Search for


TEXT SIZE

search for



CrossRef (0)
Antibacterial activity of Dioscorea batatas, Morus alba, and Tagetes erecta against E. coli and S. aureus
Biomed Sci Letters 2023;29:130-136
Published online September 30, 2023;  https://doi.org/10.15616/BSL.2023.29.3.130
© 2023 The Korean Society For Biomedical Laboratory Sciences.

Hyun-Seo Yoon1,3,* and Chung Mu Park2,3,†,*

1Department of Dental Hygiene, Dong-Eui University, Busan 47340, Korea
2Department of Clinical Laboratory Science, Dong-Eui University, Busan 47340, Korea
3Research Institute for Health Functional Materials, Dong-Eui University, Busan 47340, Korea
Correspondence to: Chumg-Mu Park. Department of Clinical Laboratory Science, Dong-Eui University, 176 Eomgwangro, Busan 47340, Korea.
Tel: +82-51-890-2685, Fax: +82-51-890-2622, e-mail: cmpark@deu.ac.kr
*Professor.
Received August 21, 2023; Accepted September 6, 2023.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
In this study, the anti-bacterial activity of three medicinal herbs such as Dioscorea batatas, Morus alba, and Tagetes erecta, have been applied in oriental medicine against Escherichia coli and Staphylococcus aureus. The antibacterial activity of Dioscorea batatas ethanol extract (DBEE), Morus alba ethanol extract (MAEE), and Tagetes erecta ethanol extract (TEEE) was analyzed by disk diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays. As a result, three medicinal herbs exhibited antibacterial activity in a dose-dependent manner as well as MAEE and TEEE showed the most potent antibacterial activity followed by disk diffusion assay against E. coli and S. aureus, respectively. MIC against E. coli and S. aureus was 1.6 mg/mL of MAEE and TEEE as well as 0.2 mg/mL of TEEE. MBC against both strains was 5 mg/mL of DBEE and 2.5 mg/mL of TEEE. Consequently, three medicinal herbs in this study showed potent antibacterial activity through the inhibited growth of E. coli and S. aureus, which is considered as a potential candidate for cosmeceutic agents to attenuate the pruritus. In addition, antibacterial and antihistamine effects followed by the extraction solvents should be analyzed in future studies.
Keywords : Dioscorea batatas, Morus alba, Tagetes erecta, Antibacterial, Escherichia coli, Staphylococcus aureus
꽌 濡

理쒓렐 냼뱷닔以쓽 뼢긽怨 깮솢諛⑹떇쓽 떎뼇솕濡 泥寃곌낵 쐞깮뿉 븳 슂援щ룄뒗 넂븘吏怨 엳쑝硫, 湲고썑蹂솕 誘몄꽭癒쇱, 솚寃쎌삤뿼뿉 뵲瑜 嫄댁꽑, 냼뼇利, 븘넗뵾 媛숈 뵾遺吏덊솚씠 吏냽쟻쑝濡 利앷븯怨 엳떎(Xie et al., 2016). 씠뒗 깮솢 냽 誘몄깮臾쇨낵 諛젒븳 愿젴씠 엳뒗 寃껋쑝濡 蹂닿퀬릺怨(Milligan et al., 2016), 븘넗뵾뵾遺뿼쓽 寃쎌슦 솴깋룷룄긽援ш퇏씠 뵾遺 뿼利 遺쐞뿉 吏묐씫쓣 삎꽦븯怨 利앹긽쓣 븙솕떆궎뒗 寃껋쑝濡 蹂닿퀬릺怨 엳떎(Matsui et al., 2000; Ogawa et al., 1994).

뵾遺媛젮利(냼뼇利) 嫄닿컯蹂댄뿕떖궗룊媛썝 옄猷뚯뿉 뵲瑜대㈃ 吏냽쟻쑝濡 利앷븯뿬 2021뀈 湲곗 100留뚮챸뿉 쑁諛뺥븯뒗 寃껋쑝濡 蹂닿퀬븯怨(National Health Insurance Service, 2022), 썝씤 뵾遺吏덊솚 쇅뿉룄 떊옣吏덊솚, 由쇳봽醫, 媛묒긽꽑 湲곕뒫빆吏꾩쬆, 떦눊蹂묎낵 媛숈 쟾떊吏덊솚씠 썝씤씠 릺湲곕룄 븳떎. 洹몃윭굹 썝씤쓣 븣 닔 뾾뒗 寃쎌슦룄 30%瑜 李⑥븯怨 엳뼱 젙솗븳 썝씤뙆븙쓣 쐞빐 삁븸寃궗, 꽭洹, 吏꾧퇏 諛곗뼇寃궗, 뵾遺議곗쭅寃궗瑜 吏꾪뻾븯湲곕룄 븳떎(Oh et al., 2019). 뵾遺쓽 媛젮利앹쓣 빐寃고븯湲 쐞븯뿬 泥쒖뿰臾쇱쓣 씠슜븳 떇뭹怨 쓽빟뭹, 솕옣뭹 벑쓽 뿰援ш컻諛쒖씠 솢諛쒗븯寃 씠猷⑥뼱吏怨 엳쑝硫(Choi et al., 2017), 理쒓렐 湲곕뒫꽦 솕옣뭹怨 쓽빟뭹쓽 以묎컙쟻 媛쒕뀗쑝濡 肄붿뒪硫붿뒋떚而ъ뿉 븳 슂援щ룄媛 넂븘吏硫 빟슜떇臾쇱씠굹 떇슜떇臾쇱뿉 븳 솢꽦 寃利앹씠 袁몄븯寃 씠猷⑥뼱吏怨 엳떎(Kim, 2021).

