濡 蹂댁씤떎(Galani et al., 2021).

1.2. SARS-CoV-2뿉 븳 泥댁븸꽦 硫댁뿭 諛섏쓳

꽑泥 硫댁뿭 꽭룷쓽 솢꽦솕 궗씠넗移댁씤/耳紐⑥뭅씤쓽 諛⑹텧 B 꽭룷(빆泥 깮꽦 꽭룷), CD4+ T 꽭룷(議곕젰 T 꽭룷) 諛 CD8+ T 꽭룷(꽭룷 룆꽦 T 꽭룷)濡 援ъ꽦맂 쟻쓳 硫댁뿭 泥닿퀎쓽 솢꽦쓣 쑀룄븳떎(Murphy and Weaver, 2016). 蹂댄샇 硫댁뿭뿉 以묒슂븳 異뺤쓣 삎꽦븯뒗 쟻쓳 硫댁뿭怨꾨뒗 諛붿씠윭뒪 끂異 썑 빆썝 듅씠쟻 B 꽭룷 T 꽭룷뱾濡 利앹떇, 遺꾪솕븯뿬 媛뺣젰븳 씤꽣럹濡 諛섏쓳怨 뜑遺덉뼱 媛먯뿼썝쓣 떊냽븯寃 젣嫄고븯뒗뜲 怨듬룞쑝濡 쓳븳떎(Castro Dopico et al., 2022).

SARS-CoV-2쓽 옄뿰 媛먯뿼 삉뒗 諛깆떊 젒醫낆쑝濡 쉷뱷맂 泥댁븸꽦 硫댁뿭 諛섏쓳 諛붿씠윭뒪 珥덇린 怨듦꺽뿉 븳 蹂댄샇 뜑 媛뺣젰븳 以묓솕빆泥대 깮꽦븯뿬 옱媛먯뿼쑝濡쒕꽣 닕二쇰 蹂댄샇븯뒗 옉슜쓣 븳떎(Gulati et al., 2021; Hamady et al., 2022, Lou et al., 2020). SARS-CoV-2뿉 븳 泥댁븸꽦 硫댁뿭 諛섏쓳 以묓솕빆泥(neutralizing Ab, nAb) 諛 鍮꾩쨷솕빆泥(non-neutralizing Ab)쓽 깮궛쓣 룷븿븯硫, SARS-CoV-2 媛먯뿼쓽 떎뼇븳 떒怨꾩뿉꽌 COVID-19 솚옄쓽 留먯큹 삁븸 궡 빆 뒪뙆씠겕 諛 RBD IgM/IgG, 以묓솕빆泥, IgA쓽 쟾諛섏쟻씤 利앷媛 蹂닿퀬릺뿀떎(Robbiani et al., 2020; Wang et al., 2021b). 以묓솕빆泥대뒗 닔슜泥 寃고빀 룄硫붿씤(receptor binding domain, RBD)쓣 룷븿븳 뒪뙆씠겕 떒諛깆쭏쓣 寃잛쑝濡 깮꽦릺뼱 諛붿씠윭뒪瑜 以묓솕븯嫄곕굹 몴쟻꽭룷쓽 遺李⑹쓣 諛⑹븯뿬 諛붿씠윭뒪쓽 吏꾩엯 諛 蹂듭젣瑜 李⑤떒븯뒗 뿭븷쓣 븳떎(Sadarangani et al., 2021). 뿬윭 뿰援ъ뿉꽌 利앸챸맂 諛붿 媛숈씠 닚솚 以묓솕빆泥대뒗 SARS-CoV-2 媛먯뿼쓣 삁諛⑺븯怨 以묒쬆쑝濡쒖쓽 吏꾪뻾 쐞뿕쓣 以꾩씠뒗 蹂댄샇 硫댁뿭쓽 빑떖 꽦遺꾩씠떎. 뵲씪꽌 쁽옱 궗슜릺怨 엳뒗 諛깆떊뱾룄 씠윭븳 以묓솕빆泥댁뿉 쓽빐 留ㅺ컻릺뒗 硫댁뿭 諛섏쓳쓣 쑀룄븯룄濡 꽕怨꾨릺뼱 엳떎(Corbett et al., 2020; Kent et al., 2022; Vogel et al., 2021).

SARS-CoV-2 媛먯뿼뿉 쓽븳 빆泥 諛섏쓳 利앹긽 諛쒗쁽 썑 4~5씪 씠궡뿉 寃異쒕맆 닔 엳쑝硫 理쒖냼 2二 룞븞 긽듅븯硫 씪諛섏쟻쑝濡 以묒쬆쓽 寃쎌슦 뜑 넂 닔移섎 굹궦떎(Long et al., 2020a; Long et al., 2020b; Henss et al., 2021). 洹몃윭굹 以묓솕빆泥댁 COVID-19 吏덈퀝 以묒쬆룄 궗씠쓽 愿怨꾨뒗 떎냼 蹂듭옟빐 蹂댁씤떎. 遺遺꾩쓽 쉶蹂듦린 COVID-19 솚옄뿉꽌 以묓솕빆泥닿 諛쒓껄릺뿀뒗뜲 以묓솕빆泥댁쓽 닔移 긽듅 諛붿씠윭뒪 遺븯 吏덈퀝쓽 以묒쬆룄 긽愿愿怨꾧 엳뿀떎(Brouwer et al., 2020; Ju et al., 2020; Tan et al., 2021). 洹몃윭굹 떎瑜 뿰援ъ뿉꽌 SARS-CoV-2 以묓솕빆泥댁쓽 뿭媛뒗 以묒쬆룄 媛먯냼뿉 쑀쓽븳 뿰愿꽦쓣 굹궡吏 븡븯떎(Rydyznski Moderbacher et al., 2020). 3~4媛쒖썡쓽 吏㏃ 諛섍컧湲곕 媛吏 以묓솕빆泥 諛섏쓳 諛깆떊 젒醫 썑 6媛쒖썡 씠썑遺꽣 湲됯꺽엳 媛먯냼븯뿬 利앹긽씠 엳뒗 肄붾줈굹 媛먯뿼쓣 슚쑉쟻쑝濡 蹂댄샇븯吏 紐삵븯뒗 寃껋쑝濡 愿李곕릺뿀떎(Goel et al., 2021; Tartof et al., 2021). 삉븳 以묓솕빆泥댁쓽 몴쟻씤 뒪뙆씠겕 떒諛깆쭏 RBD 궡쓽 룎뿰蹂씠뿉 쓽븯뿬 以묓솕빆泥댁쓽 뿭媛뒗 삤誘명겕濡좎쓣 룷븿븳 뿬윭 슦젮 蹂醫(VOC)쓽 媛먯뿼뿉꽌 긽떦엳 媛먯냼븳떎(Cromer et al., 2022; Wang et al., 2021). 솕씠옄뒗 2李 諛깆떊 젒醫 썑뿉 삤誘명겕濡좎쓽 以묓솕媛 25諛 媛먯냼뻽떎怨 蹂닿퀬븯떎(Willyard, 2022).

珥덇린 뿰援ъ뿉꽌 諛붿씠윭뒪 遺븯媛 媛먯냼릺怨 엫긽긽깭媛 媛쒖꽑릺뒗 湲띿젙쟻씤 寃곌낵瑜 蹂댁뿬以 쉶蹂듦린 삁옣 쟾떖 슂踰(convalescent plasma transfer therapy, CPTT)룄 理쒓렐 洹쒕え 臾댁옉쐞 議 떆뿕뿉꽌 COVID-19 以묒쬆 룓졃 솚옄쓽 궗留앸쪧 諛 뿬윭 엫긽 寃곌낵瑜 媛쒖꽑븯뒗 뜲 쓽誘 엳뒗 슚怨쇰 利앸챸븯吏 紐삵븯떎(Hamady et al., 2022; Simonovich et al., 2021). 삉븳 닚솚빆泥닿 嫄곗쓽 삉뒗 쟾 뾾뒗 COVID-19 쉶蹂듦린 솚옄뿉꽌 SARS-CoV-2 듅씠쟻 T 꽭룷 諛섏쓳뿉 쓽븯뿬 媛먯뿼씠 넻젣맂 뿰援ш 엳뿀쑝硫 닚솚 B 꽭룷媛 뾾뒗 솚옄 臾닿컧留덇濡쒕텋由고삁利 솚옄媛 COVID-19 媛먯뿼뿉꽌 꽦怨듭쟻쑝濡 쉶蹂듬맂 궗濡媛 엳떎(Sekine et al., 2020; Soresina et al., 2020). 씠윭븳 寃곌낵뱾 COVID-19 넻젣뿉꽌 빆泥댁뿉 쓽議댄븯뒗 泥댁븸꽦 硫댁뿭 씠쇅쓽 꽦遺꾨뱾씠 SARS-CoV-2 蹂댄샇뿉 옉슜븿쓣 떆궗븳떎. SARS-CoV-2 媛먯뿼 꽑泥 硫댁뿭, 뜑遺덉뼱 諛붿씠윭뒪 듅씠쟻 泥댁븸꽦 硫댁뿭 諛섏쓳怨 꽭룷꽦 硫댁뿭 諛섏쓳뿉 쓽빐 議고솕릺怨 긽샇 蹂댁셿쟻씤 떆굹由ъ삤뿉 쓽븯뿬 슚쑉쟻쑝濡 젣뼱릺뒗 寃껋쑝濡 蹂댁씤떎.

2. SARS-CoV-2 媛먯뿼뿉꽌 꽭룷꽦 硫댁뿭 諛섏쓳쓽 뿭븷

T 꽭룷뒗 씪諛섏쟻쑝濡 빆泥 깮꽦쓣 쐞빐 B 꽭룷뿉寃 룄쓣 젣怨듯븯怨, 빆諛붿씠윭뒪꽦 궗씠넗移댁씤쓽 遺꾨퉬 諛 꽭룷 궗硫, 諛깆떊 쑀룄 硫댁뿭 諛섏쓳뿉 以묒슂븳 뿭븷쓣 븳떎(Sahin et al., 2020; Zhu et al., 2010). 洹몃윭굹 SARS-CoV-2 吏덈퀝 넻젣뿉꽌 議곗젅릺吏 븡 T 꽭룷 諛섏쓳 援냼쟻 삉뒗 쟾떊쟻 硫댁뿭蹂묐━(궗씠넗移댁씤 룺뭾)瑜 쑀諛쒗븯怨 吏덈퀝 以묒쬆룄뿉 湲곗뿬븯湲곕룄 븳떎(Vabret et al., 2020).

