Search for


TEXT SIZE

search for



CrossRef (0)
Development of a High-performance COVID-19 Diagnostic Kit Employing Improved Antibody-quantum dot Conjugate
Biomed Sci Letters 2023;29:344-354
Published online December 31, 2023;  https://doi.org/10.15616/BSL.2023.29.4.344
© 2023 The Korean Society For Biomedical Laboratory Sciences.

Seongsoo Kim1,*, Hyunsoo Na2,*, Hong-Geun Ahn2,*, Han-Sam Park2,*, Jaewoong Seol1,** and Il-Hoon Cho1,†,**

1Department of Biomedical Laboratory Science, Eulji University, Seongnam 13135, Korea
2Department of Industrial Electronics Research Institute, BK Electronics, Anyang 13901, Korea
Correspondence to: Il-Hoon Cho. Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 13135, Korea.
Tel: +82-31-740-7397, Fax: +82-31-740-7284, e-mail: ihcho@eulji.ac.kr
*Researcher, **Professor.
Received November 22, 2023; Revised December 7, 2023; Accepted December 8, 2023.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
This study emphasizes the importance of early diagnosis and response to COVID-19, leading to the development of a rapid diagnostic kit using quantum dots. The research focuses on finely tuning bioconjugation with quantum dots to enhance the accuracy and sensitivity of COVID-19 diagnosis. We have developed a COVID-19 rapid diagnostic kit that exhibits a sensitivity more than 50 times higher than existing COVID-19 diagnostic kits. Quantum dots enable the accurate detection of COVID-19 viral antigens even at low concentrations, providing a rapid response in the early stages of infection. The COVID-19 quantum dot diagnostic kit offers quick analysis time, utilizing the quantum properties of particles to swiftly measure COVID-19 infection for immediate response and isolation measures. Additionally, this diagnostic kit allows for multiple analyses with ease, as multiple quantum dots can detect various antigens and antibodies simultaneously in a single experiment. This efficiency enhances testing, reduces sample requirements, and lowers experimental costs. The application of this diagnostic technology is anticipated in the future for early diagnosis and monitoring of other infectious diseases.
Keywords : Quantum dot, COVID-19, Rapid diagnosis, Bioconjugation, Quantum dot detector
꽌 濡

떊蹂醫 諛붿씠윭뒪濡 씤븳 샇씉湲 媛먯뿼蹂묒씠 湲濡쒕쾶濡 鍮좊Ⅴ寃 솗궛릺怨 엳쑝硫, 씠윭븳 媛먯뿼 吏덊솚쓣 젙솗븯寃 吏꾨떒븯뒗 寃껋 留ㅼ슦 以묒슂븯떎(Heo, 2020). 쁽옱, 二쇰줈 遺꾩옄 吏꾨떒怨 떊냽빆썝 寃궗媛 궗슜릺뒗뜲, 씠윭븳 諛⑸쾿 쟾臾 吏떇怨 떆媛꾩씠 븘슂븯硫 젙솗꽦씠 빑떖씠떎. 쁽옣뿉꽌 떊냽븳 寃곌낵瑜 뼸쓣 닔 엳뒗 쁽옣 以묒떖 吏꾨떒 諛⑸쾿 媛먯뿼蹂 솗궛쓣 諛⑹븯뒗뜲 以묒슂븳 뿭븷쓣 븯怨 엳떎. 쁽옣 吏꾨떒 寃궗 湲 떆媛꾩쓣 떒異뺥븯怨 떊냽븳 쓳씠 媛뒫빐議뚯쑝굹(Kim et al., 2021), 誘쇨컧룄 젙솗꽦씠 궙 臾몄젣젏쑝濡 쁽옣 以묒떖 떊냽 硫댁뿭 吏꾨떒 諛⑸쾿쓽 젙솗꽦怨 誘쇨컧룄瑜 뼢긽떆궎湲 쐞븳 뿰援ъ 湲곗닠쟻씤 諛쒖쟾 怨꾩냽 吏꾪뻾릺怨 엳떎(Kim et al., 2017).

삎愿묒뿼猷, 벑삩 PCR, 뼇옄젏쓣 솢슜븳 떊냽 吏꾨떒 떆뒪뀥 媛곴컖 옣떒젏쓣 媛吏怨 엳떎. 삎愿묒뿼猷뚮뒗 젙솗꽦쓣 뼢긽떆궎뒗 옣젏씠 엳吏留, 鍮꾩슜怨 蹂듭옟꽦씠 臾몄젣씠硫, 삤寃異 媛뒫꽦씠 엳떎. 벑삩 PCR 鍮좊Ⅴ怨 쁽옣뿉꽌 궗슜 媛뒫븯吏留, 듅젙 諛붿씠윭뒪굹 몴쟻臾쇱뿉 븳 寃異 뒫젰씠 젣븳릺硫, 떎以 몴쟻臾 吏꾨떒씠 뼱젮슱 닔 엳떎. 뼇옄젏 옉怨 븞젙쟻쑝濡 젣議곕맆 닔 엳뼱 넂 誘쇨컧룄 諛쒓킅 슚쑉꽦쓣 媛吏怨 엳뼱 寃異 떊샇瑜 利앺룺떆耳 젙솗꽦怨 誘쇨컧룄瑜 뼢긽떆궗 닔 엳떎. 뼇옄젏 諛쒓킅 깋긽쓣 議곗젅븷 닔 엳뼱 떎以 몴쟻臾쇱쓣 룞떆뿉 寃異쒗븷 닔 엳뒗 떎以묒깋 諛쒓킅 湲곕뒫쓣 援ы쁽븷 닔 엳뼱 寃궗 떆媛꾧낵 鍮꾩슜쓣 젅媛먰븯硫 웾 寃궗 諛 蹂묒썝泥 깘吏뿉 쑀슜븯떎(Zhu et al., 2011). 洹몃윭굹 뼇옄젏 솚寃 슂씤뿉 뵲씪 븞젙꽦씠 媛먯냼븯怨 諛쒓킅 듅꽦쓽 蹂룞꽦씠 엳떎. 뵲씪꽌 뼇옄젏怨 빆泥 以묓빀泥 湲곗닠쓽 븞젙꽦쓣 솗蹂댄븳떎硫 떊냽 硫댁뿭 吏꾨떒 떆뒪뀥쓣 뼢긽떆궗 닔 엳쓣 寃껋씠떎(Mousavi et al., 2022).

뼇옄젏 媛먯뿼蹂 吏꾨떒뿉 슦닔븳 떊샇泥대줈 븣젮졇 엳吏留, 빆泥-뼇옄젏 젣議 怨쇱젙뿉꽌 븞젙꽦 臾몄젣媛 諛쒖깮븷 닔 엳떎. 씠瑜 洹밸났븯湲 쐞빐 뼇옄젏쓽 듅꽦쓣 뙆븙븯湲 쐞븳 떎뿕씠 븘슂븯硫, 빐떦 떎뿕 뼇옄젏쓽 諛쒓킅 듅꽦怨 븞젙꽦쓣 솗씤븯怨, 硫댁뿭 遺꾩꽍 떆뒪뀥뿉꽌쓽 떊猶곗꽦쓣 蹂댁옣븯湲 쐞븳 以묒슂븳 떒怨꾩씠떎(Mei et al., 2009). 떎뿕쓣 넻빐 뼇옄젏씠 젣議 썑뿉룄 듅젙 뙆옣뿉꽌 씪愿맂 諛쒓킅쓣 쑀吏븯뒗吏 洹몃━怨 뼇옄젏쓽 븞젙꽦쓣 룊媛븯湲 쐞빐 겕湲 遺꾪룷 諛 몴硫 쟾븯瑜 痢≪젙븯뒗 諛⑸쾿쓣 궗슜븯뿬 냼떎 쁽긽쓣 삁諛⑺븯怨 븞젙꽦 솗씤씠 븘슂븯떎(Mousavi et al., 2022).

