Search for


TEXT SIZE

search for



CrossRef (0)
Effect of Fomes fomentarius Extract in Muscle Atrophy Rat Model
Biomed Sci Letters 2023;29:296-301
Published online December 31, 2023;  https://doi.org/10.15616/BSL.2023.29.4.296
© 2023 The Korean Society For Biomedical Laboratory Sciences.

Gil-Hyun Lee1,* and Kyung-Yae Hyun2,†,*

1Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan 54538, Korea
2Department of Clinical Laboratory Science, DongEui University, Busan 47340, Korea
Correspondence to: Kyung-Yae Hyun. Department of Clinical Laboratory Science, DongEui University, Busan 47340, Korea.
Tel: +82-51-890-2683, Fax: +82-0505-182-6877, e-mail: kyhyun@deu.ac.kr
*Professor.
Received September 25, 2023; Accepted November 3, 2023.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
This study was conducted to induce muscle loss using dexametasone and then use the extract to determine its effectiveness in a muscle loss animal model. Animal experimental groups were divided by five groups. Changes in the weight of the animals were measured for a total of 5 weeks. After animal sacrifice, muscle mass was measured, and animal behavior evaluation was conducted using grip strength test and pole test. The expression levels of MAFbx protein was measured using muscle samples. Oral administration of Fomes fomentarius extract was effective in suppressing muscle atropy and increasing muscle, which was confirmed through animal behavior evaluation and muscle-related protein expression.
Keywords : Dexametasone, Fomes fomentarius, Grip strength test, Pole test, MAFbx
꽌 濡

洹쇱쑁 뿉꼫吏 옣怨 뿭븷쓣 븳떎. 뿉꼫吏썝씤 룷룄떦씠 湲由ъ퐫寃먯쑝濡 빀꽦릺硫 洹쇱쑁뿉 옣릺硫, 洹쇱쑁씠 以꾩뼱뱾硫 뿉꼫吏 鍮꾩텞 뒫젰씠 뼥뼱졇꽌 돺寃 뵾濡쒗빐吏怨 湲곗슫씠 뾾뼱吏꾨떎(Westerblad et al., 2010). 삉븳 洹쇱쑁 媛먯냼媛 떖븳 궗엺씤 寃쎌슦 湲곗큹 궗웾씠 媛먯냼빐 鍮꾨쭔씠 릺湲 돩슦硫, 듅엳 떦눊蹂 솚옄媛 洹쇨컧냼利(sarcopenia)뿉 嫄몃━硫 삁떦쓽 蹂룞룺씠 而ㅼ졇 삁떦 議곗젅씠 뼱젮썙吏꾨떎(Cruz-Jentoft and Sayer, 2019).

洹쇨컧냼利앹 굹씠媛 留롮븘吏硫댁꽌 洹쇱꽟쑀쓽 뼇, 洹쇰젰, 洹쇰젰씠 紐⑤몢 媛먯냼븯뒗 吏덊솚쓣 쓽誘명븳떎. 洹쇨컧냼利앹쓽 썝씤 쁺뼇냼 怨듦툒, 슫룞 遺議, 끂솕, 留뚯꽦 뿼利, 샇瑜대が 遺덇퇏삎 벑씠떎(Cruz-Jentoft and Sayer, 2019). 씪떒 洹쇱쑁쓽 吏곸엫씠 뼥뼱졇꽌 洹쇱쑁씠 뇿눜븯뿬 洹쇱쑁웾씠 븳 踰 媛먯냼븯硫 湲곗큹 궗웾, 솢룞웾씠 븿猿 以꾩뼱뱾湲 븣臾몄뿉 洹쇨컧냼 냽룄媛 뜑 鍮⑤씪吏뒗 븙닚솚씠 씪뼱궃떎(Morley et al., 2011). 듅엳 洹쇨컧냼利앹쓽 슂二쇱쓽 긽 끂씤痢듭씠硫, 듅엳 怨⑤떎怨듭쬆쑝濡 堉덇 빟빐졇 엳뒗 긽깭쓽 끂씤쓽 寃쎌슦뿉뒗 洹쇱쑁씠 遺議깊븯硫 옄二 꽆뼱吏寃 릺뼱 怨⑥젅 쐞뿕씠 而ㅼ쭊떎. 洹쇨컧냼뒗 怨④꺽洹 쐞異뺤씠씪뒗 쁽긽怨 겕寃 뿰愿릺뼱 엳쑝硫, 怨④꺽洹 쐞異뺤쓽 珥덇린 떊샇뒗 怨④꺽洹 닔異뺢낵 怨④꺽洹 옄洹 떊샇쓽 媛먯냼씠硫, 寃곌뎅 洹쇱쑁 궡 떒諛깆쭏 깮꽦 궗 媛먯냼 꽭룷옄硫몄궗(apoptosis) 珥됱쭊쓣 쑀룄븳떎(Dirks and Leeuwenburgh, 2005).