뵾遺냼뼇利앷낵 媛젮利 셿솕뿉 븳 꽑뻾뿰援щ뒗 솴湲 異붿텧臾쇱쓽 ECS 議곗젅쓣 넻븳 鍮꾨쭔꽭룷 솢꽦 뼲젣(Ahn et al., 2021), 옄珥(Radix lithospermi) 吏떎(Ponciri fructus) nerve growth factor (NGF)쓽 諛쒗쁽怨 빆엳뒪誘쇳슚怨(Park et al., 2016), 硫곕뒓由щ같瑗 異붿텧臾쇱쓽 棺-hexosaminidase 솢꽦뼲젣 슚怨 벑쓽 뿰援ш 吏꾪뻾릺뿀떎(Yoon and Park, 2020).

궛빟(Diosocorea batatas)쓽 二 솢꽦 꽦遺꾩 amylase mucin, saponin, arginine쑝濡 븣젮졇 엳怨 뵾濡쒗쉶蹂, 삁떦 븯, 냼솕 珥됱쭊 벑쓽 슚怨쇰룄 엳뒗 寃껋쑝濡 븣젮졇 엳떎(Kang et al., 2014). 삉븳 빆븫 슚怨, 쟾由쎌꽑 鍮꾨利 媛쒖꽑, 떖삁愿 吏덊솚 삁諛, 뿼利앹뼲젣 슚怨쇨 엳뒗 寃껋쑝濡 솢諛쒗븯寃 뿰援ш 씠猷⑥뼱吏怨 엳떎(Park et al., 2020).

긽諛깊뵾(Morus alba)쓽 二 꽦遺꾩 ursolic acid, betulinic acid, mulberrin, morusin, mulberroside 벑씠硫(Chan et al., 2016), 빆궛솕, 빆뿼, 빆諛붿씠윭뒪, 泥쒖떇移섎즺 슚怨쇨 엳뒗 寃껋쑝濡 븣젮졇 엳떎(Batiha et al., 2023). 삉븳 긽諛깊뵾뒗 룓븫, 옣븫, 삁븸븫 벑뿉 빆븫슚怨쇰 蹂댁씠怨 엳떎(Park and Park, 2021).

硫붾━怨⑤뱶(Tagetes erecta)뒗 二 꽦遺꾩씠 carotinoid濡 빟 90%쓽 lutein怨 zeaxanthin쓣 븿쑀븯뿬 理쒓렐 留롮 愿떖쓣 諛쏄퀬 엳떎(Kim et al., 2021). 삉븳, 븳쓽븰뿉꽌뒗 湲덉옍솕 삉뒗 泥쒖닔援쑝濡 븣젮졇 엳怨 빆洹 슚怨(Kasiram et al., 2000), 빆궛솕(Karadas et al., 2006), 긽泥섏튂쑀 슚怨(Zitterl-Eglseer et al., 1997) 벑씠 엳뒗 寃껋쑝濡 븣젮졇 엳떎.

뵾遺쓽 뿼利앹쓣 쑀諛쒗븯뒗 뿬윭 슂씤 以 븯굹씤 誘몄깮臾쇱뿉꽌 몴 썝씤 洹좎<濡 Staphylococcus aureus Escherichia coli, Cubibacterium acnes 벑씠 엳쑝硫(Kim et al., 2016), 씠 洹좎<뱾 뵾吏 遺꾨퉬쑉쓣 넂뿬 뵾遺쓽 뿼利앷낵 媛젮利앹쓣 쑀諛쒗븯뒗 寃껋쑝濡 蹂닿퀬릺怨 엳떎(Knor, 2005). 뵾遺뿉 빆洹 슚怨쇨 엳뒗 寃껋쑝濡 븣젮吏 異붿텧臾쇱 렪諛깅굹臾 뿉깂삱 異붿텧臾(Kim et al., 2019), 삤諛곗옄 異붿텧臾, 李몃굹臾 紐⑹큹븸 異붿텧臾, 떎뼇븳 뿀釉뚯떇臾 벑씠 엳뒗 寃껋쑝濡 븣젮졇 엳떎(Kim et al., 2021). 뵲씪꽌 蹂 뿰援ъ뿉꽌뒗 븳빟옱濡 씠슜릺뒗 궛빟, 긽諛깊뵾, 硫붾━怨⑤뱶쓽 E. coli S. aureus뿉 븳 빆洹 슚怨쇱 꽦옣뼲젣 슚怨쇰 寃利앺븯뿬 궛빟, 긽諛깊뵾, 硫붾━怨⑤뱶 異붿텧臾쇱쓣 媛젮利 셿솕 솕옣뭹 썝猷뚮줈 솢슜 媛뒫꽦쓣 솗씤븯怨좎옄 븳떎.