蹂 뿰援щ뒗 빆泥-뼇옄젏 以묓빀泥 媛쒖꽑 諛 씠誘몄 湲곕컲 젙웾 遺꾩꽍 媛뒫븳 뼇옄젏 깘吏湲곕 솢슜븳 뿰援щ줈, 뼇옄젏쓽 븞젙꽦 臾몄젣瑜 洹밸났븯湲 쐞븳 뿰援ъ 湲곗닠 媛쒕컻쓣 二쇱슂 紐⑺룷濡 궪븯떎. 씠瑜 넻빐 빆泥-뼇옄젏 以묓빀泥대 媛쒕컻븯怨, 씠瑜 씠誘몄 湲곕컲 젙웾 遺꾩꽍뿉 쟻슜븯뿬 뼇옄젏쓽 꽦뒫쓣 뼢긽떆耳곕떎. 빆泥-뼇옄젏 以묓빀泥댁쓽 븞젙븳 寃고빀 諛⑸쾿쓣 媛쒕컻븯뒗 怨쇱젙뿉꽌 뼇옄젏怨 빆泥 媛꾩쓽 媛뺣젰븯怨 븞젙븳 긽샇옉슜쓣 援ы쁽븯湲 쐞빐 떊猶곗꽦 엳뒗 寃고빀 諛⑸쾿쓣 媛쒕컻븯怨 寃고빀 媛뺣룄 븞젙꽦쓣 뼢긽떆궎뒗 뿰援щ 닔뻾븯떎. 씠 뿰援щ 넻빐 슦由щ뒗 carbodiimide 諛섏쓳쓣 理쒖쟻솕븯뿬 빆泥댁 뼇옄젏 媛꾩쓽 以묓빀泥 삎꽦쓣 諛⑹븯怨 븞젙꽦쓣 뼢긽떆耳곕떎. Carbodiimide 諛섏쓳 理쒖쟻솕뒗 빆泥댁 뼇옄젏 媛꾩쓽 寃고빀쓣 媛뺥솕븯뒗 룞떆뿉 aggregation쓣 諛⑹븯뿬 옣湲곌컙뿉 嫄몄퀜 븞젙맂 긽깭瑜 쑀吏븷 닔 엳룄濡 젣議고븯떎(Parolo et al., 2015). 씠 理쒖쟻솕맂 諛섏쓳 빆泥댁쓽 솢꽦솕 뼇옄젏쓽 몴硫댁뿉 諛쒖깮븷 닔 엳뒗 遺遺꾩쟻씤 寃고빀쓽 뼲젣瑜 넻빐 寃ш퀬븳 以묓빀泥 삎꽦쓣 룄 빆泥-뼇옄젏 以묓빀泥대뒗 蹂꽦 뾾씠 븞젙쟻쑝濡 쑀吏릺뼱, 솚寃쎌쟻씤 蹂솕굹 쇅遺 슂씤뿉 븳 媛뺥븳 궡꽦쓣 媛뽰텛寃 릺뿀떎. 肉먮쭔 븘땲씪, 씠 뿰援ъ뿉꽌 뼇옄젏쓽 몴硫 肄뷀똿쓣 넻빐 뼇옄젏쓽 븞젙꽦怨 諛쒓킅 슚쑉쓣 洹밸솕 븯떎. 씠 媛숈 醫낇빀쟻씤 湲곗닠쟻 媛쒖꽑 븞젙꽦怨 諛쒓킅 슚쑉쓽 뼇硫댁뿉꽌 빆泥-뼇옄젏 以묓빀泥댁쓽 꽦뒫쓣 넂씠뒗뜲 湲곗뿬븯떎.

옱猷 諛 諛⑸쾿

옱猷

COVID-19 빆썝 鍮좊Ⅸ 궎듃뿉꽌 궗슜맂 빆泥대뒗 뱶쓽 Hytest뿉꽌 젣議곕맂 3CV4-C715 SARS-CoV-2 Nucleoprotein 빆泥(Hytest #3C4-C715) 諛 3CV4-C706 SARS-CoV-2 Nucleoprotein 빆泥(Hytest #3C4-C706)瑜 援щℓ븯떎. 삉븳, 옱議고빀 빆썝뿉뒗 以묎뎅쓽 FAPON뿉꽌 깮궛븳 Recombinant Covid-19 antigen (FAPON #516)씠 궗슜릺뿀떎.

蹂 뿰援ъ뿉꽌 몴以臾쇱쭏 諛붿씠삤븞쟾臾쇱쭏濡 ZeptoMetrix뿉꽌 誘멸뎅쓽 SARS-Related Coronavirus 2瑜 援щℓ븯뿬 솢슜뻽떎.

뼇옄젏 븳誘쇨뎅 ZEUS 궗뿉꽌 뙆옣씠 620 nm씤 carboxyl quantum dot beads (ZEUS #2QD620C221114)瑜 궗슜뻽떎. 삉븳, 빆泥 뼇옄젏 以묓빀泥 젣議곕 쐞빐 誘멸뎅쓽 Thermo뿉꽌 EDC (Thermo #22980) 諛 sulfo-NHS (Thermo #24510)瑜 援щℓ븯떎.

Dynamic Light Scattering (DLS) 諛 Zeta potential 痢≪젙 Anton paar뿉꽌 깮궛븳 Omega cuvettes (Anton paar #225288) 諛 Kuvetten Cuvettes (Anton paar #164435)쓣 솢슜뻽떎.

빆泥-뼇옄젏 以묓빀泥 젣議

뼇옄젏 湲곕컲 COVID-19 떊냽빆썝吏꾨떒 궎듃뿉꽌 빆泥-뼇옄젏 以묓빀泥대뒗 빆泥댁쓽 amine (NH2) 洹몃9怨 뼇옄젏 鍮꾨뱶쓽 옉슜湲곗씤 carboxyl (COOH) 寃고빀쓣 쑀룄븯떎. EDC/sulfo-NHS 寃쎌슦 媛 5 mg/mL 5 關L瑜 뼇옄젏 1/10 씗꽍븳(10 mM PB) micro tube뿉 샎빀븯뿬 떎삩뿉꽌 1떆媛 諛섏쓳떆耳곕떎. 諛섏쓳씠 셿猷뚮맂 샎빀臾쇱 20,000 rpm 15遺 4꼦 諛섏쓳 議곌굔쑝濡 free EDC/sulfo-NHS瑜 젣嫄 썑 빆泥 10 關g瑜 샎빀븯뿬 떎삩뿉꽌 2떆媛 諛섏쓳떆耳곕떎. 빆泥-뼇옄젏 以묓빀泥 몴硫 肄뷀똿 Bovine serum albumin (BSA)瑜 씠슜븯뿬 떎삩뿉꽌 30遺꾧컙 吏꾪뻾븯떎. 理쒖쥌 誘몃컲쓳맂 빆泥댁 BSA뒗 20,000 rpm 15遺 4꼦 議곌굔쑝濡 젣嫄 썑 궗슜떆源뚯 4꼦뿉꽌 蹂닿븯떎.

