Search for


TEXT SIZE

search for



CrossRef (0)
Expression of Corazonin Gene by Developmental Stage of Scuttle Fly
Biomed Sci Letters 2023;29:330-335
Published online December 31, 2023;  https://doi.org/10.15616/BSL.2023.29.4.330
© 2023 The Korean Society For Biomedical Laboratory Sciences.

Hohyun Park†,*

Department of Biomedical Laboratory Science, Mokpo Science University, Mokpo-si, Jeollanam-do 58644, Korea
Correspondence to: Hohyun Park. Department of Biomedical Laboratory Science, Mokpo Science University, 413-1 Yeongsan-Ro, Mokpo-si, Jeollanam-do 58644, Korea.
Tel: +82-61-270-2745, Fax: +82-61-270-2745, e-mail: phh7082@hanmail.net
*Professor.
Received November 10, 2023; Revised December 9, 2023; Accepted December 11, 2023.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
The corazonin (Crz) gene showed two subtypes of different length at laval and pupal stage. The long subtype fade out in adult central nerve system (CNS) but the short one survive through all the life cycle from larva to adult. The short subtype has the same base sequences with mature Crz mRNA and detected in both brain and ventral nerve cord (VNC). The long one, on the contrary, was detected only in the brain tissue. As observed in above results, Crz neurons develop in different pattern in the CNS of scuttle fly and the Crz gene expresses two different subtypes. These results suggest that this neurotransmitter may perform differential neurophysiological functions in the scuttle fly. Variation in the amino acid composition of the final active undecapeptide supports in strong those possibilities. We expect further studies on the relationship between neurophysiological functions of Crz and behavioral characteristics of the scuttle fly.
Keywords : Scuttle fly, Corazonin, Central nerve system, RT-PCR
꽌 濡

Scuttle fly씪 遺덈━뒗 Megaselia scalaris뿉 빐 븣(egg), 븷踰뚮젅(larvae), 踰덈뜲湲(pupae), 꽦異(adult fly) 떆湲곗쓽 諛쒖깮 떒怨꾨퀎濡 삎깭쟻씤 듅吏뺤쓣 愿李고븯怨(Park, 2018), 븷踰뚮젅 2졊, 3졊, 踰덈뜲湲 1씪, 3씪, 4~5씪, 7~9씪, 10~12씪, 13~15씪, 꽦異 떆湲곕퀎濡 以묒텛떊寃쎄퀎(central nerve system, CNS)瑜 梨꾩랬븯뿬 諛쒕떖떒怨꾩뿉 뵲瑜 삎깭쟻씤 듅吏뺤뿉 빐꽌룄 꽕紐낇븯떎(Park et al., 2018).

Scuttle fly쓽 以묒텛떊寃쎄퀎瑜 梨꾩랬븯뿬 2졊怨 3졊 븷踰뚮젅, 踰덈뜲湲, 꽦異 떆湲곗쓽 corazonin 깮궛 돱윴 諛쒗쁽뿉 빐꽌룄 궡렣蹂댁븯뒗뜲(Park, 2020; Park, 2021), Scuttle fly쓽 2졊怨 3졊 븷踰뚮젅 떆湲곗뿉뒗 紐⑤몢 以묒텛떊寃쎄퀎뿉꽌 corazonin 깮궛 돱윴씠 꽭 媛쒖쓽 遺遺꾩뿉 議댁옱븯쑝硫, 뇤(brain)議곗쭅쓽 쟾뇤(procerebrum) 遺遺꾩쓽 뼇履 떆뿽(optic lobe, OL)씠 留뚮뱾뼱吏뒗 벑痢〓㈃(dorsolateral, DL) 媛옣옄由, 뼇履 뇤 以묒븰 留 븵履 씤젒 遺遺꾩씤 벑以묒븰(dorsomedial, DM) 遺쐞, 蹂듭떊寃쎌깋(ventral nerve cord, VNC) 뼇履 媛옣옄由ъ뿉꽌 諛쒓껄릺뿀떎(Park, 2020).

洹몃━怨 踰덈뜲湲 떆湲곗뿉뒗 븷踰뚮젅 떆湲곗뿉꽌쓽 蹂깭濡 씤빐 以묒텛떊寃쎄퀎 議곗쭅뿉꽌 몢 媛 遺遺꾩쓽 corazonin 돱윴씠 궗씪吏怨 븳 媛쒖쓽 遺遺꾨쭔 떆뿽 洹쇱쿂쓽 쟾뇤 벑痢〓㈃ 遺遺꾩뿉 洹몃濡 corazonin 돱윴씠 諛쒗쁽릺怨 엳뿀떎. 삉븳 꽦異 떆湲곗뿉뒗 踰덈뜲湲 떆湲곗 嫄곗쓽 鍮꾩듂븯吏留 뇤 以묒븰 履쎌쑝濡 씠룞븳 벑痢〓㈃ 履쎌뿉 corazonin 돱윴씠 꽦泥댁뿉꽌 嫄곗쓽 젙以묒븰뿉 醫뚯슦濡 쐞移섎릺뼱 엳뿀떎(Park, 2021).