꽭룷 닔以뿉꽌 二쇱슂븳 洹쇱쐞異 씤옄뒗 muscle RING finger1 (MuRF1) muscle atrophy F-box (MAFbx) 벑씠 엳떎(Jogo et al., 2009). 씠윭븳 씤옄뱾 끂솕, 洹쇱쑁 궗슜웾 媛먯냼, 떦吏 肄붾Ⅴ떚肄붿씠뱶쓽 利앷 벑 떎뼇븳 솚寃쎌뿉꽌 怨④꺽洹 쐞異뺢린쟾쑝濡 옉슜븯뒗 以묒슂븳 씤옄씠떎(Jogo et al., 2009; Bodine and Baehr, 2014). 洹쇱쐞異 솚옄씤 寃쎌슦 꽭룷 닔以뿉꽌 怨④꺽洹 쐞異뺤 떦吏 肄붾Ⅴ떚肄붿씠뱶 닔슜湲곗 Foxo 쟾궗씤옄媛 MuRF1 MAFbx쓽 떒諛깆쭏 諛쒗쁽쓣 利앷떆궎怨, 洹쇱쐞異뺤쓣 씪쑝궎硫, 諛섎濡 嫄닿컯븳 꽦씤씤 寃쎌슦뒗 Insulin-Like Growth Factor-1 (insulin/IGF-1) signaling뿉 쓽빐 떦吏 肄붾Ⅴ떚肄붿씠뱶媛 궙寃 議곗젅릺硫, 삉븳 MuRF1 MAFbx쓽 떒諛깆쭏 諛쒗쁽쓣 吏븳떎(Rom and Reznick, 2016; Adams et al., 2008). 씠윭븳 議곗젅 洹쇱쐞異뺤쓣 삁諛⑺븯뒗 以묒슂븳 뿭븷쓣 븳떎怨 븣젮졇 엳떎.

留먭돕踰꾩꽢(Fomes fomentarius) 援щ찉옣씠踰꾩꽢怨 뿬윭빐궡씠 踰꾩꽢쓽 옄떎泥댁씠怨, 留먮컻援 紐⑥뼇쓽 겙 떎怨듭꽦 옄떎泥대 깮궛븯뿬, 李몃굹臾, 옄옉굹臾, 諛 떇臾 벑 겙궎굹臾댁뿉 옄깮븳떎怨 븣젮졇 엳쑝硫, 二쇰줈 븳援, 씪蹂, 以묎뎅, 以묒븰븘떆븘, 遺곸븘硫붾━移 벑뿉 遺꾪룷븳떎(Elkhateeb et al., 2020). 誘쇨컙뿉꽌뒗 삤옒 쟾遺꽣 븫쓽 移섎즺젣濡 궗슜릺뼱 솕쑝硫, 怨좊 洹몃━뒪쓽 쓽븰옄씤 엳룷겕씪뀒뒪뒗 긽泥섏뿉 쑙쓣 쑉뒗 뜲 씠 踰꾩꽢쓣 궗슜뻽쑝硫, 吏삁, 뿼利앹튂猷뚯뿉룄 씠슜뻽떎뒗 湲곕줉씠 엳떎(G찼per et al., 2016). 理쒓렐 뿰援ъ뿉 쓽븯硫 빆醫낆뼇 슚怨(Patel and Goyal, 2012), 빆뿼 슚怨(Park et al., 2004), 諛 빆넻利 슚怨(Lee et al., 2016)媛 엳떎뒗 蹂닿퀬媛 엳떎.

理쒓렐 湲됱냽엳 怨좊졊솕릺뒗 궗쉶瑜 媛먯븞빐 蹂 븣 洹쇱쐞異뺤쭏솚 궗쉶쟻 吏덊솚쑝濡 蹂 닔 엳떎. 씠 吏덊솚쑝濡 씤븳 궣쓽 吏덉쓽 븯 留뚯꽦 吏덊솚쑝濡 씠솚쑉쓽 利앷媛 蹂닿퀬릺怨 엳떎(Vinciguerra et al., 2010). 뵲씪꽌 쟾 꽭怨꾩쟻쑝濡 留롮 뿰援ъ옄뱾씠 洹쇱쐞異뺤쭏솚쓽 삁諛 諛 移섎즺瑜 쐞븯뿬 끂젰븯怨 엳떎(Cao et al., 2018; Schorling et al., 2020). 븯吏留 쁽옱 슚怨쇱쟻씤 빟臾쇱씠굹 移섎즺젣쓽 媛쒕컻씠 븘吏곴퉴吏 씠猷⑥뼱吏吏 븡怨 엳쑝硫, 씠 吏덊솚쓽 쁽옱 二쇱슂 移섎즺踰뺤 슫룞泥섎갑, 떒諛깆쭏 쁺뼇 蹂댁땐젣, 臾쇰━移섎즺 벑씠 엳떎(Chiriboga, 2017). 留먭돕踰꾩꽢 쁽옱 떎뼇븳 遺꾩빞뿉꽌 솢슜븯怨 엳뒗 泥쒖뿰臾쇱쭏씠吏留 쁽옱 洹쇱쐞異뺤쬆뿉 븳 留먭돕踰꾩꽢쓽 뿰援щ뒗 뾾쑝硫, 留먭돕踰꾩꽢 異붿텧臾쇱씠 洹쇱쐞異뺤뿉 슚뒫씠 엳쓣 寃껋씠씪뒗 媛꽕 븯뿉 蹂 뿰援щ 꽕怨꾪븯떎.