Dynamic Light Scattering (DLS) 痢≪젙

뼇옄젏 諛 빆泥-뼇옄젏 以묓빀泥 DLS 痢≪젙 Anton paar Litesizer 500 옣鍮꾨 넻빐꽌 吏꾪뻾븯떎. DIW뿉 씗꽍맂 뼇옄젏쓣 1,000 關L 젣議고븯뿬 kuveteen cuvettes뿉 遺꾩<븯뿬 쟾諛 궛愿 痢≪젙 엯쓣 넻빐 3쉶 諛섎났 痢≪젙븯뿬 寃곌낵瑜 遺꾩꽍븯떎.

Zeta potential 痢≪젙

Zetapotential 痢≪젙 쟾湲 쁺룞 愿 궛 諛⑸쾿쑝濡 Anton paar Litesizer 500 옣鍮꾨 넻빐 痢≪젙븯떎. 理쒖냼 떆猷 냽룄瑜 0.1 mg/mL濡 留욎떠 珥 700 關L瑜 以鍮꾪븯뿬 omega cuvettes瑜 궗슜븯뿬 痢≪젙湲 궡遺 삩룄 25꼦 긽깭濡 3쉶 諛섎났 痢≪젙븯뿬 遺꾩꽍쓣 吏꾪뻾븯떎.

뼇옄젏쓣 씠슜븳 硫댁뿭겕濡쒕쭏넗洹몃옒뵾 諛⑸쾿

蹂 뿰援ъ뿉꽌뒗 뼇옄젏쓣 씠슜븳 硫댁뿭겕濡쒕쭏넗洹몃옒뵾瑜 媛쒕컻븯뿬(Fig. 1) 씉닔뙣뱶, 硫ㅻ툕젅씤, 以묓빀泥댄뙣뱶, 깦뵆뙣뱶 닚쑝濡 援ъ꽦븯쑝硫, 뼇옄젏쓣 씠슜븳 諛⑸쾿 떎瑜 寃異 諛⑸쾿뱾뿉 鍮꾪빐 넂 媛먮룄 꽑깮꽦쓣 젣怨듯븯硫, 寃곌낵瑜 떊냽븯怨 젙웾쟻쑝濡 뼸쓣 닔 엳뒗 옣젏쓣 媛吏怨 엳떎. Lateral flow assay (LFA) 諛⑹떇쓣 궗슜븯쑝硫, LFA뒗 떆猷뚯쓽 쟻슜, 깦뵆쓽 씠룞, 룷쉷빆泥댁 깘吏빆泥 以묓빀泥댁쓽 寃고빀, 洹몃━怨 寃곌낵 빐꽍쑝濡 援ъ꽦릺뒗 옉룞 썝由щ 媛吏怨 엳떎.

Fig. 1. This is explaining the immune chromatography method using quantum dots. As you can see in the figure, w챕ve constructed a lateral flow assay system (LFA) using target molecules (molecules that antibodies bind to) and label molecules (molecules marked with quantum dots). This LFA system is applied to the sample and detects the presence of the target molecule by leveraging specific interactions between the target molecule and the labeled molecule. The completed system has a fixed light source at a specific wavelength, and analysis is conducted through a measurement device that filters optical information through an optical filter on the image sensor lens.

뼇옄젏 湲곕컲 痢≪젙湲 湲곌뎄 꽕怨 媛쒕컻

뼇옄젏 湲곕컲 痢≪젙湲곗쓽 湲곌뎄 꽕怨꾨뒗 愿묓븰 紐⑤뱢쓽 냼삎솕 깉遺李⑹씠 슜씠븯룄濡 泥좎엳 怨좊젮븯떎(Fig. 2). 씠뿉 뜑遺덉뼱, 슦由щ뒗 理쒖쟻쓽 愿묒텧젰 諛 荑⑤쭅 뙩 떆뒪뀥쓣 쟻슜븯뿬 떆뒪뀥쓽 슚쑉꽦怨 꽦뒫쓣 洹밸솕븯떎.

Fig. 2. In the process of equipment design, we focused on maximizing assembly efficiency by considering the lower assembly structure on the left, the upper assembly structure in the middle, and the upper and lower assembly structures on the right. Through this systematic design, we have established a production-oriented design to increase efficiency and enhance production efficiency.

뼇옄젏 湲곕컲 痢≪젙湲 븯뱶썾뼱 媛쒕컻

뼇옄젏 痢≪젙湲곗쓽 븯뱶썾뼱 媛쒕컻 쎇뼱궃 꽦뒫쓣 옄옉븯뒗 CPU 紐⑤뱢쓣 쟻옱븳 怨좎꽦뒫 븯뱶썾뼱瑜 湲곕컲쑝濡 븯쑝硫, 씠瑜 Full-HD 湲곕컲쓽 dual-camera 씤꽣럹씠뒪 濡쒖쭅怨 븿猿 뿰룞븯뿬 媛쒕컻븯떎(Fig. 3).

Fig. 3. The quantum dot measurement device hardware is designed to interface with high-performance CPU modules and external standalone hardware components (such as light source circuitry, a dual-camera system based on Full-HD, and a 7-inch touchscreen display). The separate hardware components are configured through harness cables.

뜑遺덉뼱, 뼇옄젏 痢≪젙 떆 쇅遺 슂씤(쇅遺 삩룄, 뒿룄, 쟾湲곗쟻 끂씠利 벑)뿉 쓽빐 諛쒖깮맆 닔 엳뒗 꽦뒫 븯 臾몄젣젏뱾쓣 궗쟾뿉 꽕怨 떒怨꾨꽣 泥좎엳 寃利앺븯뿬 理쒖쟻쓽 꽦뒫쓣 떖꽦븯뒗뜲 珥덉젏쓣 留욎떠 媛쒕컻븯떎.

뼇옄젏 痢≪젙湲곗뿉꽌 삎愿 諛섏쓳쓣 쐞븳 愿묒썝 냼옄 쉶濡쒕 吏곸젒 꽕怨 寃利앺븯뿬 理쒖쟻쓽 꽦뒫쓣 떖꽦븯뒗뜲 二쇰젰븯쑝硫, 痢≪젙湲곗쓽 궗슜옄 젣뼱 렪쓽瑜 쐞븳 7" Touchscreen Display瑜 쟻슜븯뿬 렪쓽꽦룄 솗蹂댄븯떎.

삉븳, 異뷀썑 痢≪젙湲곗쓽 씠뜑꽬 湲곕뒫쓣 넻븯뿬 蹂묒썝, 쓽猷뚭린愿쓽 쓽猷뚯젙蹂댁떆뒪뀥뿉 뼇옄젏 痢≪젙湲 뜲씠꽣瑜 쟾넚븯뿬 뜲씠꽣 愿由щ 븯뒗뜲룄 슜쓽 븯룄濡 꽕怨꾪븯떎(Fig. 4).

