Search for


TEXT SIZE

search for



CrossRef (0)
The Relationship between Alcohol Consumption and Diabetes in Korean Adults
Biomed Sci Letters 2023;29:159-167
Published online September 30, 2023;  https://doi.org/10.15616/BSL.2023.29.3.159
© 2023 The Korean Society For Biomedical Laboratory Sciences.

Gi Tae Kim1,* and Jae Woong Sull1,2,†,**

1Department of Senior Healthcare, General Graduate School, Eulji University, Sungnam 13135, Korea
2Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam 13135, Korea
Correspondence to: Jae Woong Sull. Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, 553 Sansungdaero, Seongnam, Gyeonggi-do 13135, Korea.
Tel: +82-31-740-7318, Fax: +82-31-740-7354, e-mail: jsull@eulji.ac.kr
*Researcher, **Professor.
Received September 11, 2023; Revised September 21, 2023; Accepted September 21, 2023.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
The prevalence of diabetes continues to increase worldwide, and the problem is also important in Korea, and about 14% of Korean adults have diabetes. Alcohol consumptions are increasing rapidly around the world and are recognized as one of the major problems in the country. Alcohol consumption is an environmental factor previously known to be associated with the risk of developing diabetes. Alcohol consumption can cause problems in the endocrine system and gastrointestinal function, and oxidative stress of acetaldehyde, an ethanol metabolite, can damage beta cells in the pancreas. In the present study, we found the effect of alcohol intake on fasting blood sugar and the difference between men and women in the risk of diabetes according to alcohol intake. In men, the high-drinking group had a higher risk of diabetes than the non-drinking group (OR, 1.41; P=0.058). In women, the Moderate-drinking group had a lower risk of diabetes compared to the non-drinking group (OR, 0.42; P=0.039). The high-drinking group had a higher risk of diabetes than the non-drinking group (OR, 2.97; P=0.034). The group that consumed more than the WHO's daily alcohol intake risk standard tended to have a higher risk of diabetes than the group that did not (OR, 5.48; P=0.001). This study suggest that moderate alcohol consumption reduce the risk of developing diabetes, and high alcohol consumption increase the risk of developing diabetes.
Keywords : Diabetes, Alcohol consumption, Age, Fasting blood sugar
꽌 濡

떦눊蹂묒 쟾 꽭怨꾩쟻쑝濡 쑀蹂묐쪧씠 怨꾩냽 利앷븯怨 엳쑝硫, 븳援뿉꽌룄 洹 臾몄젣媛 以묒슂떆릺怨 엳떎(Jung et al., 2021). 떦눊蹂묒 二쇰줈 痍뚯옣쓽 踰좏꽭룷 湲곕뒫 옣븷 씤뒓由 遺꾨퉬, 씤뒓由 誘쇨컧룄 옣븷뿉 쓽빐 諛쒖깮븯硫, 븳 떦눊蹂 븰쉶쓽 2020뀈 떦눊蹂 떎깭議곗궗뿉꽌 30꽭 씠긽 븳援 꽦씤 13.8%媛 떦눊蹂묒쓣 媛吏怨 엳떎(Yoon, 2020; Stumvoll and Gerich, 2021). 삉븳, 떦눊蹂묒 媛議깅젰, 怨쇱껜以, 떇뒿愿, 쓬二 諛 씉뿰怨 媛숈 깮솢뒿愿怨 愿젴맂 뿬윭 슂씤뱾쓽 긽샇옉슜쑝濡 씤빐 諛쒖깮븷 닔 엳떎(Mayor, 2007; Ohlson et al., 1985; Yoon et al., 2023).

2005뀈뿉뒗 쟾 꽭怨꾩쟻쑝濡 1씤떦 珥 븣肄붿삱 꽠痍⑤웾씠 5.5 L쑝硫, 2016뀈뿉 6.4 L濡 긽듅븯硫 利앷븯뒗 異붿꽭瑜 蹂댁떎. 븳援쓣 룷븿븳 궓룞븘떆븘 吏뿭룄 2005뀈뿉뒗 2.1 L쓽 븣肄붿삱 꽠痍⑤웾쓣 蹂댁吏留, 2016뀈뿉뒗 4.5 L濡 利앷븯뒗 寃쏀뼢쓣 蹂댁떎(WHO, 2018). 뿬윭 굹씪뿉꽌 븣肄붿삱 꽠痍⑤뒗 援媛쓽 二쇱슂 臾몄젣 以 븯굹濡 씤떇릺怨 엳쑝硫, 궗留앹뿉 쁺뼢쓣 誘몄튌 닔 엳뒗 二쇱슂 썝씤 以 븯굹씠떎(Rehm et al., 2003; Rehm and Monteiro, 2005). 2018뀈 븳援씤 룊洹 븯猷 븣肄붿삱 꽠痍⑤웾 궓꽦씠 23.94 g, 뿬꽦씠 5.79 g씠뿀떎(Kim and Kim, 2021).

븣肄붿삱 꽠痍⑤뒗 씠쟾遺꽣 떦눊蹂 諛쒖깮 쐞뿕怨 愿젴씠 엳떎怨 븣젮吏 솚寃쎌쟻 슂씤씠떎. 븣肄붿삱쓽 깮臾쇳븰쟻 硫붿빱땲利섏 븘吏 젙솗엳 諛앺吏吏 븡븯吏留, 씠쟾 뿰援щ뱾뿉꽌 븣肄붿삱 꽠痍⑥ 떦눊蹂묒쓽 愿怨꾧 뿬윭 李⑤ 蹂닿퀬릺뿀떎. 븣肄붿삱 꽠痍⑥ 떦눊蹂 諛쒖깮 쐞뿕 궗씠뿉뒗 J굹 U 紐⑥뼇쓽 愿젴꽦씠 솗씤릺뿀떎(Pietraszek et al., 2010). 븣肄붿삱 뿼利 硫붿빱땲利섏뿉 쁺뼢쓣 誘몄퀜 씤뒓由 誘쇨컧꽦 議곗젅怨 愿젴씠 엳쑝硫, 씠뒗 떦눊蹂 諛쒖깮뿉 以묒슂븳 뿭븷쓣 븷 닔 엳떎(Mayer et al., 2009; Abel and Feh챕r, 2009). 븣肄붿삱 꽠痍⑤뒗 궡遺꾨퉬 떆뒪뀥怨 쐞옣 湲곕뒫뿉 臾몄젣瑜 諛쒖깮떆궗 닔 엳쑝硫, 뿉깂삱 궗 궛臾쇱씤 븘꽭듃븣뜲븯씠뱶쓽 궛솕 뒪듃젅뒪濡 痍뚯옣쓽 踰좏꽭룷瑜 넀긽떆궗 닔 엳떎(Cox et al., 1996; Xu et al., 2016). 떦눊蹂묒쓽 諛쒕퀝瑜좎 븣肄붿삱 쓽議댁쬆씠 엳뒗 궗엺뱾씠 鍮꾩쓬二쇱옄蹂대떎 뜑 넂 寃껋쑝濡 굹궗떎(Wadland and Ferenchick, 2004). 洹몃━怨 븣肄붿삱 꽠痍⑤웾씠 留롮쓣 븣, 떦눊蹂 諛쒖깮 쐞뿕 利앷 愿젴씠 엳뿀떎(Holbrook et al., 1990; Tsumura et al., 1999). 븯吏留, 쟻떦븳 븣肄붿삱 꽠痍⑤뒗 룷룄떦 떊깮怨 湲由ъ퐫寃 遺꾪빐瑜 뼲젣븯뒗 寃껋쑝濡 븣젮졇 엳떎(Lieber, 1984). 떎瑜 뿰援щ뱾뿉꽌 쟻떦븳 븣肄붿삱 꽠痍⑤뒗 떦눊蹂 諛쒕퀝 쐞뿕 媛먯냼 愿젴씠 엳뒗 寃껋쑝濡 굹궗떎(Howard et al., 2004; Koppes et al., 2005). 洹몃━怨 븣肄붿삱 꽠痍⑤웾뿉 뵲瑜 떦눊蹂 諛쒖깮 쐞뿕 꽦蹂, 泥댁쭏웾 吏닔, 씉뿰 쑀臾댁뿉 뵲씪 媛먯냼븯嫄곕굹 利앷븯뒗 李⑥씠瑜 蹂댁떎(Stampfer et al., 1988; Seike et al., 2008; Hodge et al., 2006; Li et al., 2016).

