Search for


TEXT SIZE

search for



CrossRef (0)
Analgesic Effect of Syneilesis aconitifolia Maxim. Extract on Animal Pain Model
Biomed Sci Letters 2023;29:152-158
Published online September 30, 2023;  https://doi.org/10.15616/BSL.2023.29.3.152
© 2023 The Korean Society For Biomedical Laboratory Sciences.

Gil-Hyun Lee†,*

Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan 54538, Korea
Correspondence to: Gil-Hyun Lee. Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan 54538, Korea.
Tel: +82-10-6616-9066, Fax: +82-63-840-1219, e-mail: rokmagnum@naver.com
*Professor.
Received September 12, 2023; Revised September 20, 2023; Accepted September 20, 2023.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
The aim of this study is to investigate the analgesic effects of Syneilesis aconitifolia Maxim. extract (SAM). We evaluated analgesic effects of SAM on animal pain model. Male SD rats were administered intra-orally with SAM according to prescribed dosage. During 7 days. After 7 days later, serum TNF-α, IL-1β, and IL-6 levels were measured by ELISA. In our experiment, administration of SAM decreased IL-1β, IL-6, TNF-α and PGE2 level in serum. Furthermore, it was confirmed that allodynia was relieved in evaluation of pain behavior. It was confirmed that administration of SAM reduces nociceptive pain by reducing nociceptive stimuli by acting as an anti-inflammatory drug.
Keywords : Syneilesis aconitifolia Maxim., Animal pain model, Nociceptive pain, TNF-α, IL-1β, IL-6
꽌 濡

떊泥댁“吏곸씠 넀긽릺硫 깮泥댁쓽 씠긽쓣 븣由щ뒗 寃쎄퀬떊샇濡 옉슜븯뒗 넻利앹 떊泥대 蹂댄샇븯湲 쐞븳 諛⑹뼱湲곗젣씠떎. 넻利앹 二쇰줈 援ъ떖꽦 씪李⑥꽟쑀(C-fiber)쓽 쑀닔꽟쑀(A delta-fiber) 솢꽦솕濡 諛쒖깮븳떎(Staud et al., 2008). 떊泥댁쓽 넀긽쓣 二쇨굅굹 以 닔 엳뒗 옄洹뱀뿉 븯뿬 옒 諛섏쓳븳떎怨 븣젮吏 C-쑀빐닔슜湲(nociceptor)媛 씪李⑥꽟쑀瑜 솢꽦솕떆耳 넻利앹뿉 湲곗뿬븳떎(Djouhri et al., 2006; Ahlgren et al., 1996). 넻利앹 떊寃쎈퀝利앹꽦 넻利(neuropathic pain), 移⑦빐꽦 넻利(nociceptive pain), 洹몃━怨, 뿼利앹꽦 넻利(inflammatory pain)濡 遺꾨쪟맂떎. 씠以 移⑦빐꽦 넻利앹 뿭移 씠긽 옄洹뱀쑝濡 씤빐 쑀빐닔슜湲곌 誘쇨컧빐吏硫 뒓겮뒗 넻利앹쑝濡 떎뼇븳 넻媛곸닔슜泥(삩룄, 떎삎, 湲곌퀎 벑)뿉 쓽븯뿬 議곗젅맂떎(Woolf, 2011).

移⑦빐꽦 넻利앹쓽 몴쟻 옄洹뱀씤옄씤 湲곌퀎쟻 옄洹, 뿴 벑怨 媛숈 쑀빐븳 옄洹뱀뿉 쓽빐 議곗쭅씠 넀긽릺硫 떎쓬怨 媛숈 諛섏쓳씠 씪뼱궃떎. 癒쇱 꽭룷留됱뿉 議댁옱븯뒗 phospholipase A (PLA)쓽 솢꽦솕릺뼱 arachidonic acid (AA)瑜 삎꽦븯硫, AA뒗 cyclooxygenase (COX)뿉 궗릺뼱 prostaglandin (PG)瑜 깮꽦븳떎(Pardutz and Schoenen, 2010). 씠윭븳 怨쇱젙 以묒뿉 넀긽 遺쐞쓽 쑀빐닔슜泥댁뿉뒗 媛먯옉씠 씪뼱굹怨, 쑀빐닔슜泥댁쓽 뿭移섍 궙븘졇꽌, 쇅遺諛섏쓳뿉 쓳븯뒗 怨쇰룄븳 씎遺꾩쓣 留뚮뱺떎(Dickenson and Suzuki, 2005). 뵲씪꽌, 뿼利앸컲쓳 떒怨꾩뿉꽌 諛쒖깮븯뒗 씤옄瑜 議곗젅븯뒗 諛⑸쾿씠 移⑦빐꽦 넻利 移섎즺 諛⑸쾿쑝濡 궗슜릺硫, 洹 諛⑸쾿쑝濡 non-steroidal anti-inflammatory drugs (NSAIDs)뒗 COX-2쓽 옉슜쓣 젣뼱븯怨, Steroids 怨꾩뿴 냼뿼젣 PLA 옉슜쓣 뼲젣븯뿬 넻利앹쓣 寃쎄컧븳떎(Hunt and Mantyh, 2001; Mogil et al., 2010).

蹂 뿰援ъ뿉꽌 궗슜맂 븷湲곗슦궛굹臾(Syneilesis aconitifolia Maxim.) 援솕怨쇱쓽 떎뀈깮 떇臾쇰줈 誘쇨컙怨 븳諛⑹뿉꽌뒗 슂넻, 諛뺤긽, 愿젅뿼, 썡寃쏀넻 諛 醫낃린 벑쓽 移섎즺젣濡 궗슜븯떎(Lee et al., 2009). 븷湲곗슦궛굹臾쇱뿉 븳 怨쇨굅 뿰援щ뒗 빆궛솕(Lee et al., 2009), 빆諛붿씠윭뒪(Jing et al., 2012) 벑씠 엳떎.

