Search for


TEXT SIZE

search for



CrossRef (0)
Association between Blood Mercury and Seafood Consumption in Korean Adults: KoNEHS Cycle 4 (2018~2020)
Biomed Sci Letters 2024;30:24-31
Published online March 31, 2024;  https://doi.org/10.15616/BSL.2024.30.1.24
© 2024 The Korean Society For Biomedical Laboratory Sciences.

Ji-Eun Oh1,* , Tae-Hyeong Kim2,* and Eun-Hee Lee3,,*

1Department of Biomedical Laboratory Science, Far East University, Chungbuk-do 27601, Korea
2Department of Military Science, Far East University, Chungbuk-do 27601, Korea
3Department of Health Science, Graduate School of Far East University, Chungbuk-do 27601, Korea
Correspondence to: Eun-Hee Lee. Department of Health Science, Graduate School of Far East University, 76-32 Daehakgil, Gamgok-myeon, Eumseong-gun, Chungbuk-do 27601, Korea.
Tel: +82-43-879-3701, Fax: +82-43-880-3876, e-mail: ehlee@kdu.ac.kr
*Professor.
Received February 19, 2024; Revised March 10, 2024; Accepted March 11, 2024.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
Mercury is a chemical pollutant widely present in the environment. Humans are generally exposed to mercury in the form of organic Hg (methylmercury) through the consumption of seafood. Koreans enjoy eating fish therefore blood mercury concentration is usually higher than in developed countries. By investigating blood mercury concentration according to the frequency of seafood consumption and sociodemographic factors, we aimed to identify recent trends in blood mercury concentration in Korean adults. This study was conducted using KoNEHS cycle 4 (2018~2020) from the National Institute Environmental Research Survey. The geometric mean concentration of blood mercury of the subjects was 2.959 (짹1.018) 關g/L, which was significantly higher in men than in women. It was observed that as the frequency of fish and shellfish consumption increased, the blood mercury concentration increased. In adjusted logistic regression, fish consumption was associated with 36.7% increased risk of blood mercury levels [Odds ratio, 1.367; 95% confidence interval (CI), 1.246~1.500], and shellfish consumption was associated with 26.5% increased risk of blood mercury levels [Odds ratio, 1.265; 95% confidence interval (CI), 1.134~1.410]. Blood mercury concentration was also found to increase as the socioeconomic level increased. In conclusion, the geometric mean concentration of blood mercury was increased compared to the one in the 3rd KoNEHS (2015~2017) and seafood consumption and socioeconomic level were still significantly associated with increasing blood mercury concentration in Korea. Therefore, it is necessary to encourage healthy seafood consumption habits and conduct continuous monitoring considering various factors to reduce blood mercury levels.
Keywords : Mercury, Methylmercury, KoNEHS, Seafood consumption, Blood mercury concentration
꽌 濡

닔 씤泥댁뿉 븘슂븯吏 븡 鍮꾪븘닔 以묎툑냽쑝濡 吏吏, 솕궛솢룞쓣 넻븳 옄뿰 諛⑹텧 쇅뿉 湲곗삤뿼씠굹 룆꽦 룓닔 벑쓽 솚寃쎌삤뿼臾쇱쭏뿉 룷븿릺뼱 諛⑹텧맂떎. 씠젃寃 諛⑹텧맂 닔 臾, 湲, 넗뼇쓣 삤뿼떆궎怨 삤뿼맂 솚寃쎌뿉꽌 옄 냽옉臾쇱씠굹 뼱뙣瑜섏쓽 꽠痍 벑쓣 넻빐 씤泥대뒗 吏냽쟻쑝濡 닔뿉 끂異쒕맂떎(Basu et al., 2023; Sakong, 2011). 닔 솕븰쟻 삎깭뿉 뵲씪 썝냼닔, 臾닿린닔, 쑀湲곗닔쓽 3媛吏濡 遺꾨쪟븷 닔 엳뒗뜲 洹 以 臾닿린닔뿉꽌 蹂솚맂 쑀湲고삎깭쓽 硫뷀떥닔(MeHg) 삉湲곗꽦 誘몄깮臾쇱뿉 쓽븯뿬 깮꽦릺硫 듅엳 닔깮 癒뱀씠 궗뒳쓣 넻빐 뼱뙣瑜섏뿉 異뺤쟻릺怨 냽異뺣맂떎(Al-Sulaiti et al., 2022). 뵲씪꽌 吏곸뾽쟻 愿젴꽦씠 뾾뒗 씪諛 씤援 吏묐떒뿉꽌 끂異쒕릺뒗 닔쓽 二쇱슂 삎깭뒗 硫뷀떥닔씠硫 二쇰줈 삤뿼맂 빐궛臾(떞닔 諛 빐뼇 뼱瑜, 議곌컻瑜, 빐뼇 룷쑀瑜 벑)쓽 꽠痍⑤ 넻븯뿬 諛쒖깮븳떎(Sheehan et al., 2014). 빐궛臾쇱 삤硫붽-3, 떒諛깆쭏, 鍮꾪誘, 젅뒆, 遺덊룷솕吏諛⑹궛 벑쓽 쁺뼇냼媛 뭾遺븯뿬 嫄닿컯 떇떒쓣 援ъ꽦븯뒗 以묒슂븳 떇뭹援곗쑝濡 꽠痍④ 沅뚯옣릺怨 엳떎(Chen and Dong, 2022). 삉븳 깮꽑 1씤떦 룊洹 룞臾쇱꽦 떒諛깆쭏 꽠痍⑤웾쓽 빟 15%瑜 젣怨듯븯뒗뜲(Béné et al., 2015) 떎뼇븳 뼱醫낆뿉꽌 愿묐쾾쐞븳 硫뷀떥닔 삤뿼씠 諛쒓껄릺뿀쑝硫 듅엳 꼸由 냼鍮꾨릺怨 엳뒗 李몄튂, 硫몄튂, 젙뼱由, 怨좊벑뼱 媛숈 룷떇꽦 뼱瑜섏뿉꽌 삤뿼쓽 젙룄媛 떖媛곹븳 寃껋쑝濡 굹궗떎(Sioen et al., 2009; Groth, 2010).