SARS-CoV-2쓽 援ъ“ 떒諛깆쭏(S, M 諛 N) 肉먮쭔 븘땲씪 open reading frame 3 (ORF3), ORF8 諛 non-structural protein 3 (nsp3), 4, 6, 7, 12 13 (ORF1ab) 벑쓽 鍮꾧뎄議 떒諛깆쭏씠 T 꽭룷 諛섏쓳쓣 쑀룄븯뒗 以묒슂븳 뿉뵾넗봽 뿭븷쓣 븯뒗 寃껋쑝濡 븣젮졇 엳떎(Grifoni et al., 2021; Moss, 2022). 씪諛섏쟻쑝濡 SARS-CoV-2 媛먯뿼怨 愿젴븯뿬 T 꽭룷뒗 뜑 꼻 踰붿쐞쓽 뿉뵾넗봽瑜 슚쑉쟻쑝濡 씤떇븯뿬 媛먯뿼맂 꽭룷瑜 젣嫄고븯怨 떖媛곹븳 吏덈퀝쓣 삁諛⑺븷 닔 엳떎.

SARS-CoV-2뿉 븳 떊냽븳 T 꽭룷쓽 쑀룄 솢꽦 諛붿씠윭뒪쓽 젣嫄곗 媛먯뿼쓽 以묒쬆룄瑜 媛먯냼떆궎뒗 寃껉낵 愿젴씠 엳떎. 諛붿씠윭뒪 듅씠쟻 빆泥 깮꽦怨 뜑遺덉뼱 SARS-CoV-2쓽 떎뼇븳 빆썝쓣 씤떇븯뒗 愿묐쾾쐞븳 T 꽭룷 젅띁넗由ш 利앹긽 諛쒗쁽 1 二쇱씪 씠궡(媛먯뿼 썑 빟 7~10씪)뿉 媛먯릺뿀쑝硫 湲곕뒫쟻쑝濡쒕룄 씠誘 솢꽦솕릺뼱 엳쓬씠 蹂닿퀬릺뿀떎(Long et al., 2020a; Tan et al., 2021; Sette and Crotty, 2021). 利앹긽 諛쒗쁽 썑 10~20씪 룞븞 솗옣릺뿀뜕 T 꽭룷뒗 洹 썑 泥쒖쿇엳 媛먯냼븯硫 6~8媛쒖썡 젙룄 븞젙쟻쑝濡 쑀吏릺뒗 寃껋쑝濡 蹂댁씤떎(Bonifacius et al., 2021; Breton et al., 2021; Le Bert et al., 2021). COVID-19 媛먯뿼 썑 SARS-CoV-2 듅씠쟻 T 꽭룷 諛섏쓳, 洹 以묒뿉꽌룄 CD4+ T 꽭룷 諛섏쓳 嫄곗쓽 紐⑤뱺 COVID-19 쉶蹂듦린 솚옄뿉꽌 愿李곕릺뿀怨 CD4+/CD8+ T 꽭룷쓽 蹂댄샇 硫댁뿭뿉 愿븳 留롮 寃곌낵뱾씠 蹂닿퀬릺怨 엳떎(Grifoni et al., 2020; Sette and Crotty, 2021). SARS-CoV-2 듅씠쟻 CD4+ T 꽭룷뒗 궙 吏덈퀝 以묒쬆룄 뜑 媛뺥븳 긽愿愿怨꾧 엳뿀쑝硫 SARS-CoV-2 듅씠쟻 CD4+ T 꽭룷뱾쓽 떊냽븳 솢꽦씠 諛붿씠윭뒪瑜 슚怨쇱쟻쑝濡 젣嫄고븯뿬 以묒쬆쑝濡쒖쓽 吏꾪뻾쓣 젣뼱븯뒗뜲 以묒슂븳 뿭븷쓣 븯뒗 寃껋쑝濡 蹂댁씤떎(Notarbartolo et al., 2021; Rydyznski Moderbacher et al., 2020). 삉븳 媛먯뿼 珥덇린 쟾떊쟻 뿼利 諛섏쓳쓣 룞諛섑븯吏 븡 CD8+ T 꽭룷쓽 媛뺣젰븳 겢濡 솗옣룄 諛붿씠윭뒪쓽 떊냽븳 젣嫄곗 臾댁쬆긽 삉뒗 寃쎌쬆 媛먯뿼怨 愿怨꾧 엳뿀떎(Bergamaschi et al., 2021).

븵꽌 뼵湲됲븳 諛붿 媛숈씠, T 꽭룷 諛섏쓳 臾댁쬆긽 삉뒗 寃쎌쬆쓽 COVID-19뿉꽌 쉶蹂 썑 삁泥 쓬꽦씤 媛쒖씤뿉꽌 諛쒓껄릺뿀떎(Sekine et al., 2020). 듅엳 COVID-19濡 엯썝븳 삁븸븫 솚옄瑜 긽쑝濡 븳 肄뷀샇듃 뿰援ъ뿉꽌 泥댁븸꽦 諛섏쓳씠 넀긽릺怨 B 꽭룷媛 寃고븤릺뿀쓣 븣룄 CD8+ T 꽭룷 諛섏쓳씠 媛뺥븳 寃쎌슦 媛먯뿼쓣 넻젣븯뿬 깮議댁쑉쓣 媛쒖꽑븯떎뒗 寃곌낵뒗 二쇰ぉ븷 留뚰븯떎(Bange et al., 2021). 쑀궗븯寃, T 꽭룷뿉 쓽븳 蹂댄샇 硫댁뿭 룞臾 紐⑤뜽뿉꽌룄 엯利앸맂 諛 엳뿀뒗뜲 SARS-CoV-2쓽 T 꽭룷 뿉뵾넗봽 諛깆떊쑝濡 硫댁뿭맂 留덉슦뒪뿉꽌 以묓솕빆泥 뾾씠 諛붿씠윭뒪 뿭媛쓽 媛먯냼 諛 룓 蹂묐━쓽 媛먯냼媛 愿李곕릺뿀떎(McMahan et al., 2021; Zhuang et al., 2021). 씠윭븳 寃곌낵뱾 옄뿰 媛먯뿼 삉뒗 諛깆떊 젒醫낆쑝濡 쑀룄맂 諛붿씠윭뒪 듅씠쟻 T 꽭룷媛 泥댁븸꽦 硫댁뿭 꽦遺꾩씠 遺덉땐遺꾪븳 긽솴뿉꽌 닕二 蹂댄샇뿉 湲곗뿬븷 닔 엳떎뒗 利앷굅씪 븯寃좊떎.

以묒쬆 COVID-19 솚옄쓽 SARS-CoV-2 듅씠쟻씤 T 꽭룷 諛섏쓳뿉 愿븳 뿰援 寃곌낵뒗 젣븳쟻씠굹 씪諛섏쟻쑝濡 吏덈퀝쓽 以묒쬆룄 뿭쓽 긽愿愿怨꾧 엳뒗 寃껋쑝濡 蹂댁씤떎. 以묒쬆 솚옄뿉꽌뒗 SARS-CoV-2 듅씠쟻 T 꽭룷쓽 쁽븳 媛먯냼 諛 吏뿰맂 利앷, 솢꽦솕맂 CD8+ 슚怨쇨린 T 꽭룷쓽 利앷 由쇳봽援 媛먯냼利앹씠 愿李곕릺뿀떎(Tan et al., 2021; Rydyznski Moderbacher et al., 2020; Kreutmair et al., 2021; Meckiff et al., 2020; Stephenson et al., 2021). 由쇳봽援 媛먯냼利앹뿉 븳 湲곗쟾 븘吏 遺덈텇紐 븯吏留 IL-6, IL-10 諛 TNF-α 媛숈 쟾뿼利앹꽦 궗씠넗移댁씤뿉 쓽븳 吏, 媛꾩젒쟻 硫붿빱땲利섏씠 由쇳봽援 媛먯냼뿉 쁺뼢쓣 二쇰뒗 寃껋쑝濡 蹂댁씤떎(Wan et al., 2020). 삉븳 COVID-19쓽 떎뼇븳 以묒쬆룄瑜 媛吏 130紐낆쓽 솚옄쓽 留먯큹 삁븸 떒빑 꽭룷(peripheral blood mononuclear cell, PBMC)瑜 씠슜븳 떒硫 肄뷀샇듃 뿰援ъ뿉꽌 吏덈퀝 떒怨꾨퀎 蹂듭옟븳 T 꽭룷 援ы쉷쓽 꽭룷 援ъ꽦쓣 솗씤븷 닔 엳뿀뒗뜲 솢꽦솕맂 CD4+ T 꽭룷, 닚솚븯뒗 뿬룷 蹂댁“ T (TFH) 꽭룷, CD8+ 슚怨쇨린 湲곗뼲 T (TEM) 꽭룷 벑 臾댁쬆긽 삉뒗 寃쎈명븳 利앹긽쓣 媛吏 솚옄뿉꽌 諛쒓껄릺뿀怨 CD8+ T 꽭룷 겢濡 솗옣怨 CD8+ 슚怨쇨린 T 꽭룷뒗 以묒쬆룄뿉 鍮꾨븯뿬 利앷릺뿀떎(Stephenson et al., 2021).