Fig. 4. Hardware design.

뼇옄젏 湲곕컲 痢≪젙湲 냼봽듃썾뼱 媛쒕컻

뼇옄젏 痢≪젙湲곗쓽 냼봽듃썾뼱 媛쒕컻 由щ늼뒪 슫쁺泥댁젣 솚寃쎌뿉꽌 媛쒕컻븯쑝硫, 뼇옄젏 湲곕컲 삎愿 痢≪젙湲곗쓽 냼봽듃썾뼱뒗 삎愿 諛섏쓳쓣 쐞븳 愿묒썝 쉶濡 젣뼱, 삎愿 떊샇 닔吏묒쓣 쐞븳 dual-camera 씤꽣럹씠뒪 벑 븯뱶썾뼱 젣뼱瑜 湲곕컲쑝濡 슚쑉쟻쑝濡 삎愿 諛섏쓳 떆媛꾩뿉 뵲瑜 痢≪젙씠 媛뒫븯룄濡 媛쒕컻븯떎. 삉븳, 삎愿 떊샇媛 諛쒗쁽릺뒗 쐞移섏쓽 삤李⑤ 以꾩씠湲 쐞븯뿬 삎愿 떊샇 쐞移섎 蹂댁젙븯뒗 븣怨좊━利섏쓣 쟻슜븯쑝硫 씠瑜 넻븯뿬 痢≪젙 떆 諛쒖깮븷 닔 엳뒗 삤李⑤ 理쒖냼솕떆耳곕떎.

삎愿 떊샇瑜 젙웾쟻쑝濡 룊媛븯湲 쐞빐 dual-camera 씤꽣럹씠뒪瑜 넻븯뿬 삎愿 떊샇쓽 媛 뵿 떒쐞쓽 떊샇 媛믩뱾쓣 닔吏묓븯怨 뜲씠꽣 븘꽣留 泥섎━븳 썑뿉 뼸뼱吏 뜲씠꽣瑜 룊洹좉컪 泥섎━瑜 븯뿬 痢≪젙쓽 諛섎났꽦怨 옱쁽꽦쓣 뼢긽떆耳곕떎. 肉먮쭔 븘땲씪, 쇅遺 솚寃쎌쟻 슂씤쓣 理쒕븳 諛곗젣븯뿬 痢≪젙湲곗쓽 痢≪젙 議곌굔쓣 理쒕븳 룞씪븳 議곌굔쑝濡 쑀吏븯湲 쐞빐 븯뱶썾뼱쓽 꽱꽌뱾쓣 솢슜븳 荑⑤쭅 뙩 떆뒪뀥쓣 쟻슜븯떎. 理쒖쥌쟻쑝濡 寃곌낵 媛믪 젙웾쟻쑝濡 몴떆 媛뒫븳 냼봽듃썾뼱濡 媛쒕컻릺뿀떎(Fig. 5).

Fig. 5. The quantum dot-based measurement software is designed using Linux software to enhance stability, prevent unexpected errors or system downtime, and allow multiple developers to log in and perform tasks simultaneously, facilitating rapid bug fixes and updates to new features.

뼇옄젏 湲곕컲 떆옉뭹 젣옉

쐞뿉꽌 꽕紐낇븳 궡슜쓣 湲곕컲쑝濡 떆옉뭹쓣 젣옉븯떎. 뼇옄젏 痢≪젙湲곗쓽 븯뱶썾뼱 냼봽듃썾뼱뒗 怨좎꽦뒫 CPU 紐⑤뱢怨 Full-HD 湲곕컲쓽 dual-camera 씤꽣럹씠뒪 濡쒖쭅쓣 寃고빀븯뿬 援ъ꽦릺뿀쑝硫, 理쒖쟻솕맂 꽕怨 援ъ“濡 슚쑉꽦怨 븞젙꽦쓣 洹밸솕븯떎. 뜑遺덉뼱 삎愿 떊샇 쐞移섏쓽 젙솗븳 뙋룆쓣 쐞븳 븣怨좊━利섏쓣 쟻슜븯뿬 痢≪젙 寃곌낵쓽 옱쁽꽦쓣 뼢긽떆궎怨, 젙웾쟻씤 寃곌낵瑜 젣怨듯븯뒗 냼봽듃썾뼱 뿭떆 媛쒕컻븯떎(Fig. 6). 씠젃寃 援ъ텞맂 뼇옄젏 痢≪젙湲곗쓽 떆옉뭹 怨좎꽦뒫怨 븞젙꽦쓣 寃고빀븯뿬 젙諛븳 삎愿 떊샇 痢≪젙怨 뙋룆쓣 닔뻾븷 닔 엳뒗 떊猶곗꽦 엳뒗 옣鍮꾨줈뜥 솢슜씠 媛뒫븯떎.

Fig. 6. The initial product is a portable, foldable LCD-based system designed for on-site diagnostic testing, and it has been light-weighted to a weight of 2 kg, including the adapter.

뼇옄젏 湲곕컲 rapid kit 쟾슜 븯슦吏 꽕怨

뼇옄젏 愿묒썝쓽 痢≪젙쓣 쐞빐 븯슦吏 긽 븯뙋쓽 룄깋 釉붾옓 怨꾩뿴濡 꽑젙븯떎. 븯슦吏 泥닿껐 떆 誘몄꽭 援ъ“臾쇱씠 깦뵆뙣뱶쓽 씪遺遺꾧낵 젒珥됲븯硫댁꽌 誘몄꽭 援ъ“臾 궡뿉 諛룓맂 怨듦컙씠 삎꽦릺뼱 紐⑥꽭愿 쁽긽씠 썝솢븯寃 씪뼱굹吏 븡쓣 닔 엳뼱 몢 媛 怨듦툒愿쓣 궗슜븯뿬 쑀냽쓣 議곗젅 諛 닚李⑥쟻 諛섏쓳씠 媛뒫븯寃 꽕怨꾪븯떎(Fig. 7).

Fig. 7. For the housing of the quantum dot light source measurement, black coloration was chosen for the top and bottom plates. This is done to minimize light reflection and the influence of environmental light when measuring the quantum dot light source by painting the exterior of the housing in black tones. Additionally, when closing the housing, the fine structures come into contact with a portion of the sample pad, creating a sealed space within the fine structures, which may prevent the capillary effect from occurring smoothly. To address this, two supply channels are used to control the flow rate and facilitate sequential reactions.
寃 怨

빆泥-뼇옄젏 以묓빀泥 젣議 듅꽦 뙆븙

DLS瑜 넻빐 뼇옄젏쓽 겕湲 遺꾪룷 룊洹 겕湲곕 痢≪젙븯뿬 以묓빀 怨쇱젙뿉꽌 븘슂븳 뼇옄젏쓽 뼇쓣 寃곗젙븯떎. 씠瑜 넻빐 以묓빀泥댁쓽 紐⑺몴 겕湲곗 씪愿맂 뼇옄젏쓽 겕湲곕 쑀吏븷 닔 엳떎. 삉븳, Zeta potential 痢≪젙쓣 넻빐 뼇옄젏쓽 몴硫 쟾븯 긽깭瑜 솗씤븯뿬 以묓빀泥댁쓽 븞젙꽦쓣 룊媛븯떎(Fig. 8). 뼇옄젏쓽 몴硫 쟾븯 긽깭媛 븞젙븳 寃쎌슦, 以묓빀泥댁쓽 遺덉븞젙꽦怨 쓳吏 쁽긽쓣 理쒖냼솕븷 닔 엳떎.

