Search for


TEXT SIZE

search for



CrossRef (0)
Trans-anethole Suppresses C2C12 Myoblast Differentiation
Biomed Sci Letters 2023;29:190-200
Published online September 30, 2023;  https://doi.org/10.15616/BSL.2023.29.3.190
© 2023 The Korean Society For Biomedical Laboratory Sciences.

Mi-Ran Lee†,*

Department of Biomedical Laboratory Science, Jungwon University, Chungbuk 28024, Korea
Correspondence to: Mi-Ran Lee. Department of Biomedical Laboratory Science, Jungwon University, Chungbuk 28024, Korea.
Tel: +82-43-830-8864, Fax: +82-43-830-8559, e-mail: leemr@jwu.ac.kr
*Professor.
Received August 16, 2023; Revised September 1, 2023; Accepted September 4, 2023.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
Skeletal muscle, essential for metabolism, thermoregulation, and immunity, undergoes myogenic differentiation that results in myotube formation. Trans-anethole (TA), the major constituent in essential oil produced by anise, star anise, and fennel, whose function in skeletal muscle has not yet been elucidated. Therefore, we investigated whether TA influenced muscle differentiation in mouse C2C12 myoblasts. Cells were induced to differentiate using a differentiation medium with or without TA (50 or 200 mg/mL) daily for 5 days. We measured myotube length and diameter after differentiation days 1, 3, and 5 and analyzed the expression of myogenic markers (myoblast determination protein 1, myogenin, myocyte enhancer factor 2, muscle creatine kinase, and myosin heavy chain) and atrophy-related genes (atrogin-1 and muscle ring finger-1 [MuRF-1]) using quantitative real-time PCR. Additionally, we observed the expression of total protein kinase B (Akt) and phosphorylated Akt (p-Akt) using western blotting. Our data showed that TA significantly induced the formation of smaller and thinner myotubes and reduced the myogenic factor expression. Furthermore, the atrogin-1 and MuRF-1 expression markedly increased by TA. Consistent with these findings, TA significantly decreased the expression of total Akt and p-Akt. Taken together, these results indicate that TA inhibits myogenic differentiation of C2C12 cells via reduction of both total Akt and p-Akt. Our findings may provide valuable insights into the impact of PAA on individuals at risk of muscle atrophy.
Keywords : Atrophy, Myogenic differentiation, Protein kinase B, Skeletal muscle, Trans-anethole
꽌 濡

怨④꺽洹(skeletal muscle) 씤泥댁뿉꽌 媛옣 뭾遺븳 議곗쭅쑝濡, 슦由 紐몄쓽 빟 40% 젙룄瑜 李⑥븯怨 엳떎. 怨④꺽洹쇱 떊泥댁쓽 吏곸엫怨 愿젴맂 湲곕낯쟻씤 湲곕뒫 쇅뿉룄 옄꽭瑜 쑀吏떆耳쒖<怨, 뿴쓣 諛쒖깮떆궎뒗 以묒슂븳 뿭븷쓣 닔뻾븳떎. 삉븳, 臾쇱쭏 궗瑜 쐞븳 뿉꼫吏썝씤 룷룄떦怨 吏諛⑹궛 媛숈 二쇱슂 쁺뼇냼쓽 씉닔瑜 議곗젅븯怨 씠슜븿쑝濡쒖뜥 씤泥댁쓽 뿉꼫吏 궗뿉 겕寃 湲곗뿬븷 肉먮쭔 븘땲씪, 留덉씠삤移댁씤(myokine)怨 媛숈 洹쇱쑁뿉꽌 깮꽦릺뼱 遺꾨퉬릺뒗 궗씠넗移댁씤(cytokine)쓣 遺꾨퉬븿쑝濡쒖뜥 씤泥댁쓽 硫댁뿭泥닿퀎瑜 議곗젅븳떎(Silveira et al., 2011; Nelke et al., 2019; Merz and Thurmond, 2020). 洹쇱쑁웾쓣 쑀吏븯湲 쐞빐꽌뒗 洹쇱쑁쓽 떒諛깆쭏 빀꽦怨 遺꾪빐 媛꾩쓽 洹좏삎쓣 씠猷⑥뼱빞 븯뒗뜲 떊寃 넀긽, 洹쇱냼떎, 끂솕, 빟臾쇰룆꽦, 떖遺쟾쓣 룷븿븳 뿬윭 蹂묐━븰쟻 긽깭뒗 씠윭븳 洹좏삎쓣 源⑦듃由 닔 엳떎. 洹쇱쑁쓽 떒諛깆쭏 빀꽦怨 遺꾪빐 媛꾩쓽 遺덇퇏삎 긽깭뒗 怨④꺽 洹쇱쑁쓽 吏덈웾怨 湲곕뒫쓽 젏吏꾩쟻씤 넀떎쓣 듅吏뺤쑝濡 븯뒗 怨④꺽洹 쐞異(muscle atrophy)瑜 쑀諛쒗븷 닔 엳떎(Wang et al., 2022; Burcin Kubat et al., 2023). 怨④꺽洹 쐞異뺤 궣쓽 吏덉뿉 떖媛곹븳 쁺뼢쓣 誘몄튂뒗뜲 듅엳, 씤뒓由 빆꽦怨 젣2삎 떦눊蹂묎낵 媛숈 궗 씠긽 吏덈퀝쓣 쑀諛쒗븯뿬 빀蹂묒쬆쓣 諛쒖깮떆궎怨 씠濡 씤븳 議곌린 궗留앹쓽 쐞뿕쓣 넂씪 닔 엳떎(Mesinovic et al., 2019; Shou et al., 2020). 뵲씪꽌 씤泥댁쓽 쟾諛섏쟻씤 嫄닿컯쓣 쑀吏븯湲 쐞빐꽌뒗 嫄닿컯븳 怨④꺽洹쇱쓣 쑀吏븯뒗 寃껋씠 以묒슂븯떎.

怨④꺽洹 遺꾪솕(skeletal muscle differentiation)뒗 洹쇰컻깮(myogenesis)씠씪怨좊룄 븯硫, 洹쇱쑁紐⑥꽭룷(myoblast)쓽 利앹떇쓣 떆옉쑝濡 뿬윭 媛쒖쓽 洹쇱쑁紐⑥꽭룷뱾씠 꽌濡 쑖빀릺뼱 愿 삎깭쓽 떎빑꽭룷씤 洹쇨꽭룷(myotube)瑜 삎꽦븯뒗 젙援먰븯寃 議고솕맂 떎떒怨 怨쇱젙씠떎(Comai and Tajbakhsh, 2014). 留덉슦뒪 洹쇱쑁紐⑥꽭룷뿉꽌 쑀옒맂 C2C12 꽭룷二쇰뒗 씤泥댁쓽 怨④꺽洹 遺꾪솕 怨쇱젙쓣 泥댁쇅(in vitro)뿉꽌 슚怨쇱쟻쑝濡 諛쒖깮떆궎怨 洹쇱쑁 삎꽦쓽 湲곗 硫붿빱땲利섏쓣 議곗궗븯湲 쐞븳 理쒖쟻쓽 꽭룷 떆뒪뀥쓣 젣怨듯븳떎(Dias et al., 1994; Buckingham, 2006). 洹쇰컻깮 洹쇱쑁 議곗젅 씤옄(myogenic regulatory factors; MRF)쓽 닚李⑥쟻 諛쒗쁽뿉 쓽빐 議곗젅맂떎. MRFs쓽 醫낅쪟뿉뒗 myoblast determination protein 1 (MyoD), myogenic factor 5 (Myf-5), myogenin 諛 MRF4媛 엳쑝硫, 씠뱾 뿼湲곗꽦 굹꽑-怨좊━-굹꽑(basic helix-loop-helix) 쟾궗 씤옄뿉 냽븳떎(Ferri et al., 2009; Londhe and Davie, 2011). 씠뱾 꽕 媛吏 MRF쓽 媛곴컖쓣 떎뼇븳 鍮꾧렐쑁꽭룷瑜 諛곗뼇븷 븣 泥섎━븯硫 洹쇱쑁 삎꽦쓣 옒 쑀룄븷 닔 엳떎. 洹몃윭굹 myocyte enhancer factor 2 (MEF2) 媛숈 떎瑜 洹쇱쑁 쟾궗 씤옄쓽 룄씠 븘슂븯떎. MEF2 씤옄뒗 洹쇱쑁 遺꾪솕뿉 븘닔쟻씠硫, MRF MEF2뒗 삊룞쟻쑝濡 쟾궗瑜 솢꽦솕떆耳쒖꽌 洹쇱쑁 삎꽦쓣 씪쑝궎寃 맂떎(Dodou et al., 2003; Liu et al., 2014). Myf5 MyoD뒗 洹쇰컻깮 珥덇린뿉 씪뼱굹뒗 洹쇱쑁紐⑥꽭룷쓽 利앹떇 씠썑뿉 諛쒗쁽쓣 븯뿬 洹쇱쑁紐⑥꽭룷媛 遺꾪솕瑜 떆옉븯룄濡 옄洹뱁븳떎(Rudnicki et al., 1993). Myogenin怨 MRF4뒗 洹 썑뿉 諛쒗쁽븯뿬 꽭룷 쑖빀쓣 珥됱쭊븳떎(Sabourin and Rudnicki, 2000). 遺꾪솕 썑湲곗뿉 씠瑜대㈃ muscle creatine kinase (MCK) myosin heavy chain (MyHC) 媛숈 醫낅쭚 遺꾪솕(terminal differentiation) 씤옄 援ъ“ 떒諛깆쭏쓽 諛쒗쁽씠 利앷븳떎. 洹쇰컻깮쓽 젙룄뒗 씠윭븳 洹쇰컻깮 愿젴 씤옄뱾쓽 諛쒗쁽쓣 痢≪젙븿쑝濡쒖뜥 솗씤븷 닔 엳떎. 理쒖쥌쟻쑝濡 遺꾪솕媛 셿猷뚮릺硫, 洹쇱쑁쓽 겕湲곌 利앷븯뒗뜲, 씠뒗 洹쇱쑁 떒諛깆쭏쓽 빀꽦 利앷濡 씤븳 洹쇨꽭룷쓽 吏由꾧낵 湲몄씠媛 利앷븯뒗 洹쇰퉬(muscle hypertrophy) 怨쇱젙쓣 넻빐꽌 씠猷⑥뼱吏꾨떎(Schiaffino et al., 2013).