삉븳 scuttle fly쓽 諛쒖깮 떒怨꾩뿉꽌 븷踰뚮젅 떆湲곗쓽 以묒텛떊寃쎄퀎 議곗쭅쑝濡 젣옄由щ빀踰(ISH)쓣 떆뻾븯뿬 corazonin 돱윴쓣 諛쒗쁽떆耳곌퀬, corazonin 돱윴쓣 諛쒗쁽떆궓 議곗쭅쓣 씠슜븯뿬 씪諛섏뿼깋(hematoxylin-eosin stain) 諛 떊寃쎌뿼깋(luxol fast blue-cresyl violet stain)쓣 떎떆븯뿬 corazonin 돱윴쓽 삎깭 二쇱쐞쓽 떊寃쎌“吏 궡쓽 떊寃쎌꽭룷 땲뒳냼泥(Nissle body), 留먯씠吏(myelin sheth) 벑쓽 삎깭븰쟻 듅吏뺤쓣 솗씤븯떎(Park, 2022).

븷踰뚮젅媛 踰덈뜲湲 떆湲곕 嫄곗퀜 꽦異⑹쑝濡 諛쒖깮븯뒗 룞븞 corazonin 돱윴 꽭룷옄뿰궗(apoptosis)뿉 쓽빐 洹 닽옄 遺꾪솕媛 겕寃 蹂븯寃 맂떎. Drosophila뿉꽌 硫댁뿭 諛섏쓳맂 빟媛꾩쓽 corazonon 돱윴 꽭룷옄뿰궗 寃곌낵濡 蹂깭븯뒗 룞븞 궗씪吏꾨떎怨 븯떎(Lee et al., 2008). D. melanogaster쓽 븷踰뚮젅 떆湲곗뿉꽌 蹂듭떊寃쎌깋뿉 吏묓빀맂 corazonin 돱윴 珥덇린 踰덈뜲湲 떆湲곗쓽 以묒텛떊寃쎄퀎媛 諛쒖깮븯뒗 룞븞뿉 젣嫄곌 릺怨, 썑湲 踰덈뜲湲 떆湲곌 諛쒖깮븯뒗 룞븞 쟾뇤쓽 벑以묒븰뿉꽌 corazonin 돱윴쓽 븳 뙇씠 젣嫄곌 맂떎怨 븯떎(Choi et al., 2005; Choi et al., 2006; Choi, 2009; Lee et al., 2008; Lee et al., 2011). 삉븳 蹂듭떊寃쎌깋쓽 corazonin 돱윴 쟾援ъ꽭룷濡쒕꽣 썝옒 遺꾪솕릺뿀怨, 留뚯빟 諛쒖깮븯怨 엳뒗 諛곗븘뿉꽌 꽭룷옄뿰궗瑜 嫄곗튂硫댁꽌룄 쟾援ъ꽭룷媛 깮議댄븳떎硫 corazonin쓣 깮궛븯뒗 돱윴쑝濡 遺꾪솕맆 닔 엳떎怨 븯떎(Novotny et al., 2002; Lundell et al., 2003; Karcavich and Doe, 2005). 遺遺꾩쓽 怨ㅼ땐뿉꽌 떊寃쎌꽭룷쓽 꽭룷옄뿰궗뒗 二쇰줈 몢 媛쒖쓽 슌졆븳 諛쒖깮 떆湲곗뿉 諛쒖깮릺뒗뜲 泥 踰덉㎏媛 蹂깭븯뒗 룞븞뿉, 몢 踰덉㎏媛 꽦異⑹쓽 諛쒖깮 吏곹썑 씪뼱궃떎怨 蹂닿퀬릺怨 엳떎(Kimura and Truman, 1990; Truman, 1990; Robinow et al., 1993; Awad and Truman, 1997; Draizen et al., 1999; Brodsky et al., 2000; Choi et al., 2006; Tan et al., 2011; Winbush and Weeks, 2011).

洹몃옒꽌 Scuttle fly뿉꽌 諛쒖깮 떒怨꾨퀎濡 corazonin 쑀쟾옄媛 諛쒗쁽릺뒗 뼇긽쓣 솗씤븯湲 쐞븯뿬 븷踰뚮젅 2졊怨 3졊, 踰덈뜲湲, 꽦異 떆湲곗쓽 以묒텛떊寃쎄퀎 議곗쭅쓣 梨꾩쭛븯뿬 媛곴컖 RNA瑜 異붿텧븯뿬 cDNA瑜 빀꽦븯뿬 利앺룺븯怨 쟾湲곗쁺룞 긽뿉꽌 吏곸젒 諛쒖깮 떒怨꾨퀎濡 corazonin 돱윴쓽 쑀쟾옄 蹂솕瑜 솗씤빐 蹂닿린濡 븯떎.