옱猷 諛 諛⑸쾿

옱猷

泥쒖씪븳빟諛⑹뿉꽌 援ъ엯븳 궛빟(D. batatas), 긽諛깊뵾(M. alba), 硫붾━怨⑤뱶(T. erecta)뒗 遺꾩뇙 썑 二쇱젙(뿉깂삱)怨 1:4 (v/v)쓽 鍮꾩쑉濡 꽎怨 珥덉쓬뙆異붿텧湲(Powersonic 410, Hwashin Technology, Busan, Korea)瑜 씠슜븯뿬 30遺꾧컙 異붿텧븳 썑 80꼦瑜 쑀吏븯硫 3떆媛꾩뵫 2쉶 諛섎났븯뿬 異붿텧븯떎. 뿬怨쇰맂 궛빟 異붿텧臾(DBEE), 긽諛깊뵾 異붿텧臾(MAEE), 硫붾━怨⑤뱶 異붿텧臾(TEEE) 吏꾧났 냽異뺢린(N-110, Eyela Co., Tokyo, Japan)濡 셿쟾엳 냽異뺥븯뿬 desiccator뿉 24떆媛 蹂닿 썑 臾닿쾶瑜 痢≪젙븯떎. 媛 떆猷뚯쓽 쉶닔쑉 궛빟 3.5%, 긽諛깊뵾 18.7%, 硫붾━怨⑤뱶 35.3%濡 굹궗떎.

洹좎< 諛곗뼇

E. coli (KCTC 2441) S. aureus (KCTC 1621)瑜 븳援깮紐낃났븰뿰援ъ썝(Daejeon, Korea)뿉꽌 遺꾩뼇諛쏆븘 nutrient agar broth (KisanBio, Korea)뿉 젒醫낇븯뿬 37꼦 incubator (Hanbaek Co., Bucheon, Korea) shaking incubator (200 rpm, Daehan Lab. Science, Namyangju, Korea)뿉꽌 24떆媛 諛곗뼇븯뿬 궗슜븯떎.

뵒뒪겕 솗궛踰뺤쓣 넻븳 빆洹 솢꽦 遺꾩꽍

E. coli S. aureus뿉 븳 DBEE, MAEE, TEEE쓽 빆洹 솢꽦 뵒뒪겕 솗궛踰뺤쓣 씠슜븯뿬 痢≪젙븯怨, 몢 洹좎< 紐⑤몢 NCCLS Guide Line M11-A6뿉 以븯뿬 떎뿕븯떎(Piddock, 1990). 洹좎<뱾 룊뙋諛곗뿉 20 關L 룄留 젒醫 썑, 룊뙋諛곗쓽 몴硫댁뿉 諛李⑹떆궓 吏곴꼍 8 mm쓽 硫멸퇏맂 paper disk (Advantec, Toyo Roshi, Ltd., Tokyo, Japan)뿉 DBEE, MAEE, TEEE瑜 100, 250, 500 mg/mL 냽룄蹂꾨줈 媛곴컖 30 關L뵫 젏쟻븯怨 37꼦 incubator뿉꽌 24떆媛 룞븞 諛곗뼇 썑 留뚮뱾뼱吏 닾紐낇솚쓽 吏곴꼍쓣 caliper (DC150/200-2, CAS, Yangju, Korea)濡 痢≪젙븯뿬 빆洹 솢꽦쓣 遺꾩꽍븯떎. 紐⑤뱺 떎뿕 3쉶 諛섎났븯뿬 떆뻾 썑 룊洹좉컪쓣 湲곕줉븯떎.

理쒖냼뼲젣냽룄(MIC) 理쒖냼궡洹좊냽룄(MBC) 痢≪젙

E. coli S. aureus뿉 븳 DBEE, MAEE, TEEE 냽룄뿉 뵲瑜 理쒖냼뼲젣냽룄(minimum inhibition concentration, MIC)쓣 痢≪젙븯湲 쐞븯뿬 0.2, 0.4, 0.8, 1.6, 2.5, 5.0, 1.0 mg/mL 냽룄濡 씗꽍븳 떆猷뚮 24 well plate뿉 2 mL뵫 遺꾩<븯떎. 洹좎<뒗 600 nm뿉꽌 0.2쓽 씉愿묐룄瑜 蹂댁씠뒗 냽룄濡 20 關L瑜 젒醫 썑 37꼦뿉꽌 24떆媛 諛곗뼇븯怨 OD600 媛믪씠 0.1 씠븯씤 MIC 냽룄瑜 솗씤븯떎.

理쒖냼궡洹좊냽룄(minimum bactericidal concentration, MBC)쓽 痢≪젙쓣 쐞빐 MIC 痢≪젙씠 걹궃 plate뿉꽌 媛 냽룄蹂 well뿉 50 關L뵫 痍⑦븯뿬 怨좎껜諛곗뿉 젒醫낇븯怨 37꼦뿉꽌 24떆媛 룞븞 諛곗뼇븯뿬 吏묐씫 삎꽦 쑀臾대 뙋룆븯떎.

넻怨꾨텇꽍

넻怨꾨텇꽍 SPSS (version 26.0, Chicago, IL, USA)쓣 씠슜븯뿬, E. coli S. aureus뿉 븳 DBEE, MAEE, TEEE쓽 빆洹 슚怨쇰 鍮꾧탳遺꾩꽍 븯湲 쐞븯뿬 씪썝諛곗튂遺꾩궛遺꾩꽍(One-way ANOVA)瑜 떎떆븯怨, 궗썑 寃利앹쓣 쐞븯뿬 Ducan 湲곕쾿쓣 솢슜븯떎.