븣肄붿삱 꽠痍 鍮덈룄 븣肄붿삱 꽠痍⑤웾怨 媛숈 쓬二 뙣꽩怨 떦눊蹂 媛꾩쓽 愿怨꾨 솗씤븳 븳援씤뿉 븳 留롮 뿰援ш 엳吏留, 뿬꽦뿉 븳 뿰援щ뒗 嫄곗쓽 뾾떎. 蹂 뿰援щ뒗 븳援씤 궓瑜 긽쑝濡 븣肄붿삱 꽠痍⑤웾怨 떦눊蹂 媛꾩쓽 愿怨꾨 솗씤븯怨좎옄 븯떎. 븣肄붿삱 꽠痍⑤웾씠 怨듬났 떆 삁떦뿉 誘몄튂뒗 쁺뼢怨 븣肄붿삱 꽠痍⑤웾뿉 뵲瑜 떦눊蹂 諛쒖깮 쐞뿕쓽 궓 李⑥씠瑜 議곗궗븯怨좎옄 븳떎.

옱猷 諛 諛⑸쾿

뿰援 긽옄

吏덈퀝愿由ъ껌뿉꽌 닔뻾븯뒗 븳援씤쑀쟾泥댁뿭븰議곗궗궗뾽(Korean Genome and Epidemiology Study; KoGES) 留뚯꽦吏덊솚쓽 쑀쟾쟻, 솚寃쎌쟻 슂씤쓣 諛앺엳湲 쐞빐 씪諛섏씤援щ뱾쓣 옣湲곌 異붿쟻븯뒗 肄뷀샇듃 궗뾽씠떎(Park et al., 2014). 蹂 뿰援щ뒗 룄떆 吏뿭씤 븞궛怨 냽珥 吏뿭씤 븞꽦뿉 嫄곗<븯뒗 40~69꽭 궓쓽 2001~2002뀈 뜲씠꽣瑜 궗슜븯떎. 븯猷 븣肄붿삱 꽠痍⑤웾 젙蹂닿 늻씫맂 280紐낃낵 泥댁쭏웾 吏닔 젙蹂닿 늻씫맂 1,890紐낆 젣쇅뻽떎. 궓꽦 3,410紐, 뿬꽦 3,753紐낆쑝濡 珥 7,163紐낆쓽 뿰援 李멸옄媛 蹂 뿰援ъ뿉 룷븿릺뿀떎.

옄猷 닔吏

씤꽣酉 湲곕컲쓽 꽕臾몄瑜 씠슜븯뿬 李몄뿬옄뱾뿉寃 留ㅼ썡 理쒖냼 1옍쓽 븣肄붿삱쓣 꽠痍⑦븳 쟻씠 엳뒗吏瑜 꽕臾명븯뿬 븣肄붿삱 꽠痍⑥뿉 븳 젙蹂대 닔吏묓븯쑝硫, 쁽옱 쓬二쇱옄쓽 寃쎌슦 吏궃 30씪 룞븞 쓬二쇰웾怨 鍮덈룄뿉 븳 꽕臾몄쓣 異붽濡 닔뻾븯떎. 븯猷 븣肄붿삱 꽠痍⑤웾 몴以 쓬猷 1옍쓽 룊洹 鍮덈룄, 1쉶떦 뼇, 븣肄붿삱 븿웾쓣 궗슜븯뿬 怨꾩궛릺뿀떎.

깮솕븰쟻 寃궗

뿰援 긽옄뱾쓽 Fasting blood sugar, aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), Triglycerides, Total cholesterol, HDL (high density lipoprotein) cholesterol 닔移섎뒗 ADVIA 1650 (Siemens, Tarrytown, NY, USA)쓣 씠슜빐 痢≪젙뻽떎.

넻怨 遺꾩꽍

넻怨 봽濡쒓렇옩 IBM SPSS statistics 24.0 (Armonk, NY, USA)쓣 궗슜븯怨 뿰援 긽옄쓽 씪諛섏쟻 듅꽦뿉 븳 遺꾪룷 벑 뿰냽삎 옄猷뚮뒗 鍮덈룄 遺꾩꽍쓣 닔뻾븯뿬 룊洹(Mean)怨 몴以렪李(Standard deviation; SD). 뿰졊怨 꽦蹂꾩쓣 넻젣蹂닔濡 븯뿬 떎以묒꽑삎쉶洹遺꾩꽍쓣 떆뻾븯떎. 떦눊蹂 諛쒖깮 쐞뿕뿉 븳 떎以묐줈吏뒪떛쉶洹遺꾩꽍 븯猷 븣肄붿삱 꽠痍⑤웾쓣 씠슜븯뿬 李멸옄뱾쓣 鍮꾩쓬二쇱옄, low-drinking (<5 g/ day), moderate-drinking (5~30 g/day), high-drinking (돟30 g/ day) 4媛쒖쓽 洹몃9쑝濡 굹늻뼱꽌 닔뻾븯떎(Lee et al., 2022). 洹몃━怨 world health organization (WHO) 븯猷 븣肄붿삱 꽠痍⑤웾 쐞뿕 湲곗 媛씠뱶씪씤뿉 뵲씪 궓꽦 <60 g/day, 돟60 g/day濡 뿬꽦 <40 g/day, 돟40 g/day濡 洹몃9쓣 굹늻뼱꽌 닔뻾븯떎(WHO, 2000). 떦눊蹂묒 怨듬났 떆 삁떦씠 돟126 mg/dL씠嫄곕굹, 떦눊蹂 寃쎄뎄슜 빟臾쇱쓣 蹂듭슜븳 쟻씠 엳嫄곕굹, 씠쟾뿉 吏꾨떒諛쏆 쟻씠 엳뒗 궗엺쑝濡 젙쓽븯떎. 뿰졊怨 泥댁쭏웾 吏닔瑜 넻젣븳 諛⑸쾿뿉꽌 鍮꾧탳븯쑝硫, 뿰愿꽦 삤利덈퉬 95% 떊猶곌뎄媛꾩쓣 궗슜븯뿬 異붿젙븯떎. 삉븳, 紐⑤뱺 寃쎌슦뿉꽌 2 tailed significance瑜 援ы븯怨, P< 0.05瑜 넻怨꾩쟻쑝濡 쑀쓽븳 寃껋쑝濡 媛꾩<븯떎.