WHO뿉 쓽븯硫 닔 怨듭쨷蹂닿굔뿉 쁺뼢쓣 겮移섎뒗 긽쐞 10媛 愿떖 臾쇱쭏 以 븯굹씠硫 듅엳 以묒텛 떊寃쎄퀎 諛쒕떖怨 湲곕뒫뿉 遺젙쟻씤 쁺뼢쓣 誘몄튂뒗 떊寃쎈룆꽦臾쇱쭏濡 옒 븣젮졇 엳떎(Al-Sulaiti et al., 2022). 삉븳 떖삁愿怨, 샇씉怨, 궡遺꾨퉬怨, 硫댁뿭怨 諛 諛곗븘 諛쒕떖 벑 떎뼇븳 湲곌뿉 룆꽦븰쟻 쁺뼢쓣 誘몄튂뒗 寃껋쑝濡 蹂닿퀬릺怨 엳떎(Chen and Dong, 2022). 듅엳 硫뷀떥닔 媛옣 룆꽦씠 媛뺥븳 삎깭쓽 닔씠떎(Al-Sulaiti et al., 2022). 硫뷀떥닔 吏슜꽦쑝濡 쐞옣愿뿉꽌 95% 씠긽씠 씉닔릺硫 쟻삁援ъ 寃고빀븯뿬 삁瑜섎 넻빐 媛 옣湲곕줈 怨좊Ⅴ寃 遺꾪룷맂떎. 삉븳 깭諛 諛 뇤삁愿옣踰(Blood-Brain-Barrier)쓣 넻怨쇳븷 닔 엳뼱 듅엳 떊寃쎄퀎뿉 遺젙쟻씤 쁺뼢쓣 誘몄튂뒗 寃껋쑝濡 蹂댁씤떎. 留뚯꽦 以묐룆 떆 떊寃쏀븰쟻 옣븷, 떆젰 諛 泥媛 긽떎, 援ъ쓬 옣븷, 遺젙留 벑쓽 씤泥 룆꽦쓣 굹궡硫 깭븘媛 硫뷀떥닔뿉 끂異 떆 議곗궛 諛 젙떊쟻, 쑁泥댁쟻 옣븷媛 諛쒖깮븷 닔 엳떎. 1950뀈 씪蹂 誘몃굹留덊 쁽쓽 洹쒕え 닔 以묐룆 궗嫄 씠썑, 硫뷀떥닔뿉 옣湲곗쟻쑝濡 끂異쒕릺뿀뜕 誘몃굹留덊 씤洹 吏뿭쓽 二쇰쇰뱾 끂異쒖씠 쟻 吏뿭쓽 二쇰쇱뿉 鍮꾪빐 떊寃쏀븰쟻, 젙떊怨쇱쟻 쑀蹂묐쪧씠 利앷븳 寃껋쑝濡 굹궗떎(Yorifuji et al., 2011). 삉븳 궙 닔以쓽 硫뷀떥닔쓽 끂異쒕룄 쁺쑀븘쓽 諛쒕떖 諛 뻾룞 옣븷 뿰愿꽦씠 엳뿀쑝硫 빐궛臾쇱쓣 꽠痍⑦븯뒗 궛紐 紐⑤컻 닔쓽 뼇씠 1 ppm 利앷 떆 쑀븘쓽 IQ媛 0.18 룷씤듃 媛먯냼븳 寃껋쑝濡 蹂닿퀬릺뿀떎(Sakong, 2011).

씤泥닿 닔뿉 끂異쒕릺뒗 二쇱슂 寃쎈줈뒗 삤뿼맂 빐궛臾 諛 빐뼇 룷쑀瑜섏쓽 꽠痍⑥씠誘濡 꽑吏꾧뎅쓣 鍮꾨’븳 뿬윭 굹씪뿉꽌뒗 뼱뙣瑜 꽠痍⑥뿉 븳 媛씠뱶씪씤쓣 젙븯怨 뼱뙣瑜섏쓽 닔 옍瑜 뿀슜 湲곗, 씤泥 궡 닔 끂異 湲곗, 媛엫湲 뿬꽦씠굹 엫궛遺 諛 뼱由곗씠 벑쓽 깮꽑 꽠痍⑥뿉 븳 沅뚭퀬븞쓣 留덈젴븯怨 엳떎(Kim et al., 2012). 슦由щ굹씪쓽 寃쎌슦룄 理쒓렐 긽뼱瑜섎 룷븿븳 닔궛臾쇱쓽 닔 냽룄 痢≪젙쓣 諛뷀깢쑝濡 깮꽑 諛 빐궛臾쇱쓽 꽠痍 湲곗쓣 留덈젴븯쑝硫 珥 닔쓽 뿀슜移섎뒗 0.5 ppm, 긽뼱瑜섎 룷븿븳 떎옉뼱瑜, 깉移섎쪟쓽 硫뷀떥닔 1.0 ppm 씠븯濡 젙븯怨 엳떎(Kim, 2020; Kang et al., 2017).