寃 怨

뵒뒪겕 솗궛踰뺤쓣 씠슜븳 DBEE, MAEE, TEEE쓽 빆洹 슚怨

DBEE, MAEE, TEEE쓽 빆洹 슚怨쇰뒗 뵒뒪겕 솗궛踰뺤쓣 씠슜븯뿬 遺꾩꽍븯怨 洹 寃곌낵뒗 Table 1뿉꽌 蹂대뒗 寃껉낵 媛숇떎. DBEE뒗 E. coli뿉 빐 100 mg/mL 냽룄뿉꽌 9.34 mm, 250 mg/mL뿉꽌 12.05 mm, 500 mg/mL뿉꽌 14.70 mm쓽 빆洹 슚怨쇰 蹂댁怨(P<0.001), MAEE뒗 100 mg/mL 냽룄뿉꽌 13.97 mm, 250 mg/mL뿉꽌 17.40 mm, 500 mg/mL뿉꽌 19.01 mm쓽 빆洹 슚怨쇰 굹깉쑝硫(P<0.001), TEEE뒗 100 mg/mL뿉꽌 10.18 mm, 250 mg/mL뿉꽌 13.81 mm, 500 mg/mL뿉꽌 16.61 mm濡 냽룄 쓽議댁쟻씤 빆洹 슚怨쇰 蹂댁떎(P<0.001). 삉븳 S. aureus뿉 빐 DBEE뒗 100 mg /mL 냽룄뿉꽌 16.58 mm, 250 mg/mL뿉꽌 18.96 mm, 500 mg/mL뿉꽌 20.95 mm쓽 빆洹 슚怨쇰 굹깉怨(P<0.001), MAEE뒗 100 mg/mL 냽룄뿉꽌 14.16 mm, 250 mg/mL뿉꽌 18.69 mm, 500 mg/mL뿉꽌 21.76 mm濡 빆洹 슚怨쇰 蹂댁쑝硫(P<0.001), TEEE뒗 100 mg/mL 냽룄뿉꽌 17.30 mm, 250 mg/mL뿉꽌 21.75 mm, 500 mg/mL뿉꽌 33.09 mm濡 냽룄 쓽議댁쟻쑝濡 빆洹 슚怨쇰 굹깉떎(P<0.003). 洹몃━怨 媛 洹좎<쓽 떆猷뚯뿉 뵲瑜 빆洹 슚怨쇰 媛옣 궙 냽룄씤 100 mg/mL뿉꽌 鍮꾧탳븳 寃곌낵, E. coli뿉 빐꽌뒗 MAEE媛 13.97 mm濡 媛옣 而멸퀬, TEEE뒗 10.18 mm, DBEE뒗 9.34 mm 닚쑝濡 뼲젣쓽 겕湲곌 굹궗怨(P<0.001), S. aureus뿉 빐 TEEE媛 17.30 mm濡 媛옣 而멸퀬, DBEE뒗 16.58 mm, MAEE뒗 14.16 mm 닚쑝濡 뼲젣쓽 겕湲 李⑥씠瑜 蹂댁뿬, 뼲젣쓽 겕湲 닚쑝濡 빆洹 슚怨쇨 媛뺥븳 寃껋쑝濡 굹궗떎(P=0.010).

Anti-microbial effect of DBEE, MAEE, and TEEE against E. coli and S. aureus

Strain Agent Treatment conc. (mg/mL) Inhibition zone diameter (mm) t / F P
E. coli DBEE 100 9.34짹0.75a 42.351 <0.001
250 12.05짹0.89b
500 14.70짹0.43c
MAEE 100 13.97짹1.07a 34.970 <0.001
250 17.40짹0.44b
500 19.01짹0.60c
TEEE 100 10.18짹0.47a 226.990 <0.001
250 13.81짹0.36b
500 16.61짹0.25c
S. aureus DBEE 100 16.58짹0.51a 41.514 <0.001
250 18.96짹0.84b
500 20.95짹0.27c
MAEE 100 14.16짹1.64a 38.120 <0.001
250 18.69짹0.50b
500 21.76짹0.72c
TEEE 100 17.30짹0.65a 17.963 0.003
250 21.75짹5.67a
500 33.09짹0.82b

Values with the same letter are not significant different by Duncan multiple range test (***P<0.001)



DBEE, MAEE, TEEE쓽 E. coli S. aureus뿉 븳 MIC MBC

DBEE, MAEE, TEEE쓽 E. coli S. aureus뿉 理쒖냼꽦옣뼲젣 냽룄뒗 Table 2뿉꽌 蹂대뒗 寃껉낵 媛숇떎. E. coli뿉 븳 理쒖냼꽦옣뼲젣 냽룄뒗 DBEE 2.5 mg/mL, MAEE TEEE뒗 1.6 mg/mL쑝濡 MAEE TEEE쓽 냽룄媛 궙븯떎. S. aureus뿉 븳 理쒖냼꽦옣뼲젣 DBEE 0.8 mg/mL, MAEE 1.6 mg/mL, TEEE 0.2 mg/mL濡 TEEE媛 媛옣 궙 냽룄뿉꽌 理쒖냼꽦옣뼲젣슚怨쇰 蹂댁떎. E. coli S. aureus뿉 븳 理쒖냼꽦옣뼲젣 냽룄瑜 솗씤 썑 洹 씠긽쓽 냽룄뿉꽌 諛곗뼇븳 E. coli뒗 BHI plate뿉꽌, S. aureus뒗 BAP뿉꽌 룄留 썑 colony 삎꽦 뿬遺瑜 솗씤븳 寃곌낵, 24떆媛 寃쎄낵 썑 E. coli뒗 DBEE, MAEE, TEEE뿉꽌 10, 5, 10 mg/mL쓽 냽룄뿉꽌, S. aureus뒗 5, 5, 2.5 mg/mL쓽 냽룄뿉꽌 紐⑤몢 愿李곕릺뿀떎(Table 2).