옱猷 諛 諛⑸쾿

떎뿕룞臾

40留덈━쓽 닔而 Sprague-Dawley 伊(102.62짹2.51 g, 4二쇰졊)瑜 以묒븰 룞臾쇱뿰援ъ떎(Seoul, Korea)뿉꽌 援ъ엯뻽뒿땲떎. 媛 룞臾쇱 25꼦, 60% 뒿룄뿉꽌 12/12떆媛 紐낆븫 二쇨린쓽 몴以 떎뿕떎 議곌굔 븯뿉꽌 耳씠吏뿉 媛쒕퀎쟻쑝濡 닔슜릺뿀쑝硫, 2二 룞븞 쓬떇怨 臾쇱쓣 옄쑀濡寃 꽠痍⑦븷 닔 엳뿀뒿땲떎. 紐⑤뱺 떎뿕 룞쓽븰援 룞臾쇱쑄由ъ떖쓽쐞썝쉶 洹쒖젙쓣 以닔븯뿬 吏꾪뻾븯떎.

留먭돕踰꾩꽢쓽 異붿텧

留먭돕踰꾩꽢 옂쓣 源⑤걮씠 뵽뼱 洹몃뒛뿉꽌 씪二쇱씪媛 嫄댁“떆궓 썑, 肉뚮━뒗 遺꾩뇙湲곕줈 옒寃 옄瑜닿퀬 룞寃곌굔議곌린濡 룞寃곌굔議 븯떎. 15 mL 뒠釉뚯뿉 룞寃곌굔議 맂 떆猷 1 mg怨 70% 뿉깂삱 1 mg쓣 梨꾩슫 썑, 뒠釉뚮 샎빀 湲곌퀎뿉꽌 18떆媛 룞븞 쉶쟾떆耳곕떎. 긽痢듭븸留 梨꾩랬븯뿬 40꼦뿉꽌 湲고솕떆궓 썑 룞寃곌굔議 븯떎. 異붿텧맂 臾쇱쭏쓽 닔쑉 8.6%떎.

떎뿕援 꽕젙

떎뿕쓣 떆옉븯湲 쟾 14씪 룞븞 쟻쓳湲곌컙쓣 媛議뚯쑝硫, 씠 썑 5二 룞븞 留ㅼ씪 삤쟾 룞씪븳 떆媛꾩뿉 1쉶 泥쒖뿰臾쇱쭏 異붿텧臾쇱쓣 寃쎄뎄닾뿬 븯떎. Malkawi 諛⑸쾿(Malkawi et al., 2018)쓣 李몄“븯뿬 Dexametasone쓽 닾뿬웾(2.25 mg/kg rat weight)쓣 寃곗젙븯쑝硫, 7씪 룞븞 4踰덉쓣 二쇱궗븯뿬 洹쇱쐞異뺣 쑀룄븯떎. 떎뿕援곗 떎쓬怨 媛숈씠 遺꾨쪟븯떎. Group I: 젙긽議곌뎔쑝濡 利앸쪟닔瑜 寃쎄뎄닾뿬, Group II (vehicle): 利앸쪟닔 寃쎄뎄닾뿬 + dexamethasone 泥섎━ 洹쇱쐞異뺤쑀諛쒓뎔, Group III: 留먭돕踰꾩꽢 寃쎄뎄닾뿬(1 mg/kg rat weight) + dexamethasone 泥섎━ 洹쇱쐞異뺤쑀諛쒓뎔, Group IV: 留먭돕踰꾩꽢 寃쎄뎄닾뿬(5 mg/kg rat weight) + dexamethasone 泥섎━ 洹쇱쐞異뺤쑀諛쒓뎔, Group V: protein 寃쎄뎄닾뿬(5 mg/kg rat weight) + dexamethasone 泥섎━ 洹쇱쐞異뺤쑀諛쒓뎔쑝濡 援щ텇븯떎. 媛 援곗쓽 留먭돕踰꾩꽢 異붿텧臾 寃쎄뎄닾뿬웾 LEE (Lee et al., 2016)쓽 뿰援щ 李몄“븯떎. 5二 썑뿉 ketamine (100 mg/kg)怨 xylaznie (100 mg/kg)쓣 二쇱엯븯뿬 留덉랬븳 썑 룞臾쇱쓣 씗깮븯쑝硫, 옣뵶吏洹쇱쑁怨 삁븸쓣 닔吏묓븯떎.

Grip strength test

留ㅼ씪 泥쒖뿰臾 닾뿬瑜 셿猷 썑 빟 2떆媛꾩쓽 쑕떇쓣 痍⑦븯怨 JD-A-22 (Jeungdo Bio & Plant Co., Ltd., Seoul, Republic of Korea) 옣鍮꾨 씠슜븯뿬 룞臾쇱쓽 븙젰쓣 痢≪젙븯떎. 洹몃Ъ紐⑥뼇쓽 泥좏뙋瑜 옟寃 븯怨 瑗щ━瑜 씪젙븳 냽룄(2 cm/sec)濡 옟븘떦寃⑥꽌 븙젰쓣 痢≪젙븯떎. 紐⑤뱺 떎뿕쓣 5踰 諛섎났 痢≪젙븯뿬 寃곌낵뒗 룊洹 짹 몴以렪李⑤줈 몴쁽븯떎.