3. 諛깆떊 留ㅺ컻 T 꽭룷 硫댁뿭 諛섏쓳

mRNA, 븘뜲끂諛붿씠윭뒪 踰≫꽣, 떒諛깆쭏 諛 遺덊솢꽦솕 諛붿씠윭뒪 湲곕컲 諛깆떊 SARS-CoV-2 媛먯뿼쓽 쐞뿕쓣 以꾩씠硫 利앹쬆룄 궗留앸쪧쓣 궙異붾뒗 뿭븷쓣 븳떎(Baden et al., 2021; Logunov et al., 2021; Shinde et al., 2021; Voysey et al., 2021). mRNA 븘뜲끂諛붿씠윭뒪 湲곕컲 諛깆떊 以묓솕빆泥댁쓽 二쇱슂 寃잛씠 릺뒗 SARS-CoV-2쓽 뒪뙆씠겕 떒諛깆쭏쓣 븫샇솕븳떎(Baden et al., 2021). COVID-19瑜 삁諛⑺븯뒗 슚쑉 떎냼 李⑥씠媛 엳쑝굹 몢 쑀삎쓽 諛깆떊 紐⑤몢 以묓솕빆泥댁 諛붿씠윭뒪 듅씠쟻 T 꽭룷 諛섏쓳쓣 깮꽦븯뒗 諛⑹떇쑝濡 蹂댄샇븯뒗 寃껋쑝濡 븣젮졇 엳떎(Sahin et al., 2020; Widge et al., 2021). 옄뿰 媛먯뿼뿉꽌 留덉갔媛吏濡 빆썝젣떆 꽭룷뿉 쓽빐 옄洹밸릺怨 솢꽦솕맂 S 떒諛깆쭏 듅씠쟻 슚怨쇨린 諛 湲곗뼲 T 꽭룷/B 꽭룷뱾 怨좎튇솕꽦 SARS-CoV-2 빆泥댁 븿猿 諛쒕떖븯怨 닚솚븯硫, 諛붿씠윭뒪瑜 젣嫄고븯怨 썑냽 媛먯뿼쓣 삁諛⑺븳떎. 삉븳 CD4+ T 뿬룷 蹂댁“ 꽭룷(TFH)뒗 뒪뙆씠겕 떒諛깆쭏 듅씠쟻 B 꽭룷濡 븯뿬湲 삎吏덉꽭룷濡 遺꾪솕븯뒗 寃껋쓣 룄 怨좎튇솕꽦 빆 S 떒諛깆쭏 빆泥댁쓽 깮꽦쓣 珥됱쭊븳떎(Teijaro and Farber, 2021). Table 1뿉꽌뒗 COVID-19 솚옄뿉꽌 쁽옱 슦由щ굹씪뿉꽌 二쇰줈 젒醫낅릺怨 엳뒗 5醫낅쪟쓽 諛깆떊뿉 븳 二쇱슂 T 꽭룷 諛섏쓳쓣 슂빟븯떎(Lee and Lee, 2022; Sadarangani et al., 2021). mRNA 諛깆떊 뒪뙆씠겕 듅씠쟻 CD4+ T/CD8+ T 꽭룷瑜 떊냽엳 쑀룄븯硫 쑀룄맂 T 꽭룷뱾 SARS-CoV-2 媛먯뿼뿉꽌 쉶蹂듯븳 솚옄 洹몃9뿉꽌 鍮꾩듂븳 닔以쑝濡 쑀吏맖씠 愿李곕릺뿀떎(Tan et al., 2021; Painter et al., 2021). BNT162b2 泥 踰덉㎏ 諛깆떊 젒醫 썑 11씪 씠궡뿉 媛뺣젰븳 CD8+ T 꽭룷 諛섏쓳씠 쑀룄릺怨 蹂댄샇쟻씤 엫긽슚怨쇨 굹굹뒗 寃껋쓣 諛쒓껄븯떎. 삉 떎瑜 뿰援ъ뿉꽌뒗 BNT162b2 씠李 젒醫 닔삙옄뿉꽌 諛붿씠윭뒪 듅씠쟻 CD4+ T/CD8+ T 꽭룷 諛섏쓳씠 떊猶고븷 留뚰븳 닔以쑝濡 굹굹怨 꽭룷 硫댁뿭씠 뜑 利앷븯뒗 寃껋쓣 愿李고븯떎(Sahin et al., 2021; Skelly et al., 2021). SARS-CoV-2 듅씠쟻 T 꽭룷뒗 紐⑤뱺 諛깆떊 젒醫 썑 理쒕 6媛쒖썡源뚯 寃異쒕릺뿀쑝硫 긽쟻쑝濡 CD4+ T 꽭룷媛 슦꽭븯寃 깮꽦릺뒗 寃껋쑝濡 븣젮졇 엳떎(Geurtsvan Kessel et al., 2022).

T cell responses of 5 Types of COVID-19 vaccines with reported efficacy introduced in Korea

Platform Vaccine (Manufacturer) T cell responses in human
mRNA BNT162b2mRNA (BioNTech/Pfizer) Increases in IFNγ+CD4+/CD8+ T cells after booster vaccination, Predominantly IFNγ and IL-2 secretion
mRNA-1273 (Moderna) Increases in CD4+ T cells secreting TNF > IL-2 > IFNγ after booster vaccination, Low levels of CD8+ T cells activation
Viral vector ChAdOx1nCoV-19 (Univ. of Oxford & Astra-Zeneca) Peak T cell responses 14 days after first vaccination, Increase in TNF and IFNγ secretion by CD4+ T cells at day 14
Ad26.COV2.S (Janssen) Induction of CD4+/CD8+ T cells secreting IFNγ and/or IL-2 at day 14 and 28 days post vaccination
Protein subunit NVX-CoV2373 (Novavax) CD4+ T cells responses induced by 7 days after booster vaccination, Production of IFNγ, IL-2 and TNF by CD4+ T cells


SARS-CoV-2 媛먯뿼쓽 諛⑹뼱뒗 諛깆떊뿉 쓽빐 쑀룄맂 以묓솕빆泥댁쓽 닔以怨 諛젒븳 긽愿愿怨꾧 엳떎. COVID-19뿉꽌 T 꽭룷 硫댁뿭 諛섏쓳쓽 뿭븷 몴以솕맂 痢≪젙 諛⑸쾿쓽 遺옱 利, 湲곕뒫쟻 T 꽭룷쓽 젙웾솕 諛 遺꾩꽍 湲곗닠, 媛먯뿼 떆 泥댁븸꽦 硫댁뿭怨 꽭룷꽦 硫댁뿭쓽 遺꾨━ 벑쓽 썝씤쑝濡 洹쒕챸븯湲 돺吏 븡 긽솴씠떎(Kent et al., 2022). 洹몃읆뿉룄 遺덇뎄븯怨 理쒓렐 븳 뿰援ъ뿉꽌 Pfizer/BioNTech (BNT162b2) 1쉶 젒醫 썑 7씪遺꽣 SARS-CoV-2 듅씠쟻 T 꽭룷媛 利앷맖씠 愿李곕릺뿀뒗뜲 씠뒗 湲곕뒫쟻쑝濡쒕룄 솢꽦솕맂 T 꽭룷媛 以묓솕빆泥닿 깮꽦릺湲 씠쟾뿉 쑀룄릺뿀떎뒗 젏뿉꽌 二쇰ぉ븷 留뚰븯떎. 以묓솕빆泥대뒗 21씪 썑뿉 怨좎뿭媛濡 寃異쒕릺뿀怨 몢 踰덉㎏ 젒醫 썑뿉 뜑슧 利앷릺뿀떎(Kalimuddin et al., 2021). 씎誘몃∼寃뚮룄 씠윭븳 議곌린 쑀룄맂 T 꽭룷쓽 뿭븷쓣 異붾줎븷 留뚰븳 寃곌낵뒗 Pfizer/BioNTech (BNT162b2)쓽 엫긽떆뿕 뿰援 寃곌낵뿉꽌 뼸뼱議뚮떎. 泥 踰덉㎏ 諛깆떊 젒醫 썑 빟 10씪 썑遺꽣 COVID-19 媛먯뿼쓽 利앹긽꽦 吏덊솚쓽 蹂댄샇媛 媛뒫븯뒗뜲 씠 떆湲곕뒗 Kalimuddin et al.뿉꽌 蹂닿퀬맂 諛깆떊 젒醫 썑 SARS-CoV-2 듅씠쟻 T 꽭룷媛 쑀룄릺뒗 떆湲곗 씪移섑븳떎(Bertoletti et al., 2021; Polack et al., 2020).

삤誘명겕濡(Omicron, B.1.1.529)쓣 鍮꾨’븯뿬 VOC濡 吏젙맂 븣뙆(α, B.1.1.7), 踰좏(β, B.1.351), 媛먮쭏(γ, P.1) 諛 뜽(δ, B.1.617.2) 蹂씠뱾 紐⑤몢 뒪뙆씠겕 떒諛깆쭏뿉 留롮 룎뿰蹂씠瑜 룷븿븯怨 엳떎(Aleem et al., 2022). 듅엳, 삤誘명겕濡 뒪뙆씠겕 떒諛깆쭏 궡뿉 議댁옱븯뒗 30媛 씠긽쓽 룎뿰蹂씠뒗 닕二 닔슜泥댁쓽 寃고빀쓣 留ㅺ컻븯뒗 RBD뿉꽌 諛쒓껄릺뿀怨 씠뒗 利앷맂 媛먯뿼꽦怨 빆泥 쉶뵾, 諛깆떊뿉 쓽빐 쑀룄맂 以묓솕솢꽦쓣 媛먯냼떆궎뒗 寃껋쑝濡 굹궗떎(Saxena et al., 2022; Shah and Woo, 2021; Shuai et al., 2022). 洹몃윭굹 떎뻾엳룄 씠윭븳 利앷맂 媛먯뿼꽦 긽遺 샇씉湲곗뿉꽌 옒 利앹떇븯뒗 삤誘명겕濡 蹂씠쓽 듅꽦긽 뜙 떖媛곹븳 엯썝怨 궗留앸쪧濡 씠뼱議뚮떎(UKHSA, 2021; Zhao et al., 2022).