옱猷 諛 諛⑸쾿

궗쑁(feeding)

떎뿕뿉 씠슜븳 scuttle fly뒗 Megaselia scalaris씪뒗 븰紐낆쓣 媛吏 fly씠硫, 珥덊뙆由ъ 룞씪븳 癒뱀씠瑜 씠슜븯뿬 궗슜븯떎. 궗쑁쓣 쐞븯뿬 利앸쪟닔 250 mL뿉 dextrose 16 g, yeast flakes 6.5 g, cornmeal 20 g, agar 2.25 g쓣 援먮컲湲곕 씠슜븯뿬 샎빀븯怨 쟾옄젋吏뿉꽌 10遺 젙룄 걪뼱 꽆移섏 븡쓣 젙룄濡 媛뿴븯떎. 洹몃━怨 methylparaben 6.25 mL瑜 泥쒖쿇엳 뼥뼱쑉젮꽌 샎빀븯怨 諛곗 넻뿉 遺 썑 떇엺 떎쓬 꽦異⑹쓣 씠룞떆耳 궗쑁쓣 븯떎. 궗쑁 1二쇱씪 媛꾧꺽쑝濡 떎瑜 諛곗뿉 꽦異⑹쓣 삷寃⑥꽌 吏냽쟻쑝濡 떆뻾븯떎. 젣옉맂 궗쑁 諛곗뒗 4꼦 깋옣怨좎뿉 蹂닿븯쑝硫 궗슜 쟾 떎삩뿉 留욎텛湲 쐞빐 誘몃━ 爰쇰궡 넃 썑 궗슜븯떎.

以묒텛떊寃쎄퀎 議곗쭅쓽 梨꾩랬(collection of CNS tissue)

Scuttle fly쓣 븷踰뚮젅 떆湲 2졊 2~3씪, 3졊 3~5씪怨 踰덈뜲湲 떆湲 洹몃━怨 꽦異 떆湲곕퀎濡 媛쒖껜瑜 궗슜븯떎. 0.1% tween 20씠 룷븿릺뼱 엳뒗 PBS (phosphate buffer solution, pH 7.0)媛 梨꾩썙졇 엳뒗 솃씠 뙆씤 뒳씪씠뱶뿉 媛쒖껜瑜 떞洹 긽깭濡 떎泥댄쁽誘멸꼍(stereomicroscopy) 긽뿉꽌 媛뒛怨 젙諛븳 뀑쓣 씠슜븯뿬 븷踰뚮젅, 踰덈뜲湲, 꽦異⑹쓽 猿띿쭏遺遺꾩쓣 李뼱媛硫댁꽌 以묒텛떊寃쎄퀎 議곗쭅씤 뇤 蹂듭떊寃쎌깋 議곗쭅쓣 쟻異쒗븯뿬 梨꾩랬븯떎.

뿭쟾궗以묓빀슚냼뿰뇙諛섏쓳(reverse transcription polymerase chain reaction, RT-PCR)

Scuttle fly쓽 諛쒖깮 떒怨꾨퀎 븷踰뚮젅 2졊, 3졊怨 븷踰뚮젅 3졊쓽 뇤 蹂듭떊寃쎌깋 遺꾨━ 議곗쭅, 踰덈뜲湲, 꽦異 떆湲곕 긽쑝濡 뿭쟾궗以묓빀슚냼뿰뇙諛섏쓳(RT-PCR)쓣 떆뻾븯떎.

RNA 異붿텧

梨꾩랬맂 以묒텛떊寃쎄퀎 議곗쭅쓣 뿭쟾궗 諛섏쓳뿉 븘슂븳 mRNA瑜 異붿텧븯湲 쐞빐 諛쒖깮 떒怨꾨퀎濡 20媛 씠긽쓽 以묒텛떊寃쎄퀎瑜 쟻異쒗븯뿬 200 關L PBS buffer (pH 7.0)媛 뱾뼱 엳뒗 microcentrifuge tube뿉 蹂닿븯떎. 梨꾩랬媛 셿猷뚮맂 議곗쭅씠 tube뿉 媛씪븠쑝硫 50 關L PBS buffer瑜 궓湲곌퀬 굹癒몄뒗 議곗떖뒪읇寃 젣嫄고븯떎. 빟 50 關L쓽 PBS뿉 Trizol 200 關L 뵫 꽔怨 15珥덇컙 voltex mixer (Scientific Industries INC, USA) 湲곗뿉꽌 샎빀븳 썑 5遺꾧컙 떎삩뿉 꽭썙 넃븯떎. TRI-reagent 1/5 volume 젙룄쓽 chloroform 40 關L瑜 媛 tube뿉 꽔怨 voltex mixer뿉꽌 15珥 젙룄 샎빀븳 떎쓬, 15遺꾧컙 떎삩뿉 꽭썙 넃 썑 썝떖遺꾨━湲(centrifuge)뿉꽌 4꼦뿉꽌 12,000 rpm쑝濡 15遺꾧컙 썝떖遺꾨━ 븯떎.