Pole test

留ㅼ씪 Grip strength test 셿猷 썑 빟 1떆媛꾩쓽 쑕떇쓣 痍⑦븯怨 뇿濡 젣옉맂 80 cm 湲몄씠뿉 吏곴꼍 1 cm쓽 留됰湲곕 씠슜븯뿬 pole test瑜 떎떆븯떎. 怨㏓컮濡 꽭썙吏 留됰湲곕 룞臾쇱씠 遺숈옟寃 븳 썑, 諛붾떏뿉 룄李⑺븯뒗 뜲 嫄몃━뒗 떆媛꾩쓣 痢≪젙븯떎. 紐⑤뱺 떎뿕쓣 5踰 諛섎났 痢≪젙븯뿬 寃곌낵뒗 룊洹 짹 몴以렪李⑤줈 몴쁽븯떎.

泥댁쨷 痢≪젙 諛 옣뵶吏洹 臾닿쾶 痢≪젙

洹쇱쐞異 쑀諛 쟾뿉 泥댁쨷쓣 3씪뿉 븳踰덉뵫 痢≪젙븯쑝硫, 洹쇱쐞異 쑀諛 썑뿉뒗 35씪 룞븞 留ㅼ씪 媛숈 떆媛 삤썑뿉 1쉶 痢≪젙븯떎. 룞臾쇳씗깮 썑 醫뚯륫怨 슦痢≪쓽 옣뵶吏洹(gastrocnemius muscle)쓣 닔吏묓븳 썑 쟾옄슱濡 옣뵶吏洹쇱쑁쓽 臾닿쾶瑜 痢≪젙븯떎.

Muscle atrophy F-box (MAFbx) 떒諛깆쭏 痢≪젙

쟻異쒗븳 洹쇱쑁 議곗쭅쓣 臾닿퇏 닔닠슜 移쇰줈 옒寃 떎吏怨, lysis buffer瑜 泥④븯뿬 4꼦뿉꽌 homogenizer瑜 씠슜븯뿬 洹좎쭏솕븯떎. 씠 썑 媛 援곗쓽 媛 議곗쭅쓣 媛숈 떒諛깆쭏냽룄濡 젙웾솕븯떎. 以鍮꾨맂 sample 10~12% gel뿉 18.5 關L濡 깦뵆쓣 loading 썑 쟾湲곗쁺룞 븯떎. 援먮컲湲곗뿉꽌 blocking buffer (1X PBST, skim milk, sodium azide)濡 1떆媛꾩뵫, 2踰덉쓽 깉 blocking buffer濡 援먯껜븯뿬 blocking븯怨 MAFbx (Ab)瑜 4꼦뿉꽌 over night 떆耳곕떎. 7遺꾧컙 5쉶뿉 嫄몄퀜 1X PBST (10X PBST, D.W, 0.1% Tween 20)濡 닔꽭 썑 2李 Ab瑜 援먮컲湲곗뿉꽌 2떆媛 떎삩 諛섏쓳떆궎怨 ECL쓣 씠슜븯뿬 諛쒗쁽, 遺꾩꽍븯떎. 쁺긽 遺꾩꽍 Image J Software쓣 씠슜븯뿬 諛쒗쁽 젙룄瑜 痢≪젙븯떎.

넻怨 泥섎━

蹂 떎뿕 寃곌낵뱾 룊洹(mean) 짹 몴以렪李(standard deviation, SD)濡 몴떆븯怨 떎뿕援 媛 룊洹 李⑥씠뒗 Kruskall Wallis test濡 쑀쓽꽦쓣 솗씤븳 썑 Mann Whiteny U-test瑜 씠슜븯뿬 궗썑 寃젙븯떎. P<0.05 닔以뿉꽌 쑀쓽꽦瑜 寃利앺븯떎. 紐⑤뱺 넻怨 遺꾩꽍 SPSS (statistical package for the social science) version 18.0 봽濡쒓렇옩(SPSS Inc., Chicago, IL, USA)쓣 씠슜븯뿬 遺꾩꽍븯떎.

寃 怨

泥댁쨷 蹂솕 寃곌낵

洹쇱쐞異뺣 쑀諛쒗븳 썑 35씪媛꾩쓽 泥댁쨷 蹂솕 寃곌낵뒗 Fig. 1怨 媛숇떎. 洹쇱쐞異 쑀諛 10씪源뚯뒗 5媛쒖쓽 떎뿕援 媛꾩쓽 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠媛 뾾뿀떎. 20씪遺꽣 留먭돕踰꾩꽢異붿텧臾 5 mg 泥섎━援(145.80짹7.68 g)怨 議곌뎔(135.82짹8.25 g)씠 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠(P<0.05)瑜 蹂댁씠湲 떆옉븯쑝硫, 35씪뿉뒗 5 mg 泥섎━援곗 181.51짹7.61 g, 議곌뎔 145.63짹6.14 g쑝濡 媛옣 겙 李⑥씠瑜 蹂댁떎(P<0.01).