寃 怨

뿰援 긽 쟾泥 7,163紐 以 궓꽦 3,410紐(47.61%), 뿬꽦 3,753紐(52.39%)怨 뿰졊 룊洹 51.47꽭濡 궓꽦 50.82꽭, 뿬꽦 52.06꽭떎. 룊洹 泥댁쭏웾 吏닔뒗 24.60 kg/ m2, 룊洹 HDL 肄쒕젅뒪濡ㅼ 44.72 mg/dL濡 궓 媛 겙 李⑥씠媛 뾾뿀떎. 洹몃━怨 룊洹 怨듬났 떆 삁떦 87.91 mg/dL, 룊洹 珥 肄쒕젅뒪뀒濡ㅼ 192.60 mg/dL, 룊洹 듃由ш由ъ꽭由щ뱶뒗 161.64 mg/dL씠뿀쑝硫, 궓꽦씠 紐⑤몢 넂븯떎. 삉븳, 쁽옱 쓬二쇱옄쓽 鍮꾩쑉 궓꽦씠 75.55%濡 뿬꽦 쁽옱 쓬二쇱옄 鍮꾩쑉 24.57%蹂대떎 넂븯쑝硫, 븯猷 븣肄붿삱 꽠痍⑤웾룄 궓꽦씠 26.83 g/day濡 뿬꽦쓽 븯猷 븣肄붿삱 꽠痍⑤웾 5.84 g/day蹂대떎 넂븯떎(Table 1) (Fig. 1).

Fig. 1. Amount of alcohol (g/day) of the study population.

General characteristics of the study population

Subjects All Men Women
Variable 7,163 3,410 3,753
Mean 짹 SD Mean 짹 SD Mean 짹 SD
Age, year 51.47짹8.78 50.82짹8.57 52.06짹8.93
Body mass index, kg/m2 24.60짹3.08 24.31짹2.87 24.86짹3.24
GGT, IU/L 35.11짹62.88 52.60짹84.52 19.22짹22.96
AST, IU/L 29.61짹17.80 32.26짹22.29 27.20짹11.89
ALT, IU/L 28.21짹27.12 33.75짹35.12 23.17짹15.17
Triglycerides, mg/dL 161.54짹103.75 176.89짹117.27 147.59짹87.43
Total cholesterol, mg/dL 192.60짹36.17 193.62짹36.23 191.67짹36.10
HDL-cholesterol, mg/dL 44.72짹10.04 43.45짹9.76 45.88짹10.15
Fasting blood sugar, mg/dL 87.91짹22.41 90.99짹24.60 85.08짹19.76
Diabetes, % 8.60% 9.80% 7.51%
Drinking status, %
Non-drinking 46.82% 18.89% 72.21%
Ex-drinking 6.24% 9.56% 3.22%
Current-drinking 46.94% 71.55% 24.57%
Amount of alcohol, g/day 21.07짹28.56 26.83짹30.85 5.84짹11.67

AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyl transferase; HDL, high density lipoprotein

Diabetes was defined as fasting blood sugar 돟 126 mg/dL or medication or diagnosis



二쇱쥌뿉 뵲씪 鍮꾩쓬二쇱옄 쓬二쇱옄쓽 鍮꾩쑉쓣 솗씤븯쑝硫, 꽠痍 鍮덈룄뿉 뵲씪 굹늻뼱 鍮꾧탳븯떎(Table 2, Table 3). 궓꽦쓽 寃쎌슦 냼二, 留μ<, 뼇二, 留됯구由, 씤, 泥二 닚쑝濡 쓬二쇱옄媛 留롮븯쑝硫, 뿬꽦쓽 寃쎌슦 냼二, 留μ<, 씤, 留됯구由, 泥二, 뼇二 닚쑝濡 쓬二쇱옄媛 留롮븯떎. 쓬二쇱옄媛 媛옣 留롮 냼二쇱쓽 꽠痍 鍮덈룄뒗 궓꽦쓽 寃쎌슦 씪二쇱씪뿉 2~3踰 꽠痍⑦븯뒗 궗엺씠 32.80%濡 媛옣 留롮븯쑝硫, 뿬꽦쓽 寃쎌슦 븳 떖뿉 1踰 꽠痍⑦븯뒗 궗엺씠 37.05%濡 媛옣 留롮븯떎.

Frequency of consuming each type of alcoholic beverage (3,410 men)

Variables Makgeolli
N (%)
Beer
N (%)
Cheongju
N (%)
Wine
N (%)
Soju
N (%)
Strong spirits
N (%)
Men
Non-drinking 3,131 (91.82) 2,375 (69.65) 3,300 (96.77) 3,302 (96.83) 1,157 (33.93) 3,086 (90.50)
Drinking 279 (8.18) 1,035 (30.35) 110 (3.23) 108 (3.17) 2,253 (66.07) 324 (9.50)
Frequency of alcohol consumption
Once a month 115 (41.21) 228 (22.03) 54 (49.09) 54 (50.00) 189 (8.39) 177 (54.63)
2~3 times a month 51 (18.28) 276 (26.66) 20 (18.18) 18 (16.67) 359 (15.93) 85 (26.23)
Once a week 44 (15.77) 219 (21.16) 12 (10.91) 17 (15.74) 376 (16.69) 35 (10.80)
2~3 times a week 38 (13.62) 229 (22.13) 15 (13.64) 13 (12.04) 739 (32.80) 20 (6.17)
4~6 times a week 16 (5.74) 57 (5.51) 4 (3.64) 4 (3.70) 341 (15.14) 4 (1.24)
More than 7 times a week 15 (5.38) 26 (2.51) 5 (4.55) 2 (1.85) 249 (11.05) 3 (0.93)


Frequency of consuming each type of alcoholic beverage (3,753 women)