삤誘명겕濡좎쓽 媛뺣젰븳 쟾뙆젰뿉꽌 遺덇뎄븯怨 利앹쬆쑝濡쒖쓽 吏꾪뻾쓣 諛⑹븯뿬 怨듭쨷蹂닿굔 鍮꾩긽궗깭 뵾븷 닔 엳뿀뜕 뜲뿉뒗 T 꽭룷쓽 湲곕뒫쓣 媛꾧낵븷 닔 뾾떎. 留롮 뿰援ъ뿉꽌 諛깆떊 뵆옯뤌뿉 臾닿븯寃 뜽 삤誘명겕濡좎쓣 룷븿븳 VOC뿉 븯뿬 T 꽭룷 諛섏쓳씠 蹂댁〈맂떎뒗 寃껋씠 蹂닿퀬릺뿀떎(Gao et al., 2022; Keeton et al., 2022). 1쉶 Pfizer/BioNTech (BNT162b2) 諛깆떊 젒醫낆쓣 諛쏆 씠쟾 媛먯뿼 씠젰씠 엳뒗 쓽猷 醫낆궗옄 뱾뿉꽌 蹂씠泥댁뿉 븳 빆泥댁쓽 以묓솕뒫젰 遺遺꾩쟻쑝濡 넀긽맂 諛섎㈃ CD4+ T 꽭룷 諛섏쓳 룞씪뻽떎(Geers et al., 2021). Moderna (mRNA-1273) 삉뒗 Pfizer/BioNTech (BNT162b2) COVID-19 諛깆떊 닔삙옄뿉꽌 ~ 10% 誘몃쭔쓽 CD4+/CD8+ T 꽭룷쓽 뿉뵾넗봽媛 援먮맂 寃껋쑝濡 굹궗쑝硫 뵲씪꽌 蹂씠泥댁쓽 T 꽭룷 씤떇뿉룄 嫄곗쓽 쁺뼢씠 뾾뿀떎(Tarke et al., 2021). 삤誘명겕濡좎쓣 룷븿븳 VOC뱾 珥덇린 洹좎< 뒪뙆씠겕 떒諛깆쭏쓣 몴쟻쑝濡 븯뒗 mRNA 諛 븘뜲끂諛붿씠윭뒪 諛깆떊뿉 쓽븯뿬 쑀룄맂 T 꽭룷뿉 쓽븯뿬 룞벑븯寃 씤떇릺硫 蹂씠泥댁뿉 븳 T 꽭룷 硫댁뿭룄 理쒖냼븳쑝濡 쁺뼢쓣 諛쏅뒗 寃껋쑝濡 蹂댁씤떎. 뵲씪꽌 蹂씠泥댁뿉 븳 諛깆떊 쑀룄 T 꽭룷쓽 蹂댄샇 뿭븷 깉濡쒖슫 蹂醫 諛붿씠윭뒪뿉 쓽븳 硫댁뿭 깉異 긽솴뿉꽌 씠李⑥쟻씤 諛⑹뼱 닔떒쑝濡 옉슜븷 닔 엳쓣 寃껋씠씪 궗猷뚮맂떎(Bertoletti et al., 2021).

4. SARS-CoV-2 쑀룄 湲곗뼲 T 꽭룷

媛먯뿼씠 꽦怨듭쟻쑝濡 젣뼱맂 썑 諛⑹뼱 쟾왂쓽 씪遺뒗 湲곗뼲꽭룷瑜 깮꽦븯뿬 誘몃옒瑜 쐞븳 옣湲 硫댁뿭쓣 쑀룄븯뒗 씪씠떎. 硫댁뿭 湲곗뼲 빆泥, 湲곗뼲 B 꽭룷, 湲곗뼲 CD4+/CD8+ T 꽭룷瑜 룷븿븳 뿬윭 슂냼뿉 쓽븯뿬 깮꽦릺硫 옄뿰 媛먯뿼 삉뒗 삁諛 젒醫 썑, 슚怨쇱쟻씠怨 吏냽쟻씤 湲곗뼲 諛섏쓳 썑냽 媛먯뿼 삉뒗 利앹긽 媛먯뿼쓣 蹂댄샇븯뒗 蹂댄샇 硫댁뿭쓽 湲곗큹媛 맂떎(Piot et al., 2019; Sette and Crotty, 2022).

빆썝 젒珥 썑 T 꽭룷뒗 鍮좊Ⅴ寃 슚怨쇨린 꽭룷뱾濡 遺꾪솕븯怨 씠 以 씪遺뒗 湲곗뼲 T 꽭룷濡 遺꾪솕븳떎. 삉떎떆 諛붿씠윭뒪굹 遺뒪꽣 諛깆떊뿉 끂異쒕릺硫 씠 湲곗뼲 T 꽭룷쓽 솢꽦쑝濡 媛먯뿼맂 꽭룷瑜 젣嫄고븯怨 B 꽭룷瑜 옄洹뱁븯뿬 怨좎튇솕꽦 빆泥 깮꽦쓣 珥됱쭊븯뒗 諛섏쓳씠 씪뼱궃떎(Teijaro and Farber, 2021). 吏덈퀝 以묒쬆룄뿉 愿怨꾩뾾씠 COVID-19뿉꽌 쉶蹂듬맂 遺遺꾩쓽 솚옄뿉꽌뒗 SARS-CoV-2 듅씠쟻 CD4+/CD8+ 湲곗뼲 T 꽭룷媛 깮꽦릺뒗 媛뺣젰븳 T 꽭룷 諛섏쓳씠 쑀룄맂떎(Dan et al., 2021; Peng et al., 2020; Rodda et al., 2021). 삉븳 湲곗뼲 T 꽭룷 諛섏쓳 臾댁쬆긽 삉뒗 寃쎈명븳 吏덈퀝뿉꽌 슦꽭븯寃 솗씤릺뿀떎(Sekine et al., 2020). 珥덇린 쉶蹂듦린뿉 굹굹뒗 湲곗뼲 T 꽭룷뒗 二쇰줈 CD4+ 議곕젰 T 꽭룷씠硫 씠윭븳 湲곗뼲 CD4+ T 꽭룷뒗 떎湲곕뒫쟻 봽濡쒗뙆씪쓣 듅吏뺤쑝濡 븯뒗 떎뼇븳 湲곗뼲 븯쐞 吏묐떒(二쇰줈 TH1, TFH, CD4-CTL)쑝濡 遺꾪솕븯뿬 빆泥 諛섏쓳쓽 諛쒕떖怨 꽦닕쓣 議곗젅븯怨 諛붿씠윭뒪 媛먯뿼쓽 젣嫄곗뿉 湲곗뿬븯뒗 寃껋쑝濡 蹂댁씤떎(Sette and Crotty, 2022). 떊泥 遺遺꾩쓽 T 꽭룷뒗 議곗쭅 궡 긽二 湲곗뼲꽭룷濡 議댁옱븯뒗뜲 듅엳 湲곕룄 遺쐞뿉꽌 諛붿씠윭뒪 듅씠쟻 湲곗뼲 T 꽭룷濡쒖쓽 諛쒕떖 SARS-CoV-2瑜 룷븿븳 샇씉湲 諛붿씠윭뒪쓽 옱媛먯뿼怨 엫긽 利앹긽 蹂댄샇쓽 긽愿愿怨꾧 엳쓣 寃껋쑝濡 異붿젙맂떎(Moss, 2022; Szabo et al., 2021).

以묒쬆룄뿉 긽愿뾾씠 肄붾줈굹 19 쉶蹂듦린 吏곹썑遺꽣 SARS-CoV-2 듅씠쟻 MHC-I 떎웾泥 뿼깋 뼇꽦씠硫 옱깮뒫젰쓣 媛吏 以꾧린꽭룷 쑀궗 湲곗뼲 T 꽭룷뱾씠 留먯큹 삁븸 떒빑 꽭룷(PBMC)뿉꽌 寃異쒕릺뿀怨 씠 以꾧린꽭룷 쑀궗 湲곗뼲 T 꽭룷뱾 媛먯뿼 썑 10媛쒖썡 씠썑源뚯 쑀吏릺뿀떎(Jung et al., 2021). 鍮꾩씤媛 쁺옣瑜 뿰援ъ뿉꽌 CD8+ T 꽭룷 怨좉컝 떆 긽湲곕룄뿉꽌 옱媛먯뿼뿉 븳 蹂댄샇媛 媛먯냼맖쓣 엯利앺븯뒗뜲 씠뒗 1李 끂異쒖뿉 쓽븯뿬 諛쒕떖맂 CD8+ 湲곗뼲 T 꽭룷쓽 蹂댄샇솢꽦쓣 諛섏쁺븳 寃껋쑝濡 異붿륫맂떎(McMahan et al., 2021). 삉븳 SARS-CoV-1뿉 븳 T 꽭룷 諛섏쓳씠 理쒖옣 17뀈源뚯 寃異쒕릺湲곕룄 븯뒗뜲 씠윭븳 寃곌낵뱾 湲곗뼲 T 꽭룷媛 SARS-CoV-2뿉 븳 吏냽쟻씤 蹂댄샇瑜 젣怨듯븷 媛뒫꽦쓣 젣떆븳떎(Le Bert et al., 2020).