븷湲곗슦궛굹臾쇱 誘쇨컙뿉꽌 떎뼇븳 슜룄濡 솢슜릺怨 엳吏留, 쁽옱 븷湲곗슦궛굹臾쇱쓽 移⑦빐꽦 넻利앸え뜽뿉꽌 넻利앹셿솕뿉 븳 뿰援щ뒗 嫄곗쓽 뾾뒗 렪씠硫 씠뿉 븳 옄猷뚮 李얘린 옒뱺 떎젙씠떎. 뵲씪꽌, 蹂 뿰援ъ뿉꽌뒗 븷湲곗슦궛굹臾쇱쓽 吏꾪넻슚怨쇰 솗씤븯怨좎옄 떎뻾븯쑝硫, 냼湲곗쓽 꽦怨쇨 엳뼱꽌 뿰援 寃곌낵瑜 냼媛쒗븯怨좎옄 븳떎.

옱猷 諛 諛⑸쾿

떎뿕룞臾

떎뿕룞臾쇱 닔而 씛伊(Sprague-Dawley)瑜 슚李 궗씠뼵뒪(Daegu, Korea)뿉꽌 怨듦툒諛쏆븯떎. 怨듦린닚솚씠 썡솢븯怨, 20~24꼦 삩룄 二/빞 닚솚二쇨린쓽 씪젙븳 솚寃쎌쓣 쑀吏븯硫댁꽌 臾쇨낵 궗猷뚮뒗 옄쑀濡쒖씠 怨듦툒븯떎. 룞臾쇱쓽 뻾룞뿉 젣빟쓣 媛븯吏 븡쑝硫, 臾댁냼쓬쓣 쑀吏븿쑝濡 떎뿕 쟾 룞臾 뒪듃젅뒪瑜 理쒖냼솕븯떎. 蹂 뿰援щ뒗 쓽떇씠 엳뒗 룞臾쇱쓽 떎뿕뿉 愿븳 Institutional Animal Care and Use Committee (IACUC)쓽 쑄由ъ쟻 洹쒖젙뿉 뵲씪 닔뻾븯떎. 룞쓽븰援 룞臾쇱쑄由ъ떖쓽쐞썝쉶쓽 듅씤 썑(A2020-008) 떎떆븯떎.

異붿텧臾쇱쓽 젣議

蹂 떎뿕뿉 궗슜맂 븷湲곗슦궛굹臾쇱 二쇱떇쉶궗 굹臾댁궗옉썝삁뿉꽌 젣怨듬컺븘 궗슜븯떎. 븷湲곗슦궛굹臾쇱쓽 異붿텧 諛⑸쾿 遺꾨쭚濡 뙆뇙븳 썑 70% ethanol 슜留ㅻ 떆猷 以묐웾쓽 10諛 뼇쓣 媛븯뿬 샎빀븯뿬 떎삩뿉꽌 24떆媛 異붿텧븯쑝硫, 긽痢듭븸怨 移⑥쟾臾쇱쓣 遺꾨━븯떎. 룞씪븳 諛⑸쾿쑝濡 3쉶 諛섎났 異붿텧븯떎. 泥쒖뿰異붿텧臾쇱쓣 썝떖遺꾨━ 諛 뿬怨, 냽異(rotary vaccum evaporator, HS-10SP, Hanshin, Korea)븯뿬 룞寃(FD5525, Korea) 嫄댁“븯怨 씠븣 닔뱷쑉 1.65%떎.

떆빟以鍮

ELISA kit뒗 rat tumor necrosis factor alpha (TNF-慣; ab100785, Abcam, rat), rat interleukin 1 beta (IL-1棺, ab255730, Abcam, rat), interleukin 6 (IL-6, ab234570, Abcam, rat)瑜 궗슜븯떎. DPPH (2,2 diphenyl 1-picryl hydrazyl), N-1-naphthyl ethylenediamine dihydrochloride, potassium ferricyanide, sul-anilamide, Xanthine oxidase, butylated hydroxyanisole怨 Griess regent뒗 Sigma (Louis, MO, USA)濡쒕꽣 援ъ엯븯떎. In-omplete Freund's adjuvant Mycobacteriun butyricum Diffo (Detroiot, MI, USA)뿉꽌 援ъ엯븯떎.

DPPH (2,2 diphenyl 1-picryl hydrazyl) free radical 냼嫄 솢꽦

DPPH 냼嫄 솢꽦 닔젙맂 Molyneux (Molyneux, 2004)쓽 諛⑸쾿쓣 痢≪젙븯떎. 2 횞 104 M DPPH 500 mL 븷湲곗슦궛굹臾쇱텛異쒕Ъ (0.01 mg/mL, 0.05 mg/mL, 0.5 mg/mL, 1.0 mg mL, 3.0 mg/mL)쓣 媛곴컖 샎빀븳 썑 30遺 룞븞 李④킅븯뿬 諛섏쓳븳 떎쓬 517 nm뿉꽌 씉愿묐룄瑜 ELISA reader (VERSA, USA)瑜 궗슜븯뿬 痢≪젙븯떎. 珥 떎뿕 5쉶 諛섎났븯쑝硫, 쟾옄怨듭뿬뒫 100 횞 [(떆猷뚰샎빀援곗쓽 씉愿묐룄/臾댄샎빀援곗쓽 씉愿묐룄) 횞 100]쑝濡 굹궡떎. 뼇꽦議곌뎔쑝濡 butylated hydroxyanisole (BHA)瑜 0.1 mg/mL쓽 냽룄濡 븯뿬 궗슜븯떎.

Xanthine oxidase (XO) 빐솢꽦 痢≪젙

Xanthine oxidase 솢꽦 Newaz 諛⑸쾿(Newaz and Adeeb, 1998)쓣 李멸퀬븯뿬 痢≪젙븯떎. 0.1 M potassium phosphate 셿異⑹븸(pH 7.5)뿉 xanthine 2 mM쓣 끃씤 湲곗쭏븸 1 mL뿉 XO (0.25 U/mL) 100 關L 냽룄 蹂 떆猷 100 關L瑜 泥④븯怨, 議곌뎔뿉뒗 떆猷뚯븸 떊 利앸쪟닔瑜 100 關L瑜 泥④븯뿬 37꼦뿉꽌 5遺꾧컙 諛섏쓳떆궓 썑, 20% trichloroacetic acid (TCA) 1 mL瑜 泥④븯뿬 諛섏쓳쓣 醫낅즺떆耳곕떎. 3,500 rpm뿉꽌 15遺꾧컙 썝떖遺꾨━븯怨 긽痢듭븸쓣 痍⑦븯뿬 깮꽦맂 uric acid쓽 씉愿묐룄瑜 290 nm뿉꽌 痢≪젙븯떎.