Protein kinase B (Akt)뒗 洹쇱쑁뿉꽌 떒諛깆쭏 빀꽦쓣 議곗젅븯뿬 洹쇰퉬瑜 珥됱쭊떆궎뒗 옉슜쓣 븯뒗 꽭由-듃젅삤땶 怨꾩뿴쓽 궎굹젣(serine-threonine kinase)씠떎. 룞臾쇱떎뿕 뿰援ш껐怨쇱뿉꽌 Akt 솢꽦솕뒗 떊寃쎌젅떒뿉 쓽빐 쑀諛쒕맂 洹쇱쐞異뺤쓣 삁諛⑺븳 諛섎㈃, Akt 솢꽦쓽 媛먯냼뒗 吏꾪뻾꽦 洹쇱쐞異(muscular atrophy)쓣 쑀諛쒗븯떎(Bodine et al., 2001; Leger et al., 2006). Akt 솢꽦 룷겕뿤뱶 諛뺤뒪(forkhead box) 떒諛깆쭏쓣 씤궛솕븯뿬 E3-ubiquitin ligases씤 atrogin-1怨 muscle ring fnger-1 (MuRF-1) 媛숈 洹쇱쐞異 씤옄쓽 쟾궗瑜 뼲젣븷 닔 엳뒗뜲, 씠윭븳 洹쇱쐞異 씤옄쓽 쟾궗媛 뼲젣릺吏 紐삵븯硫 洹쇱쑁 넀떎씠 諛쒖깮븯寃 맂떎(Wang et al., 2019). 뵲씪꽌 Akt 솢꽦쓽 媛먯냼뒗 洹쇱쑁 遺꾪빐 怨쇱젙쓣 媛뺥솕븯뒗 洹쇱쐞異 씤옄쓽 諛쒗쁽쓣 利앷떆궗 닔 엳떎.

Trans-anethole (TA; 1-methoxy-4-((E)-propenyl)-benzene) 떇臾쇱뿉꽌 뀒瑜댄렂(terpene) 깮빀꽦쓽 遺궛臾쇰줈 삎꽦릺뒗 뀒瑜댄럹끂씠뱶(terpenoid)濡쒖꽌, 렂꽟(fennel), 븘땲뒪(anise) 삉뒗 뒪븘땲뒪(star anise) 媛숈 뼢湲곕줈슫 떇臾쇱쓽 뿉꽱뀥 삤씪(essential oil)쓽 二쇱슂 꽦遺꾩씠떎(Ponte et al., 2012; Moradi et al., 2014). 넗겮뿉꽌 TA쓽 湲됱꽦룆꽦떆뿕 寃곌낵 諛섏닔移섏궗웾(LD50)씠 5,000 mg/kg 씠긽쓽 냽룄濡 솗씤릺뿀怨 슜웾뿉꽌뒗 쑀쟾룆꽦씠굹 諛쒖븫꽦씠 媛먯릺吏 븡븯湲 븣臾몄뿉 TA뒗 긽떦엳 븞쟾븳 臾쇱쭏濡쒖꽌 븣젮졇 엳떎(Shimoni et al., 2002; Kwiatkowski et al., 2020). 삉븳, TA뒗 떇뭹 諛 젣빟궛뾽뿉꽌 궗슜릺怨 엳쑝硫, 誘멸뎅 떇뭹쓽빟援(FDA-US) 洹 븞쟾 씤利앹쓣 諛쒓툒븯떎(Ponte et al., 2012). 떇뭹뿉꽌뒗 룆듅븳 留쏄낵 뼢 븣臾몄뿉, 二쇰줈 궗깢, 븘씠뒪겕由, 猿, 븣肄붿삱 쓬猷뚯 媛숈 떎뼇븳 醫낅쪟쓽 쓬떇뿉 二쇰줈 궗슜맂떎(Shimoni et al., 2002; Ryu et al., 2005). 젣빟궛뾽뿉꽌뒗 빆洹, 빆吏꾧퇏, 궡異, 궡, 빆궛솕, 빆뿼, 빆넻利, 硫댁뿭 議곗젅, 빆븫, 빆삁쟾, 떦눊蹂 삁諛, 遺덉븞 媛먯냼, 援냼留덉랬, 쐞 蹂댄샇, 諛 긽泥 移섏쑀쓽 듅꽦쓣 굹궡湲 븣臾몄뿉 泥④젣濡 궗슜맂떎(Yea et al., 2006; Huang et al., 2010; Shahat et al., 2011; Aprotosoaie et al., 2016; Kim et al., 2017; Zhang et al., 2018; Kwiatkowski et al., 2019). 洹몃윭굹 TA媛 洹쇰컻깮뿉 誘몄튂뒗 쁺뼢뿉 븳 蹂닿퀬뒗 븘吏곴퉴吏 뾾떎.

蹂 뿰援ъ뿉꽌뒗 TA媛 C2C12 洹쇱쑁紐⑥꽭룷쓽 遺꾪솕뿉 誘몄튂뒗 쁺뼢쓣 議곗궗븯뒗뜲 TA媛 洹쇱쐞異 쑀쟾옄씤 atrogin-1怨 MuRF-1쓽 諛쒗쁽 利앷 Akt 諛쒗쁽 媛먯냼瑜 넻빐 C2C12 洹쇱쑁紐⑥꽭룷쓽 遺꾪솕瑜 뼲젣븯뒗 뿭븷쓣 븳떎뒗 寃껋쓣 利앸챸븯떎. 蹂 뿰援ш껐怨쇰뒗 洹쇱쐞異뺤뿉 븳 쐞뿕 씤옄瑜 媛吏 궗엺뿉寃 TA媛 誘몄튌 닔 엳뒗 쁺뼢뿉 븳 洹以묓븳 넻李곕젰쓣 젣怨듯븳떎.

옱猷 諛 諛⑸쾿

꽭룷 諛곗뼇 諛 떆빟

留덉슦뒪 C2C12 洹쇱쑁紐⑥꽭룷뒗 American Type Culture Collection (Manassas, VA, USA)濡쒕꽣 援ъ엯븯쑝硫, 10% FBS 1% P/S瑜 븿쑀븳 DMEM 諛곗뼇諛곗(growth medium; GM)瑜 씠슜븯뿬 37꼦, 5% CO2 議곌굔쓽 諛곗뼇湲곗뿉꽌 諛곗뼇븯떎. 꽭룷쓽 諛룄(confluency)媛 70%뿉 룄떖븷 븣 怨꾨 諛곗뼇븯떎.