MIC and MBC (24 h) of DBEE, MAEE, and TEEE against E. coli and S. aureus

Strain Agent Concentration (mg/mL)
0 0.2 0.4 0.8 1.6 2.5 5.0 10
E. coil DBEE MIC + + + + + - - -
MBC + + + + + + + -
MAEE MIC + + + + - - - -
MBC + + + + + + - -
TEEE MIC + + + + - - - -
MBC + + + + + + + -
S. aureus DBEE MIC + + + - - - - -
MBC + + + + + + - -
MAEE MIC + + + + - - - -
MBC + + + + + + - -
TEEE MIC + - - - - - - -
MBC + + + + + - - -


DBEE, MAEE, TEEE쓽 E. coli S. aureus뿉 븳 꽦옣뼲젣 슚怨

DBEE, MAEE, TEEE媛 냽룄蹂꾨줈 씗꽍맂 nutrient broth뿉 E. coli S. aureus瑜 젒醫낇븳 썑 3, 6, 12, 24떆媛 諛곗뼇븯硫 떆媛꾨퀎濡 OD600 媛믪쓣 痢≪젙븯떎. E. coli뿉 븳 DBEE, MAEE, TEEE쓽 꽦옣뼲젣 슚怨쇰뒗 24떆媛 룞븞 諛곗뼇븳 뼇꽦議곌뎔쓽 씉愿묐룄씤 0.476怨 鍮꾧탳븯쓣 븣 1 mg/mL뿉꽌 0.241, 0.177, 0.218씠 굹궗怨, 2 mg/mL뿉꽌 0.192, 0.165, 0.157씠 굹궗쑝硫, 4 mg/mL뿉꽌 0.160, 0.146, 0.109쓽 媛믪쓣 蹂댁뿬二쇱뿀떎(Fig. 1, left panel). 洹몃━怨 S. aureus뿉 븳 DBEE, MAEE, TEEE쓽 꽦옣뼲젣 슚怨쇰뒗 24떆媛 諛곗뼇븳 뼇꽦議곌뎔쓽 씉愿묐룄씤 0.620怨 鍮꾧탳븯쓣 븣 1 mg /mL뿉꽌 0.253, 0.118, 0.074媛 굹궗怨, 2 mg/mL뿉꽌 0.200, 0.080, 0.088씠 굹궗쑝硫, 4 mg/mL뿉꽌 0.152, 0.090, 0.088쓽 媛믪쓣 蹂댁뿬二쇱뿀떎(Fig. 1, right panel).

Fig. 1. Growth inhibition curves of E. coli and S. aureus.
Both strains (left panel, E. coli; right panel, S. aureus) were treated with indicated concentrations of DBEE (upper), MAEE (middle), TEEE (lower) followed by time to analyze the antibacterial activity of each extract. Each value shows the average of three times independent experiments. DBEE, Dioscorea batatas ethanol extract; MAEE Morus alba ethanol extract; TEEE, Tagetes erecta ethanol extract.
怨 李

怨좊졊솕 솚寃쎌삤뿼뿉 뵲瑜 뵾遺媛젮利앹쓽 利앷濡 쓽猷뚭린愿쓣 諛⑸Ц븯뒗 씤援ш 利앷븯硫, 궗쉶쟻, 寃쎌젣쟻 넀떎쓣 諛쒖깮떆궎怨 엳떎(Kim, 2021). 냼뼇利앹쓽 移섎즺 諛⑸쾿씤 뒪뀒濡쒖씠뱶 移섎즺젣뒗 떎뼇븳 遺옉슜쓣 諛쒖깮떆궎怨 엳뼱 泥쒖뿰 꽦遺꾩쓽 湲곕뒫꽦 썝猷뚯뿉 븳 愿떖 吏냽쟻쑝濡 利앷븯怨 엳떎(Kim et al., 2021). 듅엳 븳빟옱 븿猿 꽠痍④ 媛뒫븳 떇슜떇臾쇰뱾쓽 뿰援щ뱾씠 솢諛쒗븯寃 씠猷⑥뼱吏怨 엳쑝硫 씤궪, 몢, 怨꾪뵾, 媛먯큹, 留덈뒛, 뫁, 끃李 벑쓽 빆뿼利 諛 빆洹좎꽦, 誘몃갚 湲곕뒫꽦뿉 븳 뿰援щ뱾씠 씠猷⑥뼱吏怨 엳떎(Choi et al., 2017: Park et al., 2016). 씠뿉 蹂 뿰援ъ뿉꽌뒗 DBEE, MAEE, TEEE쓽 E. coli S. aureus뿉 븳 빆洹 슚怨 諛 꽦옣뼲젣 슚怨쇰 寃利앺븯뿬 뵾遺媛젮利 셿솕 솕옣뭹 湲곕뒫꽦 썝猷뚮줈 솢슜 媛뒫꽦쓣 寃利앺븯怨좎옄 븳떎.