Reducing power 痢≪젙

Oyaizu쓽 諛⑸쾿(Oyaizu, 1986)뿉 뵲씪 떆猷뚯븸 1 mL뿉 200 mM 씤궛 셿異⑹븸(pH 6.6) 諛 1% potassium ferricyanide 媛 1 mL瑜 李⑤濡 媛븳 떎쓬 50꼦쓽 닔슃 긽뿉꽌 20遺꾧컙 諛섏쓳떆耳곕떎. 뿬湲곗뿉 10% TCA 슜븸쓣 1 mL 媛븯뿬 5,000 rpm뿉꽌 10遺꾧컙 썝떖遺꾨━븳 썑 뼸 긽痢듭븸 1 mL뿉 利앸쪟닔 諛 0.1%쓽 ferric chloride 媛 1 mL瑜 媛븯뿬 샎빀떆궓 썑 ELISA reader (VERSA, USA)瑜 궗슜븯뿬 700 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯쑝硫, 떆猷뚯쓽 솚썝젰 씉愿묐룄 媛믪쑝濡 굹궡뿀떎.

愿젅뿼 紐⑤뜽쓽 쑀룄 넻利앺뻾룞寃궗

伊 愿젅뿼 룞臾쇰え뜽 Asquith쓽 諛⑸쾿(Asquith et al., 2009)쓣 李멸퀬븯뿬 떎뻾븯떎. 룞臾 留덉랬뒗 Enflurane濡 떎뻾븳 썑 삤瑜몄そ 諛쒕컮떏 愿젅 궡濡 100 關L쓽 Complete Freund's adjuvant (CFA) 4 mL쓣 二쇱엯븯뿬 愿젅뿼쓣 쑀諛쒖떆耳곕떎. CFA뒗 incomplete Freund's adjuvant뿉 Mycobacteriun buty- ricum 16 mg쓣 슜빐떆궓 썑 깮由ъ떇뿼닔 4 mL 샎빀븯뿬 留뚮뱾뿀떎.

媛 룞臾쇨뎔 젙긽議곌뎔, 議곌뎔, 떎뿕援(븷湲곗슦궛굹臾 異붿텧臾 寃쎄뎄 닾뿬웾 0.05 mg/kg, 븷湲곗슦궛굹臾 寃쎄뎄 닾뿬웾 0.2 mg/kg, 븷湲곗슦궛굹臾 寃쎄뎄 닾뿬웾 0.8 mg/kg)쑝濡 媛곴컖 伊 12留덈━濡 援ъ꽦븯떎. 媛 룞臾쇱쓽 寃쎄뎄 닾뿬웾 Yang et al. (2016)Jing et al. (2012) 뿰援щ 李몄“븯뿬 꽕젙븯떎. 넻利앹뿉 븳 媛 룞臾쇱쓽 諛섏쓳怨 뿭移섎뒗 븞젙맂 伊먮 긽쑝濡 臾쇱쭏 닾뿬 쟾 3씪 룞븞 떎뿕븯뿬 룊洹좉컪쓣 궛異쒗븯떎. 洹 썑 6씪 룞븞 븷湲곗슦궛굹臾 異붿텧臾 닾뿬븳 썑 30遺 썑뿉 湲곌퀎쟻 옄洹밴낵 깋옄洹뱀뿉 븳 넻利앺뻾룞룊媛瑜 10遺 媛꾧꺽쑝濡 떎떆븯떎. 6씪 썑 넻利앺뻾룞룊媛 씠썑 留덉랬 썑 룞臾쇱쓣 씗깮떆耳곗쑝硫 삁븸怨 諛쒕컮떏 議곗쭅쓣 닔吏묓븯떎. 닔吏묐맂 삁븸 썝떖遺꾨━ 썑 삁泥쑝濡 議곗쭅怨 븿猿 -70꼦 깋옣怨좎뿉 蹂닿븯떎.

넻利앺뻾룞寃궗뒗 湲곌퀎쟻 옄洹뱀뿉 븳 寃궗, 깋옄洹뱀뿉 븳 寃궗濡 뻾븯쑝硫 궡슜 떎쓬怨 媛숇떎. 湲곌퀎쟻 옄洹뱀뿉 븳 넻利앺쉶뵾諛섏쓳 Lambert (Lambert et al., 2009)쓽 諛⑸쾿쓣 씠슜븯떎. 諛묐컮떏씠 泥좊쭩씤 넻(10 횞 10 횞 20 cm)뿉 伊먮 꽔怨, 寃궗 쟾 븳 떆媛 룞븞 룞臾쇱쓣 븞젙떆耳곕떎. von Frey Hair (0.40, 0.70, 1.20, 2.00, 5.50, 8.50)쓣 씠슜븯뿬 泥좊쭩 궗씠濡 up & down 諛⑸쾿쑝濡 諛쒕컮떏 옄洹 媛븳 썑 50% 쉶뵾뿭移섎 痢≪젙븯떎.

깋옄洹뱀뿉 븳 넻利앺쉶뵾諛섏쓳 떎瑜 옄洹 썑 理쒖냼 2떆媛 씠긽쓽 븞젙떆媛꾩쓣 媛吏 썑, 99% 븘꽭넠쓣 伊 諛쒕컮떏뿉 븳 諛⑹슱 臾삵엺 썑 넻利앺쉶뵾媛 굹궇 븣源뚯쓽 옞蹂듦린瑜 痢≪젙븯떎(Lee et al., 2022).

쟾뿼利앹꽦 궗씠넗移댁씤쓽 遺꾩꽍

룞臾 씗깮 썑 쟾삁 썝떖遺꾨━瑜 븳 삁泥쓣 寃泥대줈 씠슜븯쑝硫 寃궗 吏곸쟾源뚯 -70꼦 깋옣怨좎뿉 蹂닿븯떎. 삁븸쓽 쟾뿼利앹꽦 궗씠넗移댁씤(TNF-慣: 25, IL-1棺, IL-6)쓽 냽룄瑜 ELISA kit쓽 留ㅻ돱뼹뿉 뵲씪 떎뿕쓣 떆뻾븯뿬 痢≪젙븯떎.