TA뒗 ChromaDex (Irvine, CA, USA)濡쒕꽣 援ъ엯븯怨, 0.1% Tween 80 슜븸뿉 끃뿬 50 mg/mL 옣슜븸(stock solution)쓣 젣議고븳 썑, -20꼦뿉꽌 떎뿕뿉 궗슜븷 븣源뚯 蹂닿븯떎. 떎뿕 쟾 TA 옣슜븸씠 諛곗뼇諛곗瑜 씠슜븯뿬 臾닿퇏쟻쑝濡 씗꽍릺뿀떎. Dulbecc처s modified Eagle medium (DMEM) Welgene, Inc. (Daegu, Korea)濡쒕꽣 援ъ엯븯떎. Horse serum怨 TRIzol Invitrogen (Grand Island, NY, USA)쑝濡쒕꽣 援ъ엯븯떎. Fetal bovine serum (FBS)怨 penicillin/ streptomycin (P/S)뒗 GE Healthcare Life Sciences (Logan, UT, USA)濡쒕꽣 援ъ엯븯떎. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) lactate dehydrogenase (LDH)뒗 Promega (Madison, WI)濡쒕꽣 援ъ엯븯떎. cDNA synthesis kit뒗 Enzynomics (Daejeon, South Korea)濡쒕꽣 援ъ엯븯떎. SYBR Green Master Mix Reagent, RIPA buffer, proteinase inhibitor, phosphatase inhibitor, goat anti-rabbit IgG-HRP-conjugate 씠李 빆泥대뒗 GenDEPOT (Katy, TX, USA)濡쒕꽣 援ъ엯븯떎. BCA Protein assay reagent뒗 Pierce (Rockford, IL, USA)濡쒕꽣 援ъ엯븯怨, polyvinylidene fluoride (PVDF)뒗 Bio-Rad (Hercules, CA, United States)濡쒕꽣 援ъ엯븯떎. Phosphorylated (p-)Akt (Ser473; #4060) Akt1/2/3 (#9272) 씪李 빆泥대뒗 Cell Signaling Technology (Danvers, MA, USA)濡쒕꽣 援ъ엯븯怨 棺-actin 씪李 빆泥대뒗 Santa Cruz Biotechnology (Santa Cruz, CA, USA)濡쒕꽣 援ъ엯븯떎.

遺꾪솕 쑀룄 諛 TA쓽 泥섎━

C2C12 洹쇱쑁紐⑥꽭룷瑜 GM쓣 룷븿븯뒗 6-well plates뿉꽌 諛곗뼇븯떎. 꽭룷쓽 쑖빀怨 洹쇨꽭룷쓽 삎꽦쓣 쑀룄븯湲 쐞븯뿬 꽭룷쓽 諛룄媛 80~90%뿉 룄떖븷 븣 2% horse serum怨 1% P/S瑜 룷븿븯뒗 遺꾪솕諛곗(differentiation medium; DM)濡 援먯껜빐 二쇱뿀떎. TA쓽 슚怨쇰 븣븘蹂닿린 쐞빐꽌 50怨 200 關g/mL쓽 냽룄濡 TA瑜 GM뿉 媛곴컖 泥섎━븯怨 議곌뎔(vehicle)뿉뒗 TA瑜 끃씤 슜留ㅼ씤 Tween 80쓣 泥섎━븯떎. 遺꾪솕 쑀룄 湲곌컙 룞븞 留ㅼ씪 TA vehicle쓣 룷븿븯뒗 떊꽑븳 DM쑝濡 援먯껜빐 二쇱뿀떎.

꽭룷깮議댁쑉 諛 꽭룷룆꽦 痢≪젙

TA뿉 쓽븳 C2C12 洹쇱쑁紐⑥꽭룷쓽 꽭룷깮議댁쑉쓣 MTT assay瑜 넻빐 솗씤븯떎. C2C12 洹쇱쑁紐⑥꽭룷瑜 DM쓣 룷븿븯뒗 6-well plates뿉꽌 諛곗뼇븯怨, 諛곗뼇 湲곌컙 룞븞 TA 25, 50, 100, 200 諛 400 關g/mL瑜 泥섎━븯떎. 24 삉뒗 72떆媛 썑뿉 媛 well쓽 긽痢듭븸 LDH assay뿉 씠슜븯湲 쐞빐꽌 젣嫄고븳 썑 뵲濡 蹂닿븯怨, 꽭룷뒗 MTT (0.5 mg/mL)瑜 泥④븳 떊꽑븳 DM뿉꽌 2떆媛 룞븞 37꼦 諛곗뼇湲곗뿉꽌 諛곗뼇븯떎. 씠썑 삎꽦맂 formazan 솕빀臾쇱쓣 dimethyl sulfoxide뿉 슜빐떆耳 100 關L뵫 96-well plates濡 삷湲 썑 microplate reader (Molecular Devices, CA, USA)瑜 씠슜븯뿬 490 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎.

꽭룷룆꽦 LDH assay kit瑜 씠슜븯뿬 꽭룷留 넀긽 젙룄瑜 痢≪젙븯떎. 빟 50 關L쓽 꽭룷 諛곗뼇븸뿉 룞웾쓽 LDH 湲곗쭏 샎빀臾쇱쓣 꽔怨 30遺 룞븞 긽삩뿉꽌 李④킅븯뿬 諛섏쓳떆궓 썑, microplate reader (Molecular Devices, CA, USA)瑜 씠슜븯뿬 490 nm뿉꽌 씉愿묐룄瑜 痢≪젙븯떎.

꽭룷 삎깭 愿李

꽭룷쓽 삎깭븰쟻씤 愿李곗 꽭룷瑜 諛곗뼇 以묒씤 슜湲곕 吏곸젒 쐞긽李 쁽誘멸꼍(Leica DM IL, Germany) 븯뿉 넃怨 愿李고븯쑝硫 븘슂 떆 遺李⑸맂 궗吏꾧린濡 珥ъ쁺븯떎. 洹쇨꽭룷쓽 湲몄씠 吏由꾩쓣 ImageJ software (NIH, Frederick, MD, USA)瑜 궗슜븯뿬 臾댁옉쐞濡 꽑깮맂 10媛쒖쓽 븘뱶뿉꽌 媛옣 겙 洹쇨꽭룷 50媛쒖쓽 룊洹 媛믪쑝濡 굹궡뿀떎(Nguyen and Wang, 2015).

RNA 異붿텧 諛 quantitative real-time PCR (qRT-PCR) 遺꾩꽍

50 삉뒗 200 關g/mL 냽룄쓽 TA 븿猿 1, 3, 5씪 諛곗뼇떆궓 C2C12 洹쇱쑁紐⑥꽭룷濡쒕꽣 TRIzol 떆빟쓣 궗슜븯뿬 珥 RNA瑜 異붿텧븯떎. 異붿텧븳 RNA쓽 1 關g쑝濡쒕꽣 TOPscriptTM RT DryMIX cDNA synthesis kit瑜 궗슜븯뿬 cDNA瑜 빀꽦븯怨, Quantstudio3 Real-Time PCR System (Applied Biosystems)뿉꽌 SYBR Green PCR master mix瑜 씠슜븯뿬 qRT-PCR쓣 닔뻾븯떎. PCR 議곌굔 95꼦뿉꽌 3遺꾧컙 珥덇린 蹂꽦쓣 떆뻾븯怨, 95꼦뿉꽌 3珥, 60꼦뿉꽌 30珥덉쓽 2-step 利앺룺諛섏쓳쓣 40쉶 떆뻾븯떎. Housekeeping gene쑝濡쒕뒗 棺-actin쓣 궗슜븯뿬 internal control濡 궗슜븯떎. 떎뿕뿉 궗슜맂 primer쓽 뿼湲곗꽌뿴 MyoD쓽 寃쎌슦 forward뒗 5'-ACTTTCTGGAGCCCTCCTGGCA-3', reverse뒗 5'-TTTGTTGCACTACACAGCATG-3'씠怨, myogenin쓽 寃쎌슦 forward뒗 5'-CTTGCTCAGCTCCCTCAACC-3', reverse뒗 5'-GTTGGGACCGAACTCCAGTG-3'씠怨, MEF2C쓽 寃쎌슦 forward뒗 5'-TGATCAGCAGGCAAAGATTG-3', reverse뒗 5'-ATCAGACCGCCTGTGTTACC-3'씠怨, MCK쓽 寃쎌슦 forward뒗 5'-CTTCATGTGGAACGAGCACCTG-3', reverse뒗 5'-GCGTTGGAGATGTCGAACACG-3'씠怨, MyHC쓽 寃쎌슦 forward뒗 5'-AGGGAGCTTGAAAACGAGGT-3', reverse뒗 5'-GCTTCCTCCAGCTCGTGCTG-3'씠怨, MuRF-1쓽 寃쎌슦 forward뒗 5'-GGAACCTGCTGGTGGAAAACATC-3', reverse뒗 5'-CGTCTTCGTGTTCCTTGCAC-3'씠怨, Atrogin-1쓽 寃쎌슦 forward뒗 5'-GCAGAGAGTCGGCAAGTC-3', reverse뒗 5'-GCAGGTCGGTGATCGTGA-3'씠硫, 棺-actin쓽 寃쎌슦 forward뒗 5'-ACGGCCAGGTCATCACTATTG-3', reverse뒗 5'-CACAGGATTCCATACCCAAGAAG-3'씠떎.