Fig. 8. This figure demonstrates the role of antibody conjugate production in enhancing the stability of quantum dots. The figure visually conveys how the process of antibody conjugate production leads to increased stability of quantum dots. The formation of antibody conjugates increases the interactions between quantum dots, resulting in reduced instability and prevention of aggregation phenomena.

빆泥-뼇옄젏 以묓빀泥 젣議 쓳吏 쁽긽 諛⑹

뼇옄젏쓽 쓳吏 쁽긽쑝濡 씤븳 넀떎쓣 諛⑹븯湲 쐞빐 conjugation tube瑜 궗슜븯떎. 쓳吏 쁽긽 뼇옄젏 媛꾩쓽 긽샇옉슜쑝濡 씤빐 뼇옄젏씠 븿猿 吏묒쟻릺뒗 쁽긽쓣 쓽誘명븳떎. 씠瑜 諛⑹븯湲 쐞빐 protein coating tube瑜 궗슜븯뿬 뼇옄젏씠 쓳吏묓븯뒗 寃껋쓣 諛⑹븯怨 以묓빀泥댁쓽 븞젙꽦쓣 쑀吏븯떎. 뵲씪꽌, DLS 諛 Zeta potential 痢≪젙 寃곌낵瑜 넻빐 以묓빀뿉 븘슂븳 뼇옄젏쓽 뼇怨 븞젙꽦쓣 뙆븙븯怨(Jendroszek and Kjaergaard, 2021), 쓳吏 쁽긽쑝濡 씤븳 뼇옄젏쓽 넀떎쓣 諛⑹븯뒗뜲 conjugation tube瑜 궗슜븯뿬 以묓빀泥 젣議 怨쇱젙쓣 媛쒖꽑븯떎(Fig. 9). 씠瑜 넻빐 빆泥-뼇옄젏 以묓빀泥댁쓽 슚쑉쟻씤 젣議곗 븞젙꽦 솗蹂댁뿉 湲곗뿬븯떎.

Fig. 9. This figure illustrates the process of enhancing the stability of quantum dot conjugates and preventing losses due to aggregation during the quantum dot conjugate manufacturing process using a conjugation tube. The figure shows that aggregation is the phenomenon where quantum dots come together due to their interactions. Such aggregation can lead to the loss of quantum dots and a decrease in the stability of conjugates. Therefore, the use of a protein coating tube is depicted in the research to prevent aggregation, thus maintaining the stability of the conjugates (Use of UV lamp).

빆泥-뼇옄젏 以묓빀泥 젣議 議곌굔 꽑젙 떆뿕

蹂 떆뿕뿉꽌뒗 빆泥-뼇옄젏 以묓빀泥댁쓽 젣議곕 쐞빐 carbodiimide 諛섏쓳怨 sulfo-NHS 諛섏쓳쓣 궗슜븯뿬 amine (NH2) 洹몃9怨 뼇옄젏 鍮꾨뱶쓽 옉슜湲곗씤 carboxyl (COOH) 寃고빀쓣 쑀룄븯떎(Gao et al., 2022). 씠瑜 넻빐 以묓빀泥대 젣議고븯쑝硫, 以묓빀泥 젣議 怨쇱젙뿉꽌뒗 뼇옄젏 뼇怨 antibody 뼇쓣 蹂닔濡 쟻슜븯뿬 꽑뻾 떆뿕쓣 吏꾪뻾븯떎(Fig. 10).

Fig. 10. This figure illustrates the key steps and variable selection in the antibody-quantum dot conjugate manufacturing process. The figure visually represents the process of manufacturing conjugates by inducing the binding of amine (NH2) groups and carboxyl (COOH) groups, which serve as functional groups on the quantum dot beads, using the carbodiimide and sulfo-NHS reactions. The figure also indicates that during the conjugate manufacturing process, the quantity of Q.dots and antibodies are considered as variables and preliminary tests are conducted. The quantity of Q.dots is chosen based on DLS results, background signals, and aggregation considerations. DLS results are used to assess the size distribution and average size of quantum dots, which are adjusted to match the target size of conjugates and the size of quantum dots (Use of UV lamp).

以묓빀泥 젣議 怨쇱젙뿉꽌 뼇옄젏 뼇 DLS 寃곌낵, 諛곌꼍 떊샇 諛 쓳吏 쁽긽쓣 怨좊젮븯뿬 꽑젙릺뿀떎. DLS 寃곌낵瑜 넻빐 뼇옄젏쓽 겕湲 遺꾪룷 룊洹 겕湲곕 뙆븙븯뿬 以묓빀泥댁쓽 紐⑺몴 겕湲곗 뼇옄젏 겕湲곕 씪移섏떆궎湲 쐞빐 뼇옄젏 뼇쓣 議곗젅븯쑝硫, 삉븳, 諛곌꼍 떊샇 쓳吏 쁽긽쓣 怨좊젮븯뿬 理쒖쟻쓽 뼇옄젏 뼇쓣 50 關g쑝濡 꽑젙븯떎.

빆泥 뼇뿉 빐꽌뒗 誘쇨컧룄瑜 怨좊젮븯뿬 異뷀썑 꽑젙븯湲곕줈 寃곗젙릺뿀떎. 빆泥 뼇 以묓빀泥댁쓽 꽦뒫怨 듅씠꽦뿉 쁺뼢쓣 誘몄튂뒗 以묒슂븳 슂냼濡 異뷀썑 떎뿕쓣 넻빐 빆泥 뼇쓽 理쒖쟻媛믪쓣 寃곗젙븯뿬 以묓빀泥 젣議 怨쇱젙 議곌굔쓣 꽦由쏀븯뒗 寃껋씠 以묒슂븯떎.

씠윭븳 젅李⑤ 넻빐 carbodiimide 諛섏쓳怨 sulfo-NHS 諛섏쓳쓣 궗슜븯뿬 빆泥-뼇옄젏 以묓빀泥대 젣議고븯뒗 怨쇱젙뿉꽌 뼇옄젏 뼇怨 antibody 뼇쓣 怨좊젮븯뿬 꽑뻾 떆뿕쓣 吏꾪뻾븯怨, 理쒖쟻쓽 議곌굔쓣 꽑깮븯쑝硫, 씠瑜 넻빐 뼢썑 빆泥-뼇옄젏 以묓빀泥댁쓽 젣議 諛 쓳슜뿉 븳 湲곕컲쓣 留덈젴븯떎.

빆泥-뼇옄젏 以묓빀泥 젣議 媛쒖꽑 떆뿕

빆泥-뼇옄젏 以묓빀泥 젣議 怨듭젙쓣 媛쒖꽑븯湲 쐞빐 떎쓬怨 媛숈 떎뿕쓣 닔뻾븯떎.