썝떖遺꾨━媛 걹궃 tube뿉꽌 RNA媛 룷븿맂 긽痢듭븸쓣 議곗떖뒪읇寃 痍⑦빐꽌 깉濡쒖슫 tube뿉 삷寃쇰떎. 긽痢듭븸씠 떞湲 tube뿉 RNA 移⑥쟾슜븸怨 isopropanol 슜븸(Sigma-Aldrich, St Louis, USA)쓣 媛곴컖 1/4 volume 젙룄瑜 異붽븳 썑 15珥 룞븞 voltex mixer湲곗뿉 샎빀븯뿬, 10遺 룞븞 tube瑜 떎삩뿉꽌 꽭썙 넃 떎쓬 4꼦뿉꽌 12,000 rpm쑝濡 15遺꾧컙 썝떖遺꾨━ 떆耳곕떎.

썝떖遺꾨━媛 셿猷뚮릺硫 긽痢듭븸쓣 議곗떖뒪읇寃 젣嫄고븯怨 70% ethanol(RNA슜)濡 2쉶 諛섎났븯뿬 voltex mixer 湲곗뿉 15珥 샎빀 썑 12,000 rpm뿉꽌 15遺꾧컙 꽭泥숉븯뿬 썝떖移⑥쟾 떆耳곕떎. 썝떖遺꾨━媛 걹굹硫 70% ethanol쓣 셿쟾엳 젣嫄곗떆궎怨 1떆媛 젙룄 떎삩뿉 嫄댁“떆耳곕떎. 떎쓬쑝濡 20 關L DEPC 슜븸쓣 泥④븯뿬 RNA瑜 異붿텧쓣 셿꽦븯떎.

RT-PCR 諛섏쓳

RNA뿉꽌 cDNA瑜 젣옉븯湲 쐞븯뿬 0.5 mL tube뿉 RNA 슜븸 10 關L DEPC 슜븸 20 關L쓣 샎빀븳 썑, tube瑜 65꼦꽌 5遺 룞븞 RNA瑜 蹂꽦떆궓 떎쓬 諛붾줈 利됱떆 뼹쓬臾쇱뿉 5遺 룞븞 떞媛몢뿀떎.

蹂꽦떆궓 RNA 30 關L瑜 깉濡쒖슫 tube뿉 痍⑦븯怨 뿭쟾궗 諛섏쓳쓽 議곗꽦씤 5x first-standard buffer, dNTP mix, DTT, RNase inhibitor, oligo-dT primer, MMLV reverse transcriptase (SMART MMLV RT, Clontech, USA)瑜 52 關L瑜 샎빀떆궓 썑 spin down븯뿬 42꼦뿉꽌 1떆媛 룞븞 뿭쟾궗(reverse transcription, RT) 諛섏쓳쓣 떆耳곕떎. 젣옉맂 cDNA뒗 샎꽦솕 probe 젣옉 떆 떎떆븳 PCR 諛섏쓳怨 룞씪븳 怨쇱젙쑝濡 PCR 利앺룺쓣 븯떎.

Genomic DNA 異붿텧

Scuttle fly쓽 諛쒖깮 떒怨꾨퀎 뿭쟾궗以묓빀슚냼뿰뇙諛섏쓳(RT-PCR)쓣 넻븯뿬 留뚮뱾뼱吏 cDNA 議곌뎔쑝濡 씠슜븯湲 쐞븯뿬 븷踰뚮젅 3졊 以묒텛떊寃쎄퀎 議곗쭅뿉꽌 genomic DNA瑜 異붿텧븯떎.

븷踰뚮젅 3졊 以묒텛떊寃쎄퀎 議곗쭅씠 떞湲 1.5 mL tube뿉 STE buffer 500 關L뿉 proteinkinase 12.5 關L瑜 샎빀븯뿬 꽔怨 媛덉븯떎. 떎쓬쑝濡 50꼦 삩닔議곗뿉꽌 3떆媛 젙룄 諛섏쓳떆耳곕떎. 諛섏쓳씠 걹궃 tube뿉 phenol 1 volume쓣 諛섏쓳떆耳 15,000 rpm뿉꽌 5遺 젙룄 긽삩뿉꽌 썝떖移⑥쟾 떆궎怨 긽痢듭븸쓣 깉濡쒖슫 tube뿉 삷寃 떞 썑 떎떆 媛숈 諛⑸쾿쑝濡 븳踰 뜑 諛섎났븯떎. 떎쓬쑝濡 긽痢듭븸쓣 議곗떖뒪읇寃 깉濡쒖슫 tube뿉 삷湲곌퀬 phenol怨 chloroform쓣 1:1 鍮꾩쑉濡 1 volume쓣 諛섏쓳떆耳 15,000 rpm뿉꽌 5遺 젙룄 긽삩뿉꽌 썝떖移⑥쟾 떆궎怨 긽痢듭븸쓣 깉濡쒖슫 tube뿉 삷寃 떞븯떎. 긽痢듭븸쓣 삷湲 tube뿉 chloroform 1 volume쓣 泥④븯怨 15,000 rpm뿉꽌 5遺 젙룄 긽삩뿉꽌 썝떖移⑥쟾 떆耳 긽痢듭븸쓣 뼸뿀떎. 13% PEG 슜븸 1 volume怨 諛섏쓳떆궓 뮘 뼹쓬뿉 30遺 젙룄 넃븘몦 썑 15,000 rpm뿉꽌 10遺 젙룄 4꼦뿉꽌 썝떖移⑥쟾 떆궎怨 臾닿굅슫 遺꾩옄媛 媛씪븠쑝硫 긽痢듭븸쓣 젣嫄고븯떎. 70% ethanol뿉 닔꽭븳 썑 떎떆 15,000 rpm뿉꽌 5遺꾧컙 4꼦뿉꽌 썝떖移⑥쟾 떆궓 썑 긽痢듭븸쓣 젣嫄고븯떎. Tube瑜 嫄곌씀濡 꽭썙꽌 媛씪븠븘 엳뒗 DNA瑜 닔떆媛 룞븞 異⑸텇엳 嫄댁“떆궎怨, 嫄댁“媛 셿猷뚮릺硫 利앸쪟닔 50 關L뿉 슜빐빐꽌 genomic DNA瑜 異붿텧븯떎.