Variables Makgeolli
N (%)
Beer
N (%)
Cheongju
N (%)
Wine
N (%)
Soju
N (%)
Strong spirits
N (%)
Women
Non-drinking 3,679 (98.03) 3,273 (87.21) 3,718 (99.07) 3,668 (97.74) 3,081 (82.09) 3,720 (99.12)
Drinking 74 (1.97) 480 (12.79) 35 (0.93) 85 (2.26) 672 (17.91) 33 (0.88)
Frequency of alcohol consumption
Once a month 53 (71.62) 214 (44.58) 17 (48.57) 52 (61.17) 249 (37.05) 19 (57.58)
2-3 times a month 7 (9.46) 136 (28.33) 8 (22.85) 13 (15.29) 205 (30.50) 8 (24.24)
Once a week 9 (12.16) 68 (14.17) 4 (11.43) 7 (8.24) 87 (12.95) 2 (6.06)
2-3 times a week 3 (4.06) 48 (10.00) 4 (11.43) 7 (8.24) 95 (14.14) 2 (6.06)
4-6 times a week 1 (1.35) 6 (1.25) 1 (2.86) 3 (3.53) 24 (3.57) 1 (3.03)
More than 7 times a week 1 (1.35) 8 (1.67) 1 (2.86) 3 (3.53) 12 (1.79) 1 (3.03)


븯猷 븣肄붿삱 꽠痍⑤웾씠 怨듬났 떆 삁떦쓣 쑀쓽븯寃 利앷떆궎뒗 寃껋쓣 솗씤뻽떎(棺, 0.1; P<0.001). 삉븳, 泥댁쭏웾 吏닔 珥앹퐳젅뒪뀒濡, 듃由ш由ъ꽭由щ뱶룄 怨듬났 떆 삁떦쓣 쑀쓽븯寃 利앷떆궎뒗 쁺뼢쓣 蹂댁떎(BMI; 棺, 0.13; P<0.001), (Total cholesterol; 棺, 0.17; P<0.001), (Triglycerides; 棺, 0.16; P<0.001). HDL 肄쒕젅뒪뀒濡ㅼ쓽 寃쎌슦 怨듬났 떆 삁떦쓣 媛먯냼떆궎뒗 쁺뼢쓣 媛吏怨 엳뿀떎(棺, -0.03; P=0.008) (Table 4).

Linear regression analysis between three phenotypes and fasting blood sugar

Phenotype Effect size (mg/dL) Standard error P-value
Body mass index, kg/m2 0.13 0.09 <0.001*
GGT, IU/L 0.12 0.00 <0.001*
AST, IU/L 0.07 0.02 <0.001*
ALT, IU/L 0.12 0.01 <0.001*
Triglycerides, mg/dL 0.16 0.00 <0.001*
Total cholesterol, mg/dL 0.17 0.01 <0.001*
HDL-cholesterol, mg/dL -0.03 0.03 0.008*
Amount of alcohol, g/day 0.1 0.02 <0.001*

Estimated effect size (棺) and P-values in the multiple linear regression model considered age and sex

*Significant of P<0.05



궓꽦怨 뿬꽦쓣 븯猷 븣肄붿삱 꽠痍⑤웾뿉 뵲씪 Non-drinking, Low-drinking, Moderate-drinking, High-drinking 洹몃9쑝濡 굹늻뼱 떦눊蹂 諛쒖깮 쐞뿕뿉 뵲瑜 떎以묐줈吏뒪떛쉶洹遺꾩꽍쓣 떆뻾븯쑝硫, 뿰졊怨 BMI瑜 넻젣蹂닔濡 븯떎(Table 5). 삉븳, WHO 븯猷 븣肄붿삱 꽠痍⑤웾 쐞뿕 湲곗뿉 뵲씪 洹몃9쓣 굹늻뼱 떦눊蹂 諛쒖깮 쐞뿕뿉 뵲瑜 떎以묐줈吏뒪떛쉶洹遺꾩꽍쓣 떆뻾븯떎. 궓꽦쓽 寃쎌슦, High-drinking 洹몃9 Non-drinking 洹몃9뿉 鍮꾪빐 떦눊蹂 諛쒖깮 쐞뿕씠 넂 寃쏀뼢쓣 蹂댁떎(adjusted OR, 1.41; 95% CI, 0.99~2.02; P=0.058). 뿬꽦쓽 寃쎌슦, Low-drinking 洹몃9怨 Moderate-drinking 洹몃9씠 Non-drinking 洹몃9뿉 鍮꾪빐 떦눊蹂 諛쒖깮 쐞뿕씠 媛먯냼븯뒗 寃쏀뼢쓣 蹂댁떎(adjusted OR, 0.67; 95% CI, 0.45~0.99; P= 0.045; adjusted OR, 0.42; 95% CI, 0.18~0.96; P=0.039). 洹몃━怨 High-drinking 洹몃9 Non-drinking 洹몃9뿉 鍮꾪빐 떦눊蹂 諛쒖깮 쐞뿕씠 넂 寃쏀뼢쓣 蹂댁떎(adjusted OR, 2.97; 95% CI, 1.08~8.14; P=0.034). 삉븳, WHO 븯猷 븣肄붿삱 꽠痍⑤웾 쐞뿕 湲곗蹂대떎 留롮씠 꽠痍⑦븳 洹몃9씠 洹몃젃吏 븡 洹몃9蹂대떎 떦눊蹂 諛쒖깮 쐞뿕씠 넂 寃쏀뼢쓣 蹂댁떎(adjusted OR, 5.48; 95% CI, 1.92~15.62; P=0.001).

The risk of developing type 2 diabetes in relation to alcohol consumption

Variable N (%) OR (95%CI) P-value
Men
Non-drinking 644 (20.88%) 1 (reference)
Low-drinking (<5 g/day) 485 (15.73%) 1.00 (0.66~1.52) 0.999
Moderate-drinking (5~30 g/day) 1,217 (39.46%) 0.96 (0.69~1.35) 0.832
High-drinking (돟30 g/day) 738 (23.93%) 1.41 (0.99~2.02) 0.058
WHO guideline
<60 g/day 3,105 (91.06%) 1 (reference)
돟60 g/day 305 (8.94%) 1.23 (0.84~1.80) 0.281
Women
Non-drinking 2,710 (74.61%) 1 (reference)
Low-drinking (<5 g/day) 671 (18.48%) 0.67 (0.45~0.99) 0.045*
Moderate-drinking (5~30 g/day) 220 (6.06%) 0.42 (0.18~0.96) 0.039*
High-drinking (돟30 g/day) 31 (0.85%) 2.97 (1.08~8.14) 0.034*
WHO guideline
<40 g/day 3,731 (99.41%) 1 (reference)
돟40 g/day 22 (0.59%) 5.48 (1.92~15.62) 0.001*

CI, confidence interval; OR, odds ratios

Adjusted for age and body mass index

*Significant of P<0.05

Diabetes was defined as fasting blood sugar 돟 126 mg/dL or medication or diagnosis

Risky amount of alcohol according to WHO guideline


怨 李

蹂 뿰援ъ뿉꽌뒗 븳援씤 궓꽦 3,410紐, 뿬꽦 3,753紐, 珥 7,163紐낆쓣 긽쑝濡 븯猷 븣肄붿삱 꽠痍⑤웾怨 떦눊蹂 媛꾩쓽 뿰愿꽦쓣 遺꾩꽍븯떎. 븯猷 븣肄붿삱 꽠痍⑤웾씠 怨듬났 떆 삁떦뿉 쑀쓽븯寃 쁺뼢쓣 誘몄튂뒗 寃껋쓣 솗씤뻽쑝硫, 뿬꽦뿉寃뚯꽌 쟻떦븳 븣肄붿삱 꽠痍⑤뒗 떦눊蹂 諛쒖깮 쐞뿕쓣 媛먯냼떆궎뒗 寃쏀뼢쓣 媛吏怨 엳뿀떎. 洹몃━怨 넂 븣肄붿삱 꽠痍⑤웾 떦눊蹂 諛쒖깮 쐞뿕쓣 利앷떆궎뒗 寃쏀뼢쓣 媛吏뒗 寃껋쓣 솗씤뻽떎.