넻怨 泥섎━

蹂 떎뿕 寃곌낵뱾 룊洹(mean) 짹 몴以렪李(standard deviation, SD)濡 몴떆븯怨 떎뿕援 媛 룊洹 李⑥씠뒗 Kruskall Wallis test濡 쑀쓽꽦쓣 솗씤븳 썑 Mann Whiteny U-test瑜 씠슜븯뿬 궗썑 寃젙븯떎. P<0.05 닔以뿉꽌 쑀쓽꽦쓽 뿬遺瑜 寃利앺븯떎. 紐⑤뱺 넻怨 遺꾩꽍 SPSS (statistical package for the social science) version 18.0 봽濡쒓렇옩(SPSS Inc., Chicago, IL, USA)쓣 씠슜븯뿬 遺꾩꽍븯떎.

寃 怨

DPPH free radical 냼嫄 솢꽦 寃곌낵

븷湲곗슦궛굹臾(SAM) 異붿텧臾쇱뿉꽌 DPPH radical 냼嫄곕뒫젰쓣 痢≪젙븯떎. 븷湲곗슦궛굹臾 異붿텧臾쇱뿉꽌 radical 냼嫄곕뒫 異붿텧臾 냽룄쓽議댁쟻쑝濡 利앷븯쑝硫, SAM 異붿텧臾 0.01 mg/mL뿉꽌 19.15짹1.81%, 0.05 mg/mL뿉꽌 32.28짹2.28%, 0.5 mg/mL뿉꽌 58.16짹3.59%, 1.0 mg/mL뿉꽌 71.80짹3.10%, 3.0 mg/mL뿉꽌 73.58짹2.59%쓽 솢꽦쓣 蹂댁떎. 뼇꽦議곌뎔씤 BHA뿉꽌뒗 92.52짹2.35%쓽 솢꽦쓣 蹂댁떎(Fig. 1).

Fig. 1. The DPPH radical scavenging activity of SAM extract was measured. The scavenging ability of all extracts increased in a concentration-dependent manner. The data were expressed as the mean 짹 SD (n=12).

Xanthine oxidase (XO) 빐솢꽦 痢≪젙 寃곌낵

SAM 異붿텧臾쇱쓣 0.01 mg/mL, 0.05 mg/mL, 0.5 mg/mL, 1.0 mg/mL, 諛 3.0 mg/mL쓽 냽룄濡 泥섎━븯怨 XO쓽 빐솢꽦쓣 痢≪젙븯떎(Fig. 2). 3 mg/mL 냽룄 SAM 異붿텧臾쇱뿉꽌쓽 빐쑉씠 61.25짹1.32%濡 媛옣 넂븯쑝硫, 뼇꽦議곌뎔씤 BHA (75.92짹1.51%) 쑀궗븳 닔移섎 蹂댁떎. Nitric oxide 냼嫄곕뒫 뿭떆 異붿텧臾 냽룄쓽議댁쟻쑝濡 利앷븯뒗 寃쏀뼢씠 엳뿀떎.

Fig. 2. SAM extracts were treated at concentrations of 0.01 mg/mL, 0.05 mg/mL, 0.5 mg/mL, 1.0 mg/mL, and 3.0 mg/mL, respectively, and the inhibitory activity of xanthine oxidase (XO) was measured. Nitric oxide (NO) scavenging ability tended to increase depending on the concentration of the extract. The data were expressed as the mean 짹 SD (n=5).

Reducing power 痢≪젙 寃곌낵

솚썝젰 媛곴컖쓽 泥섎━냽룄뿉꽌 9.18짹1.02% (0.01 mg /mL), 15.58짹1.35% (0.05 mg/mL), 24.52짹2.08% (0.5 mg/mL), 55.69짹3.52% (1.0 mg/mL), 62.10짹3.17% (3.0 mg/mL)씠뿀쑝硫, 뼇꽦議곌뎔뿉꽌뒗 92.09짹1.02%쓽 솚썝젰쓣 蹂댁떎(Fig. 3).

Fig. 3. The reducing power was 9.18짹1.02%, 15.58짹1.35%, 24.52짹2.08%, 55.69짹3.52%, and 62.10짹3.17% at each treatment concentration. The value after treatment at a concentration of 3.0 mg /mL was most similar to the positive control group. The data were expressed as the mean 짹 SD (n=5).

넻利앺뻾룞寃궗 寃곌낵

CFA瑜 二쇱엯븳 룞臾쇱뿉꽌 愿젅뿼 쑀諛 뿬遺瑜 솗씤븯湲 쐞븳 嫄룰린룊媛, 쑁븞룊媛, 諛 넻利앺룊媛瑜 떎떆븯뿬 愿젅뿼씠 쑀諛쒕맂 媛쒖껜留뚯쓣 떎뿕뿉 솢슜븯떎(愿젅뿼 쑀諛쒕쪧 88%, 55媛쒖껜 以 48媛쒖껜) (data not shown). Table 1 湲곌퀎쟻씤 옄洹뱀뿉 븳 넻利앺뻾룞룊媛뿉 븳 寃곌낵씠떎. 愿젅뿼留 쑀諛쒗븳 CFA援곗뿉꽌 6씪 룞븞 쑀궗븳 寃쏀뼢쓽 Withdrawal threshold 媛믪쓣 媛議뚯쑝硫, 떎瑜 援곕뱾 쑀쓽븳 李⑥씠媛 諛쒖깮븯떎. SAM 0.05 mg/kg援곗 3씪李⑤꽣 CFA援곌낵 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠瑜 蹂댁쑝硫(P<0.05), SAM 0.8 mg/kg援곗씤 寃쎌슦뒗 1씪李⑤꽣 쑀쓽븳 李⑥씠瑜 蹂댁씠湲 떆옉븯떎(P<0.01).