  • 뼇옄젏 몴硫댁뿉 carboxyl쓣 씠슜븯뿬 amine (NH2) 寃고빀쓣 쑀룄븯湲 쐞빐 EDC/sulfo-NHS 諛섏쓳쓣 궗슜븯쑝硫, 씠 諛섏쓳뿉꽌 EDC sulfo-NHS쓽 紐 鍮꾩쑉쓣 1:1濡 꽕젙븯뿬 뼇옄젏 몴硫댁뿉 NH2 寃고빀쓣 닔뻾븯떎.

  • 뼇옄젏 鍮꾨뱶쓽 뼇 꽑뻾 뿰援ъ뿉 寃곌낵濡 10 關L 궗슜 떆 넂 媛먮룄瑜 蹂댁뿬, 뼇옄젏 鍮꾨뱶쓽 뼇쓣 10 關L쑝濡 꽕젙븯뿬 以묓빀泥 젣議곗뿉 솢슜븯떎.

  • EDC/sulfo-NHS 諛섏쓳 썑, 썝떖 遺꾨━瑜 씠슜븯뿬 free EDC/sulfo-NHS瑜 젣嫄고븯뒗 議곌굔씠 젣嫄고븯吏 븡 conjugate 議곌굔 몺踰 蹂대떎 醫뗭 寃껋쑝濡 솗씤릺뿀떎. 씠뿉 뵲씪, 썝떖 遺꾨━瑜 3쉶 諛섎났븯뿬 free EDC/NHS瑜 슚怨쇱쟻쑝濡 젣嫄고븯떎.

  • Antibody쓽 諛섏쓳쓣 쐞빐 antibody 50 關g쓣 궗슜븯쑝硫, antibody 뼇옄젏 鍮꾨뱶쓽 以묓빀쓣 쐞빐 2떆媛 룞븞 orbital shaker뿉꽌 諛섏쓳떆耳곕떎.

  • 以묓빀泥댁쓽 aggregation 쁽긽쓣 諛⑹븯湲 쐞빐 몴硫 肄뷀똿쓣 쐞빐 BSA 떒諛깆쭏쓣 궗슜븯떎. 理쒖쥌쟻쑝濡 BSA쓽 뼇 理쒖쥌 냽룄媛 1%媛 릺룄濡 諛섏쓳떆耳곕떎.

  • 留덉留됱쑝濡, free Antibody瑜 젣嫄고븯湲 쐞빐 썝떖 遺꾨━瑜 3쉶 諛섎났븯뿬 free Antibody瑜 슚怨쇱쟻쑝濡 젣嫄고븯떎.

씠 媛숈 젣議 怨듭젙쓣 넻빐 빆泥-뼇옄젏 以묓빀泥대 젣議고븯쑝硫, 씠瑜 넻빐 aggregation 쁽긽쓣 諛⑹븯怨 븞젙꽦쓣 넂씤 以묓빀泥대 뼸쓣 닔 엳뿀떎(Fig. 11).

Fig. 11. This figure illustrates the key steps and optimal conditions in the manufacturing process of quantum dot antibody conjugates. The figure explains that the dilution ratio for adjusting the quantity of quantum dots is set at 1/10. When the dilution ratio is appropriately set, it minimizes the loss of quantum dots while maintaining the stability of the conjugates. The EDC/NHS reaction is one of the crucial steps in the conjugate manufacturing process. The figure emphasizes that carrying out this reaction in MES buffer under optimal conditions is highly efficient. It visually demonstrates that the EDC/NHS reaction in MES buffer is the most effective condition for inducing the binding between quantum dots and antibodies.

빆泥-뼇옄젏 以묓빀泥 젣議 議곌굔쓽 理쒖쥌 꽑젙 떎쓬怨 媛숈 떎뿕쓣 넻빐 씠猷⑥뼱議뚮떎(Fig. 12).

Fig. 12. This figure visualizes the key findings regarding the final selection of conditions for the antibody-quantum dot conjugate manufacturing. It visually demonstrates that an effective binding between antibodies and quantum dots can be achieved when the EDC/sulfo-NHS molar ratio is set at 1:2. The figure also presents sensitivity comparison experiments between conditions using pH 6.0 MES buffer for the EDC/NHS reaction and conditions using pH 7.4 PB buffer. The experimental results indicate that the conditions with the reaction carried out in pH 6.0 MES buffer exhibited over two times higher sensitivity than the conventional pH 7.4 PB buffer. It signifies that the final conditions involved setting the EDC/sulfo-NHS molar ratio to 1:2 and using pH 6.0 MES buffer for conjugate manufacturing. These conditions allowed for effective binding between antibodies and quantum dots while achieving a high level of sensitivity simultaneously.

  • EDC/sulfo-NHS 紐 鍮꾩쑉 鍮꾧탳 꽑젙: EDC sulfo-NHS쓽 紐 鍮꾩쑉쓣 蹂솕떆궎硫댁꽌 빆泥-뼇옄젏 以묓빀泥 젣議 議곌굔쓣 꽑젙븯湲 쐞븳 떆뿕쓣 닔뻾븯떎. 씠 떎뿕쓣 넻빐 理쒖쟻쓽 議곌굔쑝濡쒖꽌 EDC/sulfo-NHS쓽 紐 鍮꾩쑉쓣 1:2濡 꽑젙븯쑝硫, 씠 議곌굔뿉꽌 빆泥댁 뼇옄젏쓽 슚怨쇱쟻씤 寃고빀쓣 뼸쓣 닔 엳뒗 寃껋쑝濡 솗씤뻽떎(Fig. 12 몼).

  • 媛먮룄 鍮꾧탳瑜 넻븳 pH 議곌굔 꽑젙: 씠 떎뿕뿉꽌뒗 湲곗〈쓽 pH 7.4 PB buffer 떊 pH 6.0 MES buffer瑜 궗슜븯뿬 EDC/NHS 諛섏쓳쓣 吏꾪뻾븯뿬 媛먮룄 鍮꾧탳瑜 닔뻾븯떎. 寃곌낵쟻쑝濡, pH 6.0 MES buffer뿉꽌 諛섏쓳쓣 吏꾪뻾븳 議곌굔뿉꽌뒗 湲곗〈쓽 pH 7.4 PB buffer蹂대떎 빟 2諛 씠긽 넂 媛먮룄瑜 蹂댁떎. 뵲씪꽌, 以묓빀泥 젣議 議곌굔쑝濡쒖꽌 pH 6.0 MES buffer瑜 꽑깮븯뿬 씠濡쒖뜥 뼇옄젏怨 빆泥 궗씠쓽 諛섏쓳 냽룄 슚쑉쓣 뼢긽떆궗 닔 엳뿀떎(Fig. 12 몾).

쐞쓽 떎뿕쓣 넻빐 빆泥-뼇옄젏 以묓빀泥 젣議 議곌굔쓣 理쒖쥌쟻쑝濡 꽑젙븯쑝硫, EDC/sulfo-NHS 紐 鍮꾩쑉쓣 1:2濡 꽕젙븯怨, pH 6.0 MES buffer瑜 궗슜븯뿬 以묓빀泥 젣議곕 吏꾪뻾븯떎. 씠윭븳 議곌굔 빆泥댁 뼇옄젏쓽 寃고빀쓣 슚怨쇱쟻쑝濡 쑀룄븯怨, 以묓빀泥 젣議 怨쇱젙뿉꽌 넂 媛먮룄瑜 뼸쓣 닔 엳寃 빐二쇱뿀떎.