Fig. 1. Body weight change in muscle atrophy rat model.
The body weight of the rats was measured for 35 days. After 25 days, the results of the experimental group began to show statistically significant differences compared to the MS group (P<0.05). Abbreviations: MS, inducing muscle loss Maxim.; FFE, Fomes fomentarius extract.

옣뵶吏洹 臾닿쾶 痢≪젙 寃곌낵

룞臾쇳씗깮 썑 닔吏묓븳 옣뵶吏洹쇱쑁쓽 臾닿쾶瑜 痢≪젙븳 寃곌낵(Fig. 2)뒗 紐⑤뱺 떎뿕援(1 mg 泥섎━援: 3.21짹0.25 g, 5 mg 泥섎━援: 3.84짹0.23 g, 뼇꽦議곌뎔: 3.90짹0.38 g)뿉꽌 議곌뎔(1.65짹0.37 g)怨 鍮꾧탳븯뿬 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠媛 엳쓬쓣 븣 닔 엳뿀떎(P<0.01).

Fig. 2. Results of gastrocnemius muscle weight.
The weight of the gastrocnemius muscle collected after animal sacrifice was measured. There was a statistically significant difference in the experimental group compared to the MS group (P<0.01).

룞臾쇳뻾룞룊媛 寃곌낵

Grip strength test쓽 寃곌낵뒗 Table 1怨 媛숇떎. 議곌뎔怨 鍮꾧탳븯뿬 1 mg 泥섎━援곗 20씪李⑤꽣 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠瑜 蹂댁씠湲 떆옉븯쑝硫(P<0.05), 5 mg 泥섎━援곗 10씪 李⑤꽣 李⑥씠媛 諛쒖깮븯떎(P<0.01). 35씪李⑥뿉 5 mg 泥섎━援곌낵 議곌뎔 빟 3.56諛곗쓽 grip strength 李⑥씠媛 엳쓬쓣 븣 닔 엳뿀떎. Pole test 寃곌낵(Table 2)뒗 1 mg 泥섎━援곗 議곌뎔怨 鍮꾧탳븯뿬 25씪李⑤꽣 쑀쓽븳 李⑥씠(P<0.05)媛 엳뿀쑝硫, 5 mg 泥섎━援곗 20씪 李⑤꽣 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠媛 諛쒖깮븯떎(P<0.01).

Results of grip strength test

Group Grip strength (g)
0 day 10 days 20 days 25 days 30 days 35 days
Control 4.77짹0.88 5.60짹0.51 6.81짹0.65 7.39짹0.59 7.70짹0.41 8.12짹0.43
MS 4.61짹0.75 4.10짹1.01 3.41짹0.60 2.62짹0.31 2.02짹0.20 1.88짹0.24
MS+FFE1 mg 4.91짹0.55 4.35짹0.69 4.18짹0.61* 4.71짹0.73** 5.13짹0.67** 5.96짹0.72**
MS+FFE5 mg 4.80짹0.71 4.88짹0.66** 5.35짹0.52** 5.89짹0.70** 6.24짹0.54** 6.70짹0.68**
MS+Protein5 mg 4.71짹0.69 4.91짹0.47* 5.22짹0.65** 5.70짹0.74** 6.01짹0.87** 6.23짹0.60**

Abbreviations: MS, inducing muscle loss Maxim.; FFE, Fomes fomentarius extract. Each point represents the mean 짹 SEM.

*P < 0.05, **P<0.01 compared with the MS group



Results of pole test

Group Time (sec)
0 day 10 days 20 days 25 days 30 days 35 days
Control 55.17짹7.18 57.09짹6.50 51.08짹7.09 48.10짹6.91 45.05짹5.09 42.08짹6.12
MS 57.60짹8.72 40.18짹11.08 22.19짹8.51 15.04짹5.09 10.18짹1.87 6.90짹0.79
MS+FFE1 mg 56.10짹7.18 43.80짹6.01 28.18짹7.09 32.09짹5.60** 28.50짹0.67** 26.58짹3.82**
MS+FFE5 mg 58.17짹8.09 45.08짹7.61 35.01짹6.08** 35.01짹7.12** 34.18짹5.01** 32.01짹3.08**
MS+Protein5 mg 55.87짹6.18 41.91짹7.10 39.10짹8.25** 42.18짹5.01** 37.55짹3.12** 33.08짹2.91**

Each point represents the mean 짹 SEM. **P<0.01 compared with the MS group



Muscle atrophy F-box (MAFbx) 떒諛깆쭏 痢≪젙 寃곌낵

Fig. 3쓽 MAFbx 떒諛깆쭏 諛쒗쁽 寃곌낵뿉 뵲瑜대㈃, 議곌뎔뿉 鍮꾪븯뿬 떎뿕援곗뿉꽌 떒諛 諛쒗쁽씠 쁽엳 븯맖쓣 븣 닔 엳뿀떎. 듅엳 5 mg 泥섎━援곗뿉꽌 0.41짹0.03쑝濡 議곌뎔(1.0짹0.15)怨 媛옣 겙 李⑥씠瑜 엳쓬쓣 븣 닔 엳뿀떎(P<0.01).