븣肄붿삱 꽠痍⑥뿉 뵲瑜 쁺뼢 뿉깂삱쓽 궗 怨쇱젙뿉꽌 깮꽦릺뒗 궗臾쇱뿉 쓽븳 寃껋씪 닔 엳떎. 뿉깂삱 떊泥 궡뿉꽌 븣肄붿삱 깉닔냼슚냼(Alcohol dehydrogenase) 븣뜲엳뱶 깉닔냼슚냼(Aldehyde dehydrogenase)뿉 쓽빐 acetaldehyde acetate濡 궛솕맂떎. 븣肄붿삱 깉닔냼슚냼 븣뜲엳뱶 깉닔냼슚냼 愿젴 쑀쟾옄뱾씠 뿉깂삱 궗 怨쇱젙뿉 愿뿬븳떎(Beulens et al., 2007). 뿬윭 뿰援ъ뿉꽌 븣肄붿삱 꽠痍⑤뒗 泥댁쭏웾 吏닔, 떊泥 솢룞, 씉뿰, 떇떒 벑 떎瑜 깮솢뒿愿 슂씤뱾뿉 쁺뼢쓣 諛쏅뒗 寃껋쑝濡 솗씤릺뿀떎(Hu et al., 2001; Mozaffarian et al., 2009; Joosten et al., 2010). 븣肄붿삱 룷룄떦 빀꽦怨 湲由ъ퐫寃 遺꾪빐瑜 뼲젣븯뿬 떦눊蹂 솚옄肉먮쭔 븘땲씪 젙긽씤뿉寃뚮룄 룷룄떦 궗뿉 쁺뼢쓣 誘몄튌 닔 엳떎(Van de Wiel, 2004). 伊먮 긽쑝濡 븳 뿰援ъ뿉꽌뒗 븘꽭듃븣뜲엳뱶媛 떦솕 깮꽦臾쇱쓽 삎꽦쓣 뼲젣븯뒗 寃곌낵瑜 蹂댁떎(Al-Abed et al., 1999). 洹몃━怨 븣肄붿삱 꽠痍④ 떦눊蹂묎낵 愿젴씠 엳뒗 怨듬났 떆 씤뒓由 냽룄, 씤뒓由 誘쇨컧꽦뿉 쁺뼢쓣 誘몄튌 닔 엳떎뒗 뿰援ш 蹂닿퀬릺뿀떎(Davies et al., 2002). 삉븳, 씤뒓由 遺꾨퉬 怨듬났 떆 삁옣 湲猷⑥뭅肄 냽룄, 珥 븘뵒룷꽖떞 냽룄, HbA1c 냽룄룄 愿젴씠 엳뒗 寃껋쑝濡 蹂닿퀬릺뿀떎(Bonnet et al., 2012; Joosten et al., 2011).

蹂 뿰援ъ뿉꽌뒗 뿬꽦뿉寃뚯꽌 鍮꾩쓬二쇱옄蹂대떎 닠 議곌툑 癒밸뒗 궗엺(<5 g/day)씠 떦눊蹂 諛쒖깮 쐞뿕씠 媛먯냼븯뒗 寃껋쓣 솗씤븷 닔 엳뿀쑝硫, 쟻떦엳 닠쓣 癒밸뒗 궗엺(5~30 g/day)뿉寃뚯꽌룄 룞씪븳 쁺뼢쓣 솗씤븷 닔 엳뿀떎. 븳 뿰援ъ뿉꽌뒗 쟻떦븳 븣肄붿삱 꽠痍④ 궙 HbA1c 냽룄 愿젴씠 엳뿀떎(Ahmed et al., 2008). 삉븳, 븳 떖뿉 30옍 씠긽뵫 븣肄붿삱쓣 꽠痍⑦븳 떦눊蹂 솚옄媛 鍮꾩쓬二쇱옄蹂대떎 HbA1c 냽룄媛 뜑 궙븯떎(Mackenzie et al., 2006). 븣肄붿삱쓣 48 g 꽠痍⑦븳 썑 媛꾩뿉꽌쓽 룷룄떦 빀꽦씠 45% 媛먯냼뻽떎(Siler et al., 1998). Stockholm Public Health Cohort (SPHC)瑜 긽쑝濡 씠猷⑥뼱吏 븳 뿰援ъ뿉꽌뒗 쟻떦엳 닠쓣 癒밸뒗 궗엺(씪二쇱씪뿉 3.5~12옍)씠 鍮꾩쓬二쇱옄蹂대떎 떦눊蹂 諛쒖깮 쐞뿕씠 媛먯냼븯뒗 愿젴꽦쓣 蹂댁떎(OR, 0.47; 95% CI, 0.29~0.79) (Agardh et al., 2019). Atherosclerosis Risk In Communities (ARIC) 뿰援 李멸옄뱾쓽 뜲씠꽣瑜 遺꾩꽍븳 븳 뿰援ъ뿉 뵲瑜대㈃ 븣肄붿삱 꽠痍⑤웾씠 씪二쇱씪뿉 7옍 씠긽씤 궓꽦쓽 寃쎌슦 븣肄붿삱 꽠痍⑤웾 媛먯냼媛 떦눊蹂 諛쒖깮 쐞뿕 利앷 愿젴씠 엳뿀떎(HR, 1.12; 95% CI, 1.02~1.23). 洹몃━怨 궓꽦怨 뿬꽦 紐⑤몢 怨쇱껜以 李멸옄 鍮꾨쭔븳 李멸옄 洹몃9뿉꽌 씪二쇱씪 븣肄붿삱 꽠痍⑤웾씠 留롮쓣닔濡 떦눊蹂 諛쒖깮 쐞뿕씠 媛먯냼븯뒗 寃쏀뼢쓣 蹂댁떎(He et al., 2019).