빆泥-뼇옄젏 以묓빀泥 꽦뒫 遺꾩꽍

痢≪젙湲 엯 蹂寃쎌뿉 뵲瑜 떊샇 蹂솕: 理쒖떊 뼇옄젏 湲곕컲 痢≪젙 옣移섎뒗 湲곗〈쓽 紐⑤뜽쓽 옣젏쓣 쑀吏븯硫댁꽌 깉濡쒖슫 湲곕뒫怨 媛쒖꽑맂 꽦뒫쓣 룄엯븯뿬 떎뼇븳 遺꾩빞뿉꽌쓽 쓳슜 媛뒫꽦쓣 넂떎. 씠쟾 紐⑤뜽 怨좎젙 뙆옣 愿묒썝怨 愿묓븰 븘꽣媛 옣李⑸맂 씠誘몄 꽱꽌 젋利덈 씠슜븳 痢≪젙쓣 湲곕컲쑝濡 븯쑝굹 씠踰 뾽뜲씠듃濡쒕뒗 뿴濡 씤븳 留대툕젅씤 嫄댁“ 臾몄젣瑜 빐寃고븯湲 쐞빐 荑⑤쭅 븘꽣媛 룄엯릺뿀떎.

깉濡쒖슫 荑⑤쭅 븘꽣뒗 愿묒썝쑝濡쒕꽣 諛쒖깮븯뒗 뿴濡 씤븳 留대툕젅씤 嫄댁“ 쁽긽쓣 諛⑹븯뿬 젙솗븳 痢≪젙쓣 媛뒫븯寃 븯떎. 씠뒗 痢≪젙쓽 젙솗꽦怨 떊猶곗꽦쓣 룺 뼢긽떆耳곕떎. 湲곗〈 紐⑤뜽쓽 냽룄뿉 뵲瑜 삎愿 떊샇뒗 諛곌꼍 떊샇媛 넂怨 냽룄뿉 뵲瑜 떊샇 蹂솕媛 쟻뿀쑝굹, 깉濡쒖슫 옣鍮꾨뒗 諛곌꼍 떊샇 냽룄 援ш컙뿉 李⑥씠뒗 10諛 씠긽씠 痢≪젙릺뿀쑝硫, 냽룄뿉 뵲瑜 삎愿 떊샇 삉븳 鍮꾩쑉쟻쑝濡 넂븘吏 寃껋쑝濡 솗씤븯떎. 寃곌낵쟻쑝濡, 荑⑤쭅 븘꽣쓽 룄엯쑝濡 씤빐 鍮좊Ⅸ 뜲씠꽣 닔吏 냽룄 뜑 젙솗븳 寃곌낵 遺꾩꽍씠 媛뒫빐졇 蹂듭옟븳 떎뿕 솚寃쎌뿉꽌룄 슦닔븳 꽦뒫쓣 諛쒗쐶븷 닔媛 엳떎(Fig. 13).

Fig. 13. The figure presents a side-by-side comparison of two quantum dot measurement devices. On the left, the results obtained using the previous device are shown, while on the right, the results obtained with the newly updated quantum dot measurement device are displayed. As a result, the figure visually indicates that when using the new quantum dot measurement device, the differences between concentrations are shown at a higher ratio. This emphasizes that the newly updated quantum dot measurement device exhibits superior performance. The new device is now capable of more accurately measuring differences in concentration, visualizing the enhancement of accuracy and reliability in quantum dot analysis. Through this figure, the performance improvement of the newly updated quantum dot measurement device is briefly conveyed. It visually highlights the superiority of the new device by comparing its performance with the previous one.

빆泥-뼇옄젏 以묓빀泥 遺꾩꽍쟻 꽦뒫 룊媛

뼇옄젏 듅꽦 뙆븙(DLS 諛 Zeta 遺꾩꽍쓣 蹂 뿰援ъ뿉꽌뒗 媛쒖꽑맂 뼇옄젏 以묓빀泥대 솢슜븯뿬 COVID-19 빆썝 떊냽 吏꾨떒 궎듃쓽 꽦뒫쓣 遺꾩꽍븯떎. 슦由щ뒗 씠 媛쒖꽑맂 뼇옄젏 以묓빀泥대 쟻슜븯뿬 궎듃쓽 꽦뒫쓣 FAPON궗쓽 옱議고빀 COVID-19 빆썝씠 븘땶 떎젣 諛붿씠윭뒪뿉 븳 諛섏쓳꽦쓣 솗씤븯湲 쐞빐 ZeptoMertix 젣議곗궗뿉꽌 援ъ엯븳 遺덊솴꽦솕 諛붿씠윭뒪濡 룊媛븯쑝硫, 씠濡쒖뜥 蹂 뿰援ъ뿉꽌쓽 二쇱슂 옣젏쓣 遺媛곹븯怨좎옄 븯떎. 꽦뒫 遺꾩꽍 寃곌낵, 媛쒖꽑맂 뼇옄젏 以묓빀泥 湲곗닠쓣 솢슜븳 COVID-19 떊냽빆썝吏꾨떒 궎듃뒗 standard curve쓣 옉꽦븳 寃곌낵 吏곸꽑꽦(R2) 媛믪 0.97 씠긽쑝濡 옱쁽꽦 떆뿕뿉 寃쎌슦 , 以, 怨좊냽룄濡 씗꽍븳 몴以臾쇱쭏(遺덊솢꽦솕 諛붿씠윭뒪)쓣 5쉶 諛섎났 떆뿕븳 寃곌낵 蹂룞怨꾩닔(CV) 媛믪 8% 誘몃쭔쑝濡 誘쇨컧룄쓽 寃쎌슦 7.8 TCID50/mL濡 쎇뼱궃 옱쁽꽦怨 誘쇨컧룄 꽦怨쇰 굹궡뿀떎(Fig. 14, 15). 理쒖쥌 긽슜솕 궎듃(ANYLAB궗쓽 COVID-19 Ag Test Kit) 媛먮룄 鍮꾧탳 寃곌낵 뼇옄젏 湲곕컲 COVID-19 떊냽빆썝吏꾨떒 궎듃쓽 媛먮룄媛 빟 50諛 젙룄 넂 寃껋쑝濡 솗씤븯떎(Fig. 16).

Fig. 14. This figure presents the key results of the analytical performance evaluation conducted using the inactivated COVID-19 virus. In the experiments, a Standard Curve was generated using the ratio of Test Line Intensity and Control Line Intensity. This Standard Curve demonstrates a coefficient of determination (R2) value of 0.97 or higher, indicating the linearity of the data. Furthermore, the coefficient of variation (CV) value is less than 11%, signifying a high degree of reliability in the experimental results. This confirms that our experiments yielded accurate and trustworthy results.