떒諛깆쭏쓽 遺꾨━ 諛 Western blot 遺꾩꽍

C2C12 洹쇱쑁紐⑥꽭룷 遺꾪솕맂 洹쇨꽭룷瑜 phosphate-buffered saline쓣 씠슜븯뿬 2쉶 꽭泥숈쓣 븳 썑 protease inhibitors phosphatase inhibitors媛 泥④맂 RIPA buffer뿉 끃뿬꽌 떒諛깆쭏쓣 異붿텧븯떎. 14,000 횞 g, 4꼦뿉꽌 15遺 룞븞 썝떖遺꾨━븯怨 긽痢듭븸쓣 痍⑦빐 BCA protein assay kit瑜 씠슜븯뿬 떒諛깆쭏쓽 븿웾쓣 痢≪젙븯떎. 떒諛깆쭏쓽 냽룄瑜 15 關g쑝濡 룞씪븯寃 젙웾븯뿬 SDS-PAGE瑜 씠슜븯뿬 쟾湲곗쁺룞 븯怨, PVDF membrane쑝濡 Transfer 븳 썑뿉 5% nonfat milk媛 泥④맂 TBST buffer (150 mM NaCl, 0.05% Tween-20, and 20 mM Tris-HCl, pH 7.4)瑜 씠슜븯뿬 1떆媛 룞븞 blocking 븯떎. Blocking 썑뿉 PVDF membrane쓣 1:1,000쑝濡 씗꽍븳 씪李 빆泥댁 4꼦뿉꽌 overnight 룞븞 諛섏쓳떆耳곌퀬 TBST buffer濡 5쉶 꽭泥 썑 1:5,000쑝濡 씗꽍븳 horseradish peroxidase-conjugated 씠李 빆泥대줈 1떆媛 룞븞 諛섏쓳떆耳곕떎. 떒諛깆쭏쓽 諛쒗쁽 ECL kit Davinch-ChemiTM Imaging system (Core Bio, Seoul, Korea)쓣 씠슜븯뿬 솗씤븯怨, ImageJ software (NIH, Frederick, MD, USA)瑜 궗슜븯뿬 떒諛깆쭏 諛쒗쁽웾쓣 젙웾쟻쑝濡 遺꾩꽍븯떎.

넻怨꾩쿂由

紐⑤뱺 떎뿕 3쉶 諛섎났 떎떆븯쑝硫, 떎뿕寃곌낵뒗 룊洹 짹 몴以렪李(S.D.)濡 몴湲고븯떎. 넻怨꾩쟻 쑀쓽꽦쓣 寃利앺븯湲 쐞븯뿬 unpaired two-tailed Student's t-test瑜 닔뻾븯쑝硫, P-value < 0.05쓽 媛믩뱾쓣 쑀쓽쟻씤 寃곌낵濡 뙋떒븯떎.

寃 怨

C2C12 洹쇱쑁紐⑥꽭룷뿉꽌 TA媛 꽭룷깮議댁쑉怨 꽭룷룆꽦뿉 誘몄튂뒗 쁺뼢

洹쇱쑁꽭룷 遺꾪솕뿉꽌 TA쓽 슚怨쇰 뿰援ы븯湲 쐞빐꽌, 留덉슦뒪 C2C12 꽭룷媛 "옱猷 諛 諛⑸쾿"뿉 꽕紐낅맂 濡 遺꾩꽍릺뿀쑝硫, Fig. 1뿉 C2C12 꽭룷쓽 遺꾪솕 怨쇱젙 룞븞 TA瑜 泥섎━븳 쟾泥 떎뿕 援ъ“瑜 媛꾨왂솕 븯뿬 洹몃┝쑝濡 굹궡뿀떎. 癒쇱 TA媛 C2C12 洹쇱쑁紐⑥꽭룷쓽 꽭룷깮議댁쑉怨 꽭룷룆꽦뿉 誘몄튂뒗 쁺뼢쓣 議곗궗븯湲 쐞븯뿬 떎뼇븳 냽룄(0, 50, 100, 200 諛 400 關g/mL)쓽 TA瑜 24떆媛 삉뒗 72떆媛 룞븞 泥섎━븯떎. 꽭룷깮議댁쑉쓣 솗씤븯湲 쐞븯뿬 MTT assay瑜 떎떆븯怨, 꽭룷룆꽦쓣 솗씤븯湲 쐞븯뿬 LDH assay瑜 떎떆븯떎. Fig. 2A 2B뿉 굹궦 寃곌낵뿉꽌 븣 닔 엳벏씠, 蹂 뿰援ъ뿉꽌 꽕젙맂 踰붿쐞쓽 TA 泥섎━ 議곌굔뿉꽌뒗 꽭룷깮議댁쑉쓽 븯 쁽긽씠 愿李곕릺吏 븡븯怨 꽭룷룆꽦씠 뾾쓬쓣 솗씤븯떎. 뵲씪꽌 C2C12 洹쇱쑁紐⑥꽭룷쓽 遺꾪솕뿉 븳 TA쓽 쁺뼢쓣 룊媛븯湲 쐞븯뿬 TA 泥섎━ 냽룄뒗 냽룄(50 關g /mL) 怨좊냽룄(200 關g/mL)쓽 몢 媛吏 냽룄濡 꽕젙븯떎.

Fig. 1. C2C12 differentiation time course.
C2C12 myocytes were plated in GM until 80~90% confluence and then grown in DM with or without 50 or 200 關g of TA. Culture samples were analyzed for the morphologic and molecular phenotype studies from four time points: growth medium (GM), day 1 (DM1), day 3 (DM3), and day 5 (DM5).

Fig. 2. Effect of TA on cell viability (MTT) and cytotoxicity (LDH) in C2C12 cells.
C2C12 cells were treated with DM containing TA in a dose-dependent manner (0, 50, 100, 200, and 400 關g). MTT (A) and LDH (B) assays were conducted 24 and 72 h after the treatments to determine cell viability and cellular toxicity, respectively. The experiment was repeated three times. Results are expressed as mean 짹 SD and percentage of the vehicle controls.

C2C12 洹쇱쑁紐⑥꽭룷쓽 遺꾪솕 怨쇱젙뿉꽌 TA媛 꽭룷삎깭븰쟻 蹂솕뿉 誘몄튂뒗 쁺뼢

TA쓽 洹쇱쑁꽭룷 遺꾪솕뿉 븳 슚怨쇰 룊媛븯湲 쐞빐꽌, C2C12 洹쇱쑁紐⑥꽭룷媛 洹쇨꽭룷濡 遺꾪솕븯뒗 룞븞쓽 삎깭븰쟻 蹂솕뿉 븳 TA쓽 쁺뼢쓣 議곗궗븯떎. C2C12 洹쇱쑁紐⑥꽭룷쓽 利앹떇쓣 쑀룄븯湲 쐞빐꽌 GM뿉꽌 諛곗뼇븯怨, 遺꾪솕瑜 쑀룄븯湲 쐞빐꽌 꽭룷쓽 諛룄媛 80~90%뿉 룄떖븷 븣 50 삉뒗 200 關g/mL쓽 TA瑜 룷븿븯嫄곕굹 vehicle쓣 룷븿븯뒗 DM쑝濡 援먯껜븯뿬 諛곗뼇븯떎. 5씪 룞븞 遺꾪솕瑜 쑀룄븯뒗 룞븞 TA濡 泥섎━븳 꽭룷뿉꽌 洹쇨 삎꽦 뒫젰씠 TA 냽룄 쓽議댁쟻쑝濡 슌졆븯寃 媛먯냼븯뒗 寃껋쓣 愿李고븯떎(Fig. 3A). 삉븳, 諛곗뼇 醫낅즺 떆젏(遺꾪솕 5씪吏)쓽 삎깭븰쟻 씠誘몄뿉꽌 C2C12 洹쇨꽭룷쓽 湲몄씠 吏由꾩쓣 痢≪젙븯뒗뜲, TA瑜 泥섎━븳 C2C12 꽭룷뒗 vehicle 議곌뎔蹂대떎 쑀쓽쟻쑝濡 뜑 吏㏐퀬 醫곸 洹쇨꽭룷瑜 삎꽦븯떎(Fig. 3B and C). 씠윭븳 寃곌낵瑜 넻빐 TA媛 C2C12 洹쇱쑁紐⑥꽭룷쓽 遺꾪솕뿉꽌 洹쇱쐞異 슚怨쇰 굹궦떎뒗 寃껋쓣 븣 닔 엳떎.