E. coli뿉 븳 빆洹 슚怨쇰뒗 DBEE, MAEE, TEEE 紐⑤몢 냽룄 쓽議댁쟻쑝濡 빆洹 슚怨쇰 蹂댁쑝硫, 룞씪븳 냽룄뿉꽌 MAEE, TEEE, DBEE 닚쑝濡 긽諛깊뵾뿉꽌 媛옣 빆洹 슚怨쇨 넂븯떎. 씠뒗 釉뚮줈肄쒕━ 異붿텧臾쇱쓣 씠슜븳 뿰援ъ뿉꽌 뿉깂삱 異붿텧臾쇱 10 mg/mL怨 20 mg/mL 紐⑤몢뿉꽌 뼲젣媛 10 mm濡 냽룄 쓽議댁쟻쑝濡 빆洹좊젰쓣 蹂댁씠吏 븡븘 蹂 뿰援ъ 李⑥씠瑜 蹂댁떎(Kim et al., 2016). 洹몃윭굹 Jang and Yang (2020)쓽 뿰援ъ뿉꽌뒗 遺됰굹臾 뿴留 異붿텧臾쇱뿉꽌 50 mg /mL, 100 mg/mL, 150 mg/mL쓽 냽룄뿉꽌 빆洹좊젰쓣 寃利앺븳 寃곌낵 媛 10 mm, 10.4 mm, 10.8 mm濡 냽룄 쓽議댁쟻쑝濡 빆洹 슚怨쇰 蹂댁쑝硫 100 mg/mL쓽 냽룄瑜 湲곗쑝濡 궛빟蹂대떎 넂怨, 긽諛깊뵾 硫붾━怨⑤뱶蹂대떎뒗 궙 빆洹좊젰쓣 蹂댁떎. 삉븳 踰꾩꽢諛쒗슚 뿉깂삱 異붿텧臾쇱뿉꽌뒗 9.5~13.3 mm濡 냽룄 쓽議댁쟻쑝濡 빆洹 슚怨쇰 蹂댁떎(Kim, 2021).

S. aureus뿉 븳 빆洹 슚怨쇰뒗 DBEE, MAEE, TEEE 紐⑤몢 냽룄 쓽議댁쟻쑝濡 빆洹 슚怨쇰 蹂댁쑝硫, 룞씪븳 냽룄뿉꽌뒗 TEEE媛 媛옣 넂븯怨 DBEE MAEE 닚쑝濡 빆洹 슚怨쇰 蹂댁떎. 씠뒗 Kim 벑 (2016)쓽 뿰援ъ뿉꽌 釉뚮줈肄쒕━ 뿉깂삱 異붿텧臾쇱뿉꽌 1, 5, 10, 20 mg/mL쓽 냽룄濡 빆洹 슚怨쇰 寃利앺븳 寃곌낵 10, 11, 11, 12 mm濡 빟븳 냽룄 쓽議댁꽦쓣 蹂댁뿬 蹂 뿰援ъ 쑀궗븳 寃곌낵瑜 蹂댁떎. 삉븳 Jang and Yang (2020)쓽 뿰援ъ뿉꽌 遺됰굹臾 뿴留 異붿텧臾쇱뿉꽌 50, 100, 150 mg/mL쓽 냽룄뿉꽌 13.9, 16.6, 20.0 mm濡 냽룄 쓽議댁쟻쑝濡 빆洹 슚怨쇨 而ㅼ졇 蹂 뿰援ъ 쑀궗븳 寃곌낵瑜 蹂댁쑝硫, 빆洹 슚怨쇰뒗 DBEE MAEE 鍮꾩듂븯怨 TEEE 蹂대떎 빆洹 슚怨쇰뒗 궙븯떎. 洹몃윭굹 遺됰굹臾 뿴留 異붿텧臾쇱쓽 슜留ㅼ쓽 醫낅쪟뿉 뵲씪꽌뒗 李⑥씠瑜 蹂댁怨 Ethyl acetate fraction瑜 슜留ㅻ줈 궗슜븳 寃쎌슦뿉 S. aureus뿉 븳 빆洹 슚怨쇰뒗 100 mg/mL瑜 湲곗쑝濡 뻽쓣 븣 蹂 뿰援ъ뿉꽌 빆洹 슚怨쇨 媛옣 醫뗭 TEEE 17.30 mm蹂대떎 겙 19.3 mm瑜 蹂댁떎. 씠윴 젏쓣 怨좊젮븷 븣 蹂 뿰援ъ뿉꽌 뿉깂삱 異붿텧臾 肉먮쭔 븘땲씪 떎瑜 슜留ㅻ 솢슜븳 뿰援щ 異붽쟻쑝濡 吏꾪뻾븯뿬 빆洹 슚怨쇰 寃利앺빐 蹂 븘슂꽦씠 엳떎.

蹂 뿰援ъ뿉꽌 E. coli뿉 븳 理쒖냼꽦옣뼲젣 냽룄뒗 DBEE 2.5 mg/mL, MAEE TEEE뒗 1.6 mg/mL떎. 씠뒗 Jang and Yang (2020)쓽 뿰援ъ뿉꽌 0.5 mg/mL濡 굹궃 寃 蹂대떎뒗 넂寃 굹굹 李⑥씠瑜 蹂댁떎. S. aureus뿉 븳 理쒖냼꽦옣뼲젣 냽룄뒗 TEEE媛 0.2 mg/mL濡 媛옣 궙븯怨 DBEE 0.8 mg/mL, MAEE 1.6 mg/mL쑝濡 異붿텧臾쇱뿉 뵲씪 李⑥씠瑜 蹂댁떎. 씠뒗 Jang and Yang (2020)쓽 뿰援ъ뿉꽌 遺됰굹臾 뿴留 異붿텧臾쇱뿉꽌 理쒖냼꽦옣뼲젣 냽룄媛 0.5 mg/mL濡 굹굹 蹂 뿰援ш껐怨 TEEE쓽 理쒖냼뼲젣냽룄 0.2 mg/mL媛 뜑 궙寃 굹궗떎. 삉븳 솴移좊굹臾 옂, 媛吏 異붿텧臾쇱뿉꽌쓽 理쒖냼꽦옣뼲젣 냽룄뒗 諛쒗슚 쟾 4.01 mg/mL, 諛쒗슚 썑 2.05 mg/mL濡 蹂 뿰援ш껐怨쇰낫떎 넂 냽룄瑜 蹂댁떎(Lee et al., 2019). Hwang 벑 (2022)쓽 踰뚮굹臾 異붿텧臾쇱쓽 S. aureus뿉 븳 뿰援ъ뿉꽌 理쒖냼꽦옣뼲젣 냽룄뒗 1~32 mg/mL뿉꽌뒗 洹 꽦옣瑜좎쓣 80% 씠긽 뼲젣븯怨 16 mg/mL 씠긽뿉꽌뒗 洹좎씠 꽦옣븯吏 븡븯떎.