슦由щ굹씪뒗 빐궛臾 꽠痍④ 留롮 援媛 以 븯굹씠硫 뼱뙣瑜섎 넻븳 닔 꽠痍 鍮꾩쑉씠 70% 젙룄瑜 李⑥븯뒗 寃껋쑝濡 蹂닿퀬릺怨 엳떎(Choi et al., 2012). 援誘쇨굔媛뺤쁺뼇議곗궗瑜 湲곗큹濡 븳援 꽦씤 씤援ъ쓽 삁以 以묎툑냽 닔移섎 議곗궗븳 끉臾몄뿉 뵲瑜대㈃, 2008뀈遺꽣 2011뀈源뚯 삁以 닔 냽룄뒗 4.19 μg/L뿉꽌 3.08 μg/L濡 袁몄븳 媛먯냼 異붿꽭瑜 蹂댁떎. 삉븳 젣1湲 援誘쇳솚寃쎈낫嫄 湲곗큹議곗궗(2009~2011) 젣3湲 援誘쇳솚寃쎈낫嫄 湲곗큹議곗궗(2015~2017)뿉꽌 슦由щ굹씪 꽦씤쓽 삁以 닔 룊洹 냽룄뒗 媛곴컖 3.10 μg/L, 2.75 μg/L濡 뿭떆 媛먯냼맂 뼇긽쓣 굹깉떎. 洹몃윭굹 媛옣 理쒓렐쓽 삁以 닔 냽룄룄 誘멸뎅쓽 NHANES뿉꽌 議곗궗맂 꽦씤 삁以 닔 냽룄 0.814 μg/L뿉 鍮꾪븯뿬 3諛 씠긽 넂怨 罹먮굹떎, 룆씪 벑쓽 꽑吏꾧뎅뿉 鍮꾪븯뿬룄 뿬쟾엳 넂 닔移섏씠떎(Kim, 2020; Seo et al., 2015). 뜑슧씠 뼱瑜 珥 닔쓽 70~100%뒗 媛뺣룆꽦쓽 硫뷀떥닔쓽 삎깭濡 議댁옱븯誘濡 빐궛臾 꽠痍⑤ 넻븳 닔 끂異쒕웾쓽 袁몄븳 紐⑤땲꽣留곸씠 븘슂븯떎怨 븯寃좊떎(Al-Sulaiti et al., 2022). 빐궛臾 꽠痍⑥ 삁以 닔 냽룄쓽 愿젴꽦 옒 븣젮졇 엳쑝굹 蹂 뿰援ъ뿉꽌뒗 젣4湲 援誘쇳솚寃쎈낫嫄 湲곗큹議곗궗(2018~2020) 옄猷뚮 솢슜븯뿬 理쒓렐 븳援 꽦씤쓽 삁以 닔 냽룄쓽 異붿씠瑜 뙆븙븯怨좎옄 븯쑝硫, 굹븘媛 깮꽑 꽠痍⑤줈 씤븳 닔 끂異쒖쓽 쐞뿕꽦쓣 븣由ш퀬 嫄닿컯븳 빐궛臾 냼鍮 뒿愿쓣 옣젮븯뒗 怨듭쨷蹂닿굔 硫붿떆吏瑜 쟾떖븯怨좎옄 븯떎.

옱猷 諛 諛⑸쾿

뿰援щ긽 諛 옄猷 異쒖쿂

蹂 뿰援щ뒗 援由쏀솚寃쎄낵븰썝 援誘쇳솚寃쎈낫嫄 湲곗큹議곗궗瑜 솢슜븯떎. 援誘쇳솚寃쎈낫嫄 湲곗큹議곗궗뒗 솚寃쎈낫嫄대쾿 젣14議곗뿉 뵲씪 2009뀈遺꽣 3뀈 二쇨린濡 떆뻾릺뒗 떒硫댁뿰援щ줈 쟾援 洹쒕え쓽 踰뺤젙議곗궗씠떎. 蹂 뿰援ъ뿉꽌뒗 젣4李(2018~2020) 썝떆옄猷뚮 솢슜븯떎. 援誘쇳솚寃쎈낫嫄 湲곗큹議곗궗쓽 紐⑹쟻 슦由щ굹씪 援誘쇱쓽 泥대궡 솚寃쎌쑀빐臾쇱쭏 끂異 닔以뿉 븳 援媛 넻怨꾩옄猷뚮줈 援媛 諛 吏뿭떒쐞쓽 솚寃쎈낫嫄 쁽솴怨 泥대궡 솚寃쎌쑀빐臾쇱쭏쓽 떆 • 怨듦컙쟻 遺꾪룷, 蹂솕 쁺뼢슂씤쓣 二쇨린 蹂꾨줈 痢≪젙븯뿬 솚寃쎈낫嫄댁젙梨 닔由쎌쓣 쐞븳 湲곗큹옄猷뚮 젣怨듯븯뒗 寃껋씠떎. 젣4湲(2018~2020) 꽦씤 긽 湲곗큹議곗궗쓽 몴蹂몄꽕怨꾩뿉꽌 궗슜븳 몴蹂 異붿텧 2015뀈 씤援ъ<깮 珥 議곗궗 寃곌낵쓽 쟾泥 議곗궗援 以 꽟, 湲곗닕 떆꽕, 듅닔 궗쉶 떆꽕, 愿愿묓샇뀛 諛 쇅援씤 議곗궗援щ 젣쇅븳 븘뙆듃 씪諛 議곗궗援, 떊異 븘뙆듃 쁽솴, 빐븞痢, 湲 以묎툑냽痢≪젙留 吏뿭쓣 몴蹂 異붿텧濡 궗슜븯떎(援誘쇳솚寃쎄린珥덉“궗 씠슜吏移⑥꽌). 蹂 뿰援ъ“궗 긽옄뒗 19꽭 씠긽 꽦씤 珥 2,988紐낆쑝濡 긽옄쓽 꽕臾 궡슜뿉꽌 떇뭹 꽠痍⑥ 삁以 닔 냽룄瑜 鍮꾧탳븯떎. 삉븳 긽옄뱾쓽 뿰졊怨 냼뱷 닔以뿉 뵲瑜 삁以 닔 냽룄瑜 鍮꾧탳븯떎.

닔遺꾩꽍

援誘쇳솚寃쎈낫嫄 湲곗큹議곗궗쓽 깮泥댁떆猷 梨꾩랬 諛 遺꾩꽍 삁븸怨 냼蹂寃궗瑜 넻빐 굹늻뼱 遺꾩꽍릺뼱 닔 냽룄룄 삁以묎낵 슂以 닔쑝濡 굹늻뼱졇 엳떎. 蹂 뿰援ъ뿉꽌뒗 닔 냽룄 以 삁以 닔 냽룄瑜 솢슜븯떎. 깮泥댁떆猷뚯쓽 遺꾩꽍湲곌린, 諛⑸쾿 諛 떆빟뿉 빐꽌뒗 뚯젣4湲 援誘쇳솚寃쎈낫嫄 湲곗큹議곗궗 깮泥댁떆猷 愿由 吏移⑥꽌, 뚯젣4湲 援誘쇳솚寃쎈낫嫄 湲곗큹議곗궗 깮泥댁떆猷 以 솚寃쎌쑀빐臾쇱쭏 遺꾩꽍留ㅻ돱뼹띿뿉 옄꽭엳 湲곗닠릺뼱졇 엳떎.