Fig. 3. TA suppresses the morphological change of C2C12 myoblasts differentiating into myotubes.
C2C12 cells were cultured in DM to induce differentiation and were treated with or without 50 or 200 關g of TA for 5 days. (A) Phase-contrast images of cell morphology were obtained at the indicated time points. Scale bar, 100 關m. (B) Myotube length and (C) diameter were quantified at the end of the experiment (5th day). Results are expressed as mean 짹 SD. *P<0.05 compared with the vehicle controls.

C2C12 洹쇱쑁紐⑥꽭룷쓽 遺꾪솕뿉꽌 TA媛 洹쇱쑁 몴吏 씤옄(myogenic marker)쓽 諛쒗쁽뿉 誘몄튂뒗 쁺뼢

TA媛 C2C12 洹쇱쑁紐⑥꽭룷쓽 遺꾪솕 怨쇱젙뿉꽌 굹굹뒗 꽭룷 쑖빀 諛 洹쇨 삎꽦怨 媛숈 삎깭븰쟻 蹂솕뿉 쁺뼢쓣 二쇱뿀湲 븣臾몄뿉, 遺꾪솕 怨쇱젙뿉꽌 諛쒗쁽씠 利앷븳떎怨 븣젮吏 洹쇱쑁 몴吏 씤옄뱾(MyoD, myogenin, MEF2C, MCK 諛 MyHC)쓽 諛쒗쁽뿉꽌 TA쓽 쁺뼢쓣 議곗궗븯떎. C2C12 洹쇱쑁紐⑥꽭룷媛 80~90%쓽 諛룄濡 利앹떇븷 븣源뚯 GM뿉꽌 諛곗뼇븯怨, 洹 썑 諛곗瑜 50 삉뒗 200 關g/mL쓽 TA瑜 룷븿븯嫄곕굹 vehicle쓣 룷븿븯뒗 DM쑝濡 援먯껜븯뿬 遺꾪솕瑜 쑀룄븯떎. 遺꾪솕 쑀룄 썑, 1, 3, 諛 5씪吏 洹쇱쑁 몴吏 씤옄뱾쓽 諛쒗쁽 닔以쓣 솗씤븯湲 쐞빐 꽭룷瑜 닔솗븯뿬 qRT-PCR 遺꾩꽍쓣 떆뻾븯떎. 洹 寃곌낵, vehicle쓣 泥섎━븳 議곌뎔뿉 鍮꾪빐 TA瑜 泥섎━븳 C2C12 꽭룷뿉꽌 洹쇱쑁 몴吏 씤옄뱾쓽 mRNA 諛쒗쁽씠 TA 냽룄 쓽議댁쟻쑝濡 쑀쓽븯寃 媛먯냼븯뒗 寃껋쓣 솗씤븯떎(Fig. 4). 뵲씪꽌 TA뿉 쓽븳 洹쇱쑁 몴吏 씤옄뱾쓽 쟾궗쟻 蹂솕媛 TA뿉 쓽븳 洹쇱쐞異 쁽긽뿉 以묒슂븯寃 湲곗뿬븷 寃껋씠씪뒗 젏쓣 븣 닔 엳떎.

Fig. 4. TA decreases the expression of myogenic markers during myoblast differentiation.
C2C12 cells were cultured in DM and were treated with or without 50 or 200 關g of TA. The cells were harvested on differentiation days 1, 3, and 5. qRT-PCR was performed to assess the expression of MyoD, myogenin, MEF2C, MCK, and MyHC during myoblast differentiation. Results are expressed as mean 짹 SD. *P < 0.05, **P < 0.01, ***P < 0.001 compared with the vehicle controls.

C2C12 洹쇱쑁紐⑥꽭룷쓽 遺꾪솕뿉꽌 TA媛 Akt瑜 留ㅺ컻濡 븯뒗 洹쇱쐞異 愿젴 씤옄 議곗젅뿉 誘몄튂뒗 쁺뼢

洹쇱쑁꽭룷뿉꽌 Akt뒗 鍮꾨 쐞異 媛꾩쓽 洹좏삎쓣 議곗젅븯怨, MyoD, myogenin, MEF2C, MCK, 諛 MyHC瑜 룷븿븯뒗 洹쇱쑁 듅씠쟻 쑀쟾옄뱾(muscle-specific genes)쓽 諛쒗쁽쓣 議곗젅븯뒗 뜲 留ㅼ슦 以묒슂븳 뿭븷쓣 븳떎怨 蹂닿퀬릺뿀떎(Jiang et al., 1999; Xu and Wu, 2000; Bodine et al., 2001; Leger et al., 2006). 뵲씪꽌, TA媛 C2C12 洹쇱쑁紐⑥꽭룷쓽 遺꾪솕 怨쇱젙뿉꽌 Akt쓽 솢꽦솕 諛 씤궛솕瑜 議곗젅븯뒗吏 議곗궗븯湲 쐞빐꽌, C2C12 洹쇱쑁紐⑥꽭룷瑜 TA 200 關g/mL쓣 룷븿븯嫄곕굹 vehicle쓣 룷븿븯뒗 DM쑝濡 諛곗뼇븯뿬 遺꾪솕瑜 쑀룄븳 썑, 遺꾪솕 3씪 삉뒗 5씪吏 꽭룷瑜 닔솗븯뿬 Western blot쓣 떎떆븯떎. 洹 寃곌낵, vehicle쓣 泥섎━븳 議곌뎔뿉 鍮꾪빐 TA瑜 泥섎━븳 C2C12 꽭룷뿉꽌 Akt쓽 씤궛솕(p-Akt)媛 쁽븯寃 媛먯냼븯뒗 寃껋쓣 솗씤븯떎. 삉븳, TA瑜 泥섎━븳 꽭룷뿉꽌 total Akt 떒諛깆쭏쓽 諛쒗쁽씠 p-Akt쓽 媛먯냼 닔以怨 鍮꾩듂븯寃 媛먯냼븯뒗뜲, 씠뒗 TA뿉 쓽븳 p-Akt쓽 媛먯냼뒗 total Akt 떒諛깆쭏 諛쒗쁽쓽 媛먯냼뿉 쓽븳 寃껋엫쓣 쓽誘명븳떎(Fig. 5A and B, top panel). Loading control濡쒖꽌 棺-actin쓣 궗슜븯뿬 p-Akt 뼇쓽 蹂솕뼇긽쓣 긽쟻쑝濡 鍮꾧탳 젙웾 븯떎(Fig. 5A and B, bottom panel). 떎쓬쑝濡, atrogin-1怨 MuRF-1 쑀쟾옄媛 Akt 떊샇쟾떖 寃쎈줈뿉 쓽빐 諛쒗쁽씠 議곗젅릺怨 洹쇱쑁 떒諛깆쭏쓽 뙆愿 諛 洹쇱쐞異뺤쓽 二쇰맂 議곗젅 씤옄濡 蹂닿퀬릺뿀湲 븣臾몄뿉(Wang et al., 2019), 씠 몢 쑀쟾옄쓽 mRNA 諛쒗쁽쓣 qRT-PCR쓣 씠슜븯뿬 遺꾩꽍븯떎. Fig. 5C뿉 굹궦 諛붿 媛숈씠 vehicle쓣 泥섎━븳 議곌뎔뿉 鍮꾪빐 TA瑜 泥섎━븳 C2C12 꽭룷뿉꽌 atrogin-1怨 MuRF-1 諛쒗쁽씠 TA 냽룄 쓽議댁쟻쑝濡 쑀쓽쟻쑝濡 利앷븯뒗 寃껋쓣 솗씤븯떎(Fig. 5C). 씠윭븳 寃곌낵뒗 C2C12 洹쇱쑁紐⑥꽭룷쓽 遺꾪솕뿉꽌 TA媛 total Akt 諛쒗쁽 媛먯냼濡 씤븳 Akt 씤궛솕 뼲젣瑜 넻빐 洹쇱쐞異뺤쓣 쑀諛쒗븯뒗 寃껋쑝濡 蹂댁뿬吏꾨떎.