蹂 뿰援ъ뿉꽌 理쒖냼궗硫몃냽룄(MBC)뒗 E. coli뿉꽌뒗 DBEE TEEE 10 mg/mL, DBEE뒗 5 mg/mL濡 MAEE뿉꽌 냽룄媛 궙븯떎. 씠뒗 삤諛곗옄 異붿텧臾쇱뿉꽌 20 mg/mL濡 굹궃 寃곌낵蹂대떎 紐⑤뱺 떆猷뚯쓽 理쒖냼궗硫몃냽룄媛 궙븯떎. 삉븳 S. aureus뿉꽌뒗 DBEE MAEE뒗 5 mg/mL, TEEE뒗 2.5 mg /mL濡 TEEE뿉꽌 궙븯떎. 씠뒗 삤諛곗옄 異붿텧臾쇱뿉꽌 10 mg /mL뿉꽌 理쒖냼궗硫몃냽룄媛 굹궃 寃 蹂대떎 뜑 궙 냽룄뿉꽌 굹궗떎(Kim et al., 2021).

蹂 뿰援ъ뿉꽌 DBEE, MAEE, TEEE쓽 E. coli S. aureus뿉 븳 꽦옣뼲젣 슚怨쇰뒗 24떆媛 썑 紐⑤몢 뼲젣맖쓣 솗씤븷 닔 엳뿀떎. 꽦옣뼲젣 슚怨쇰뒗 냽룄 쓽議댁쟻쑝濡 뼲젣릺뿀怨, E. coli S. aureus 紐⑤몢뿉꽌 TEEE뿉꽌 꽦옣뼲젣 슚怨쇨 媛옣 而몄쑝硫, E. coli蹂대떎 S. aureus뿉꽌 슚怨쇱꽦씠 넂븯떎. 씠뒗 넄옂 젙쑀瑜 씠슜븳 뿰援ъ뿉꽌 E. coli S. aureus 紐⑤몢뿉꽌 냽룄 쓽議댁쟻쑝濡 꽦옣씠 뼲젣 슚怨쇰 蹂댁쑝硫(Sung, 2004), 삤誘몄옄 異붿텧臾쇱뿉꽌 E. coli S. aureus뿉 꽦옣뼲젣 슚怨쇰 蹂댁뿬 蹂 뿰援ш껐怨쇱 쑀궗븳 寃곌낵瑜 蹂댁떎(Choi et al., 2013).

DBEE, MAEE, TEEE 紐⑤몢 E. coli S. aureus뿉 븳 빆洹 슚怨쇱 꽦옣뼲젣 슚怨쇰 蹂댁뿬 媛젮利 셿솕瑜 쐞븳 湲곕뒫꽦 솕옣猷뚮줈 솢슜븷 닔 엳뒗 湲곕컲쓣 留덈젴븯떎. 洹몃윭굹 異붽쟻씤 뿰援щ 넻븯뿬 異붿텧븯뒗 슜留ㅼ뿉 뵲瑜 빆洹 슚怨쇱 빆엳뒪誘쇰뒫쓣 寃利앺븯怨 씠瑜 湲곕컲쑝濡 엫긽떆뿕쓣 吏꾪뻾븯뿬 솕옣猷뚮줈 솢슜 媛뒫꽦쓣 넂씠怨좎옄 븳떎.

ACKNOWLEDGEMENT

This study was supported by Busan Technopark Foundation (2023 Busan Local Government-Industry-Academia Collaboration Corporate R&D Support Project).