Fig. 3. Consequences of MAFbx protein expression.
MAFbx protein expression was close to zero in the control group, and expression was reduced in the experimental group compared to the MS group (P<0.01). In particular, the 20 mg dose group showed the greatest difference from the MS group.
怨 李

蹂 뿰援щ뒗 留먭돕踰꾩꽢 異붿텧臾쇱쓽 寃쎄뎄닾뿬媛 洹쇱쐞異 룞臾쇰え뜽뿉꽌 洹쇨컧냼瑜 븯 샊 洹쇱쑁 媛뺥솕 슚怨쇨 엳쓣 寃껋씠씪뒗 媛꽕 븯뿉 떆뻾릺뿀떎. 뿰援 寃곌낵 留먭돕踰꾩꽢 異붿텧臾쇱씠 洹쇱쐞異뺣 吏븯뒗 슚怨쇨 엳쓬쓣 솗씤븷 닔 엳뿀떎.

Dexametasone 洹쇱쐞異뺤쓣 씪쑝궎뒗 빟臾쇰줈 꼸由 븣젮졇 엳쑝硫, 씠 빟臾 泥섎━맂 룞臾쇱 洹쇱쑁웾怨 泥댁쨷씠 븿猿 媛먯냼븯뿬 쟾泥 洹쇱쑁 湲곕뒫뿉 쁺뼢쓣 誘몄튇떎怨 蹂닿퀬릺뿀떎(Troncoso et al., 20104). 씠 빟臾쇱 type II 냽洹쇱쓽 떊寃쎄낵 洹쇱쑁쓽 떆깄뒪뿉 蹂솕瑜 쑀諛쒗븯뿬 洹쇱쐞異뺤쓣 씪쑝궎硫, 씠뒗 떊寃쎌젅떒쓣 쑀룄븯뒗 떎瑜 洹쇱쐞異 룞臾쇰え뜽怨 떎瑜닿쾶 洹쇱쑁 꽟쑀瑜 蹂삎떆耳, 洹쇱꽟쑀쓽 媛먯냼솕瑜 쑀룄빐 Myosin Heavy Chain (MyHC) 蹂솕瑜 쑀諛쒗븳떎. 蹂 뿰援ъ뿉꽌룄 쟾 뿰援ш낵 留덉갔媛吏濡 dexametasone쑝濡 쑀룄맂 洹쇱쐞異 룞臾쇰え뜽뿉꽌 洹쇱쑁웾 媛먯냼 뜑遺덉뼱 泥댁쨷씠 媛먯냼릺뒗 쁽긽쓣 愿李고븯쑝硫, 씠뒗 洹쇱쐞異 룞臾쇰え뜽씠 꽦怨듭쟻쑝濡 솗由쎈릺뿀쓬쓣 븣 닔 엳뒗 寃곌낵씠떎. 삉븳, 留먭돕踰꾩꽢쓣 寃쎄뎄닾엯븳 떎뿕援곗뿉꽌뒗 議곌뎔怨 鍮꾧탳븯뿬 넻怨꾩쟻쑝濡 쑀쓽븯寃 泥댁쨷씠 利앷븿쓣 蹂 닔 엳뿀쑝硫(Fig. 1), 듅엳 5 mg 泥섎━援곗 議곌뎔怨 鍮꾧탳븯뿬 쁽븳 利앷媛 엳뿀떎. 泥댁쨷쓽 蹂댁〈肉먮쭔 븘땲씪 뼇履 옣뵶吏洹쇱쑁쓽 臾닿쾶瑜 痢≪젙븯뿬 蹂 寃곌낵(Fig. 2) 泥쒖뿰臾쇱쭏 닾뿬援곕뱾씠 議곌뎔뿉 鍮꾪븯뿬 洹쇱쑁웾씠 긽떦웾 蹂댁〈릺뿀쓬쓣 븣 닔 엳뿀떎.