넻怨꾨갑踰

蹂 뿰援ъ쓽 깮泥 궡 쑀빐臾쇱쭏 냽룄쓽 몴媛(몴蹂명룊洹좉컪)쓣 궛異쒗븯湲 쐞빐꽌 痢듯솕 媛以묒튂瑜 諛섏쁺븯떎. 삁以 닔 냽룄쓽 몴媛믪 湲고븯룊洹좉낵 湲고븯 몴以렪李⑤ 궗슜븯쑝硫, 떎以 濡쒖뒪떛 쉶洹遺꾩꽍쑝濡 긽쐞뿕룄(odds ratio (OR)) 95% 떊猶 援ш컙쓣 넻빐 깮꽑 諛 議곌컻瑜 꽠痍⑥ 닔 냽룄쓽 뿰愿꽦쓣 뙆븙븯떎. 紐⑤뱺 넻怨꾨텇꽍 SPSS 27 (SPSS Inc., Chicago, IL, USA)濡 븯쑝硫 쑀쓽꽦 寃利앹 P<0.050 씠븯濡 븯떎.

寃 怨

씪諛섏쟻씤 듅꽦뿉 뵲瑜 닔 냽룄 遺꾪룷

蹂 뿰援 긽옄뒗 珥 2,988紐 以묒뿉꽌 궓옄뒗 1,297 (43.41%)紐, 뿬옄뒗 1,691 (56.59%)紐낆쓽 遺꾪룷瑜 蹂댁떎. 삁以 닔쓽 湲고븯룊洹 냽룄뒗 2.959 (±1.018) μg/L濡 굹궗떎. 꽦蹂꾩뿉 뵲씪꽌뒗 궓옄뒗 3.508 (±1.028) μg/L, 뿬옄뒗 2.499 (±1.022) μg/L濡 궓옄媛 쑀쓽븯寃 넂寃 굹궗떎(Table 1 and Fig. 1). 뿰졊蹂꾨줈뒗, 紐⑤뱺 뿰졊뿉꽌 뿬옄蹂대떎뒗 궓옄뿉꽌 삁以 닔 냽룄媛 넂寃 굹궗떎. 20 70瑜 젣쇅븯怨좊뒗 遺遺꾩쓽 뿰졊뿉꽌 궓 쑀쓽븳 삁以 닔 냽룄 李⑥씠瑜 蹂댁떎(Table 1).

Blood mercury concentration of subjects

Age Male Female P-value


n GM (GSD) n GM (GSD)
19~29 103 2.202 (1.071) 135 1.985 (1.063) 0.1739
30~39 170 3.716 (1.060) 223 2.211 (1.038) <0.0001
40~49 247 4.016 (1.042) 326 2.434 (1.044) <0.0001
50~59 259 4.633 (1.055) 403 3.140 (1.045) <0.0001
60~69 325 4.161 (1.046) 408 2.912 (1.042) <0.0001
70< 193 2.811 (1.086) 196 2.469 (1.073) <0.0930


Fig. 1. Comparison of mercury concentration according to age and income level. The quartile concentration of blood mercury according to increasing age and income/month. LogHg is a logarithmic change of concentration.

뿰졊怨 썡룊洹 媛援ъ냼뱷뿉 뵲瑜 삁以 닔 냽룄뒗 궗쉶寃쎌젣쟻 솢룞씠 留롮 뿰졊씤 30~59꽭 썡룊洹 媛援ъ냼뱷씠 留롮 洹몃9뿉꽌 삁以 닔씠 넂寃 굹궗떎. 뿰졊 30 誘몃쭔 삁以 닔쓽 湲고븯룊洹 냽룄媛 2.098 (1.048)쑝硫, 30 50궗씠뿉꽌쓽 湲고븯룊洹 냽룄媛 3.285 (1.022), 60 씠긽뿉꽌뒗 湲고븯룊洹 냽룄媛 3.036 (1.033)쓣 蹂댁엫쑝濡쒖뜥 쟾泥 議곗궗 긽옄 以묒뿉꽌 깮궛뿰졊痢듭쓽 닔 냽룄媛 媛옣 넂寃 굹궗떎. 냼뱷 遺꾪룷뿉꽌뒗 썡룊洹 냼뱷씠 100留뚯썝 誘몃쭔쓽 寃쎌슦 2.724 (1.039), 썡룊洹 냼뱷씠 200~499留뚯썝 궗씠뒗 2.916 (1.027) 洹몃━怨 500留뚯썝 씠긽쓽 寃쎌슦 3.205 (1.032)濡 굹궗떎(Fig. 1).

깮꽑怨 議곌컻瑜 꽠痍 鍮덈룄뿉 뵲瑜 닔 냽룄 遺꾪룷

꽦蹂꾩뿉 뵲瑜 깮꽑 꽠痍⑥ 議곌컻瑜 꽠痍 鍮덈룄뿉 뵲瑜 삁以 닔 냽룄 鍮꾧탳뒗 Table 2 Table 3뿉 굹깉떎. 쟾泥 긽옄쓽 깮꽑 꽠痍⑥ 議곌컻瑜 꽠痍 鍮덈룄뿉 뵲瑜 삁以 닔 냽룄 鍮꾧탳뒗 Fig. 2뿉 굹깉떎. 깮꽑 꽠痍 鍮덈룄媛 뒛뼱궇 닔濡 삁以 닔 냽룄뒗 利앷븯뒗 寃껋쑝濡 굹궗떎(Table 2).

Fish intake and blood mercury concentration by gender

Frequency of fish intake Male Female P-value


n GM (GSD) n GM (GSD)
Hardly eaten 108 2.088 (1.087) 169 1.818 (1.061) 0.0825
1/month 147 2.976 (1.064) 234 2.115 (1.050) <0.0001
2~3/month 296 3.349 (1.056) 391 2.459 (1.040) <0.0001
1/week 408 3.751 (1.049) 510 2.640 (1.043) <0.0001
≥2/week 293 4.480 (1.050) 346 3.204 (1.050) <0.0001
1/day 45 5.664 (1.148) 41 3.079 (1.167) <0.0001


Shellfish intake and blood mercury concentration by gender

Frequency of shellfish intake Male Female


n GM (GSD) n GM (GSD)
Hardly eaten** 603 2.955 (1.043) 836 2.295 (1.030)
1/month** 328 3.758 (1.050) 398 2.592 (1.050)
2~3/month** 189 4.166 (1.078) 241 2.624 (1.049)
1/week** 133 4.302 (1.084) 149 3.034 (1.067)
≥2/week* 42 4.174 (1.085) 65 2.828 (1.115)
1/day 2 4.879 (1.051) 2 2.945 (1.174)

*: P<0.001, **: P<0.0001



Fig. 2. Seafood intake and mercury concentration of total subjects. The quartile concentration of blood mercury according to fish and shellfish intake frequency. LogHg is a logarithmic change of concentration. The x-axis represents the frequency of fish and shellfish intake (0: Hardly eaten, 1: 1/month, 2: 2~3/month, 3: 1/week, 4: ≥2/week, 5: 1/day).