Effects of SAM on mechanical allodynia in adjuvant-induced SD rats

Experimental Withdrawal threshold (g)
Groups 0 day 1 days 2 days 3 days 4 days 5 days 6 days
Control (n=12) 18.94짹5.01 18.01짹2.59 17.40짹3.08 17.29짹3.07 18.27짹4.10 17.85짹3.60 17.68짹3.71
CFA (n=12) 7.71짹1.20 7.58짹0.81 7.29짹0.77 7.55짹0.81 7.01짹0.72 6.30짹0.89 6.07짹0.91
SAM 0.05 mg/kg (n=12) 7.91짹1.11 7.90짹1.00 8.58짹2.57 11.21짹2.02* 11.87짹0.99 12.50짹1.20** 12.68짹0.70**
SAM 0.2 mg/kg (n=12) 7.70짹0.60 8.19짹1.18 10.80짹0.88* 11.90짹1.95** 12.70짹1.58** 13.09짹1.51** 14.50짹1.81**
SAM 0.8 mg/kg (n=12) 7.40짹1.24 10.01짹2.58* 13.45짹1.62** 14.08짹1.30** 15.10짹1.55** 16.80짹1.44** 17.61짹0.97**

Abbreviations: SAM, Syneilesis aconitifolia Maxim.; CFA, Complete Freund셲 adjuvant group. Each point represents the mean 짹 SEM. *P<0.05, **P<0.01 compared with the CFA group



Table 2뒗 깋옄洹뱀뿉 븳 룞臾쇱쓽 諛섏쓳떆媛꾩뿉 븳 寃곌낵씠떎. SAM 0.05 mg/kg援곗 4씪李⑤꽣 넻怨꾩쟻쑝濡 CFA援곌낵 쑀쓽븳 李⑥씠瑜 蹂댁떎(P<0.05). SAM 0.2 mg/kg援곌낵 SAM 0.8 mg/kg援곗 CFA援곌낵 鍮꾧탳븯뿬 4씪李⑥ 2씪李⑤꽣 쑀쓽븳 李⑥씠瑜 蹂댁씠湲 떆옉븯떎(P<0.01).

Effects of SAM on cold and heat allodynia in adjuvant-induced SD rats

Experimental Duration of withdrawal responses (sec)
Groups 0 day 1 days 2 days 3 days 4 days 5 days 6 days
Control (n=12) 80.51짹4.70 82.10짹4.80 80.58짹4.11 82.10짹3.03 84.10짹5.05 80.56짹4.08 82.09짹5.01
CFA (n=12) 61.01짹5.62 60.18짹5.10 63.11짹6.09 62.17짹5.95 61.00짹3.13 62.18짹4.01 63.81짹5.02
SAM 0.05 mg/kg (n=12) 62.10짹3.08 65.07짹5.10 65.19짹5.55 66.04짹5.90 72.18짹4.20* 75.10짹3.82* 74.01짹2.98*
SAM 0.2 mg/kg (n=12) 60.77짹5.61 64.10짹3.70 64.98짹3.51 65.81짹2.77 73.00짹3.25* 77.10짹2.60* 78.05짹3.01**
SAM 0.8 mg/kg (n=12) 63.52짹5.11 66.10짹5.09 71.22짹3.03* 73.08짹2.27* 77.19짹2.08** 79.90짹3.66** 81.08짹4.11**

Abbreviations: SAM, Syneilesis aconitifolia Maxim.; CFA, Complete Freund셲 adjuvant group. Each point represents the mean 짹 SEM. *P<0.05, **P<0.01 compared with the CFA group



쟾뿼利앹꽦 궗씠넗移댁씤 痢≪젙 寃곌낵

삁泥쓽 IL-1棺, TNF-慣, IL-6 諛 IL-1棺瑜 ELISA 諛⑸쾿쓣 씠슜븯뿬 痢≪젙븯떎(Fig. 4). CFA援 IL-1棺, TNF-慣, IL-6 痢≪젙 寃곌낵뒗 媛곴컖 121.38짹7.95 pg/mL, 206.71짹12.17 pg/mL, 81.52짹8.91 pg/mL씠硫, 젙긽議곌뎔뿉 鍮꾪빐꽌 긽떦엳 利앷릺뼱 엳쓬쓣 븣 닔 엳떎. 삁泥 IL-1棺씤 寃쎌슦 SAM 0.05 mg /kg援, SAM 0.2 mg/kg援, 洹몃━怨 SAM 0.8 mg/kg援곗쓽 냽룄媛 媛곴컖 71.58짹3.68 pg/mL, 41.12짹2.65 pg/mL, 23.89짹1.50 pg/mL씠쑝硫, 냽룄쓽議댁쟻쑝濡 以꾩뼱뱾뿀떎. TNF-慣뒗 SAM 0.05 mg/kg援(81.14짹4.01 pg/mL), SAM 0.2 mg/kg援(51.63짹5.55 pg/mL), 洹몃━怨 SAM 0.8 mg/kg援(39.95짹3.88 pg/mL) 냽룄씠쑝硫, 궗씠넗移댁씤 뿭떆 SAM 異붿텧臾 냽룄쓽議댁쟻쑝濡 媛먯냼븿쓣 븣 닔 엳뿀떎. IL-6 뿭떆 냽룄쓽議댁쟻쑝濡 媛먯냼븯쑝硫, SAM 0.8 mg/kg援(50.51짹2.58 pg /mL)뿉꽌留 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠瑜 蹂댁떎.

Fig. 4. Serum IL-1棺 and TNF-慣 were decreased in a concentration-dependent manner by SAM extract. Pro-inflammatory cytokine in treat groups were significantly lower than those of the CFA group. *P<0.05, **P<0.01, compared with the CFA group).
怨 李

蹂 뿰援щ뒗 誘쇨컙뿉꽌쓽 떎뼇븳 솢슜뿉룄 遺덇뎄븯怨 뿰援ш 遺議깊븳 렪씤 븷湲곗슦궛굹臾쇱쓽 넻利앹셿솕젣 솢슜쓽 媛뒫꽦쓣 솗씤븯怨좎옄 떎뻾븯쑝硫, 떎뿕 寃곌낵 愿젅뿼룞臾쇰え뜽뿉꽌 븷湲곗슦궛굹臾 異붿텧臾쇱쓽 寃쎄뎄 닾뿬뒗 쑀빐옄洹뱀뿉 쓽븳 뿼利앸컲쓳쓣 빐븯뿬 넻利앹쓣 寃쎄컧떆궓떎뒗 궗떎쓣 솗씤븯떎.