蹂 뿰援ъ뿉꽌뒗 뿬꽦뿉寃뚯꽌 鍮꾩쓬二쇱옄蹂대떎 닠쓣 留롮씠 癒밸뒗 궗엺(돟30 g/day)씠 떦눊蹂 諛쒖깮 쐞뿕씠 利앷븯뒗 寃껋쓣 솗씤븷 닔 엳뿀떎. 삉븳, WHO 쐞뿕 湲곗蹂대떎 닠쓣 留롮씠 癒밸뒗 궗엺(돟40 g/day)씠 쐞뿕 湲곗蹂대떎 닠쓣 쟻寃 癒밸뒗 궗엺(<40 g/day)蹂대떎 떦눊蹂 諛쒖깮 쐞뿕씠 利앷뻽떎. 떦눊蹂 솚옄뱾쓽 븣肄붿삱 꽠痍⑤뒗 삁떦 紐⑤땲꽣留곸쓣 옒 紐삵븯嫄곕굹 빟臾 諛 씤뒓由 蹂듭슜쓣 븯吏 븡뒗 뻾룞쓣 븯뒗 뒪뒪濡 삁떦 議곗젅쓣 紐 븯뒗 寃껉낵 愿젴씠 엳뿀떎(Singh and Press, 2008). 씪蹂몄씤쓣 긽쑝濡 븳 뿰援ъ뿉꽌뒗 븣肄붿삱 꽠痍⑤웾씠 留롮쓣 븣, 怨듬났 떆 삁떦씠 利앷븯뒗 寃껋쓣 솗씤뻽떎(Kuwahara et al., 2014). National Health Insurance Service-National Sample Cohort (NHIS-NSC)瑜 긽쑝濡 씠猷⑥뼱吏 븳 뿰援ъ뿉꽌뒗 븣肄붿삱 냼鍮 鍮덈룄쓽 利앷媛 떦눊蹂 諛쒖깮 쐞뿕쓣 利앷떆궎뒗 쁺뼢쓣 蹂댁떎(HR, 1.21; 95% CI, 1.09~ 1.35; P<0.001) (Choi et al., 2022). 븣肄붿삱 꽠痍⑤웾怨 떦눊蹂묒쓽 愿怨꾧 U옄 紐⑥뼇쓣 굹궡뿀쑝硫, 궓꽦쓽 寃쎌슦 븯猷 븣肄붿삱 꽠痍⑤웾씠 60 g씠 꽆뒗 洹몃9씠 떦눊蹂 諛쒖깮 쐞뿕씠 넂 寃쏀뼢쓣 蹂댁怨(RR, 1.01; 95% CI, 0.71~1.44), 뿬꽦쓽 寃쎌슦 븯猷 븣肄붿삱 꽠痍⑤웾씠 50 g씠 꽆뒗 洹몃9씠 떦눊蹂 諛쒖깮 쐞뿕씠 넂 寃쏀뼢쓣 蹂댁떎(RR, 1.02; 95% CI, 0.83~ 1.26) (Baliunas et al., 2009).

븳援씤쓣 긽쑝濡 븳 븣肄붿삱怨 떦눊蹂 媛꾩쓽 뿰援 遺遺꾩 궓꽦씠 뿬꽦蹂대떎 쓬二쇱옄쓽 鍮꾩쑉씠 뜑 넂怨 뿬꽦쓽 닔媛 異⑸텇븯吏 븡湲 븣臾몄뿉 궓꽦留뚯쓣 긽쑝濡 씠猷⑥뼱議뚮떎. 븳援씤 궓꽦쓣 긽쑝濡 븳 뿰援ъ뿉꽌뒗 븣肄붿삱 솉議곌 뾾뒗 洹몃9뿉꽌 븣肄붿삱쓣 씪二쇱씪뿉 20옍쓣 꽆寃 癒밸뒗 洹몃9씠 鍮꾩쓬二쇱옄蹂대떎 씤뒓由 빆꽦 諛쒖깮 쐞뿕씠 뜑 넂븯怨(OR, 3.48; 95% CI, 1.44~8.42), 븣肄붿삱 솉議곌 엳뒗 洹몃9뿉꽌 븣肄붿삱쓣 씪二쇱씪뿉 12옍쓣 꽆寃 癒밸뒗 洹몃9씠 鍮꾩쓬二쇱옄뿉 鍮꾪빐꽌 씤뒓由 빆꽦 諛쒖깮 쐞뿕씠 뜑 넂븯떎(OR, 4.66; 95% CI, 1.80~12.06) (Jung et al., 2010). 븳援씤 以묐뀈 궓꽦쓣 긽쑝濡 븳 뿰援ъ뿉꽌뒗 븣肄붿삱 꽠痍⑤웾씠 넂 洹몃9(30 g/day)씠 鍮꾩쓬二쇱옄뿉 鍮꾪빐 諛쒖깮 쐞뿕씠 뜑 넂븯떎(HR, 1.32; 95% CI, 1.01~1.73) (Lee et al., 2017). 븳援씤 궓瑜 媛숈씠 遺꾩꽍븳 뿰援ъ뿉꽌뒗 븯猷 븣肄붿삱 꽠痍⑤웾씠 >60 g/day씤 洹몃9씠 鍮꾩쓬二쇱옄뿉 鍮꾪빐 떦눊蹂 諛쒖깮 쐞뿕씠 뜑 넂寃 굹궗떎(HR, 1.94; 95% CI, 1.07~3.51) (Baik and Park, 2020). 蹂 뿰援ъ뿉꽌뒗 궓꽦씠 븘땶 뿬꽦뿉寃뚯꽌留 븣肄붿삱 꽠痍⑤웾怨 떦눊蹂 媛꾩쓽 愿젴꽦씠 굹궗뒗뜲 씠뒗 뿰援 李멸옄뱾쓽 씠吏덉꽦쓽 쁺뼢씪 닔 엳떎. 留롮 뿰援ъ뿉꽌 꽦蹂꾧낵 씤醫낆뿉 뵲씪 寃곌낵媛 떎瑜닿쾶 굹궗쑝硫, 븣肄붿삱 꽠痍⑥ 愿젴맂 떎瑜 硫붿빱땲利섏쓽 媛꾩꽠 븣臾몄씪 닔 엳떎. 븣肄붿삱 꽠痍⑥ 떦눊蹂묎낵쓽 愿怨꾨뒗 뿬꽦뿉寃뚯꽌留 굹궇 닔 엳쑝硫, 븘떆븘씤뿉寃뚯꽌뒗 떦눊蹂묎낵 愿젴씠 뾾쓣 닔 엳떎뒗 쓽寃ъ씠 젣븞릺湲곕룄 뻽떎(Knott et al., 2015).