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

References
  1. Ahn SH, Kim KB. ECS modulating effect of scutellaria baicalensis extract on inflammation relief in atopic dermatitis-induced mice. J Pediatr Korean Med. 2021. 35: 118-127.
  2. Batiha GE, Al-Snafi AE, Thuwaini MM, et al. Morus alba: a comprehensive phytochemical and pharmacological review. Naunyn Schmiedebergs Arch Pharmacol. 2023. 396: 1399-1413.
    Pubmed KoreaMed CrossRef
  3. Chan EW, Lye PY, Wong SK. Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin J Nat Med. 2016. 14: 17-30.
  4. Choi EJ, Jang SR, Kang OJ, Bang WS. Antimicrobial activity of psoralea corylifolia, schisandra chinensis, and spatholobus suberectus extracts. Korean J Food Sci Technol. 2013. 45: 495-500.
    CrossRef
  5. Choi MH, Seo YJ, Shin HJ. Application of domestic bamboo stems mainly for inner beauty product development: A review. KSBB J. 2017. 32: 1-8.
    CrossRef
  6. Hwang JW, Park CH, An HY, et al. Antibacterial, antioxidant activities of acer tegmentosum maxim ethanol extract against Staphylococcus aureus. J Plant Biotechnol. 2022. 49: 339-346.
    CrossRef
  7. Jang DY, Yang JC. A study on the evaluation of antimicrobial activity of extracts from rhus javanica L fruit. J Kor Appl Sci Technol. 2020. 37: 145-152.
  8. Kang YM, Moon BC, Lee AY, Kim HK. Morphological characteristics and cultivation status of yams (Genus Dioscorea) as known dioscoreae rhizoma (San-yak) korean herb. Med Inf. 2014. 2: 25-31.
  9. Karadas F, Grammenidis E, Surai PF, Acamovic T, Sparks NH. Effects of carotenoids from lucerne, marigold and tomato on egg yolk pigmentation and carotenoid composition. Br Poult Sci. 2006. 47: 561-566.
    Pubmed CrossRef
  10. Kasiram K, Sakharkar PR, Patil AT. Antifungal activity of calendula officinalis. Indian J Pharm Sci. 2000. 62: 464-466.
  11. Kim BK, Kang JH, Oh GH, et al. Antibacterial and antioxidant activity of chamaecyparis obtusa extracts. J Life Sci. 2019. 29: 785-791.
  12. Kim DY, Cho SC, Kwon HS, Kim MK. Cosmeceutical activities of broccoli extracts. J Korea Soc Beauty Art. 2016. 17: 23-39.
    CrossRef
  13. Kim JH, Choi YS, Kim WB, Park JO, Im DJ. Antimicrobial synergistic effects of gallnut extract and natural product mixture against human skin pathogens. J Soc Cosmet Sci Korea. 2021. 47: 155-161.
  14. Kim MH, Song CE, Park YJ. Study on the quality of marigold (Tagetes erecta L.) flower tea by its manufacture methods for expansion of utilization of marigold as tourism resources. J Kor Soc Rural Tour. 2021. 24: 75-89.
  15. Kim MK. Study on functional natural materials to improve for human health - comparison analysis of antioxidant and antimicrobial activity of fermented rutaceas fruits extract. J Soc Sci. 2021. 12: 63-78.
    CrossRef
  16. Knor T. The pathogenesis of acne. Acta Dermatovenerol Croat. 2005. 13: 44-49.
  17. Lee JY, Park TH, Park SH, Yang SA, Jhee KH. The antimicrobial activity of fermented extracts from korean dendropanax morbifera. J Life Sci. 2019. 29: 29-36.
  18. Matsui K, Nishikawa A, Suto H, Tsuboi R, Ogawa H. Comparative study of Staphylococcus aureus isolated from lesional and non-lesional skin of atopic dermatitis patients. Microbiol Immunol. 2000. 44: 945-947.
    Pubmed CrossRef
  19. Milligan KL, Matsui E, Sharmam H. Asthma in urban children: epidemiology, environmental risk factors, and the public health domain. Curr Allergy Asthma Rep. 2016. 16: 1-10.
    Pubmed CrossRef
  20. National Health Insurance Service. Status of atopic dermatitis treatment in 2021. 2022.
  21. Ogawa T, Katsuoka K, Kawano K, Nishiyama S. Comparative study of staphylococcal flora on the skin surface of atopic dermatitis patients and healthy subjects. J Dermatol. 1994. 21: 453-460.
    Pubmed CrossRef
  22. Oh JH, Park HJ, Choi MR, Park HJ. Paraneoplastic dermatomyositis with severe itching. Kor J Dermatol. 2019. 57: 395-398.
  23. Park IH, Miin G, Kim HR, Kim JH, Hong SH. A case of liver cirrhosis patient's senile pruritus treated by external preparation containing Ponciri fructus and Radix lithospermi. J Korean Med Ophthalmol Otolaryngol Dermatol. 2016. 29: 231-239.
    CrossRef
  24. Park MK, Cho SH, Ahn RK, et al. Immunomodulatory effects of 棺-sitosterol and daucosterol isolated from Dioscorea batatas on LPS-stimulated RAW 264.7 and TK-1 cells. J Life Sci. 2020. 30: 359-369.
  25. Park SH, Park HJ. Root Bark extract of Morus alba L. suppressed the migration and invasion of HCT116 human colorectal carcinoma Cells. J Physiol &. Pathol Korean Med. 2021. 35: 177-184.
    CrossRef
  26. Piddock LJ. Techniques used for the determination of antimicrobial resistance and sensitivity in bacteria. J Appl Bacteriol. 1990. 68: 307-318.
    Pubmed CrossRef
  27. Sung KC. Characteristics and analysis of natural PineNeedles extract. J of Korean Oil Chemists Soc. 2004. 21: 320-326.
  28. Xie LR, Jun DY, Park JE, et al. Application of the extract of zanthoxylum piperitum DC to manufacturing eco-friendly antimicrobial interior fabric blind materials. J Life Sci. 2016. 26: 936-942.
    CrossRef
  29. Yoon HS, Park CM. Inhibitory effect of persicaria perfoliata (L.) H. gross on IgE mediated allergic responses in RBL-2H3 cells. J Korean Soc Integr Med. 2020. 8: 163-169.
  30. Zitterl-Eglseer K, Sosa S, Jurenitsch J, et al. Anti-oedematous activities of the main triterpendiol esters of marigold (Calendula officinalis L.). J Ethnopharmacol. 1997. 57: 139-144.
    Pubmed CrossRef