븷湲곗슦궛굹臾쇱쓽 꽦긽쓣 궡렣蹂닿퀬옄 븳 뿬윭 뿰援 以 DPPH 떎뿕 떎뼇븳 泥쒖뿰냼옱濡쒕꽣 빆궛솕 臾쇱쭏쓽 쟾옄怨듭뿬뒫쓣 痢≪젙븯뒗뜲 留롮씠 씠슜릺怨 엳떎. 泥쒖뿰臾쇱쭏쓽 쟾옄怨듭뿬뒫 free radical쓣 젣嫄고븯硫 씤泥댁쓽 끂솕瑜 뼲젣븯뒗 옉슜쓣 븳떎怨 븣젮졇 엳쑝硫(Sekhar et al., 2023), 삉븳 free radical쓽 젣嫄곕뒗 씤泥 궡 궛솕 뒪듃젅뒪瑜 寃쎄컧떆耳 뿼利앷낵 愿젴맂 吏덊솚 移섎즺뿉룄 슚怨쇨 엳떎怨 븣젮졇 엳떎(Conner and Grisham, 1996). 蹂 뿰援ъ뿉꽌 븷湲곗슦궛굹臾쇱쓽 radical scavenger 젣嫄곕뒫 3.0 mg/mL 寃쎄뎄 닾뿬援곗뿉꽌 뼇꽦議곌뎔怨 鍮꾩듂븳 寃곌낵瑜 蹂댁쑝硫 씠뒗 쟾 뿰援(Krasovskaya et al., 1989) 룞씪븳 寃곌낵씠떎. Xanthine oxidase뒗 xanthine瑜 궗븯뿬 uric acid, oxygen free radical瑜 삎꽦븯硫, 깮꽦맂 oxygen free radical뒗 泥대궡쓽 궛솕쟻 넀긽쓣 쑀諛쒗븯硫 븫, 떖삁愿 吏덊솚, 諛 끂솕 벑쓽 썝씤씠 맂떎(Muriel, 2009). 뵲씪꽌 Xanthine oxidase瑜 빐븯硫 free radical 깮꽦씠 뼲젣릺뼱 빆끂솕, 빆뿼利, 諛 빆궛솕 벑쓽 슚怨쇰 湲곕븷 닔 엳떎(Chambers et al., 1985, Burrage et al., 2023). 蹂 뿰援ъ뿉꽌쓽 Xanthine oxidase 빐솢꽦 븷湲곗슦궛굹臾 異붿텧臾쇱쓽 냽룄 鍮꾨븯뿬 利앷븯쑝硫, 씠윭븳 寃곌낵瑜 넗濡 빆궛솕 옉슜뿉 쓽븳 뿼利앹빐瑜 삁긽빐 蹂 닔 엳떎. DPPH radical 냼嫄곕뒫 泥쒖뿰臾쇱쭏쓽 솚썝젰怨 諛젒븳 愿젴씠 엳쑝硫(Bowen-Forbes et al., 2023), 븷湲곗슦궛굹臾 異붿텧臾쇱 0.8 mg/mL쓽 냽룄뿉꽌 넂 냼嫄곕뒫쓣 媛吏怨 엳쑝硫, 씠뒗 븷湲곗슦궛굹臾 異붿텧臾쇱 넂 솚썝젰 媛議뚮떎怨 蹂 닔 엳뒗 利앷굅씠떎.

CFA 쑀룄꽦 愿젅뿼 瑜섎쭏떚뒪 愿젅뿼쓣 룊媛븯湲 쐞븯뿬 넻긽 솢슜븯뒗 紐⑤뜽씠吏留, 臾대쫷 떊 諛쒕컮떏 愿젅뿉 쑀諛쒕Ъ吏덉쓣 二쇱엯븯룄濡 닔젙븯뿬 뿼利앹꽦 넻利앹쓣 쑀諛쒗븯떎. 넻긽쟻쑝濡 쑀諛쒕맂 넻利앹쓽 移섎즺슚怨쇰 愿李고븯湲 쐞븯뿬 넻媛곴낵誘(hyperalgesia)怨 씠吏덊넻(allodynia)쓣 솗씤븯뒗 諛⑸쾿씠 옄二 씠슜릺怨 엳떎(Lu et al., 2023). 蹂 뿰援ъ뿉꽌뒗 옄洹뱀뿉 븳 쉶뵾諛섏쓳쓣 痢≪젙븯쑝硫, filament뿉 쓽빐 諛쒖깮븳 씠吏덊넻 젙긽쟻쑝濡쒕뒗 넻利앹쓣 쑀諛쒗븷 닔 뾾뒗 옄洹뱀뿉꽌 넻利앹씠 쑀諛쒕릺뒗 怨쇰쇱긽깭瑜 쓽誘명븳떎(Bonin et al., 2014). 씠吏덊넻 뿴 諛 깋옄洹뱀뿉 쓽빐꽌룄 쑀諛쒕릺湲 븣臾몄뿉 븘꽭넠쓣 솢슜븳 깋媛곸옄洹뱀쓣 媛븯뿬 쉶뵾諛섏쓳쓣 痢≪젙븯떎. Filament쓣 씠슜븳 湲곌퀎쟻 씠吏덊넻 寃궗 寃곌낵뒗 CFA 쑀諛 쟾뿉뒗 紐⑤뱺 떎뿕援곗뿉꽌 von Frey filament뿉 諛섏쓳븯뿬 넂 뿭移섍컪쓣 媛議뚯쑝굹(data not shown), CFA 쑀諛 썑뿉뒗 filament쓽 넻利앸컲쓳 뿭移섍컪씠 쑀諛 쟾怨 鍮꾧탳븯뿬 湲됯꺽엳 궙븘吏먯쓣 蹂 닔 엳뿀떎. 씠윭븳 씠쑀뒗 뿼利앸컲쓳뿉 쓽빐 諛쒕컮떏쓽 넻利 誘쇨컧솕媛 珥덈옒릺뿀湲 븣臾몄씠씪怨 궗猷뚮맂떎. 븷湲곗슦궛굹臾 異붿텧臾 寃쎄뎄 닾뿬 썑 媛 援곗뿉꽌 諛쒕컮떏쓽 넻利앸컲쓳 뿭移섍컪씠 利앷븯뒗 寃껋쑝濡 蹂댁븘 넻利 怨쇰쇳솕긽깭媛 샇쟾릺怨 엳쓬쓣 븣 닔 엳뿀떎. 듅엳 6씪吏몄뿉뒗 嫄곗쓽 紐⑤뱺 냽룄쓽 援곗뿉꽌 넻利앸컲쓳 뿭移 媛믪씠 넻怨꾩쟻쑝濡 쑀쓽븯寃 利앷븯떎(P< 0.01) (Table 1). 깋媛곸옄洹뱀뿉 쓽븳 쉶뵾諛섏쓳쓽 寃곌낵瑜 蹂대㈃ (Table 2), 쟾諛섏쟻쑝濡 湲곌퀎쟻 씠吏덊넻뿉 쓽븳 넻利앹셿솕 슚怨쇱뿉 鍮꾪빐꽌뒗 슚怨쇨 뜙븿쓣 븣 닔 엳뿀떎. 븯吏留 븷湲곗슦궛굹臾 0.8 mg/kg 닾뿬援곗뿉꽌뒗 긽떦븳 넻利앷꼍媛 슚怨쇨 엳쓬쓣 솗씤븷 닔 엳뿀떎.