Fig. 5. TA upregulates atrophy-related genes by inhibiting the expression of total Akt and p-Akt.
C2C12 cells were cultured in DM with or without 50 or 200 關g of TA and were harvested on days 1, 3, and 5 of differentiation. (A, B) Protein expression levels of Akt, p-Akt and 棺-actin were analyzed using western blot analysis, and representative images of the protein band are shown in the top panel. Band intensities were quantitated using computerized densitometry and are shown in the bottom panel. The expression levels of p-Akt were normalized to those of 棺-actin, and the fold change relative to vehicle-treated cells is presented. (C) Atrogin-1 and MuRF-1 expression were analyzed using qRT-PCR during myoblast differentiation. Results are expressed as mean 짹 SD. *P < 0.05, **P < 0.01, ***P < 0.001 compared with the vehicle controls.
怨 李

蹂 뿰援щ뒗 렂꽟, 븘땲뒪, 뒪븘땲뒪 媛숈 뼢湲곕줈슫 떇臾쇰줈遺꽣 쑀옒븯뒗 뿉꽱뀥 삤씪쓽 몴 꽦遺꾩씤 TA媛 C2C12 洹쇱쑁紐⑥꽭룷쓽 遺꾪솕뿉꽌 誘몄튂뒗 쁺뼢쓣 議곗궗븯뒗 寃껋쓣 紐⑺몴濡 븯떎. 蹂 뿰援ъ뿉꽌 TA뒗 C2C12 洹쇱쑁紐⑥꽭룷쓽 遺꾪솕 룞븞 total Akt 諛쒗쁽 媛먯냼 씠濡 씤븳 Akt 씤궛솕 뼲젣瑜 넻빐 洹쇱쐞異뺤쓣 쑀諛쒗븯쑝誘濡 洹쇱쑁 遺꾪솕뿉꽌 쑀빐 슚怨(adverse effect)瑜 굹궡뒗 臾쇱쭏엫쓣 솗씤븯떎. 吏湲덇퉴吏 렂꽟, 븘땲뒪, 뒪븘땲뒪 쑀옒쓽 뿉꽱뀥 삤씪肉먮쭔 븘땲씪 洹 二쇱슂 꽦遺꾨뱾뿉 븳 떎뼇븳 移섎즺 슚怨쇨 蹂닿퀬릺뿀쓬뿉룄 遺덇뎄븯怨(G체l챌캇n et al., 2003; Espejo et al., 2010; Shojaii and Abdollahi Fard, 2012), 洹쇱쑁 嫄닿컯뿉꽌쓽 뿭븷 븣젮吏 젙蹂닿 嫄곗쓽 뾾떎. 蹂 끉臾몄 렂꽟, 븘땲뒪, 뒪븘땲뒪 媛숈 뼢湲곕줈슫 떇臾쇱뿉꽌 쑀옒븯뒗 臾쇱쭏씠 洹쇱쑁 삎꽦뿉 誘몄튂뒗 쁺뼢쓣 諛앺엳뒗 泥 踰덉㎏ 뿰援ъ씠떎.

뿉꽱뀥 삤씪 떎뼇븳 떇臾쇰쐞뿉꽌 異붿텧븳 쐶諛쒖꽦 諛⑺뼢議 솕빀臾쇰줈꽌, 理쒖냼 6,000뀈 룞븞 씠吏묓듃, 以묎뎅, 씤룄쓽 怨좊 臾몃챸뿉꽌 蹂댁셿泥댁슂踰뺤쑝濡 궗슜릺뼱 솕떎(Ali et al., 2015). 뿉꽱뀥 삤씪 빆뿼利, 빆넻利, 빆꽭洹, 빆吏꾧퇏 諛 빆궛솕 듅꽦쓣 룷븿븯뿬 닔留롮 빟由ы븰쟻 듅꽦쓣 媛吏怨 엳떎(Mouhoub et al., 2022; Santos et al., 2022). 삉븳, 뒪듃젅뒪, 遺덉븞, 슦슱利앷낵 媛숈 떎뼇븳 젙떊 嫄닿컯 옣븷瑜 셿솕븯湲 쐞븳 뼢湲곗슂踰(aromatherapy)쓽 슜룄濡쒖꽌 꼸由 궗슜릺怨 엳怨(Ebrahimi et al., 2022), 닔硫 옣븷, 븣痢좏븯씠癒몃퀝, 떖삁愿 빀蹂묒쬆 諛 븫怨 媛숈 뿬윭 吏덊솚뿉 븳 移섎즺瑜 쐞빐 솢슜릺怨 엳떎(Ramsey et al., 2020). 뿉꽱뀥 삤씪 옄뿰쑀옒쓽 닚닔븳 泥쒖뿰臾쇱쭏씠誘濡 빀꽦 쓽빟뭹뿉 鍮꾪빐 鍮꾧탳쟻 븞쟾븳 븞쑝濡 씤떇릺怨 엳怨, 늻援щ굹 돺寃 援ъ엯븷 닔 엳쑝硫, 씪諛섏쟻쑝濡 鍮꾩슜硫댁뿉꽌 슚쑉쟻씠떎. 뵲씪꽌, 뿉꽱뀥 삤씪 빀꽦 쓽빟뭹쓽 遺옉슜쓣 以꾩씠怨 넂 移섎즺 鍮꾩슜쓣 젅媛먰븯뒗 쁺떊쟻씤 移섎즺踰뺤쓣 媛쒕컻븷 닔 엳뒗 醫뗭 븞쑝濡 뿬寃⑥쭊떎. 洹몃윭굹, 뿉꽱뀥 삤씪씠 泥쒖뿰臾쇱쭏엫뿉룄 遺덇뎄븯怨 븣젅瑜닿린, 뵾遺뿼, 떊寃쎈룆꽦, 以묐룆 諛 궗留앹쓣 룷븿븯뿬 寃쎈명븳 利앹긽遺꽣 떖媛곹븳 利앹긽뿉 씠瑜대뒗 遺옉슜씠 떎뼇븯寃 蹂닿퀬릺뿀떎(Dagli et al., 2015). 뵲씪꽌 嫄닿컯쓽 쑀씡쓣 젣怨듯븯뒗 룞떆뿉 遺옉슜쓣 理쒖냼솕븷 닔 엳뒗 뿉꽱뀥 삤씪쓣 李얜뒗 寃껋씠 以묒슂븯떎.

렂꽟, 븘땲뒪, 뒪븘땲뒪濡쒕꽣 異붿텧븳 뿉꽱뀥 삤씪뿉꽌 닔留롮 쑀슚 꽦遺(active ingredient)씠 솗씤릺뿀쑝硫, 洹 以 TA媛 李⑥븯뒗 븿웾씠 렂꽟뿉꽌뒗 50~80%, 븘땲뒪뿉꽌뒗 80~90%, 뒪븘땲뒪뿉꽌뒗 90% 씠긽쑝濡 媛옣 넂寃 굹궗떎(Zachariah and Leela, 2006; Orav et al., 2008; Damayanti and Setyawan, 2012). 렂꽟, 븘땲뒪, 뒪븘땲뒪쓽 뿉꽱뀥 삤씪쓣 吏냽쟻, 젙湲곗쟻쑝濡 꽠痍⑦뻽쓣 븣 븘吏곴퉴吏 遺옉슜씠 蹂닿퀬맂 諛붽 뾾湲 븣臾몄뿉 씠 삤씪씠 泥쒖뿰臾 湲곕컲 移섎즺쓽 쑀留앺븳 썑蹂대Ъ吏 媛쒕컻뿉 솢슜맆 닔 엳쓣 寃껋쑝濡 湲곕릺뼱吏怨 엳떎(Shimoni et al., 2002; Kwiatkowski et al., 2020). 洹몃윭굹, 蹂 뿰援ъ뿉꽌 C2C12 洹쇱쑁紐⑥꽭룷쓽 遺꾪솕瑜 쐞빐 TA瑜 궗슜븯쓣 븣 洹쇱쐞異뺤씠 쑀諛쒕릺뒗 寃껋쓣 利앸챸븯뒗뜲, 씠뒗 렂꽟, 븘땲뒪, 뒪븘땲뒪쓽 뿉꽱뀥 삤씪肉먮쭔 븘땲씪 TA瑜 븿쑀븯뒗 臾쇱쭏쓣 怨좎슜웾쑝濡 궗슜븯嫄곕굹 吏냽쟻, 젙湲곗쟻쑝濡 궗슜뻽쓣 븣 TA濡 씤븳 洹쇱쐞異뺤쓽 遺옉슜씠 쑀諛쒗븷 닔 엳쓬쓣 떆궗븯뒗 寃곌낵씠떎.