Table 3 꽦蹂꾩뿉 뵲瑜 議곌컻 꽠痍 鍮덈룄 삁以 닔 냽룄瑜 굹궦 몴濡, 궓옄뿉꽌 議곌컻 꽠痍 鍮덈룄媛 뒛뼱궇 닔濡 삁以 닔 냽룄媛 썡벑엳 넂븘吏뒗 寃껋쓣 븣 닔 엳떎. Fig. 2뒗 쟾泥 씤援ъ쓽 깮꽑 꽠痍⑥ 議곌컻瑜 꽠痍⑥뿉 뵲瑜 닔 냽룄 鍮꾧탳瑜 蹂댁뿬二쇰뒗 寃껋쑝濡 깮꽑 꽠痍⑤ 嫄곗쓽 븯吏 븡뒗 寃쎌슦쓽 닔 냽룄뒗 1.948 (±1.052)씤 寃껋뿉 諛섑빐 꽠痍 鍮덈룄媛 利앷븷닔濡 넂븘吏뒗 異붿꽭瑜 蹂댁뿬以떎. 븳 떖뿉 븳 踰 꽠痍⑦븯뒗 寃쎌슦뒗 2.450 (±1.041), 씪二쇱씪뿉 븳 踰 꽠痍⑤뒗 3.149 (±1.034), 떖吏뼱 븯猷⑥뿉 븳 踰 깮꽑 꽠痍⑤ 븯뒗 寃쎌슦뒗 4.506 (±1.132)源뚯 넂븘吏뒗 寃곌낵瑜 蹂댁떎.

議곌컻瑜 꽠痍⑥쓽 寃쎌슦룄 嫄곗쓽 븯吏 븡뒗 寃쎌슦쓽 닔 냽룄뒗 2.592 (±1.026)씤뜲 諛섑빐 꽠痍 鍮덈룄媛 利앷븷닔濡 넂븘吏뒗 異붿꽭瑜 蹂댁씠硫 븳 떖뿉 븳 踰 꽠痍⑤뒗 3.130 (±1.036), 씪二쇱씪뿉 븳 踰덉 3.695 (±1.058), 븯猷⑥뿉 븳 踰 議곌컻瑜섎 꽠痍⑦븯뒗 寃쎌슦 삁以 닔 냽룄뒗 3.801 (±1.183)源뚯 넂븘吏뒗 寃곌낵瑜 蹂댁떎.

떎以묓쉶洹遺꾩꽍쓣 넻븳 닔 냽룄 쐞뿕룄 遺꾩꽍

濡쒖뒪떛 쉶洹遺꾩꽍뿉꽌 깮꽑 꽠痍⑤뒗 삁以 닔 냽룄[Odds ratio, 1.415; 95% 떊猶 援ш컙(CI), 1.294~1.546]쓽 쐞뿕룄媛 41.5% 利앷뻽떎. 議곌컻瑜 꽠痍⑤뒗 삁以 닔 냽룄[Odds ratio, 1.235; 95% 떊猶 援ш컙(CI), 1.110~1.375]쓽 쐞뿕룄媛 23.5% 利앷뻽떎.

떎蹂웾遺꾩꽍쑝濡 꽦蹂 諛 뿰졊뿉 빐 蹂댁젙븳 썑, 깮꽑 꽠痍⑤뒗 삁以 닔 냽룄쓽 쐞뿕씠 36.6% 利앷븯怨[Odds ratio, 1.366; 95% 떊猶 援ш컙(CI), 1.245~1.498] 議곌컻瑜 꽠痍⑤뒗 삁以 닔 냽룄쓽 쐞뿕씠 26.4% 利앷븯떎[Odds ratio, 1.264; 95% 떊猶 援ш컙(CI), 1.133~1.411].

꽦蹂, 뿰졊, 냼뱷 諛 BMI뿉 빐 蹂댁젙맂 紐⑤뜽 III뿉꽌, 깮꽑 꽠痍⑤뒗 삁以 닔 냽룄쓽 쐞뿕씠 36.7% 利앷븯怨[Odds ratio, 1.367; 95% 떊猶 援ш컙(CI), 1.246~1.500] 議곌컻瑜 꽠痍⑤뒗 삁以 닔 냽룄쓽 쐞뿕씠 26.5% 利앷븯떎[Odds ratio, 1.265; 95% 떊猶 援ш컙(CI), 1.134~1.410] (Table 4).

Logistic regression analysis of the relationship between mercury concentration and frequency of seafood intake

Odds ratio (95% CI)

Model I Model II Model III
Fish 1.415 (1.294~1.546) 1.366 (1.245~1.498) 1.367 (1.246~1.500)
Shellfish 1.235 (1.110~1.375) 1.264 (1.133~1.411) 1.265 (1.134~1.410)