쑀빐븳 옄洹뱀씠 媛빐吏 寃곌낵 꽭룷媛 뙆愿대릺怨 넀긽맂 議곗쭅쓣 쉶蹂듭떆궎湲 쐞븳 뿼利앸컲쓳씠 諛쒖깮븯뒗뜲, 뿼利앸컲쓳쓽 遺궛臾쇰줈 뿼利앸Ъ吏덈뱾씠 留뚮뱾뼱吏뒗뜲 씠뱾 쑀빐媛먯닔湲곕 솢꽦솕떆耳쒓퀬 넻利앹쓣 쑀諛쒗븯뒗 硫댁뿭꽭룷뱾뿉 옉슜븯뿬 떎瑜 뿼利앸ℓ媛쒕Ъ吏덈뱾쓣 쑀由ы븯寃 맂떎(Schaible and Richter, 2004). 씠以 bradykin 궗씠넗移댁씤쓽 긽샇옉슜씠 쑀빐媛먯닔湲곗쓽 솢꽦쓣 利앷떆궓떎. 뿼利앸ℓ媛쒕Ъ吏 以 IL-1棺뒗 bradykinin 닔슜泥대 諛쒗쁽쓣 利앷떆궎怨 bradykinin 솢꽦 궗궛臾쇱쓣 利앷떆궎硫 씠 궗궛臾쇱 떎떆 IL-1棺 TNF-慣쓽 mRNA쓽 諛쒗쁽쓣 利앷떆궓떎(Ferreira et al., 2007; Schaible and Richter, 2004). 蹂 뿰援щ뒗 쟾뿼利앹꽦 궗씠넗移댁씤(IL-1棺, TNF-慣 諛 IL-6)쓽 냽룄 蹂솕瑜 異붿쟻븯뿬 뿼利앸컲쓳뿉 엳뼱꽌 븷湲곗슦궛굹臾쇱쓽 뿼利앹셿솕 슚怨쇰 꽕紐낇븯怨좎옄 븯떎(Fig. 4). 떎뿕 寃곌낵 IL-1棺 TNF-慣 몢 媛쒖쓽 궗씠넗移댁씤씠 븷湲곗슦궛굹臾 異붿텧臾 寃쎄뎄 닾뿬援곗뿉꽌 議곌뎔怨 鍮꾧탳븯뿬 넻怨꾩쟻쑝濡 쑀쓽븯寃 븯릺뼱 엳쓬쓣 븣 닔 엳쑝硫(P<0.01), 쐞 寃곌낵뱾 뿼利앸컲쓳 媛먯냼 넻利앸컲쓳 寃쎄컧怨쇱쓽 뿰愿꽦뿉 븯뿬 꽕紐낇븯뿬 以떎.

蹂 뿰援щ뒗 븷湲곗슦궛굹臾쇱쓽 넻利앷꼍媛먯뿉 꽕紐낇븯怨좎옄 븯쑝硫, 洹 寃곌낵 븷湲곗슦궛굹臾쇱쓽 빆궛솕 愿젴맂 빆뿼利 슚怨쇰 湲곕컲쑝濡 넻利앷꼍媛 슚怨쇨 엳떎뒗 궗떎쓣 솗씤븷 닔 엳뿀떎. 理쒓렐뿉뒗 빆뿼利 諛 吏꾪넻 벑쓽 슚怨쇨 엳뒗 鍮꾩뒪뀒濡쒖씠뱶꽦 빆뿼利앹젣瑜 떊븯뿬 泥쒖뿰臾쇱쭏쓣 遺옉슜 뾾씠 솚옄뿉寃 쟻슜븷 닔 엳떎뒗 뿰援ш 엳쑝硫(Simon and Evan Prince, 2017), 븷湲곗슦궛굹臾쇰룄 洹몃윭븳 뿭븷쓣 븷 닔 엳쓣 寃껋씠씪 뼢썑 湲곕븳떎. 理쒓렐 뿰援щ뱾씠 留뚯꽦 넻利앷낵 슦슱利앹쓽 愿젴꽦뿉 洹쇨굅븯뿬 뿼利 移섎즺젣쓽 슦슱利 移섎즺슚怨쇱뿉 븳 뿰援ш 솢諛쒗엳 吏꾪뻾릺怨 엳쓬쓣 怨좊젮빐 蹂 븣, 李⑦썑 뿰援щ줈뒗 븷湲곗슦궛굹臾 異붿텧臾쇱쓽 留뚯꽦 뿼利앷낵 슦슱利 셿솕슚怨쇱뿉 븳 寃利앹씠 븘슂븯떎怨 궗猷뚮맂떎.