洹쇱쐞異뺤쬆 洹쇱쑁쓽 吏덈웾怨 옒쓽 젏吏꾩쟻씤 넀떎쓣 듅吏뺤쑝濡 븯뒗 吏덊솚쑝濡, 洹쇨쓽 吏곴꼍 媛먯냼媛 씠 吏덊솚쓽 媛옣 몢뱶윭吏 議곗쭅蹂묐━븰쟻 듅吏뺤씠떎(Yin et al., 2021). 洹쇱쐞異뺤쬆뿉 쓽븳 洹쇱쑁 넀긽 옄쑀濡쒖슫 吏곸엫쓣 諛⑺빐븯뿬 떊泥댄솢룞쓣 媛먯냼떆궎湲 븣臾몄뿉 궣쓽 吏덉쓣 겕寃 뼥뼱쑉由ш퀬 뿬윭 湲됱꽦吏덊솚쓣 쑀諛쒗븯뿬 궗留앸쪧쓣 利앷떆궎寃 맂떎(Mesinovic et al., 2019; Shou et al., 2020). 洹쇱쐞異뺤쬆 끂솕 愿젴 洹쇱냼떎, 븫꽦 븙븸吏, 留뚯꽦 룓뇙꽦 룓吏덊솚, 떦눊蹂, 鍮꾨쭔, 留뚯꽦 떊옣吏덊솚, 떖遺쟾, 떊寃쏀눜뻾꽦 옣븷, 뙣삁利, 솕긽 諛 쇅긽쑝濡 씤빐 諛쒖깮븷 닔 엳떎(Yin et al., 2021). 洹쇱쐞異뺤뿉 븳 移섎즺 쟾왂쑝濡쒕뒗 泥대젰 슫룞, 쁺뼇 蹂댁땐젣 諛 빟臾쇱씠 룷븿릺吏留 븘吏곴퉴吏 洹쇱쐞異뺤뿉 븳 슚怨쇱쟻씤 移섎즺젣뒗 떆옣뿉 異쒖떆릺吏 븡븯쑝硫 슚怨쇱쟻씤 移섎즺踰뺣룄 媛쒕컻릺吏 븡븯떎. 洹쇱쐞異뺤쓣 議곗젅븯뒗 遺꾩옄 硫붿빱땲利섏뿉뒗 ubiquitin-proteasome 떆뒪뀥, 옄媛룷떇(autophagy), 뿼利, insulin-like growth factor 1/PI3K/Akt 떊샇 쟾떖 寃쎈줈 諛 留덉씠삤뒪떞 寃쎈줈媛 븣젮졇 엳떎(Kubat et al., 2023). 蹂 뿰援ъ뿉꽌뒗 TA媛 total Akt 諛쒗쁽 媛먯냼濡 씤븳 Akt 씤궛솕瑜 뼲젣떆耳쒖꽌 ubiquitin ligase씤 atrogin-1 諛 MuRF-1쓽 諛쒗쁽쓣 利앷떆耳곌린 븣臾몄뿉, 洹쇱쐞異 議곗젅 硫붿빱땲利 以묒뿉꽌 insulin-like growth factor 1/PI3K/Akt 떊샇쟾떖 寃쎈줈 諛 ubiquitin-proteasome 떆뒪뀥 寃쎈줈 뿰愿릺뼱 엳떎뒗 寃껋쓣 븣 닔 엳떎. 洹몃윭굹 TA媛 떎瑜 洹쇱쐞異 議곗젅 硫붿빱땲利섏뿉룄 쁺뼢쓣 誘몄튂뒗 臾쇱쭏씤吏 솗씤븯湲 쐞븳 異붽 뿰援ш 븘슂븯떎.

寃곕줎쟻쑝濡 蹂 뿰援ъ뿉꽌뒗 TA媛 洹쇱쐞異 쑀룄臾쇱쭏엫쓣 솗씤븯떎. TA뒗 total Akt 諛쒗쁽 媛먯냼 씠濡 씤븳 Akt 씤궛솕瑜 뼲젣븯뿬 洹쇱쑁 몴吏 씤옄뱾쓽 諛쒗쁽쓣 媛먯냼떆궎怨, 洹쇱쑁 쐞異 愿젴 ubiquitin ligase 쑀쟾옄 諛쒗쁽쓣 利앷떆궡쑝濡쒖뜥 C2C12 洹쇱쑁紐⑥꽭룷쓽 遺꾪솕뿉꽌 洹쇱쐞異 쁽긽쓣 쑀諛쒗븯떎. 蹂 뿰援ш껐怨쇰뒗 렂꽟, 븘땲뒪, 뒪븘땲뒪 쑀옒쓽 뿉꽱뀥 삤씪肉먮쭔 븘땲씪 TA瑜 二쇱슂 꽦遺꾩쑝濡 븿쑀븯뒗 臾쇱쭏쓣 怨좎슜웾쑝濡 궗슜븯嫄곕굹 吏냽쟻씠怨 젙湲곗쟻쑝濡 궗슜븳떎硫 遺옉슜쑝濡쒖뜥 洹쇱쐞異뺤씠 諛쒖깮븷 媛뒫꽦씠 엳떎뒗 寃껋쓣 떆궗븳떎. 뵲씪꽌 洹쇱쐞異뺤뿉 븳 쐞뿕슂냼瑜 媛吏怨 엳뒗 궗엺뿉寃 TA瑜 룷븿븯뒗 臾쇱쭏쓣 궗슜븷 븣 媛곷퀎븳 二쇱쓽媛 븘슂븷 닔 엳쑝誘濡 엫긽떆뿕쓣 넻빐 洹쇱쐞異뺤뿉꽌 TA쓽 븞쟾꽦怨 쑀슚꽦쓣 寃利앺븯뒗 怨쇱젙씠 슂援щ맂떎.

ACKNOWLEDGEMENT

This work was supported by the Jungwon University Research Grant (2021-033).