Model I : crude by Logistic regression

Model II : adjusted for gender and age

Model III : adjusted for gender, age, income, and BMI


怨 李

蹂 뿰援ъ뿉꽌뒗 젣4李 援誘쇳솚寃쎈낫嫄 湲곗큹議곗궗(2018~ 2020)瑜 솢슜븯뿬 19꽭 씠긽 꽦씤 珥 2,988紐낆쓣 긽쑝濡 빐궛臾 꽠痍⑥ 꽦蹂, 뿰졊 諛 냼뱷 닔以뿉 뵲瑜 삁以 닔 냽룄瑜 議곗궗븯怨 洹 뿰愿꽦쓣 뙆븙븯떎. 삁以 닔쓽 湲고븯룊洹 냽룄뒗 2.959 (±1.018) μg/L濡 굹궗쑝硫 궓옄媛 뿬옄뿉 鍮꾪븯뿬 쑀쓽븯寃 넂븯떎. 뿰졊蹂꾨줈뒗 꽦蹂꾩뿉 愿怨꾩뾾씠 뿰졊씠 利앷븷닔濡 삁以 닔 냽룄媛 利앷븯쑝硫 50뿉 理쒕移섎 蹂댁씠怨 60 씠썑뿉뒗 媛먯냼븯뒗 寃쏀뼢쓣 蹂댁떎. 議곗궗 긽옄뱾쓽 빟 30% 젙룄뿉꽌 1二쇱씪뿉 븳 踰덉 깮꽑쓣 꽠痍⑦븯뒗 寃껋쑝濡 굹궗쑝硫, 깮꽑 꽠痍 鍮덈룄媛 利앷븷 닔濡 삁以 닔 냽룄媛 넂븘吏뒗 寃껋쓣 愿李고븷 닔 엳뿀뒗뜲 씠뒗 닔궛臾쇱쓣 醫뗭븘븯뒗 떇뒿愿씠 뼱瑜 꽠痍⑥ 뿰怨꾨릺뼱 삁以 닔 냽룄媛 利앷븳 寃껋쑝濡 뙋떒빐 蹂 닔 엳떎. 議곌컻瑜섎뒗 깮꽑뿉 鍮꾪빐 긽쟻쑝濡 꽠痍 鍮덈룄媛 넂吏 븡븯쑝굹 삁以 닔 냽룄뒗 궓옄뿉꽌 議곌컻瑜 꽠痍 鍮덈룄뿉 鍮꾨븯뿬 利앷븯떎. 븳렪 뿬꽦씠 궓꽦뿉 鍮꾪빐 뼱瑜 諛 議곌컻瑜 꽠痍⑥뿉 뵲瑜 닔 냽룄媛 궙 寃껋 꽠痍⑤웾怨 꽠痍⑤갑踰(議곕━ 쑀臾) 벑뿉 뵲瑜 寃곌낵濡 쑀異붾릺굹 씠윭븳 긽愿愿怨꾨뒗 異붽쟻씤 뿰援ш 븘슂븷 寃껋쑝濡 궗猷뚮맂떎. 삉븳 긽옄뱾쓽 꽦蹂, 뿰졊, 냼뱷 諛 BMI瑜 蹂댁젙 썑 遺꾩꽍맂 寃곌낵뿉꽌룄 깮꽑 꽠痍 鍮덈룄媛 넂븘吏덉닔濡 삁以 닔 냽룄쓽 쐞뿕씠 36.7% 利앷븯怨[Odds ratio, 1.367; 95% 떊猶 援ш컙(CI), 1.246~1.500], 議곌컻瑜 뿭떆 꽠痍 鍮덈룄媛 넂븘吏덉닔濡 삁以 닔 냽룄쓽 쐞뿕씠 26.5% 利앷븯뒗 寃껋쑝濡 굹굹[Odds ratio, 1.265; 95% 떊猶 援ш컙(CI), 1.134~1.410] 깮꽑 諛 議곌컻瑜 꽠痍 鍮덈룄뒗 삁以 닔 냽룄 利앷뿉 以묒슂븳 쁺뼢蹂닔씪뒗 寃껋쓣 븣 닔 엳뿀떎.

븳렪 삁以 닔 냽룄뒗 궗쉶寃쎌젣쟻 솢룞씠 솢諛쒗븳 30꽭뿉꽌 59꽭 궗씠쓽 깮궛 씤援ъ 썡룊洹 냼뱷씠 넂 洹몃9뿉꽌 媛옣 넂븯떎. 蹂 뿰援ъ뿉꽌 냼뱷 닔以蹂 깮꽑怨 議곌컻瑜 꽠痍 鍮덈룄뿉 뵲瑜 삁以 닔 냽룄瑜 遺꾩꽍븯吏 븡븯쑝굹 씠뒗 쉶떇 벑쓽 궗쉶寃쎌젣솢룞 삉뒗 냼뱷 닔以쓽 利앷濡 빐궛臾쇱쓽 꽑샇룄 怨좉툒 삎 뼱瑜섏쓽 꽠痍 利앷뿉 뵲瑜 쁺뼢쑝濡 궗猷뚮맂떎.

씠 鍮꾩듂븯寃 닔쓣 鍮꾨’븳 삁以 以묎툑냽 냽룄 궗쉶寃쎌젣쟻 닔以(SES)뿉 愿븳 뿬윭 뿰援 寃곌낵뿉꽌 씪諛섏쟻쑝濡 삁以 닔 냽룄뒗 궗쉶寃쎌젣쟻 닔以씠 넂쓣닔濡 利앷븯뒗 寃껋쑝濡 굹궗쑝硫 씠뒗 二쇰줈 깮꽑 꽠痍⑥ 愿젴씠 엳뒗 寃껋쑝濡 蹂닿퀬릺怨 엳떎(Morrens et al., 2012; Vrijheid et al., 2012; Hightower and Moore, 2003). 誘멸뎅쓽 NHANES (National Health and Nutrition Examination Survey)瑜 湲곕컲쑝濡 븳 꽑뻾뿰援ъ뿉 뵲瑜대㈃ 냼뱷씠 넂 뿬꽦씠 깮꽑쓣 뜑 留롮씠 꽠痍⑦븯怨 삁以 닔 냽룄룄 넂 寃껋쑝濡 굹궗떎(Mahaffey et al., 2009). 삉븳 2001뿉꽌 2010뀈源뚯 誘멸뎅 꽦씤쓽 寃쎌젣쟻 吏쐞 솚寃쎈룆꽦臾쇱쭏 끂異쒖뿉 愿븳 뿰愿꽦 뿰援ъ뿉꽌룄 鍮덇낀 냼뱷 鍮꾩쑉(poverty income ratio, PIR) 삁泥 諛 슂 닔 냽룄 뼇쓽 긽愿愿怨꾧 엳쓬쓣 蹂닿퀬븯떎(Tyrrell et al., 2013). 젣6湲 援誘쇨굔媛뺤쁺뼇議곗궗(2013~2015) 옄猷뚮 씠슜븳 븳援 꽦씤쓽 援먯쑁 諛 냼뱷 닔以怨 삁以 以묎툑냽 냽룄 媛꾩쓽 愿젴꽦 뿰援ъ뿉꽌룄 궗쉶寃쎌젣쟻 닔以씠 깮꽑 꽠痍⑤웾怨 삁以 닔 냽룄뿉 쁺뼢쓣 誘몄튂뒗 以묒슂븳 蹂닔濡 옉슜븯떎(Kim and Cho, 2019). 씠윭븳 寃곌낵뒗 궗쉶寃쎌젣쟻 닔以씠 넂 洹몃9씠 빆긽 솚寃쎈룆꽦臾쇱쭏濡쒕꽣 蹂댄샇릺뒗 寃껋씠 븘땲씪뒗 寃껋쓣 쓽誘명븳떎怨 븯寃좊떎(Tyrrell et al., 2013). 뵲씪꽌 湲곗삤뿼씠굹 닔吏덉삤뿼 媛숈 솚寃쎌쟻 슂씤 쇅뿉 씤援 궗쉶븰쟻 蹂닔뱾쓣 怨좊젮븳 洹몃9蹂 솚寃쎈룆꽦臾쇱쭏 愿由 젙梨낆씠 븘슂븷 寃껋쑝濡 궗猷뚮맂떎.