寃 怨

Scuttle fly뿉꽌 諛쒖깮 떒怨꾨퀎濡 corazonin 쑀쟾옄쓽 諛쒗쁽 뼇긽쓣 솗씤븯湲 쐞븯뿬 븷踰뚮젅 2졊怨 3졊, 踰덈뜲湲, 꽦異 떆湲곗쓽 以묒텛떊寃쎄퀎 議곗쭅쓣 梨꾩쭛븯뿬 媛곴컖 RNA瑜 異붿텧븯뿬 cDNA瑜 빀꽦 썑 Scut5'Crz_HindIII primer Scut3'Crz_XbaI primer (Kim et al., 2013, Genbank KF318884.1)濡 利앺룺븯뿬 쟾湲곗쁺룞 긽뿉꽌 諛대뱶瑜 솗씤븯떎(Fig. 1).

Fig. 1. Structure of Crz gene in scuttle fly A; map for the Crz coding region B; sequences of the genomic Crz gene The coding sequences are shown in capital letters and 5'-UT, intron, 3'-UT sequences are shown in lower case.

議곌뎔쑝濡쒕뒗 corazonin cDNA 뵆씪뒪誘몃뱶 꽦異 genomic DNA, 븷踰뚮젅 3졊 떆湲곗쓽 以묒텛떊寃쎄퀎 genomic DNA瑜 異붿텧븯뿬 씠슜븯떎. cDNA뒗 쑀쟾옄 湲몄씠媛 372 bp濡 利앺룺씠 릺뿀怨, 씤듃濡좎씠 젣嫄곕릺吏 븡 꽦異 genomic DNA 븷踰뚮젅 3졊 떆湲곗쓽 以묒텛떊寃쎄퀎 genomic DNA뒗 59 bp쓽 씤듃濡좎쓣 룷븿븯뿬 쑀쟾옄 湲몄씠媛 431 bp濡 利앺룺릺뒗 寃껋쓣 愿李고븯떎. 諛쒖깮 떒怨꾨퀎濡 以묒텛떊寃쎄퀎쓽 쑀쟾옄 利앺룺쓣 쟾湲곗쁺룞 긽쑝濡 솗씤빐 蹂대㈃, 븷踰뚮젅 2졊 떆湲곗뿉뒗 븷踰뚮젅 2졊, 3졊怨 踰덈뜲湲, 꽦異 떆湲 紐⑤몢뿉꽌 議곌뎔쑝濡 궗슜븳 cDNA쓽 湲몄씠 媛숈 쑀쟾옄媛 利앺룺씠 릺뒗 寃껋쓣 솗씤븯떎. 씠寃껋 corazonin 쑀쟾옄 쟾궗泥닿 젙긽쟻쑝濡 媛怨듬릺뼱 湲곕뒫꽦쓽 mRNA媛 留뚮뱾뼱吏뒗 寃껋쓣 쓽誘명븳떎. 븷踰뚮젅 2졊, 3졊, 踰덈뜲湲 떆湲곗뿉뒗 議곌뎔 genomic DNA蹂대떎 湲몄씠媛 湲 삉 떎瑜 corazonin 꽦닕븳 븘삎(subtype)씠 愿李곕릺뿀뒗뜲 湲 corazonin 븘삎 꽦異⑹뿉꽌뒗 利앺룺씠 릺吏 븡븯떎(Fig. 2A).

Fig. 2. RT-PCR amplification of Crz mRNA in the CNS of scuttle fly A; Changes of subtypes of Crz in CNS of scuttle fly during development B; Compartmentation of the subtypes of Crz in CNS of scuttle fly.