諛깆떊 젒醫 뿭떆 씠쟾 媛먯뿼怨 鍮꾩듂븳 겕湲곗쓽 CD4+/CD8+ T 꽭룷 湲곗뼲 諛섏쓳쓣 깮꽦븯떎. mRNA 諛깆떊 媛뺣젰븳 뒪뙆씠겕 듅씠쟻 CD4+ T 꽭룷 湲곗뼲쓣 씠걣뼱 궡뒗 寃껋쑝濡 븣젮졇 엳떎(Goel et al., 2021; Tarke et al., 2022). 씪諛섏쟻쑝濡 諛깆떊 뵆옯뤌뿉 긽愿뾾씠 湲곗뼲 CD4+/CD8+ T 꽭룷뒗 諛깆떊 젒醫 썑 理쒖냼 6媛쒖썡 룞븞 쑀吏릺硫 諛깆떊 쑀룄 湲곗뼲 諛섏쓳 씠쟾 옄뿰 媛먯뿼쓽 씠젰씠 엳뒗 媛쒖씤뿉꽌 겕寃 뼢긽릺뒗 寃껋씠 愿李곕릺뿀떎(Mazzoni et al., 2021; Zhang et al., 2022). 떎뻾엳룄 諛깆떊 젒醫 썑 삤誘명겕濡좎쓣 룷븿븳 SARS-CoV-2 蹂씠泥댁뿉 븳 씤떇怨 湲곗뼲 T 꽭룷 諛섏쓳 蹂댁〈릺뿀쑝硫 諛깆떊뿉 쓽빐 쑀룄맂 湲곗뼲 CD4+/CD8+ T 꽭룷뒗 IFN-γ, TNF 諛 IL-2 벑쓣 깮궛븯뒗 떎湲곕뒫꽦 湲곗뼲 T 꽭룷씤 寃껋쑝濡 솗씤릺뿀떎(de Silva et al., 2021; Jung et al., 2022; Tarke et al., 2022). 理쒓렐 T 꽭룷 씤떇뿉 쁺뼢쓣 誘몄튌 닔 엳뒗 뒪뙆씠겕 씠쇅뿉 쐞移섑븳 븘誘몃끂궛 옍湲곌 諛쒓껄릺뿀떎(de Silva et al., 2021). 洹몃윭굹 븵꽌 뼵湲됲뻽뜕 寃껋쿂읆 T 꽭룷뒗 씪諛섏쟻쑝濡 뿬윭 떒諛깆쭏 삉뒗 떒씪 떒諛깆쭏쓽 궡쓽 긽씠븳 뿉뵾넗봽瑜 씤떇븯뒗 떎以 듅씠쟻씤 듅꽦쓣 媛뽮퀬 엳쑝誘濡 洹 쁺뼢 젣븳쟻씪 닔 엳떎(Ferretti et al., 2020; Grifoni et al., 2021; Tarke et al., 2021). 옄뿰 媛먯뿼怨 諛깆떊 젒醫낆뿉 쓽빐 쑀룄맂 湲곗뼲 T 꽭룷쓽 蹂씠泥 씤떇怨 湲곕뒫쓽 蹂댁〈 옱媛먯뿼씠굹 룎뙆 媛먯뿼 룞븞 蹂댄샇 硫댁뿭쓣 젣怨듯븯怨 誘몃옒 蹂醫 諛붿씠윭뒪뿉 븳 닕二 蹂댄샇쓽 옞옱쟻 湲곗쟾쑝濡 옉슜븷 닔 엳쓣 寃껋쑝濡 궗猷뚮맂떎.

寃 濡

吏궃 2뀈뿬쓽 COVID-19 뙩뜲誘뱀 떊醫 諛붿씠윭뒪뿉 븳 꽑泥 硫댁뿭怨 쟻쓳 硫댁뿭뿉 愿븳 깉濡쒖슫 젙蹂대 떒湲곌컙뿉 異뺤쟻븷 닔 엳뿀뜕 媛믩퉬떬 湲고쉶媛 릺뿀떎. 씠 由щ럭뿉꽌뒗 SARS-CoV-2 媛먯뿼 떆 솢꽦솕릺뒗 꽑泥 硫댁뿭怨 쟻쓳 硫댁뿭 諛섏쓳 洹몃━怨 옄뿰 媛먯뿼怨 諛깆떊 젒醫낆뿉 쓽븳 SARS-CoV-2 듅씠쟻 T 꽭룷 留ㅺ컻 硫댁뿭 諛섏쓳쓽 듅꽦뿉 愿븯뿬 湲곗닠븯떎. 諛깆떊 젒醫낆쑝濡 쑀룄맂 以묓솕빆泥댁쓽 湲곕뒫씠 媛먯뿼怨 以묒쬆룄 삁諛 痢〓㈃뿉꽌 옒 洹쒕챸릺뼱 엳뒗 寃껉낵뒗 議곗쟻쑝濡 T 꽭룷쓽 뿭븷 긽쟻쑝濡 媛꾧낵릺뼱 솕떎. 洹몃윭굹 以묓솕빆泥대 쉶뵾븯뒗 SARS-CoV-2 蹂씠泥대뱾쓽 異쒗쁽 泥댁븸꽦 硫댁뿭 쐞二쇱쓽 怨좎젙맂 뙣윭떎엫쓣 솗옣븷 븘슂꽦쓣 몢떆耳곕떎.

SARS-CoV-2쓽 룎뿰蹂씠뒗 듅엳 뒪뙆씠겕 떒諛깆쭏 궡 RBD 쁺뿭뿉 옄二 吏묒쨷릺뒗 寃쏀뼢씠 엳뒗뜲 以묓솕빆泥대뒗 씠윭븳 끂異쒕맂 젣븳맂 뒪뙆씠겕 떒諛깆쭏쓣 몴쟻쑝濡 븳떎. 뵲씪꽌 VOC뿉 븳 以묓솕뒫젰 룎뿰蹂씠뿉 쓽븯뿬 誘쇨컧븯寃 諛섏쓳븷 寃껋쑝濡 삁痢≫븷 닔 엳쓣 寃껋씠떎(Moss, 2022). 洹몃윭굹 씠뒗 議곗쟻쑝濡 빆泥 깉異쒖쓽 利앷굅媛 엳뒗 떎뼇븳 蹂씠泥댁뿉꽌 T 꽭룷 뿉뵾넗봽뿉 븳 理쒖냼븳쓽 쁺뼢怨 30% 誘몃쭔쓽 T 꽭룷 諛섏쓳 넀떎씠 愿李곕릺뿀떎. 뵲씪꽌 媛옣 留롮 룎뿰蹂씠瑜 媛吏怨 엳뒗 삤誘명겕濡 議곗감룄 T 꽭룷 硫댁뿭쑝濡쒕꽣쓽 깉異쒖 嫄곗쓽 遺덇뒫 븷 寃껋쑝濡 삁긽맂떎(Choi et al., 2022; Tarke et al., 2021). 씠윴 쓽誘몄뿉꽌 蹂씠泥대뱾뿉 븳 寃ш퀬븳 T 꽭룷 諛섏쓳 빆泥 뿭媛媛 媛먯냼븯怨 以묓솕빆泥대 쉶뵾븯뒗 蹂씠泥대뱾씠 異쒗쁽븯뒗 쁽 긽솴뿉꽌 諛깆떊 슚뒫쓽 븳怨꾨 蹂댁셿빐以 떊猶고븷 닔 엳뒗 蹂댄샇 湲곗쟾쑝濡 옉룞븷 닔 엳쓣 寃껋씠씪 궗猷뚮맂떎. 옄뿰 媛먯뿼怨 諛깆떊 젒醫낆쓣 諛쏆 媛쒖씤뿉꽌 援먮릺吏 븡 T 꽭룷 硫댁뿭뿉 쓽븳 VOC쓽 援먯감 蹂댄샇뒗 뿬쟾엳 以묒쬆룄瑜 삁諛⑺븯뿬 쓽猷뚭퀎쓽 遺떞쓣 以꾩씠怨 吏덈퀝 넻젣媛 媛뒫븳 씠쑀씪 븯寃좊떎. 븯吏留 媛먯뿼씠 궗씪吏硫 듅젙 떆젏뿉꽌 슚怨쇨린 T 꽭룷쓽 遺遺꾩 二쎄퀬 湲곗뼲꽭룷쓽 삎깭濡 蹂댁〈맂떎(Kudlay et al., 2022). 吏湲덇퉴吏쓽 뿰援 寃곌낵뱾뿉 뵲瑜대㈃ 湲곗뼲 T 꽭룷뿉 쓽븳 硫댁뿭 湲곗뼲 諛 蹂씠泥 씤떇뿉 쑀쓽誘명븳 媛먯냼媛 愿李곕릺吏 븡븯떎. 뵲씪꽌 옱媛먯뿼 떆 湲곗뼲 T 꽭룷媛 뜑 媛뺣젰븯怨 鍮좊Ⅸ 硫댁뿭 諛섏쓳쓣 씠걣뼱궡怨 SARS-CoV-2 蹂씠泥 異쒗쁽 떆뿉룄 븞젙쟻씠硫 옣湲곗쟻씤 蹂댄샇 뿭븷쓣 븷 寃껋쑝濡 궗猷뚮맂떎(Jung et al., 2021; Le Bert et al., 2020; Tarke et al., 2021). 씠윭븳 愿젏뿉꽌 媛먯뿼 삉뒗 삁諛 젒醫 씠젰씠 뾾뒗 뼱由곗씠, 젇 꽦씤 諛 쓽猷뚯쥌궗옄 벑뿉꽌 떎瑜 踰좏 CoV 諛붿씠윭뒪뿉 쓽빐 깮꽦맂 湲곗〈 援먯감 諛섏쓳꽦 湲곗뼲 T 꽭룷쓽 옞옱쟻 쁺뼢룄 끉쓽媛 븘슂븷 寃껋쑝濡 蹂댁씤떎(Dowell et al., 2022; Le Bert et al., 2020; Ng et al., 2020).

遺뒪꽣 諛깆떊 젒醫 諛 옄뿰 媛먯뿼怨 젒醫 씠젰쓣 룞떆뿉 媛뽮퀬 엳뒗 媛쒖씤뿉꽌 湲곗뼲 諛섏쓳쓽 뼇怨 吏덉씠 겕寃 뼢긽릺뿀떎(Sahin et al., 2021; Skelly et al., 2021; Zhang et al., 2022). 媛옣 理쒓렐 뿰援 寃곌낵뿉 뵲瑜대㈃ 以묓솕빆泥댁쓽 궡援ъ꽦怨 닔紐낆 mRNA 諛깆떊 3쉶 젒醫낆쑝濡 삤誘명겕濡 諛 SARS-CoV-2 議곗긽 洹좎< 떎뼇븳 蹂씠泥대뱾(D614G, Alpha, Beta, Delta, BA.1, BA.2)뿉꽌 쉷湲곗쟻쑝濡 利앷븯떎. 삉븳 諛깆떊 젒醫 3쉶 썑 BA.1 룎뙆 媛먯뿼 삤誘명겕濡 븯쐞 蹂씠(BA.1, BA.2, BA.5)瑜 룷븿븳 紐⑤뱺 SARS-CoV-2뿉꽌 뜑 媛뺣젰븯怨 愿묐쾾쐞븳 以묓솕솢꽦쓣 쑀룄뻽쑝굹 떎湲곕뒫꽦 CD4+/CD8+ 湲곗뼲 T 꽭룷뒗 議곗긽 洹좎< 삤誘명겕濡 蹂씠뿉꽌 紐⑤몢 룞벑븳 닔以쑝濡 깮꽦릺뿀떎. 씎誘몃줈슫 젏 珥덇린 SARS-CoV-2 洹좎<쓽 媛먯뿼씠굹 諛깆떊 2쉶 젒醫 留뚯쑝濡쒕뒗 삤誘명겕濡 蹂씠泥댁뿉 빐 以묓솕솢꽦쓣 굹궡吏 븡븯떎. 삉븳 諛깆떊 젒醫낆쓣 븯吏 븡 삤誘명겕濡 媛먯뿼맂 솚옄 룎뙆 媛먯뿼씠 뾾뿀뜕 3쉶 諛깆떊 젒醫 솚옄 紐⑤몢뿉꽌 INF-γ, TNF IL-2瑜 遺꾨퉬븯뒗 떎湲곕뒫꽦 湲곗뼲 T 꽭룷媛 깮꽦릺뿀怨 鍮덈룄 諛섏쓳꽦뿉룄 몢 洹몃9媛 李⑥씠媛 뾾뿀떎뒗 寃껋씠떎(Jeong et al., 2022). 뵲씪꽌 湲곗뼲 T 꽭룷뒗 媛먯뿼씠굹 諛깆떊 젒醫낅쭔쑝濡쒕룄 씠誘 씪젙 닔以쑝濡 쑀룄릺뼱 蹂댄샇 湲곕뒫쓣 븯뒗 寃껋쑝濡 蹂댁씠硫 異붽 젒醫낆쑝濡 씤븳 T 꽭룷꽦 硫댁뿭쓽 씠젏 벑뿉 愿븯뿬 異붽 뿰援ш 븘슂븷 寃껋쑝濡 궗猷뚮맂떎.