빐뼇 癒뱀씠 궗뒳쓣 넻븯뿬 깮臾쇳븰쟻쑝濡 냽異뺣릺怨 利앺룺릺뒗 硫뷀떥닔쓽 냽룄뒗 뼱瑜섏쓽 寃쎌슦, 二쇰 諛붾떣臾쇱뿉 議댁옱븯뒗 닔 냽룄쓽 10,000~100,000諛곗뿉 떖븯뒗 寃껋쑝濡 븣젮졇 엳떎(Clarkson and Magos, 2006). 씪諛섏쟻쑝濡 뼱瑜섏쓽 쁺뼇 닔以, 겕湲, 뿰졊, 꽌떇 쐞移 벑씠 뼱瑜섏쓽 닔 냽룄뿉 쁺뼢쓣 誘몄튂뒗뜲 듅엳 理쒓퀬 쁺뼇 닔以뿉 쐞移섑븯뒗 삎 뼱瑜 諛 룷떇꽦 뼱瑜섏 옣닔븯뒗 뼱瑜섏쓽 닔 냽룄뒗 癒뱀씠 궗뒳쓣 嫄곗튂硫 옟떇꽦 뼱瑜섏 珥덉떇꽦 뼱瑜섏뿉 鍮꾪빐 洹 냽룄媛 썾뵮 넂떎(Chen and Dong, 2022). 삁瑜 뱾뼱 긽뼱쓽 洹쇱쑁 諛 媛꾩뿉뒗 넂 냽룄쓽 닔씠 엳떎怨 븣젮졇 엳쑝硫 젙湲곗쟻쑝濡 긽뼱怨좉린瑜 꽠痍⑦븯뒗 洹몃9 洹몃젃吏 븡 洹몃9뿉 鍮꾪븯뿬 삁以 닔 냽룄媛 넂 寃껋쑝濡 굹궗떎(Amezcua et al., 2022; Park et al., 2017; Baek et al., 2023). 理쒓렐, 異붿꽍 紐낆젅뿉 긽뼱怨좉린瑜 젣닔濡 궗슜븯뒗 寃쎌긽遺곷룄 援, 쁺泥 吏뿭쓽 洹쇰줈옄瑜 긽쑝濡 異붿꽍 쟾 • 썑 긽뼱怨좉린 꽠痍⑥뿉 뵲瑜 삁以 닔 냽룄瑜 痢≪젙븳 寃곌낵, 긽뼱怨좉린 꽠痍⑥ 삁以 닔 냽룄뒗 쑀쓽븳 긽愿愿怨꾧 엳뿀쑝硫 異붿꽍 湲곌컙 룞븞 긽뼱怨좉린瑜 꽠痍⑦븳 洹몃9뿉꽌 삁以 닔 냽룄媛 룊洹 3.56 μg/L 利앷븳 寃껋쑝濡 議곗궗릺뿀떎. 삉븳 긽뼱怨좉린 꽠痍⑤웾뿉 鍮꾨븯뿬 삁以 닔 냽룄媛 利앷븯쑝硫 듅엳 100 g 씠긽 꽠痍⑦븳 洹몃9뿉꽌 엫궛遺瑜 룷븿븳 씪諛섏씤쓽 닔 끂異 湲곗移섏씤 3.5 μg/L瑜 썾뵮 珥덇낵븯뒗 6 μg/L 씠긽쑝濡 利앷릺뿀떎. 븳렪 씠 吏뿭 議곗궗긽쓽 異붿꽍 쟾 삁以 닔쓽 湲고븯룊洹 냽룄뒗 5 μg/L쓣 珥덇낵븯뒗뜲 씠뒗 듅젙 吏뿭, 꽑샇븯뒗 뼱醫 諛 吏由ъ쟻 • 臾명솕쟻 諛곌꼍 벑뿉 쓽븯뿬 옞옱쟻쑝濡 嫄닿컯뿉 쐞뿕쓣 珥덈옒븷 닔 엳뒗 留뚯꽦쟻씤 닔 끂異쒖씠 諛쒖깮븯怨 엳쓬쓣 븫떆븳떎怨 븯寃좊떎(Baek et al., 2023).