ACKNOWLEDGEMENT

This paper was supported by Wonkwang Health Science University in 2022.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

References
  1. Ahlgren SC, Wang JF, Levine JD. C-fiber mechanical stimulus-response functions are different in inflammatory versus neuropathic hyperalgesia in the rat. Neuroscience. 1996. 76: 285-290.
    Pubmed CrossRef
  2. Asquith DL, Miller AM, McInnes IB, Liew FY. Animal models of rheumatoid arthritis. European Journal of Immunology. 2009. 39: 2040-2044.
    Pubmed CrossRef
  3. Bonin RP, Bories C, De Koninck Y. A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments. Molecular Pain. 2014. 10: 1744-8069.
    Pubmed KoreaMed CrossRef
  4. Bowen-Forbes C, Armstrong E, Moses A, Fahlman R, Koosha H, Yager JY. Broccoli, Kale, and Radish Sprouts: Key Phytochemical Constituents and DPPH Free Radical Scavenging Activity. Molecules. 2023. 28: 4266.
    Pubmed KoreaMed CrossRef
  5. Burrage EN, Coblentz T, Prabhu SS, Childers R, Bryner RW, Lewis SE, Chantler PD. Xanthine oxidase mediates chronic stress-induced cerebrovascular dysfunction and cognitive impairment. Journal of Cerebral Blood Flow &. Metabolism. 2023. 43: 905-920.
    Pubmed CrossRef
  6. Chambers DE, Parks DA, Patterson G, Roy R, McCord JM, Yoshida S, Downey JM. Xanthine oxidase as a source of free radical damage in myocardial ischemia. Journal of Molecular and Cellular Cardiology. 1985. 1: 145-152.
    Pubmed CrossRef
  7. Conner EM, Grisham MB. Inflammation, free radicals, and antioxidants. Nutrition. 1996. 12: 274-277.
    Pubmed CrossRef
  8. Dickenson AH, Suzuki R. Opioids in neuropathic pain: clues from animal studies. European Journal of Pain. 2005. 9: 113-116.
    Pubmed CrossRef
  9. Djouhri L, Koutsikou S, Fang X, McMullan S, Lawson SN. Spontaneous pain, both neuropathic and inflammatory, is related to frequency of spontaneous firing in intact c-fiber nociceptors. Journal of Neuroscience. 2006. 26: 1281-1292.
    Pubmed KoreaMed CrossRef
  10. Ferreira IC, Baptista P, Vilas-Boas M, Barros LF. Free-radical scav enging capacity and reducing power of wild edible mushrooms from northeast portugal:. Individual cap and stipe activity. 2007. 100: 1511-1516.
    CrossRef
  11. Hunt SP, Mantyh PW. The molecular dynamics of pain control. Nature Reviews Neuroscience. 2001. 2: 83-91.
    Pubmed CrossRef
  12. Jing B, Ma Z, Feng J, Liang H, Li C, Zhang X. Evaluation of the antiviral activity of extracts from plants grown in the qinling region of China against infection by Tobacco mosaic virus (TMV). Journal of Phytopathology. 2012. 160: 181-186.
    CrossRef
  13. Krasovskaya NP, Kulesh NI, Denisenko VA. Natural antioxidants. Furanoeremophilanes from Cacalia roots. Chemistry of Natural Compounds. 1989. 25: 545-548.
    CrossRef
  14. Lambert GA, Mallos G, Zagami AS. Von Frey's hairs-a review of their technology and use-a novel automated von Frey device for improved testing for hyperalgesia. Journal of Neuroscience Methods. 2009. 177: 420-426.
    Pubmed CrossRef
  15. Lee GH, Yoon HG, Choi GE, Hyun KY. Analgesic Effect of Poria cocos Extract on a Rat Model of Adjuvant-induced Arthritis. Biomedical Science Letters. 2022. 28: 137-144.
    CrossRef
  16. Lee YS, Ahn DS, Joo EY, Kim NW. Antioxidative activities of Syneilesis palmata extracts. Journal of the Korean Society of Food Science and Nutrition. 2009. 38: 1471-1477.
    CrossRef
  17. Lee YS, Seo SJ, Kim NW. Analysis of the general components of Syneilesis palmata Maxim. Korean Journal of Food Preservation. 2009. 16: 412-418.
  18. Lu Y, Liu M, Guo X, Wang P, Zeng F, Wang H, Tao T. miR-26a-5p alleviates CFA릋nduced chronic inflammatory hyperalgesia through Wnt5a/CaMKII/NFAT signaling in mice. CNS Neuroscience &. Therapeutics. 2023. 29: 1254-1271.
    Pubmed KoreaMed CrossRef
  19. Mogil JS, Davis KD, Derbyshire SW. The necessity of animal models in pain research. PAIN. 2010. 151: 12-17.
    Pubmed CrossRef
  20. Molyneux PJ. The use of the stable free radical diphenylpicrylhydrazyl (dpph) for estimating antioxidant activity. Songklanakarin J Sci Technol. 2004. 26: 211-219.
  21. Muriel P. Role of free radicals in liver diseases. Hepatology International. 2009. 3: 526-536.
    Pubmed KoreaMed CrossRef
  22. Newaz MA, Adeeb NNN. Detection of xanthine oxidase in human plasma. Medical Journal of Malaysia. 1998. 53: 70-75.
  23. Oyaizu M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics. 1986. 44: 307-315.
    CrossRef
  24. Pardutz A, Schoenen JP. Nsaids in the acute treatment of migraine: A review of clinical and experimental data. Pharmaceuticals. 2010. 3: 1966-1987.
    Pubmed KoreaMed CrossRef
  25. Schaible HG, Richter F. Pathophysiology of pain. Langenbeck'. s Archives of Surgery. 2004. 389: 237-243.
    Pubmed CrossRef
  26. Sekhar MG, Shanmugam KR, Prasad KS. Free Radical Scavenging Activity and Phytochemical Screening of Trigonella foenum-graecum: A Study with Reference to Drug Discovery. Journal of Plant Science Research. 2023. 39.
    CrossRef
  27. Simon JP, Evan Prince ST. Natural remedies for non-steroidal anti-inflammatory drug릋nduced toxicity. Journal of Applied Toxicology. 2017. 37: 71-83.
    Pubmed CrossRef
  28. Staud R, Bovee CE, Robinson ME, Price DD. Cutaneous c-fiber pain abnormalities of fibromyalgia patients are specifically related to temporal summation. Pain. 2008. 139: 315-323.
    Pubmed KoreaMed CrossRef
  29. Woolf CJ. Central sensitization: Implications for the diagnosis and treatment of pain. Pain. 2011. 152: S2-S15.
    Pubmed KoreaMed CrossRef
  30. Yang F, Qiao L, Huang DM, Su YF, Wu ZH. Three new eremophilane glucosides from Syneilesis aconitifolia. Phytochemistry Letters. 2016. 15: 21-25.
    CrossRef