Fig. 15. This figure illustrates the reproducibility results of testing inactivated COVID-19 viruses at low, medium, and high concentrations using reference materials. Each lot was tested five times. In the experiments, the coefficient of variation (CV) was determined using the ratio of Test Line Intensity and Control Line Intensity values. The results showed that the CV (%) was less than 10%, indicating excellent reproducibility in the experiments. These results demonstrate that our experiments can yield consistent results across various concentrations and different test lots.

Fig. 16. A performance comparison was conducted with the commercially available COVID-19 antigen kit. The quantum dot-based COVID-19 antigen kit was able to accurately measure concentrations as low as 0.8875 횞 10 TCID50/mL, whereas the commercial gold nanoparticle-based kit could measure concentrations up to 3.55 횞 102 TCID50/mL. Based on these results, it can be inferred that the quantum dot-based antigen kit is effective in measuring lower concentrations compared to the commercially available kit.

씠윭븳 寃곌낵뒗 理쒖쟻 議곌굔쑝濡 꽑젙맂 빆泥-뼇옄젏 以묓빀泥닿 COVID-19 옱議고빀 빆썝 諛 遺덊솢꽦솕 諛붿씠윭뒪쓽 誘쇨컧븯怨 젙웾쟻씤 遺꾩꽍뿉 슦닔븳 꽦뒫쓣 諛쒗쐶븳떎뒗 寃껋쓣 굹궦떎. 씠뒗 以묓빀泥대 슚怨쇱쟻쑝濡 솢슜븯뿬 COVID-19 吏꾨떒뿉 븳 媛먮룄 떊猶곗꽦쓣 뼢긽떆궗 닔 엳떎뒗 쓽誘몃 媛吏硫, 뜑 굹븘媛 吏꾨떒궎듃 媛쒕컻 벑쓽 쓳슜 媛뒫꽦쓣 젣떆븯怨 엳떎.

怨 李

蹂 뿰援ъ뿉꽌 媛쒖꽑맂 뼇옄젏 以묓빀泥대 솢슜븳 COVID-19 떊냽빆썝吏꾨떒 궎듃 꽦뒫쓣 遺꾩꽍븯떎. 뼇옄젏 以묓빀泥 湲곗닠쓣 솢슜븯뒗 궎듃뒗 옱쁽꽦 諛 誘쇨컧룄 痢〓㈃뿉꽌 슦닔븳 꽦怨쇰 蹂댁뿬二쇨퀬 엳쑝硫 씠뒗 媛쒖꽑맂 뼇옄젏 以묓빀泥댁쓽 넂 븞젙꽦怨 떊샇 利앺룺 듅꽦쓣 넻빐 媛뒫븳 寃곌낵濡 빐꽍맂떎. 삉븳 荑⑤쭅 븘꽣쓽 룄엯쑝濡 湲곗〈 紐⑤뜽怨 鍮꾧탳븯뿬 뼢긽맂 寃곌낵瑜 룄異쒗븯쑝硫, 뿴濡 씤븳 留대툕젅씤 嫄댁“ 쁽긽쓣 諛⑹븯뿬 젙솗븳 痢≪젙쓣 媛뒫븯寃 븯떎. 씠윭븳 湲곗닠 깉濡쒖슫 옣젏怨 媛뒫꽦쓣 젣떆븯硫, 쁽옱쓽 COVID-19 쓳 諛 떎瑜 媛먯뿼蹂 吏꾨떒 遺꾩빞뿉 以묒슂븳 湲곗뿬瑜 븷 寃껋쑝濡 湲곕맂떎.

씠濡쒖뜥 珥덇린 媛먯뿼 떒怨꾩뿉꽌룄 젙솗븯寃 諛붿씠윭뒪 빆썝쓣 媛먯븷 닔 엳쑝硫, 鍮좊Ⅸ 쓳 諛 寃⑸━ 議곗튂瑜 媛뒫븯寃 븯뒗 以묒슂븳 듅吏뺤씠 遺媛곷릺뿀떎. 뜑 굹븘媛 鍮좊Ⅸ 뜲씠꽣 닔吏 냽룄 젙솗븳 寃곌낵 遺꾩꽍쓣 媛뒫耳 븯뿬 떎뿕쓽 슚쑉꽦쓣 뼢긽떆耳곕떎.

씠윭븳 寃곌낵뒗 뼇옄젏 以묓빀泥 湲곗닠쓽 떎슜꽦怨 쓳슜 媛뒫꽦쓣 엯利앺븯硫, 쟾뿼蹂 吏꾨떒 遺꾩빞뿉꽌쓽 쁺떊쟻씤 젒洹쇰쾿쓣 젣떆븯떎. 媛쒖꽑맂 뼇옄젏 以묓빀泥대 솢슜븳 COVID-19 떊냽빆썝吏꾨떒 궎듃뒗 젙솗븳 吏꾨떒 諛 湲 쓳쓣 룄二쇰ʼn, 誘몃옒쓽 媛먯뿼蹂 쓳怨 怨듭쨷蹂닿굔 遺꾩빞뿉꽌 以묒슂븳 뿭븷쓣 븷 寃껋쑝濡 湲곕맂떎.

ACKNOWLEDGEMENT

This work was supported by Korea institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0018665).

List of abbreviations

LFA: Lateral flow assay

DLS: Dynamic Light Scattering

COOH: Carboxyl

NH2: Amine

BSA: Bovine serum albumin

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

References
  1. Gao S, Guisan JM, Rocha-Martin J. Oriented immobilization of antibodies onto sensing platforms - A critical review. Anal Chim Acta. 2022. 1189: 338907.
    Pubmed CrossRef
  2. Jendroszek A, Kjaergaard M. Nanoscale spatial deprndence of avidity in an IgG1 antibody. Sci Rep. 2021. 11: 11263.
    Pubmed KoreaMed CrossRef
  3. Heo JY. Clinical and Epidemiological Characteristics of Coronavirus Disease 2019 in the Early Stage of Outbreak. KJM. 2020. 95: 67-73.
    CrossRef
  4. Kim JW, Heu WS, Jeong SY, et al. Genetically functionalized ferritin nanoparticles with a high-affinity protein binder for immunoassay and imaging. Analytica Chimica Acta. 2017. 988: 81-88.
    Pubmed CrossRef
  5. Kim MN, Kim HS, Bae HG, et al. Laboratory Diagnosis and Utilization for COVID-19. KJICP. 2021. 26: 47-56.
    CrossRef
  6. Mei BC, Susumu K, Medintz IL, et al. Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media. Nat Protoc. 2009. 4: 412-423.
    Pubmed CrossRef
  7. Mousavi SM, Hashemi SA, Kalashgrani MY, et al. The Pivotal Role of Quantum Dots-Based Biomarkers Integrated with Ultra-Sensitive Probes for Multiplex Detection of Human Viral Infections. Pharmaceuticals. 2022. 15: 8.
    Pubmed KoreaMed CrossRef
  8. Parolo C, Escosura-Muntz A de la, Grazy V, et al. Design, Preparation, and Evaluation of a Fixed-Orientation Antibody/Gold-Nanoparticle Conjugate as an Immunosensing. ACS Appl. 2015. 5: 10753-10759.
    Pubmed CrossRef
  9. Zhu ZJ, Yeh YC, Tang R, et al. Stability of quantum dot in live cells. Nat Chem. 2011. 3: 963-968.
    Pubmed KoreaMed CrossRef