슦由щ뒗 젣옄由ы샎꽦솕瑜 넻빐꽌 踰덈뜲湲 떆湲곗뿉 뇤쓽 벑以묒븰 돱윴 뙇怨 蹂듭떊寃쎌깋 뿬뜜 뙇 돱윴씠 궗씪吏뒗 寃껋쓣 솗씤븯湲 븣臾몄뿉, 꽦異⑹뿉꽌 궗씪吏 湲 븘삎쓽 corazonin 쟾궗泥닿 蹂듭떊寃쎌깋 쑀삎씪 寃껋쑝濡 異붿젙븯떎. 湲몄씠媛 湲 corazonin 쑀쟾옄 蹂듭떊寃쎌깋 議곗쭅怨쇱쓽 愿젴꽦쓣 솗씤븯湲 쐞빐꽌 븷踰뚮젅 3졊 떆湲곗쓽 以묒텛떊寃쎄퀎쓽 뇤 蹂듭떊寃쎌깋 議곗쭅쓣 媛곴컖 遺꾨━떆耳쒖꽌 媛숈 諛⑸쾿쑝濡 쑀쟾옄瑜 利앺룺떆耳 蹂댁븯떎. 洹몃윴뜲 뇤 議곗쭅留뚯쓣 遺꾨━븳 寃껋 몢 媛쒖쓽 corazonin 쑀쟾옄媛 利앺룺씠 릺뿀吏留 蹂듭떊寃쎌깋 議곗쭅留뚯쓣 遺꾨━븳 寃껋뿉꽌뒗 湲몄씠媛 湲 쑀쟾옄媛 利앺룺씠 릺吏 븡 寃껋쓣 솗씤븯떎. 洹몃옒꽌 湲몄씠媛 湲 corazonin 쑀쟾옄媛 븵뿉꽌 異붿륫뻽뜕 蹂듭떊寃쎌깋 議곗쭅怨 愿젴씠 엳뒗 寃껋씠 븘땲씪 뇤 議곗쭅뿉꽌 諛쒗쁽릺뒗 corazonin 돱윴怨 愿젴씠 엳떎뒗 寃껋쓣 솗씤븯떎(Fig. 2B).

Scuttle fly쓽 3졊 븷踰뚮젅 以묒텛떊寃쎄퀎뿉꽌 諛쒗쁽릺뒗 몢 媛吏 븘삎쓽 corazonin 쑀쟾옄媛 紐⑤몢 뇤 遺쐞뿉꽌 諛쒗쁽맂떎硫 꽦異⑹뿉꽌 궗씪吏뒗 湲 븘삎쓽 corazonin 뇤쓽 벑以묒븰 떊寃쎌뙇怨 愿젴씠 엳쓣 媛뒫꽦씠 겕떎. 븵쑝濡 씠 異붿륫쓣 寃利앺븯湲 쐞빐 슦由щ뒗 몢 媛吏 븘삎쓽 corazonin cDNA瑜 꽌釉뚰겢濡쒕떇(subcloning)븯뿬 뿼湲곗꽌뿴쓣 議곗궗븯怨좎옄 븳떎.

怨 李

Scuttle fly 諛쒖깮 떒怨꾨퀎濡 以묒텛떊寃쎄퀎뿉꽌 諛쒗쁽릺뒗 corazonin 쑀쟾옄(Kim et al., 2013, Genbank KF318884.1)쓽 쑀삎쓣 鍮꾧탳븯湲 쐞빐 뿭쟾궗以묓빀슚냼뿰뇙諛섏쓳쓣 떆뻾븯뿬 cDNA瑜 젣옉븯뿬 PCR뿉 利앺룺쓣 떆耳곕떎. 븷踰뚮젅 2졊, 3졊, 踰덈뜲湲 떆湲곗쓽 以묒텛떊寃쎄퀎 議곗쭅뿉꽌 議곌뎔 cDNA 媛숈 湲몄씠쓽 corazonin 쑀쟾옄 議곌뎔 genomic DNA 蹂대떎 湲몄씠媛 湲 떎瑜 븳 媛쒖쓽 corazonin 쑀쟾옄媛 슌졆븯寃 愿李곕릺뿀떎. 븯吏留 踰덈뜲湲 떆湲곗뿉뒗 떎냼 빟븯寃 굹궗怨, 꽦異 떆湲곗뿉뒗 議곌뎔씤 cDNA 媛숈 湲몄씠쓽 쑀쟾옄留 媛뺥븯寃 굹굹뒗 寃껋쓣 솗씤븯떎. 씠寃껋 븷踰뚮젅뿉꽌 踰덈뜲湲 떆湲곕줈, 踰덈뜲湲곗뿉꽌 꽦異 떆湲곕줈 蹂깭媛 씠猷⑥뼱吏 븣 corazonin 돱윴씠 젣嫄곕릺뒗 寃껉낵 쑀쟾옄媛 諛쒗쁽릺뒗 寃껉낵쓽 긽샇 愿젴꽦씠 엳떎뒗 寃껋쑝濡 깮媛곷릺뿀떎. 洹몃옒꽌 븯굹쓽 湲몄씠媛 湲 corazonin 쑀쟾옄媛 꽦異 떆湲곗뿉 굹굹吏 븡뒗 寃껋쑝濡 蹂댁븘 泥섏쓬뿉 蹂듭떊寃쎌깋怨 愿젴씠 엳쓣 寃껋씠씪怨 異붿륫븯떎.