蹂 뿰援щ뒗 븣肄붿삱怨 떦눊蹂 媛꾩쓽 愿젴꽦쓣 솗씤븯怨좎옄 븯떎. 궓꽦怨 뿬꽦쓽 李⑥씠, 二쇱쥌蹂 꽠痍 鍮덈룄쓽 李⑥씠媛 엳뒗吏瑜 솗씤븯怨좎옄 븯떎. 븯吏留, 뿰援 긽옄 닔 遺議깆쑝濡 二쇱쥌 蹂 꽠痍 鍮덈룄쓽 李⑥씠뒗 異붽 遺꾩꽍쓣 븷 닔 뾾뿀떎. 삉븳, 蹂 뿰援щ뒗 떒硫 뿰援(Cross section study)씠怨, 븣肄붿삱 꽠痍 씠쇅쓽 슂씤뿉 빐 쁺뼢쓣 諛쏆븯쓣 닔 엳쑝硫, 몴蹂몄닔媛 겕吏 븡쑝誘濡 씤怨 愿怨꾨 諛앺엳뒗뜲 젣븳젏씠 엳떎. 뵲씪꽌, 꽦蹂꾩뿉 뵲瑜 李⑥씠瑜 뜑 옒 씠빐븯湲 쐞빐 異⑸텇븳 닔쓽 뿰援 긽쓣 媛吏怨 異붽쟻씤 뿰援ш 吏꾪뻾릺뼱빞 븷 寃껋씠떎.

寃곕줎쟻쑝濡 蹂 뿰援ъ쓽 寃곌낵뒗 븳援씤 뿬꽦뿉寃뚯꽌 븣肄붿삱 꽠痍⑤웾씠 怨듬났 떆 삁떦怨 떦눊蹂 諛쒖깮 쐞뿕怨 愿젴씠 엳떎뒗 利앷굅瑜 젣怨듯븷 닔 엳떎. 洹몃━怨 쟻떦븳 븣肄붿삱 꽠痍⑤웾 떦눊蹂 諛쒖깮 쐞뿕쓣 媛먯냼떆궗 닔 엳쑝硫, 넂 븣肄붿삱 꽠痍⑤웾 떦눊蹂 諛쒖깮 쐞뿕쓣 利앷떆궗 닔 엳떎뒗 옞옱쟻씤 利앷굅瑜 젣떆븷 닔 엳떎.

ACKNOWLEDGEMENT

This study was conducted with bioresources from National Biobank of Korea, the Korea Disease Control and Prevention Agency, Republic of Korea (KBN-2021-006) and the Basic Science Research Program of the National Research Foundation of Korea through the Ministry of Education, Science, and Technology (2018R1D1A1B07050834).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