蹂 醫낆꽕뿉꽌뒗 COVID-19뿉꽌 옄뿰 媛먯뿼 삉뒗 諛깆떊 젒醫낆쑝濡 쑀룄맂 T 꽭룷 諛 湲곗뼲 T 꽭룷媛 엯썝怨 궗留앸쪧, 썑냽 媛먯뿼쓽 젣뼱뿉 湲곗뿬븯뒗 븘닔 꽦遺꾩엫쓣 끉븯떎. 泥댁븸꽦 硫댁뿭씠 媛먯냼븯怨 硫댁뿭 깉異쒓낵 룎뿰蹂씠媛 吏냽맆 닔 엳뒗 쐞뱶 肄붾줈굹 떆뿉 寃ш퀬븯怨 옣湲곗쟻씤 蹂댄샇 湲곗쟾씤 꽭룷꽦 硫댁뿭 諛섏쓳뿉 뜑슧 愿떖쓣 媛졇빞 븷 씠쑀씠떎.

ACKNOWLEDGEMENTS

None.

CONFLICT OF INTEREST

The author declares no conflict of interest.

References
  1. Aleem A, Akbar Samad AB, Slenker AK. Emerging Variants of SARS-CoV-2 And Novel Therapeutics Against Coronavirus (COVID-19). StatPearls Publishing (Internet). 2022.
    Pubmed
  2. Baden LR, El Sahly HM, Essink BEssink B et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl Med. 2021. 384: 403-416. http://doi:10.1056/NEJMoa2035389.
    Pubmed KoreaMed CrossRef
  3. Bange EM, Han NA, Wileyto PWileyto P et al. CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nat Med. 2021. 27: 1280-1289. http://doi:10.1038/s41591-021-01386-7.
    Pubmed KoreaMed CrossRef
  4. Bergamaschi L, Mescia F, Turner LTurner L et al. Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early immune pathology distinguish severe COVID-19 from mild disease. Immunity. 2021. 54: 1257-1275. http://doi:10.1016/j.immuni.2021.05.010.
    Pubmed KoreaMed CrossRef
  5. Bertoletti A, Le Bert N, Qui M, Tan AT. SARS-CoV-2-specific T cells in infection and vaccination. Cell Mol Immunol. 2021. 18: 2307-2312. http://doi:10.1038/s41423-021-00743-3.
    Pubmed KoreaMed CrossRef
  6. Bonifacius A, Tischer-Zimmermann S, Dragon ACDragon AC et al. COVID-19 immune signatures reveal stable antiviral T cell function despite declining humoral responses. Immunity. 2021. 54: 340-354. http://doi:10.1016/j.immuni.2021.01.008.
    Pubmed KoreaMed CrossRef
  7. Breton G, Mendoza P, H채ggl철f TH채ggl철f T et al. Persistent cellular immunity to SARS-CoV-2 infection. J Exp Med. 2021. 218: e20202515. http://doi:10.1084/jem.20202515.
    Pubmed KoreaMed CrossRef
  8. Brouwer P, Caniels TG, van der Straten Kvan der Straten K et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 2020. 369: 643-650. http://doi:10.1126/science.abc5902.
    Pubmed KoreaMed CrossRef
  9. Callow KA, Parry HF, Sergeant M, Tyrrell DA. The time course of the immune response to experimental coronavirus infection of man. Epidemiol Infect. 1990. 105: 435-446. https://doi:10.1017/s0950268800048019.
    Pubmed KoreaMed CrossRef
  10. Cao Y, Yisimayi A, Jian FJian F et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature. 2022. 608: 593-602. http://doi:10.1038/s41586-022-04980-y.
    Pubmed KoreaMed CrossRef
  11. Castro Dopico X, Ols S, Lore K, Karlsson Hedestam GB. Immunity to SARS-CoV-2 induced by infection or vaccination. J Intern Med. 2022. 291: 32-50. http://doi:10.1111/joim.13372.
    Pubmed KoreaMed CrossRef
  12. Choi SJ, Kim DU, Noh JYNoh JY et al. T cell epitopes in SARS-CoV-2 proteins are substantially conserved in the Omicron variant. Cell Mol Immunol. 2022. 19: 447-448. http://doi:10.1038/s41423-022-00838-5.
    Pubmed KoreaMed CrossRef
  13. Corbett KS, Flynn B, Foulds KEFoulds KE et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med. 2020. 383: 1544-1555. http://doi:10.1056/NEJMoa2024671.
    Pubmed KoreaMed CrossRef
  14. Cromer D, Steain M, Reynaldi AReynaldi A et al. Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis. The Lancet. Microbe. 2022. 3: e52-e61. http://doi:10.1016/S2666-5247(21)00267-6.
    Pubmed CrossRef
  15. Dan JM, Mateus J, Kato YKato Y et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021. 371: eabf4063. http://doi:10.1126/science.abf4063.
    Pubmed KoreaMed CrossRef
  16. de Silva TI, Liu G, Lindsey BBLindsey BB et al. The impact of viral mutations on recognition by SARS-CoV-2 specific T cells. iScience. 2021. 24: 103353-103368. http://doi:10.1016/j.isci.2021.103353.
    Pubmed KoreaMed CrossRef
  17. Doria-Rose N, Suthar MS, Makowski MMakowski M et al. mRNA-1273 Study Group. Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19. N Engl J Med. 2021. 384: 2259-2261. http://doi:10.1056/NEJMc2103916.
    Pubmed KoreaMed CrossRef
  18. Dowell AC, Butler MS, Jinks EJinks E et al. Children develop robust and sustained cross-reactive spike-specific immune responses to SARS-CoV-2 infection. Nat Immunol. 2022. 23: 40-49. http://doi:10.1038/s41590-021-01089-8.
    Pubmed KoreaMed CrossRef
  19. Ferguson N, Ghani A, Hinsley W, Volz E. Report 50: Hospital-isation Risk for Omicron Cases in England. Retrieved from https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-50-severity-omicron. 2021.
  20. Ferretti AP, Kula T, Wang YWang Y et al. Unbiased Screens Show CD8+ T Cells of COVID-19 Patients Recognize Shared Epitopes in SARS-CoV-2 that Largely Reside outside the Spike Protein. Immunity. 2020. 53: 1095-1107. http://doi:10.1016/j.immuni.2020.10.006.
    Pubmed KoreaMed CrossRef
  21. Fiolet T, Kherabi Y, MacDonald CJ, Ghosn J, Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect. 2022. 28: 202-221. http://doi:10.1016/j.cmi.2021.10.005.
    Pubmed KoreaMed CrossRef
  22. Galani IE, Rovina N, Lampropoulou VLampropoulou V et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nat Immunol. 2021. 22: 32-40. http://doi:10.1038/s41590-020-00840-x.
    Pubmed CrossRef
  23. Gao Y, Cai C, Grifoni AGrifoni A et al. Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nat Med. 2022. 28: 472-476. http://doi:10.1038/s41591-022-01700-x.
    Pubmed KoreaMed CrossRef
  24. Garcia-Beltran WF, Lam EC, St Denis KSt Denis K et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell. 2021. 184: 2372-2383. https://doi:10.1016/j.cell.2021.03.013.
    Pubmed KoreaMed CrossRef
  25. Geers D, Shamier MC, Bogers SBogers S et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci Immunol. 2021. 6: eabj1750. http://doi:10.1126/sciimmunol.abj1750.
    Pubmed KoreaMed CrossRef
  26. Geurtsvan Kessel CH, Geers D, Schmitz KSSchmitz KS et al. Divergent SARS-CoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci Immunol. 2022. 7: eabo2202. http://doi:10.1126/sciimmunol.abo2202.
    Pubmed KoreaMed CrossRef
  27. Goel RR, Painter MM, Apostolidis SAApostolidis SA et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science. 2021. 374: abm0829. https://doi:10.1126/science.abm08297.
    Pubmed KoreaMed CrossRef
  28. Grifoni A, Sidney J, Vita RVita R et al. SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19. Cell host &. microbe. 2021. 29: 1076-1092. http://doi:10.1016/j.chom.2021.05.010.
    Pubmed KoreaMed CrossRef
  29. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020. 181: 1489-1501. http://doi:10.1016/j.cell.2020.05.015.
    Pubmed KoreaMed CrossRef
  30. Gulati K, Prendecki M, Clarke C, Willicombe M, McAdoo S. COVID-19 Reinfection in a Patient Receiving Immunosuppressive Treatment for Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Arthritis Rheumatol. 2021. 73: 1091-1092. http://doi:10.1002/art.41671.
    Pubmed KoreaMed CrossRef
  31. Hamady A, Lee J, Loboda ZA. Waning antibody responses in COVID-19: what can we learn from the analysis of other coronaviruses? Infection. 2022. 50: 11-25. http://doi:10.1007/s15010-021-01664-z.
    Pubmed KoreaMed CrossRef
  32. Henss L, Scholz T, von Rhein C, Wieters I, Borgans F, Eberhardt FJ. Analysis of Humoral Immune Responses in Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J Infect Dis. 2021. 223: 56-61. http://doi:10.1093/infdis/jiaa680.
    Pubmed KoreaMed CrossRef
  33. Ibarrondo FJ, Fulcher JA, Goodman-Meza DGoodman-Meza D et al. Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19. N Engl J Med. 2020. 383: 1085-1087. https://doi:10.1056/NEJMc2025179.
    Pubmed KoreaMed CrossRef
  34. Jeong HW, Kim JM, Jung MKJung MK et al. Enhanced antibody responses in fully vaccinated individuals against pan-SARS-CoV-2 variants following Omicron breakthrough infection. Cell Reports Med. 2022. 3: 100764-1007800. http://doi:10.1016/j.xcrm.2022.100764.
    Pubmed KoreaMed CrossRef
  35. Ju B, Zhang Q, Ge JGe J et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature. 2020. 584: 115-119. http://doi:10.1038/s41586-020-2380-z.
    Pubmed CrossRef
  36. Jung JH, Rha MS, Sa MSa M et al. SARS-CoV-2-specific T cell memory is sustained in COVID-19 convalescent patients for 10 months with successful development of stem cell-like memory T cells. Nat Commun. 2021. 12: 4043-4054. http://doi:10.1038/s41467-021-24377-1.