븷踰뚮젅뿉꽌 踰덈뜲湲곕줈 蹂깭븯뒗 룞븞뿉 蹂듭떊寃쎌깋 議곗쭅뿉꽌쓽 corazonin 돱윴씠 젣嫄곕릺뒗 寃껉낵 긽愿愿怨꾨 솗씤빐 蹂닿린 쐞븯뿬 븷踰뚮젅 3졊 떆湲곗쓽 以묒텛떊寃쎄퀎 議곗쭅쓣 뇤 蹂듭떊寃쎌깋 議곗쭅쓣 媛곴컖 遺꾨━븯뿬 RNA瑜 異붿텧븯뿬 cDNA瑜 留뚮뱾뼱 corazonin 쑀쟾옄瑜 利앺룺쓣 떆耳 蹂댁븯떎. 洹몃윴뜲 븷踰뚮젅 3졊 떆湲곗쓽 뇤 議곗쭅留 遺꾨━븳 寃껋뿉꽌 븷踰뚮젅 2졊怨 3졊, 踰덈뜲湲 떆湲곗 媛숈씠 湲몄씠媛 떎瑜 몢 媛쒖쓽 corazonin 쑀쟾옄媛 빟븯寃 굹궗怨, 蹂듭떊寃쎌깋 議곗쭅留 遺꾨━븳 寃껋뿉꽌뒗 떎瑜닿쾶 湲몄씠媛 湲 쑀쟾옄뒗 굹굹吏 븡븯怨 湲몄씠媛 옉 븯굹쓽 corazonin 쑀쟾옄留 굹궗떎. 씠寃껋쑝濡 蹂댁븯쓣 븣, 湲몄씠媛 湲 븯굹쓽 쑀쟾옄媛 뇤뿉꽌 遺꾨퉬릺뒗 corazonin 돱윴怨 諛젒븳 愿怨꾧 엳떎뒗 寃껋쓣 솗씤븯떎. 洹몃━怨 踰덈뜲湲 떆湲곗뿉 굹궃 몢 媛쒖쓽 corazonin 쑀쟾옄뒗, 븷踰뚮젅뿉꽌 踰덈뜲湲곕줈 蹂깭릺硫댁꽌 蹂듭떊寃쎌깋 議곗쭅쓽 corazonin 諛쒗쁽 돱윴씠 젣嫄곕릺怨 븘슱윭 뇤 議곗쭅쓽 벑以묒븰뿉 쐞移섑븳 corazonin 諛쒗쁽 돱윴씠 젣嫄곌 릺뼱 蹂댁씠吏 븡븯吏留 븘吏곴퉴吏 셿쟾븯寃 젣嫄곌 릺吏 븡븘꽌 빟븯寃 굹궃떎뒗 寃껋쑝濡 異붿륫빐 蹂 닔 엳뿀떎. 꽦異⑹뿉꽌뒗 湲몄씠媛 옉 븯굹쓽 쑀쟾옄留 媛뺥븯寃 굹굹怨 엳뒗뜲 踰덈뜲湲곗뿉꽌 꽦異 떆湲곕줈 蹂깭맆 븣 벑以묒븰쓽 corazonin 돱윴씠 셿쟾엳 젣嫄곌 릺뿀湲 븣臾몄뿉 꽦異 떆湲곗쓽 議곌뎔 cDNA 媛숈 湲몄씠쓽 쑀쟾옄留 媛뺥븯寃 굹궃떎怨 깮媛곹븯떎.

쐞 媛숈씠 理쒓렐뿉 corazonin뿉 빐 뿰援ш 留롮씠 릺뼱 吏怨 엳뒗 Drosophila melanogaster瑜 긽쑝濡 븯뿬, 븘吏 corazonin뿉 빐 뿰援ш 릺뼱 엳吏 븡怨, 삉븳 떎瑜 怨ㅼ땐뿉 鍮꾪빐 룆듅븳 뻾룞쓣 蹂댁씠뒗 scuttle fly瑜 긽쑝濡 諛쒖깮 떒怨꾩씤 븷踰뚮젅, 踰덈뜲湲, 꽦異 떆湲곗뿉 뵲씪 corazonin 諛쒗쁽 돱윴쓽 깮꽦怨 궗硫 怨쇱젙쓽 蹂솕 벑쓣 鍮꾧탳 솗씤븯떎. 洹몃━怨 corazonin 諛쒗쁽 돱윴쓽 깮꽦怨 궗硫몄뿉 愿뿬븯뒗 몢 媛쒖쓽 corazonin 쑀쟾옄媛 議댁옱븳떎뒗 寃껋쓣 솗씤븯떎.

븵쑝濡 쐞쓽 뿰援щ 諛뷀깢쑝濡 scuttle fly쓽 諛쒖깮 떒怨꾩뿉 뵲瑜 corazonin 돱윴怨 꽭룷옄뿰궗(apoptosis)쓽 긽샇愿怨꾨 洹쒕챸븿쑝濡쒖뜥 corazonin 떊寃쏀렔떚뱶媛 븯뒗 뿭븷 諛 湲곕뒫 벑뿉 愿빐꽌 넻씪맂 寃곕줎씠 굹삱 닔 엳쓣 寃껋쑝濡 湲곕媛 맂떎.