룞臾쇳뻾룞룊媛濡 솢슜맂 grip strength test뒗 룞臾쇱쓽 洹쇰젰쓣 媛앷쟻쑝濡 젙웾솕븯怨 洹쇱쑁 蹂꽦쓣 룊媛븯뒗 떎뿕씠떎(Jeyasingham et al., 2001). 瑗щ━瑜 옟怨 옟븘떦湲곕뒗 옒 룞臾쇱씠 洹몃Ъ留앹쓣 옟怨 踰꾪떚뒗 떆媛꾩씠 뿰옣맖뿉 뵲씪 利앷븯硫, 洹쇱쐞異뺤씠 떖븷닔濡 뼥뼱吏뒗 떆媛꾩씠 吏㏃븘吏꾨떎. 蹂 뿰援ъ뿉꽌뒗 젙긽援곌낵 鍮꾧탳븯뿬 議곌뎔쓽 洹쇰젰씠 빟 5諛 젙룄 以꾩뼱뱾뿀쓬쓣 븣 닔 엳쑝硫 씠윭븳 洹쇰젰쓽 蹂솕寃쏀뼢 泥댁쨷 蹂솕 옣뵶吏洹쇱쑁쓽 蹂솕寃쏀뼢蹂대떎 뜑 洹뱀쟻씤 뼇긽쓣 媛吏꾨떎(Table 1). 洹쇱쐞異뺤뿉 궗슜븳 빟臾쇱씠 洹쇱꽟쑀뿉 吏곸젒쟻쑝濡 옉슜븯뒗 빟臾쇱씠湲 븣臾몄뿉 씠윭븳 寃곌낵媛 굹삩 寃껋씠 삁긽릺硫, 臾쇱쭏 닾뿬援곗뿉꽌 洹쇰젰 蹂꽦 젙룄뒗 옣뵶吏洹쇱쑁쓽 뼇쓣 怨좊젮븯뿬 鍮꾧탳븯뿬 蹂 븣 以꾩뼱뱺 洹쇱쑁웾뿉 鍮꾪븯뿬 洹쇰젰 蹂꽦 젙룄뒗 以꾩뿀떎怨 룊媛븷 닔 엳떎. 씠뒗 留먭돕踰꾩꽢 異붿텧臾 닾뿬媛 洹쇱쐞異뺢낵 뿰愿 뿬윭 湲곗쟾 以묒뿉 洹쇱쐞異뺤쓣 媛먯냼떆궗 닔 엳뒗 媛뒫꽦씠 엳떎뒗 利앷굅 以묒뿉 븯굹씠떎.

냼쐞 洹쇱쐞異뺤씠씪 븿 怨④꺽洹 쐞異뺤쬆쓣 留먰븯硫 洹쇱꽟쑀떒諛깅뱾쓽 遺꾪빐媛 利앷릺뼱 엳뒗 蹂묐━쟻 쁽긽쓣 쑜븳떎. 씠뿉 떒諛깆쭏 遺꾪빐瑜 珥됱쭊븯뒗 Atrogin-1, MurF1 & MAFbx, IGF-1 諛 NFkB 벑쓽 떒諛깆쭏뱾씠 利앷븯뒗 寃껉낵 뿰愿씠 엳떎怨 븣젮졇 엳떎(Edstr철m et al., 2006). 씠 떒諛깆쭏뱾 留덉씠삤떊쓣 鍮꾨’븳 洹쇱쑁떒諛깆쭏쓣 遺꾪빐븯뒗 ubiquitin-proteasome 떆뒪뀥쓣 솢꽦솕븯怨 洹쇱쑁떒諛깆쭏 遺꾪빐瑜 珥됱쭊븯怨, 떒諛깆쭏 빀꽦怨 愿젴맂 PI3K-Akt-mTOR 떊샇쟾떖 寃쎈줈 솢꽦쓣 궙異ㅼ쑝濡쒖뜥 洹쇱쑁떒諛깆쭏 빀꽦뼲젣瑜 룞떆뿉 씪쑝궓떎怨 蹂닿퀬릺뿀떎(Zungu et al., 2011). 씠 以 MAFbx 떒諛깆쭏 怨④꺽洹 쐞異뺢낵 愿젴맂 以묒슂븳 씤옄濡 蹂 뿰援ъ뿉꽌 留먭돕踰꾩꽢 異붿텧臾쇱씠 洹쇱쐞異 빐 뿰愿꽦씠 엳뒗吏 솗씤븯怨좎옄 遺꾩꽍븯떎. 洹 寃곌낵 5 mg 닾뿬援곗뿉꽌 議곌뎔怨 鍮꾧탳븯뿬 MAFbx 떒諛 諛쒗쁽씠 쁽寃⑺엳 媛먯냼븯쓬쓣 븣 닔 엳뿀쑝硫(Fig. 3), 씠뒗 留먭돕踰꾩꽢 異붿텧臾쇱쓽 寃쎄뎄닾뿬媛 洹쇱쐞異 솢꽦 寃쎈줈뿉 쁺뼢쓣 겮爾ㅼ쓬쓣 븣 닔 엳뒗 紐⑹씠떎.

蹂 뿰援 寃곌낵瑜 醫낇빀븯뿬 蹂 븣 洹쇱쐞異 룞臾쇰え뜽뿉꽌 留먭돕踰꾩꽢 異붿텧臾쇱쓽 寃쎄뎄닾뿬뒗 洹쇱쐞異뺣 媛먯냼떆궎뒗 슚뒫씠 엳쓬쓣 븣 닔 엳뿀떎. 룞臾쇱쓽 泥댁쨷怨 洹쇱쑁쓽 뼇쓣 蹂댁〈븯쓣 肉먮쭔 븘땲씪 洹쇱쑁쓽 蹂꽦 삉븳 留됰뒗 슚怨쇨 엳쓬쓣 룞臾쇳뻾룞룊媛瑜 넻븯뿬 蹂 닔 엳뿀떎. MAFbx 떒諛 諛쒗쁽씠 媛먯냼맖쓣 怨좊젮빐 蹂 븣 留먭돕踰꾩꽢 異붿텧臾쇱씠 洹쇱쐞異 떊샇쟾떖泥닿퀎뿉 愿뿬븳떎怨 삁긽븷 닔 엳뿀쑝硫, 씠뿉 븳 뿰援щ뒗 뼢썑 궓寃⑥쭊 怨쇱젣씠떎.