    Pubmed KoreaMed CrossRef
  37. Jung MK, Jeong SD, Noh JYNoh JY et al. BNT162b2-induced memory T cells respond to the Omicron variant with preserved polyfunctionality. Nat Microbiol. 2022. 7: 909-917. http://doi:10.1038/s41564-022-01123-x.
    Pubmed CrossRef
  38. Kalimuddin S, Tham CYL, Qui MQui M et al. Early T cell and binding antibody responses are associated with COVID-19 RNA vaccine efficacy onset. Med (NY). 2021. 2: 682-688. http://doi:10.1016/j.medj.2021.04.003.
    Pubmed KoreaMed CrossRef
  39. Kaur SP, Gupta V. COVID-19 Vaccine: a comprehensive status report. Virus Res. 2020. 288: 198114-198125. https://doi:10.1016/j.virusres.2020.198114.
    Pubmed KoreaMed CrossRef
  40. Keeton R, Tincho MB, Ngomti ANgomti A et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature. 2022. 603: 488-492. http://doi:10.1038/s41586-022-04460-3.
    Pubmed KoreaMed CrossRef
  41. Kent SJ, Khoury DS, Reynaldi AReynaldi A et al. Disentangling the relative importance of T cell responses in COVID-19: leading actors or supporting cast? Nat Rev Immunol. 2022. 22: 387-397. http://doi:10.1038/s41577-022-00716-1.
    Pubmed KoreaMed CrossRef
  42. Khosroshahi ML, Rokni M, Mokhtari T, Noorbakhsh F. Immunology, immunopathogenesis and immunotherapeutics of COVID-19; an overview. Int Immunopharmacol. 2021. 93: 107364-107378. http://doi:10.1016/j.intimp.2020.107364.
    Pubmed KoreaMed CrossRef
  43. Kim EJ, Lee D. Coronaviruses: SARS, MERS and COVID-19. Korean J Clin Lab Sci. 2020. 52: 297-309. http://doi.org/10.15324/kjcls.2020.52.4.297.
    CrossRef
  44. Kreutmair S, Unger S, Nunez NGNunez NG et al. Distinct immunological signatures discriminate severe COVID-19 from non-SARS-CoV-2-driven critical pneumonia. Immunity. 2021. 54: 1578-1593. http://doi:10.1016/j.immuni.2021.05.002.
    Pubmed KoreaMed CrossRef
  45. Kudlay D, Kofiadi I, Khaitov M. Peculiarities of the T Cell Immune Response in COVID-19. Vaccines. 2022. 10: 242-257. http://doi:10.3390/vaccines10020242.
    Pubmed KoreaMed CrossRef
  46. Kustin T, Harel N, Finkel UFinkel U et al. Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals. Nat Med. 2021. 27: 1379-1384. https://doi:10.1038/s41591-021-01413-7.
    Pubmed KoreaMed CrossRef
  47. Le Bert N, Clapham HE, Tan ATTan AT et al. Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. J Exp Med. 2021. 218: e20202617. http://doi:10.1084/jem.20202617.
    Pubmed KoreaMed CrossRef
  48. Le Bert N, Tan AT, Kunasegaran KKunasegaran K et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020. 584: 457-462. http://doi:10.1038/s41586-020-2550-z.
    Pubmed CrossRef
  49. Lee CG, Lee D. Comparison of COVID-19 Vaccines Introduced in Korea [Internet]. Biomedical Science Letters. 2022. 28: 67-82. http://dx.doi.org/10.15616/bsl.2022.28.2.67.
    CrossRef
  50. Logunov DY, Dolzhikova IV, Shcheblyakov DShcheblyakov D et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021. 397: 671-681. http://doi:10.1016/S0140-6736(21)00234-8.
    Pubmed KoreaMed CrossRef
  51. Long QX, Liu BZ, Deng HJDeng HJ et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020. 26: 845-848. http://doi:10.1038/s41591-020-0897-1 (Long, 2020a).
    Pubmed CrossRef
  52. Long QX, Tang XJ, Shi QLShi QL et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020. 26: 1200-1204. http://doi:10.1038/s41591-020-0965-6 (Long, 2020b).
    Pubmed CrossRef
  53. Lou B, Li TD, Zheng SFZheng SF et al. Serology characteristics of SARS-CoV-2 infection after exposure and post-symptom onset. Eur Respir J. 2020. 56: 2000763-2000772. http://doi:10.1183/13993003.00763-2020.
    Pubmed KoreaMed CrossRef
  54. Lu R, Zhao X, Li JLi J et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020. 2395: 565-574. https://doi:10.1016/S0140-6736(20)30251-8.
    Pubmed CrossRef
  55. Mazzoni A, Di Lauria N, Maggi LMaggi L et al. First-dose mRNA vaccination is sufficient to reactivate immunological memory to SARS-CoV-2 in subjects who have recovered from COVID-19. J Clin Invest. 2021. 131: e149150. http://doi:10.1172/JCI149150.
    Pubmed KoreaMed CrossRef
  56. McMahan K, Yu J, Mercado NBMercado NB et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature. 2021. 590: 630-634. http://doi:10.1038/s41586-020-03041-6.
    Pubmed KoreaMed CrossRef
  57. McMahan K, Yu J, Mercado NBMercado NB et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature. 2021. 590: 630-634. http://doi:10.1038/s41586-020-03041-6.
    Pubmed KoreaMed CrossRef
  58. Meckiff BJ, Ramirez-Suastegui C, Fajardo VFajardo V et al. Imbalance of Regulatory and Cytotoxic SARS-CoV-2-Reactive CD4+ T cells in COVID-19. Cell. 2020. 183: 1340-1353. http://doi:10.1016/j.cell.2020.10.001.
    Pubmed KoreaMed CrossRef
  59. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet (London, England). 2020. 395: 1033-1034. http://doi:10.1016/S0140-6736(20)30628-0.
    Pubmed KoreaMed CrossRef
  60. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020. 20: 355-362. http://doi:10.1038/s41577-020-0331-4.
    Pubmed KoreaMed CrossRef
  61. Moss P. The T cell immune response against SARS-CoV-2. Nat Immunol. 2022. 23: 186-193. http://doi:10.1038/s41590-021-01122-w.
    Pubmed CrossRef
  62. Murphy K, Weaver C. Janeway's immunobiology. 2016. Garland Science. New York and London.
    CrossRef
  63. Naaber P, Tserel L, Kangro KKangro K et al. Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal prospective study. Lancet Reg Health Eur. 2021. 10: 100208-100216. http://doi:10.1016/j.lanepe.2021.100208.
    Pubmed KoreaMed CrossRef
  64. Ng KW, Faulkner N, Cornish GHCornish GH et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science. 2020. 370: 1339-1343. http://doi:10.1126/science.abe1107.
    Pubmed KoreaMed CrossRef
  65. Notarbartolo S, Ranzani V, Bandera ABandera A et al. Integrated longitudinal immunophenotypic, transcriptional and repertoire analyses delineate immune responses in COVID-19 patients. Science Immunology. 2021. 6: eabg5021. http://doi:10.1126/sciimmunol.abg5021.
    Pubmed CrossRef
  66. Painter MM, Mathew D, Goel RRGoel RR et al. Rapid induction of antigen-specific CD4+ T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity. 2021. 54: 2133-2142. http://doi:10.1016/j.immuni.2021.08.001.
    Pubmed KoreaMed CrossRef
  67. Peng Y, Mentzer AJ, Liu GLiu G et al. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol. 2020. 21: 1336-1345. http://doi:10.1038/s41590-020-0782-6.
    Pubmed KoreaMed CrossRef
  68. Pierce CA, Sy S, Galen BGalen B et al. Natural mucosal barriers and COVID-19 in children. JCI Insight. 2021. 6: e148694. http://doi:10.1172/jci.insight.148694.
    Pubmed KoreaMed CrossRef
  69. Piot P, Larson HJ, O'Brien KLO'Brien KL et al. Immunization: vital progress, unfinished agenda. Nature. 2019. 575: 119-129. http://doi:10.1038/s41586-019-1656-7.
    Pubmed CrossRef
  70. Polack FP, Thomas SJ, Kitchin NKitchin N et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020. 383: 2603-2615. http://doi:10.1056/NEJMoa2034577.
    Pubmed KoreaMed CrossRef
  71. Rahimi A, Mirzazadeh A, Tavakolpour S. Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection. Genomics. 2021. 113: 1221-1232. https://doi:10.1016/j.ygeno.2020.09.059.
    Pubmed KoreaMed CrossRef
  72. Robbiani DF, Gaebler C, Muecksch FMuecksch F et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature. 2020. 584: 437-442. http://doi:10.1038/s41586-020-2456-9.
    Pubmed KoreaMed CrossRef
  73. Rodda LB, Netland J, Shehata LShehata L et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021. 184: 169-183. http://doi:10.1016/j.cell.2020.11.029.
    Pubmed KoreaMed CrossRef
  74. Rodrigues PRS, Alrubayyi A, Pring EPring E et al. Innate immunology in COVID-19-a living review. Part II: dysregulated inflam-mation drives immunopathology. Oxf Open Immunol. 2020. 1: iqaa005. http://doi:10.1093/oxfimm/iqaa005.
    Pubmed KoreaMed CrossRef
  75. Rydyznski Moderbacher C, Ramirez SI, Dan JMDan JM et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID -19 and Associations with Age and Disease Severity. Cell. 2020. 183: 996-1012. http://doi:10.1016/j.cell.2020.09.038.