ACKNOWLEDGEMENT

The study was supported by reserch find Mokpo Science University, 2023.

CONFLICT OF INTEREST

The authors affirm that they have no academic, financial or rights interests.

References
  1. Awad TA, Truman JW. Postembryonic development of the midline glia in the CNS of Drosophila: proliferation, programmed cell death, and endocrine regulation. Dev Biol. 1997. 187: 283-297.
    Pubmed CrossRef
  2. Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM. Drosophila p53 binds a damage response element at the reaper locus. Cell. 2000. 101: 103-113.
    Pubmed CrossRef
  3. Choi SH. "The Regulation of Neuropeptide Corazonin and Its Functional Analyses in Drosophila melanogaster.". PhD diss., University of Tennessee. 2009.
  4. Choi YJ, Lee G, Park JH. Programmed cell death mechanisms of identifiable peptidergic neurons in Drosophila melanogaster. Development. 2006. 133: 2223-2232.
    Pubmed CrossRef
  5. Choi YJ, Lee G, Hall JC, Park JH. Comparative analysis of Corazonin-encoding genes (Crz's) in Drosophila species and functional insights into Crz-expressing neurons. J Comp Neurol. 2005. 482: 372-385.
    Pubmed CrossRef
  6. Draizen TA, Ewer J, Robinow S. Genetic and hormonal regulation of the death of peptidergic neurons in the Drosophila central nervous system. J Neurobiol. 1999. 38: 455-465.
    Pubmed CrossRef
  7. Karcavich R, Doe CQ. Drosophila neuroblast 7-3 cell lineage: a model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. J Comp Neurol. 2005. 481: 240-251.
    Pubmed CrossRef
  8. Kim J, Kim JW, Park JH. Characterization and expression of corazonin gene in the scuttle fly, Megaselia scalaris. 2013. GenBank; KF318884.1.
    CrossRef
  9. Kimura KI, Truman JW. Postmetamorphic cell death in the nervous and muscular systems of Drosophila melanogaster. J Neurosci. 1990. 10: 403-411.
    Pubmed KoreaMed CrossRef
  10. Lee G, Kim KM, Kikuno K, Wang Z, Choi YJ, Park JH. Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster. Cell Tissue Res. 2008. 331: 659-673.
    Pubmed CrossRef
  11. Lee G, Wang Z, Sehgal R, Chen CH, Kikuno K, Hay B, Park JH. Drosophila caspases involved in developmentally regulated programmed cell death of peptidergic neurons during early metamorphosis. J Comp Neurol. 2011. 519: 34-48.
    Pubmed CrossRef
  12. Lundell MJ, Lee HK, P챕rez E, Chadwell L. The regulation of apoptosis by Numb/Notch signaling in the serotonin lineage of Drosophila. Development. 2003. 130: 4109-4121.
    Pubmed CrossRef
  13. Novotny T, Eiselt R, Urban J. Hunchback is required for the specification of the early sublineage of neuroblast 7-3 in the Drosophila central nervous system. Development. 2002. 129: 1027-1036.
    Pubmed CrossRef
  14. Park HH. The Development Stage of Scuttle Fly. Biomedical Laboratory Sciences. 2018. 24: 125-129.
    CrossRef
  15. Park HH. The Expression of Corazonin Neurons in Larvae Stage of Scuttle Fly. Biomedical Laboratory Sciences. 2020. 26: 1-9.
    CrossRef
  16. Park HH. The Expression of Corazonin Neurons in Pupa and Adult Stage of Scuttle Fly. Biomedical Laboratory Sciences. 2021. 27: 239-247.
    CrossRef
  17. Park HH. Morphological Characteristics of Neural Tissue and Corazonin Neurons of Central Nervous System in Larvae Stage of Scuttle Fly. Biomedical Laboratory Sciences. 2022. 28: 290-297.
    CrossRef
  18. Park HH, Park MS, Na KJ. Development of Central Nervous System in Scuttle Fly. Korean J Clin Lab Sci. 2018. 50: 284-288.
    CrossRef
  19. Robinow S, Talbot WS, Hogness DS, Truman JW. Programmed cell death in the Drosophila CNS is ecdysone-regulated and coupled with a specific ecdysone receptor isoform. Development. 1993. 119: 1251-1259.
    Pubmed CrossRef
  20. Tan Y, Yamada-Mabuchi M, Arya R, St Pierre S, Tang W, Tosa M, Brachmann C, White K. Coordinated expression of cell death genes regulates neuroblast apoptosis. Development. 2011. 138: 2197-2206.
    Pubmed KoreaMed CrossRef
  21. Truman JW. Metamorphosis of the central nervous system of Drosophila. J Neurobiol. 1990. 21: 1072-1084.
    Pubmed CrossRef
  22. Winbush A, Weeks JC. Steroid-triggered, cell-autonomous death of a Drosophila motoneuron during metamorphosis. Neural Dev. 2011. 6: 15.
    Pubmed KoreaMed CrossRef