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

References
  1. Ali B, Al-Wabel NA, Shams S, Ahamad A, Khan SA, Anwar F. Essential oils used in aromatherapy: A systemic review. Asian Pacific Journal of Tropical Biomedicine. 2015. 5: 601-611.
    CrossRef
  2. Aprotosoaie AC, Costache II, Miron A. Anethole and its role in chronic diseases. Adv Exp Med Biol. 2016. 929: 247-267.
    Pubmed CrossRef
  3. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001. 294: 1704-1708.
    Pubmed CrossRef
  4. Buckingham M. Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev. 2006. 16: 525-532.
    Pubmed CrossRef
  5. Burcin Kubat G, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, Nur Sahin B, Morciano G, Tuncer M, Tremoli E, Pinton P. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion. 2023. 10.1016/j.mito.2023.07.003.
    Pubmed CrossRef
  6. Comai G, Tajbakhsh S. Molecular and cellular regulation of skeletal myogenesis. Curr Top Dev Biol. 2014. 110: 1-73.
    Pubmed CrossRef
  7. Dagli N, Dagli R, Mahmoud RS, Baroudi K. Essential oils, their therapeutic properties, and implication in dentistry: A review. J Int Soc Prev Community Dent. 2015. 5: 335-340.
    Pubmed KoreaMed CrossRef
  8. Damayanti A, Setyawan E. Essential oil extraction of fennel seed (foeniculum vulgare) using steam distillation. International Journal of Science and Engineering. 2012. 3: 12-14.
    CrossRef
  9. Dias P, Dilling M, Houghton P. The molecular basis of skeletal muscle differentiation. Semin Diagn Pathol. 1994. 11: 3-14.
  10. Dodou E, Xu SM, Black BL. Mef2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo. Mech Dev. 2003. 120: 1021-1032.
    Pubmed CrossRef
  11. Ebrahimi H, Mardani A, Basirinezhad MH, Hamidzadeh A, Eskandari F. The effects of lavender and chamomile essential oil inhalation aromatherapy on depression, anxiety and stress in older community-dwelling people: A randomized controlled trial. Explore (NY). 2022. 18: 272-278.
    Pubmed CrossRef
  12. Espejo F, Vazquez C, Patino B, Armada S. Ochratoxin a production in aniseed-based media by selected fungal strains and in anise fruits (pimpinella anisum l.). Mycotoxin Res. 2010. 26: 75-84.
    Pubmed CrossRef
  13. Ferri P, Barbieri E, Burattini S, Guescini M, D'Emilio A, Biagiotti L, Del Grande P, De Luca A, Stocchi V, Falcieri E. Expression and subcellular localization of myogenic regulatory factors during the differentiation of skeletal muscle c2c12 myoblasts. J Cell Biochem. 2009. 108: 1302-1317.
    Pubmed CrossRef
  14. G체l챌캇n 캅, Oktay M, K캇re챌c캇 E, K체frev캇o푤lu 횜캅. Screening of antioxidant and antimicrobial activities of anise (pimpinella anisum l.) seed extracts. Food Chemistry. 2003. 83: 371-382.
    CrossRef
  15. Huang Y, Zhao J, Zhou L, Wang J, Gong Y, Chen X, Guo Z, Wang Q, Jiang W. Antifungal activity of the essential oil of illicium verum fruit and its main component trans-anethole. Molecules. 2010. 15: 7558-7569.
    Pubmed KoreaMed CrossRef
  16. Jiang BH, Aoki M, Zheng JZ, Li J, Vogt PK. Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase akt/protein kinase b. Proc Natl Acad Sci U S A. 1999. 96: 2077-2081.
    Pubmed KoreaMed CrossRef
  17. Kim KY, Lee HS, Seol GH. Anti-inflammatory effects of trans-anethole in a mouse model of chronic obstructive pulmonary disease. Biomed Pharmacother. 2017. 91: 925-930.
    Pubmed CrossRef
  18. Kubat GB, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, Nur Sahin B, Morciano G, Tuncer M, Tremoli E, Pinton P. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion. 2023. 72: 33-58.
    Pubmed CrossRef
  19. Kwiatkowski P, Grygorcewicz B, Pruss A, Wojciuk B, Dolegowska B, Giedrys-Kalemba S, Sienkiewicz M, Wojciechowska-Koszko I. The effect of subinhibitory concentrations of trans-anethole on antibacterial and antibiofilm activity of mupirocin against mupirocin-resistant staphylococcus aureus strains. Microb Drug Resist. 2019. 25: 1424-1429.
    Pubmed CrossRef
  20. Kwiatkowski P, Wojciuk B, Wojciechowska-Koszko I, Lopusiewicz L, Grygorcewicz B, Pruss A, Sienkiewicz M, Fijalkowski K, Kowalczyk E, Dolegowska B. Innate immune response against staphylococcus aureus preincubated with subinhibitory concentration of trans-anethole. Int J Mol Sci. 2020. 21.
    Pubmed KoreaMed CrossRef
  21. Leger B, Vergani L, Soraru G, Hespel P, Derave W, Gobelet C, D'Ascenzio C, Angelini C, Russell AP. Human skeletal muscle atrophy in amyotrophic lateral sclerosis reveals a reduction in akt and an increase in atrogin-1. FASEB J. 2006. 20: 583-585.
    Pubmed CrossRef
  22. Liu N, Nelson BR, Bezprozvannaya S, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN. Requirement of mef2a, c, and d for skeletal muscle regeneration. Proc Natl Acad Sci U S A. 2014. 111: 4109-4114.
    Pubmed KoreaMed CrossRef
  23. Londhe P, Davie JK. Sequential association of myogenic regulatory factors and e proteins at muscle-specific genes. Skelet Muscle. 2011. 1: 14.
    Pubmed KoreaMed CrossRef
  24. Merz KE, Thurmond DC. Role of skeletal muscle in insulin resistance and glucose uptake. Compr Physiol. 2020. 10: 785-809.
    Pubmed KoreaMed CrossRef
  25. Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D. Sarcopenia and type 2 diabetes mellitus: A bidirectional relationship. Diabetes Metab Syndr Obes. 2019. 12: 1057-1072.
    Pubmed KoreaMed CrossRef
  26. Moradi J, Abbasipour F, Zaringhalam J, Maleki B, Ziaee N, Khodadoustan A, Janahmadi M. Anethole, a medicinal plant compound, decreases the production of pro-inflammatory tnf-alpha and il-1beta in a rat model of lps-induced periodontitis. Iran J Pharm Res. 2014. 13: 1319-1325.
  27. Mouhoub A, Guendouz A, Belkamel A, El Alaoui Talibi Z, Ibnsouda Koraichi S, El Modafar C, Delattre C. Assessment of the antioxidant, antimicrobial and antibiofilm activities of essential oils for potential application of active chitosan films in food preservation. World J Microbiol Biotechnol. 2022. 38: 179.
    Pubmed CrossRef
  28. Nelke C, Dziewas R, Minnerup J, Meuth SG, Ruck T. Skeletal muscle as potential central link between sarcopenia and immune senescence. EBioMedicine. 2019. 49: 381-388.
    Pubmed KoreaMed CrossRef
  29. Nguyen NU, Wang HV. Dual roles of palladin protein in in vitro myogenesis: Inhibition of early induction but promotion of myotube maturation. PLoS One. 2015. 10: e0124762.
    Pubmed KoreaMed CrossRef
  30. Orav A, Raal A, Arak E. Essential oil composition of pimpinella anisum l. Fruits from various european countries. Nat Prod Res. 2008. 22: 227-232.
    Pubmed CrossRef
  31. Ponte EL, Sousa PL, Rocha MV, Soares PM, Coelho-de-Souza AN, Leal-Cardoso JH, Assreuy AM. Comparative study of the anti-edematogenic effects of anethole and estragole. Pharmacol Rep. 2012. 64: 984-990.
    Pubmed CrossRef
  32. Ramsey JT, Shropshire BC, Nagy TR, Chambers KD, Li Y, Korach KS. Essential oils and health. Yale J Biol Med. 2020. 93: 291-305.
  33. Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R. Myod or myf-5 is required for the formation of skeletal muscle. Cell. 1993. 75: 1351-1359.
    Pubmed CrossRef
  34. Ryu J, Seo J, Lee Y, Lim Y, Ahn JH, Hur HG. Identification of syn- and anti-anethole-2,3-epoxides in the metabolism of trans-anethole by the newly isolated bacterium pseudomonas putida jyr-1. J Agric Food Chem. 2005. 53: 5954-5958.
    Pubmed CrossRef
  35. Sabourin LA, Rudnicki MA. The molecular regulation of myogenesis. Clin Genet. 2000. 57: 16-25.
    Pubmed CrossRef
  36. Santos ACD, Nogueira ML, Oliveira FP, Costa EV, Bezerra DP. Essential oils of duguetia species a. St. Hill (annonaceae): Chemical diversity and pharmacological potential. Biomolecules. 2022. 12.
    Pubmed KoreaMed CrossRef
  37. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013. 280: 4294-4314.
    Pubmed CrossRef
  38. Shahat AA, Ibrahim AY, Hendawy SF, Omer EA, Hammouda FM, Abdel-Rahman FH, Saleh MA. Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars. Molecules. 2011. 16: 1366-1377.
    Pubmed KoreaMed CrossRef
  39. Shimoni E, Baasov T, Ravid U, Shoham Y. The trans-anethole degradation pathway in an arthrobacter sp. J Biol Chem. 2002. 277: 11866-11872.
    Pubmed CrossRef
  40. Shojaii A, Abdollahi Fard M. Review of pharmacological properties and chemical constituents of pimpinella anisum. ISRN Pharm. 2012. 2012: 510795.
    Pubmed KoreaMed CrossRef
  41. Shou J, Chen PJ, Xiao WH. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol Metab Syndr. 2020. 12: 14.
    Pubmed KoreaMed CrossRef
  42. Silveira LR, Pinheiro CH, Zoppi CC, Hirabara SM, Vitzel KF, Bassit RA, Barbosa MR, Sampaio IH, Melo IH, Fiamoncini J, Carneiro EM, Curi R. [regulation of glucose and fatty acid metabolism in skeletal muscle during contraction]. Arq Bras Endocrinol Metabol. 2011. 55: 303-313.
    Pubmed CrossRef
  43. Wang J, Fry CME, Walker CL. Carboxyl-terminal modulator protein regulates akt signaling during skeletal muscle atrophy in vitro and a mouse model of amyotrophic lateral sclerosis. Sci Rep. 2019. 9: 3920.
    Pubmed KoreaMed CrossRef
  44. Wang W, Li M, Chen Z, Xu L, Chang M, Wang K, Deng C, Gu Y, Zhou S, Shen Y, Tao F, Sun H. Biogenesis and function of extracellular vesicles in pathophysiological processes of skeletal muscle atrophy. Biochem Pharmacol. 2022. 198: 114954.
    Pubmed CrossRef
  45. Xu Q, Wu Z. The insulin-like growth factor-phosphatidylinositol 3-kinase-akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived rd cells. J Biol Chem. 2000. 275: 36750-36757.
    Pubmed CrossRef
  46. Yea SS, Jeong HS, Choi CY, Park KR, Oh S, Shin JG, Yun CH. Inhibitory effect of anethole on t-lymphocyte proliferation and interleukin-2 production through down-regulation of the nf-at and ap-1. Toxicol In vitro. 2006. 20: 1098-1105.
    Pubmed CrossRef
  47. Yin L, Li N, Jia W, Wang N, Liang M, Yang X, Du G. Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol Res. 2021. 172: 105807.
    Pubmed CrossRef
  48. Zachariah T, Leela N. Volatiles from herbs and spices. 2006 3. 177-218. Elservier. Handbook of herbs and spices.
    CrossRef
  49. Zhang S, Chen X, Devshilt I, Yun Q, Huang C, An L, Dorjbat S, He X. Fennel main constituent, trans-anethole treatment against lps-induced acute lung injury by regulation of th17/treg function. Mol Med Rep. 2018. 18: 1369-1376.
    CrossRef