References
  1. Abel T, Feh챕r J. Effect of moderate alcohol consumption on insulin sensitivity. Orv Hetil. 2009. 150: 2218-2221.
    Pubmed CrossRef
  2. Agardh EE, Lundin A, Lager A, et al. Alcohol and type 2 diabetes: The role of socioeconomic, lifestyle and psychosocial factors. Scand J Public Health. 2019. 47: 408-416.
    Pubmed KoreaMed CrossRef
  3. Ahmed AT, Karter AJ, Warton EM, Doan JU, Weisner CM. The relationship between alcohol consumption and glycemic control among patients with diabetes: the Kaiser Permanente Northern California Diabetes Registry. J Gen Intern Med. 2008. 23: 275-282.
    Pubmed KoreaMed CrossRef
  4. Al-Abed Y, Mitsuhashi T, Li H, et al. Inhibition of advanced glycation endproduct formation by acetaldehyde: role in the cardioprotective effect of ethanol. Proc Natl Acad Sci U S A. 1999. 96: 2385-2390.
    Pubmed KoreaMed CrossRef
  5. Baik I, Park SI. Associations of alcohol consumption and physical activity with lean type 2 diabetes mellitus among Korean adults: A prospective cohort study. PLoS One. 2020. 15: e0238641.
    Pubmed KoreaMed CrossRef
  6. Baliunas DO, Taylor BJ, Irving H, et al. Alcohol as a risk factor for type 2 diabetes: A systematic review and meta-analysis. Diabetes Care. 2009. 32: 2123-2132.
    Pubmed KoreaMed CrossRef
  7. Beulens JWJ, Rimm EB, Hendriks HFJ, et al. Alcohol consumption and type 2 diabetes: influence of genetic variation in alcohol dehydrogenase. Diabetes. 2007. 56: 2388-2394.
    Pubmed CrossRef
  8. Bonnet F, Disse E, Laville M, et al. Moderate alcohol consumption is associated with improved insulin sensitivity, reduced basal insulin secretion rate and lower fasting glucagon concentration in healthy women. Diabetologia. 2012. 55: 3228-3237.
    Pubmed CrossRef
  9. Choi JW, Han E, Kim TH. Risk of Hypertension and Type 2 Diabetes in Relation to Changes in Alcohol Consumption: A Nationwide Cohort Study. Int J Environ Res Public Health. 2022. 19: 4941.
    Pubmed KoreaMed CrossRef
  10. Cox WM, Blount JP, Crowe PA, Singh SP. Diabetic patients' alcohol use and quality of life: relationships with prescribed treatment compliance among older males. Alcohol Clin Exp Res. 1996. 20: 327-331.
    Pubmed CrossRef
  11. Davies MJ, Baer DJ, Judd JT, Brown ED, Campbell WS, Taylor PR. Effects of moderate alcohol intake on fasting insulin and glucose concentrations and insulin sensitivity in postmenopausal women: a randomized controlled trial. JAMA. 2002. 287: 2559-2562.
    Pubmed CrossRef
  12. He X, Rebholz CM, Daya N, Lazo M, Selvin E. Alcohol consumption and incident diabetes: The Atherosclerosis Risk in Communities (ARIC) study. Diabetologia. 2019. 62: 770-778.
    Pubmed KoreaMed CrossRef
  13. Hodge AM, English DR, O'Dea K, Giles GG. Alcohol intake, consumption pattern and beverage type, and the risk of Type 2 diabetes. Diabet Med. 2006. 23: 690-697.
    Pubmed CrossRef
  14. Holbrook TL, Barrett-Connor E, Wingard DL. A prospective population-based study of alcohol use and non-insulin-dependent diabetes mellitus. Am J Epidemiol. 1990. 132: 902-909.
    Pubmed CrossRef
  15. Howard AA, Arnsten JH, Gourevitch MN. Effect of alcohol consumption on diabetes mellitus: a systematic review. Ann Intern Med. 2004. 140: 211-219.
    Pubmed CrossRef
  16. Hu FB, Manson JE, Stampfer MJ, et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001. 345: 790-797.
    Pubmed CrossRef
  17. Joosten MM, Chiuve SE, Mukamal KJ, Hu FB, Hendriks HFJ, Rimm EB. Changes in alcohol consumption and subsequent risk of type 2 diabetes in men. Diabetes. 2011. 60: 74-79.
    Pubmed KoreaMed CrossRef
  18. Joosten MM, Grobbee DE, vander A DL, Verschuren WMM, Hendriks HFJ, Beulens JWJ. Combined effect of alcohol consumption and lifestyle behaviors on risk of type 2 diabetes. Am J Clin Nutr. 2010. 91: 1777-1783.
    Pubmed CrossRef
  19. Jung CH, Son JW, Kang S, et al. Diabetes Fact Sheets in Korea, 2020: An Appraisal of Current Status. Diabetes Metab J. 2021. 45: 1-10.
    Pubmed KoreaMed CrossRef
  20. Jung JG, Kim JS, Oh MK. The role of the flushing response in the relationship between alcohol consumption and insulin resistance. Alcohol Clin Exp Res. 2010. 34: 1699-1704.
    Pubmed CrossRef
  21. Kim SY, Kim HJ. Trends in Alcohol Consumption for Korean Adults from 1998 to 2018: Korea National Health and Nutritional Examination Survey. Nutrients. 2021. 13: 609.
    Pubmed KoreaMed CrossRef
  22. Knott C, Bell S, Britton A. Alcohol Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-analysis of More Than 1.9 Million Individuals From 38 Observational Studies. Diabetes Care. 2015. 38: 1804-1812.
    Pubmed CrossRef
  23. Koppes LLJ, Dekker JM, Hendriks HFJ, Bouter LM, Heine RJ. Moderate alcohol consumption lowers the risk of type 2 diabetes: a meta-analysis of prospective observational studies. Diabetes Care. 2005. 28: 719-725.
    Pubmed CrossRef
  24. Kuwahara K, Kochi T, Nanri A, et al. Flushing response modifies the association of alcohol consumption with markers of glucose metabolism in Japanese men and women. Alcohol Clin Exp Res. 2014. 38: 1042-1048.
    Pubmed CrossRef
  25. Lee DY, Yoo MG, Kim HJ, et al. Association between alcohol consumption pattern and the incidence risk of type 2 diabetes in Korean men: A 12-years follow-up study. Sci Rep. 2017. 7: 7322.
    Pubmed KoreaMed CrossRef
  26. Lee YJ, Lee H, Jang HB, et al. The potential effects of HECTD4 variants on fasting glucose and triglyceride levels in relation to prevalence of type 2 diabetes based on alcohol intake. Arch Toxicol. 2022. 96: 2487-2499.
    Pubmed KoreaMed CrossRef
  27. Li XH, Yu FF, Zhou YH, He J. Association between alcohol consumption and the risk of incident type 2 diabetes: a systematic review and dose-response meta-analysis. Am J Clin Nutr. 2016. 103: 818-829.
    Pubmed CrossRef
  28. Lieber CS. Alcohol and the liver: 1984 update. Hepatology. 1984. 4: 1243-1260.
    Pubmed CrossRef
  29. Mackenzie T, Brooks B, O'Connor G. Beverage intake, diabetes, and glucose control of adults in America. Ann Epidemiol. 2006. 16: 688-691.
    Pubmed CrossRef
  30. Mayer EJ, Newman B, Quesenberry CP Jr, Friedman GD, Selby JV. Alcohol consumption and insulin concentrations. Role of insulin in associations of alcohol intake with high-density lipoprotein cholesterol and triglycerides. Circulation. 1993. 88: 2190-2197.
    Pubmed CrossRef
  31. Mayor S. International Diabetes Federation consensus on prevention of type 2 diabetes. Int J Clin Pract. 2007. 61: 1773-1775.
    Pubmed CrossRef
  32. Mozaffarian D, Kamineni A, Carnethon M, Djouss챕 L, Mukamal KJ, Siscovick D. Lifestyle risk factors and new-onset diabetes mellitus in older adults: the cardiovascular health study. Arch Intern Med. 2009. 169: 798-807.
    Pubmed KoreaMed CrossRef
  33. Ohlson LO, Larsson B, Sv채rdsudd K, et al. The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes. 1985. 34: 1055-1058.
    Pubmed CrossRef
  34. Park SY, Kim YJ, Lee EG. KoGES (Korean Genome and Epidemiology Study) epidemiologic data online access process. Public Health Wkly Rep KCDC. 2014. 8: 481-484.
  35. Pietraszek A, Gregersen S, Hermansen K. Alcohol and type 2 diabetes. A review. Nutr Metab Cardiovasc Dis. 2010. 20: 366-375.
    Pubmed CrossRef
  36. Rehm J, Monteiro M. Alcohol consumption and burden of disease in the Americas: implications for alcohol policy. Rev Panam Salud Publica. 2005. 18: 241-248.
    Pubmed CrossRef
  37. Rehm J, Room R, Graham K, Monteiro M, Gmel G, Sempos CT. The relationship of average volume of alcohol consumption and patterns of drinking to burden of disease: an overview. Addiction. 2003. 98: 1209-1228.
    Pubmed CrossRef
  38. Seike N, Noda M, Kadowaki T. Alcohol consumption and risk of type 2 diabetes mellitus in Japanese: a systematic review. Asia Pac J Clin Nutr. 2008. 17: 545-551.
  39. Siler SQ, Neese RA, Christiansen MP, Hellerstein MK. The inhibition of gluconeogenesis following alcohol in humans. Am J Physiol. 1998. 275: E897-907.
    Pubmed CrossRef
  40. Singh R, Press M. Can we predict future improvement in glycaemic control?. Diabet Med. 2008. 25: 170-173.
    Pubmed CrossRef
  41. Stampfer MJ, Colditz GA, Willett WC, et al. A prospective study of moderate alcohol drinking and risk of diabetes in women. Am J Epidemiol. 1988. 128: 549-558.
    Pubmed CrossRef
  42. Stumvoll M, Gerich J. Clinical features of insulin resistance and beta cell dysfunction and the relationship to type 2 diabetes. Clin Lab Med. 2001. 21: 31-51.
  43. Tsumura K, Hayashi T, Suematsu C, Endo G, Fujii S, Okada K. Daily alcohol consumption and the risk of type 2 diabetes in Japanese men: the Osaka Health Survey. Diabetes Care. 1999. 22: 1432-1437.
    Pubmed CrossRef
  44. Van de Wiel A. Diabetes mellitus and alcohol. Diabetes Metab Res Rev. 2004. 20: 263-267.
    Pubmed CrossRef
  45. Wadland WC, Ferenchick GS. Medical comorbidity in addictive disorders. Psychiatr Clin North Am. 2004. 27: 675-687.
    Pubmed CrossRef
  46. World Health Organization. Global status report on alcohol and health 2018. 2018. pp. 38-60. World Health Organization. Geneva, Switzerland.
  47. World Health Organization. International guide for monitoring alcohol consumption and related harm. 2000. pp. 51-55. World Health Organization. Geneva, Switzerland.
  48. Xu M, Zhou Y, Xu B, et al. Associations of smoking and alcohol consumption with impaired 棺-cell function in Chinese men. J Diabetes. 2016. 8: 434-441.
    Pubmed CrossRef
  49. Yoon E, Bae JC, Suh S. Intake of Fruit and Glycemic Control in Korean Patients with Diabetes Mellitus Using the Korea National Health and Nutrition Examination Survey. Endocrinol Metab (Seoul). 2023.
    CrossRef
  50. Yoon KH. Diabetes Fact Sheet in Korea 2020. 2020. pp. 5-12. Korean Diabetes Association. Seoul, Korea.