    Pubmed KoreaMed CrossRef
  76. Sa Ribero M, Jouvenet N, Dreux M, Nisole S. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog. 2020. 16: e1008737. http://doi:10.1371/journal.ppat.1008737.
    Pubmed KoreaMed CrossRef
  77. Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol. 2021. 21: 475-484. http://doi:10.1038/s41577-021-00578-z.
    Pubmed KoreaMed CrossRef
  78. Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol. 2021. 21: 475-484. http://doi:10.1038/s41577-021-00578-z.
    Pubmed KoreaMed CrossRef
  79. Sahin U, Muik A, Derhovanessian EDerhovanessian E et al. BNT162b1 elicits human antibody and TH1 T cell responses. Nature. 2020. 586: 594-599. http://doi:10.1038/s41586-020-2814-7.
    Pubmed CrossRef
  80. Sahin U, Muik A, Vogler IVogler I et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature. 2021. 595: 572-577. http://doi:10.1038/s41586-021-03653-6.
    Pubmed CrossRef
  81. Saxena SK, Kumar S, Ansari SAnsari S et al. Characterization of the novel SARS-CoV-2 Omicron (B.1.1.529) variant of concern and its global perspective. J Med Virol. 2022. 94: 1738-1744. http://doi:10.1002/jmv.27524.
    Pubmed CrossRef
  82. Sekine T, Perez-Potti A, Rivera-Ballesteros ORivera-Ballesteros O et al. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell. 2020. 183: 158-168. http://doi:10.1016/j.cell.2020.08.017.
    Pubmed KoreaMed CrossRef
  83. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021. 184: 861-880. http://doi:10.1016/j.cell.2021.01.007.
    Pubmed KoreaMed CrossRef
  84. Sette A, Crotty S. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines. Immunol Rev. 2022. 310: 27-46. http://doi:10.1111/imr.13089.
    Pubmed KoreaMed CrossRef
  85. Shah M, Woo HG. Molecular Perspectives of SARS-CoV-2: Pathology, Immune Evasion, and Therapeutic Interventions. Mol Cells. 2021. 44: 408-421. http://doi:10.14348/molcells.2021.0026.
    Pubmed KoreaMed CrossRef
  86. Shinde V, Bhikha S, Hoosain ZHoosain Z et al. Efficacy of NVX CoV2373 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021. 384: 1899-1909. http://doi:10.1056/NEJMoa2103055.
    Pubmed KoreaMed CrossRef
  87. Shuai H, Chan JFW, Hu BHu B et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature. 2022. 603: 693-699. http://doi:10.1038/s41586-022-04442-5.
    Pubmed CrossRef
  88. Simonovich VA, Burgos Pratx LD, Scibona PScibona P et al. A Randomized Trial of Convalescent Plasma in Covid-19 Severe Pneumonia. N Engl J med. 2021. 384: 619-629. http://doi:10.1056/NEJMoa2031304.
    Pubmed KoreaMed CrossRef
  89. Skelly DT, Harding AC, Gilbert-Jaramillo JGilbert-Jaramillo J et al. Two doses of SARS-CoV-2 vaccination induce robust immune responses to emerging SARS-CoV-2 variants of concern. Nat Commun. 2021. 12: 5061-5072. http://doi:10.1038/s41467-021-25167-5.
    Pubmed KoreaMed CrossRef
  90. Soresina A, Moratto D, Chiarini MChiarini M et al. Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. Pediatr Allergy Immunol. 2020. 31: 565-569. http://doi:10.1111/pai.13263.
    Pubmed KoreaMed CrossRef
  91. Stephenson E, Reynolds G, Botting RABotting RA et al. Single-cell multi-omics analysis of the immune response in COVID-19. Nat Med. 2021. 27: 904-916. http://doi:10.1038/s41591-021-01329-2.
    Pubmed KoreaMed CrossRef
  92. Szabo PA, Dogra P, Gray JIGray JI et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity. 2021. 54: 797-814. http://doi:10.1016/j.immuni.2021.03.005.
    Pubmed KoreaMed CrossRef
  93. Tan AT, Linster M, Tan CWTan CW et al. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Reports. 2021. 34: 108728-108740. http://doi:10.1016/j.celrep.2021.108728.
    Pubmed KoreaMed CrossRef
  94. Tang P, Hasan MR, Chemaitelly HChemaitelly H et al. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 Delta variant in Qatar. Nat Med. 2021. 27: 2136-2143. https://doi:10.1038/s41591-021-01583-4.
    Pubmed CrossRef
  95. Tarke A, Coelho CH, Zhang ZZhang Z et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell. 2022. 185: 847-859. http://doi:10.1016/j.cell.2022.01.015.
    Pubmed KoreaMed CrossRef
  96. Tarke A, Sidney J, Kidd CKKidd CK et al. Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. Cell Rep Med. 2021. 2: 100204-100223. http://doi:10.1016/j.xcrm.2021.100204.
    Pubmed KoreaMed CrossRef
  97. Tartof SY, Slezak JM, Fischer HFischer H et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet. 2021. 398: 1407-1416. http://doi:10.1016/S0140-6736(21)02183-8.
    Pubmed CrossRef
  98. Teijaro JR, Farber DL. COVID-19 vaccines: modes of immune activation and future challenges. Nat Rev Immunol. 2021. 21: 195-197. http://doi:10.1038/s41577-021-00526-x.
    Pubmed KoreaMed CrossRef
  99. Totura AL, Whitmore A, Agnihothram S, Schafer A, Katze MG, Heise MT. Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection. mBio. 2015. 6: e00638-15. http://doi:10.1128/mBio.00638-15.
    Pubmed KoreaMed CrossRef
  100. Tseng HF, Ackerson BK, Luo YLuo Y et al. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nat Med. 2022. 28: 1063-1071. http://doi:10.1038/s41591-02201753-y.
    Pubmed KoreaMed CrossRef
  101. UKHSA. SARS-CoV-2 Variants of Concern and Variants Under Investigation in England: Technical Briefing. 2021. 31.
  102. Vabret N, Britton GJ, Gruber CGruber C et al. Immunology of COVID-19: Current State of the Science. Immunity. 2020. 52: 910-941. http://doi:10.1016/j.immuni.2020.05.002.
    Pubmed KoreaMed CrossRef
  103. Vardhana S, Baldo LBaldo L et al; Morice WG 2nd. Understanding T cell responses to COVID-19 is essential for informing public health strategies. Sci Immunol. 2022. 7: eabo1303. https://doi:10.1126/sciimmunol.abo1303.
    Pubmed CrossRef
  104. Vogel AB, Kanevsky I, Che YChe Y et al. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature. 2021. 592: 283-289. http://doi:10.1038/s41586-021-03275-y.
    Pubmed CrossRef
  105. Voysey M, Clemens SAC, Madhi SAMadhi SA et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021. 397: 99-111. http://doi:10.1016/S0140-6736(20)32661-1.
    Pubmed KoreaMed CrossRef
  106. Wan S, Yi Q, Fan SFan S et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br J Hematol. 2020. 189: 428-437. http://doi:10.1111/bjh.16659.
    Pubmed KoreaMed CrossRef
  107. Wang P, Nair MS, Liu LLiu L et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021a. 593: 130-135. http://doi:10.1038/s41586-021-03398-2.
    Pubmed CrossRef
  108. Wang Z, Lorenzi J, Muecksch FMuecksch F et al. Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci Transl Med. 2021b. 13: eabf1555. http://doi:10.1126/scitranslmed.abf1555.
    Pubmed KoreaMed CrossRef
  109. Wheatley AK, Juno JA, Wang JJWang JJ et al. Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19. Nat Commun. 2021. 12: 1162-1172. https://doi:10.1038/s41467-021-21444-5.
    Pubmed KoreaMed CrossRef
  110. Widge AT, Rouphael NG, Jackson LAJackson LA et al. Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination. N Engl J Med. 2021. 384: 80-82. http://doi:10.1056/NEJMc2032195.
    Pubmed KoreaMed CrossRef
  111. Willyard S. What the Omicron wave is revealing about human immunity. Retrieved from nature website: https://www.nature.com/articles/d41586-022-00214-3.2022.
  112. Wolter N, Jassat W, Walaza SWalaza S et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet (London, England). 2022. 399: 437-446. http://doi:10.1016/S0140-6736(22)00017-4.
    Pubmed KoreaMed CrossRef
  113. Zhang Z, Mateus J, Coelho CHCoelho CH et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell. 2022. 185: 2434-2451. http://doi:10.1016/j.cell.2022.05.022.
    Pubmed KoreaMed CrossRef
  114. Zhao H, Lu L, Peng ZPeng Z et al. Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect. 2022. 11: 277-283. http://doi:10.1080/22221751.2021.2023329.
    Pubmed KoreaMed CrossRef
  115. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2010. 28: 445-489. http://doi:10.1146/annurev-immunol-030409-101212.
    Pubmed KoreaMed CrossRef
  116. Zhuang Z, Lai X, Sun JSun J et al. Mapping and role of T cell response in SARS-CoV-2-infected mice. J Exp Med. 2021. 218: e20202187. http://doi:10.1084/jem.20202187.
    Pubmed KoreaMed CrossRef