ACKNOWLEDGEMENT

None.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

References
  1. Adams V, Linke A, Gielen S, Erbs S, Hambrecht R, Schuler G. Modulation of Murf-1 and MAFbx expression in the myocardium by physical exercise training. European Journal of Preventive Cardiology. 2008. 15: 293-299.
    Pubmed CrossRef
  2. Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. American Journal of Physiology-Endocrinology and Metabolism. 2014. 307: E469-E484.
    Pubmed KoreaMed CrossRef
  3. Cao RY, Li J, Dai Q, Li Q, Yang J. Muscle atrophy: present and future. Muscle Atrophy. 2018: 605-624.
    Pubmed CrossRef
  4. Chiriboga CA. Nusinersen for the treatment of spinal muscular atrophy. Expert Review of Neurotherapeutics. 2017. 17: 955-962.
    Pubmed CrossRef
  5. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. The Lancet. 2019. 393: 2636-2646.
    Pubmed CrossRef
  6. Dirks AJ, Leeuwenburgh C. The role of apoptosis in age-related skeletal muscle atrophy. Sports Medicine. 2005. 35: 473-483.
    Pubmed CrossRef
  7. Edstr철m E, Altun M, H채gglund M, Ulfhake B. Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle. The Journals of Gerontology Series A:. Biological Sciences and Medical Sciences. 2006. 61: 663-674.
    Pubmed CrossRef
  8. Elkhateeb W, Elnahas MO, Paul W, Daba GM. Fomes fomentarius and Polyporus squamosus models of marvel medicinal mushrooms. Biomed Res Rev. 2020. 3: 1-4.
  9. G찼per J, G찼perov찼 S, Pristas P, Naplavova K. Medicinal value and taxonomy of the tinder polypore, Fomes fomentarius (Agaricomycetes): a review. International Journal of Medicinal Mushrooms. 2016. 18.
    Pubmed CrossRef
  10. Jeyasingham RA, Baird AL, Meldrum A, Dunnett SB. Differential effects of unilateral striatal and nigrostriatal lesions on grip strength, skilled paw reaching and drug-induced rotation in the rat. Brain research Bulletin. 2001. 55: 541-548.
    Pubmed CrossRef
  11. Jogo M, Shiraishi S, Tamura TA. Identification of MAFbx as a myogenin-engaged F-box protein in SCF ubiquitin ligase. FEBS Letters. 2009. 583: 2715-2719.
    Pubmed CrossRef
  12. Lee GH, Lee JS, Kang DY, Hyun KY. Anti-nociceptive actions of Fomes fomentarius extract on the formalin test in the rat. JoKULL Journal. 2016. Vol 66, No 9.
  13. Malkawi AK, Alzoubi KH, Jacob M, Matic G, Ali A, Al Faraj A, Abdel Rahman AM. Metabolomics based profiling of dexamethasone side effects in rats. Frontiers in Pharmacology. 2018. 9: 46.
    Pubmed KoreaMed CrossRef
  14. Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S. Sarcopenia with limited mobility: an international consensus. Journal of the American Medical Directors Association. 2011. 12: 403-409.
    Pubmed KoreaMed CrossRef
  15. Park YM, Kim IT, Park HJ, Choi JW, Park KY, Lee JD, Lee KT. Anti-inflammatory and anti-nociceptive effects of the methanol extract of Fomes fomentarius. Biological and Pharmaceutical Bulletin. 2004. 27: 1588-1593.
    Pubmed CrossRef
  16. Patel S, Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: a review. Biotech. 2012. 2: 1-15.
    Pubmed KoreaMed CrossRef
  17. Rom O, Reznick AZ. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radical Biology and Medicine. 2016. 98: 218-230.
    Pubmed CrossRef
  18. Schorling DC, Pechmann A, Kirschner J. Advances in treatment of spinal muscular atrophy-new phenotypes, new challenges, new implications for care. Journal of Neuromuscular Diseases. 2020. 7: 1-13.
    Pubmed KoreaMed CrossRef
  19. Troncoso R, Paredes F, Parra V, Gatica D, V찼squez-Trincado C, Quiroga C, Lavandero S. Dexamethasone-induced autophagy mediates muscle atrophy through mitochondrial clearance. Cell Cycle. 2014. 13: 2281-2295.
    Pubmed KoreaMed CrossRef
  20. Vinciguerra M, Musaro A, Rosenthal N. Regulation of muscle atrophy in aging and disease. Protein Metabolism and Homeostasis in Aging. 2010: 211-233.
    Pubmed CrossRef
  21. Westerblad H, Bruton JD, Katz A. Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability. Experimental Cell Research. 2010. 316: 3093-3099.
    Pubmed CrossRef
  22. Zungu M, Schisler JC, Essop MF, McCudden C, Patterson C, Willis MS. Regulation of AMPK by the ubiquitin proteasome system. The American Journal of Pathology. 2011. 178: 4-11.
    Pubmed KoreaMed CrossRef