2013뀈 쑀뿏솚寃쎄퀎쉷(UNEP)뿉꽌 梨꾪깮릺뼱 2017뀈 踰뺤쟻 슚젰씠 諛쒖깮븳 誘몃굹留덊 삊빟 닔쓽 깮궛, 옣, 궗슜, 諛곗텧, 룓湲곗쓽 怨쇱젙쓣 愿由ы븯뿬 씤쐞쟻 닔 諛곗텧쓣 넻젣븯怨 씤媛꾩쓽 嫄닿컯怨 솚寃쎌쓣 蹂댄샇븯湲 쐞븳 꽭怨 理쒖큹쓽 삊빟씠떎(Basu et al., 2023; Kim, 2017). 슦由щ굹씪뿉꽌룄 닔뿉 쓽븳 쐞빐瑜 以꾩씠怨 솚寃쎌쑀빐臾쇱쭏怨 愿젴맂 솚寃쎈낫嫄댁젙梨낆쓣 닔由쏀븯湲 쐞븯뿬 援誘쇨굔媛뺤쁺뼇議곗궗 援誘쇳솚寃쎈낫嫄 湲곗큹議곗궗瑜 떆뻾, 닔 끂異쒖쓣 以꾩씠젮뒗 뿬윭 媛吏 끂젰쓣 빐삤怨 엳쑝굹 2010뀈 씠썑 3.0 μg/L 닔以쓽 삁以 닔 냽룄뒗 뜑 씠긽 궙븘吏吏 븡怨 엳떎(Basu et al., 2018). 蹂 뿰援 寃곌낵뿉꽌룄 삁以 닔쓽 湲고븯룊洹 냽룄뒗 2.959 μg/L濡 젣3湲 援誘쇳솚寃쎈낫嫄 湲곗큹議곗궗(2015~ 2017)쓽 삁以 닔 룊洹 냽룄 2.75 μg/L 蹂대떎 삤엳젮 利앷릺뒗 뼇긽쓣 蹂댁떎. 븵꽌 뼵湲됲뻽뜕 寃껋쿂읆 吏뿭怨 臾명솕쟻 李⑥씠 諛 씤援ъ궗쉶븰쟻 슂씤뿉 뵲씪 닔 냽룄뒗 뜑슧 李⑥씠媛 엳쓣 寃껋쑝濡 삁긽릺誘濡 吏뿭쟻쑝濡 꽭遺꾪솕릺怨 吏냽쟻씤 紐⑤땲꽣留곸씠 븘슂븷 寃껋쑝濡 궗猷뚮맂떎.

씠 뿰援щ뒗 젣4李(2018~2020) 援誘쇳솚寃쎈낫嫄 湲곗큹議곗궗瑜 솢슜븯뿬 빐궛臾 꽠痍⑥뿉 뵲瑜 븳援 꽦씤쓽 理쒓렐 삁以 닔 냽룄쓽 異붿씠 洹 쁺뼢 슂씤 諛 愿젴꽦쓣 議곗궗븳 寃껋쑝濡 닔 끂異쒖뿉 쓽븳 媛쒖씤쓽 吏덈퀝 遺떞쓣 以꾩씠怨 怨듭쨷蹂닿굔젙梨낆쓣 닔由쏀븯뒗 湲곗큹옄猷뚮줈 솢슜맆 닔 엳쓣 寃껋씠떎. 떎留 蹂 뿰援щ뒗 떒硫댁뿰援щ씪뒗 븳怨꾨줈 씤빐 옄湲곌린엯떇 꽕臾몄옄猷뚯 닔 냽룄媛꾩쓽 떆媛꾩쟻 꽑썑愿怨꾨 怨좊젮븷 닔 뾾떎뒗 젣븳젏씠 엳쓣 닔 엳떎. 삉븳 뿰援 긽뱾씠 꽠痍⑦뻽뜕 깮꽑 醫낅쪟 뼇, 깮솢뒿愿 슂씤 諛 吏由ъ쟻 슂씤쓣 怨좊젮븳 遺꾩꽍씠 씠猷⑥뼱吏吏 紐삵뻽떎. 뵲씪꽌 뼢썑 떒닚엳 닔궛臾 꽠痍⑥뿉 쓽븳 닔 끂異쒕웾 肉먮쭔 븘땲씪 쁺쑀븘, 엫궛遺瑜 룷븿븳 뿬윭 議곗궗긽뿉꽌 닔씠 룷븿맂 떎뼇븳 냽異뺤궛臾쇱쓽 꽠痍, 吏뿭 諛 궗쉶寃쎌젣쟻 슂씤씠 怨좊젮맂 肄뷀샇듃 뿰援ш 븘슂븷 寃껋쑝濡 뙋떒맂떎.

ACKNOWLEDGEMENT

This study used the Korean National Environmental Health Survey Cycle 4 (2018~2020) data, made by National Institute of Environmental Research (NIER-2018-01-01-001).

CONFLICT OF INTEREST

The author declares no conflict of interest.

References
  1. Al-Sulaiti MM, Soubra L, Al-Ghouti MA. The Causes and Effects of Mercury and Methylmercury Contamination in the Marine Environment: A Review. Curr Pollution Rep. 2022. 8: 249-272.
    CrossRef
  2. Amezcua F, Ruelas-Inzunza J, Coiraton C, Spanopoulos-Zarco P, P찼ez-Osuna F. A Global Review of Cadmium, Mercury, and Selenium in Sharks: Geographical Patterns, Baseline Levels and Human Health Implications. Reviews Env Contamination (formerly:. Residue Reviews). 2022. 260: 4.
    CrossRef
  3. Baek K, Park C, Sakong J. Increase of blood mercury level with shark meat consumption: A repeated-measures study before and after Chuseok, Korean holiday. Chemosphere. 2023. 344: 140317-140326.
    Pubmed CrossRef
  4. Basu N, Bastiansz A, D처rea JG, Fujimura M, Horvat M, Shroff E, Weihe P, Zastenskaya I. Our evolved understanding of the human health risks of mercury. Ambio. 2023. 52: 877-896.
    Pubmed KoreaMed CrossRef
  5. Basu N, Horvat M, Evers DC, Zastenskaya I, Weihe P, Tempowski J. A State-of-the-Science Review of Mercury Biomarkers in Human Populations Worldwide between 2000 and 2018. Environ Health Perspect. 2018. 126: 106001-106014.
    Pubmed KoreaMed CrossRef
  6. B챕n챕 C, Barange M, Subasinghe R, Pinstrup-Andersen P, Merino G, Hemre GI, Williams M. Feeding 9 billion by 2050 - Putting fish back on the menu. Food Sec. 2015. 7: 261-274.
    CrossRef
  7. Chen B, Dong S. Mercury Contamination in Fish and Its Effects on the Health of Pregnant Women and Their Fetuses, and Guidance for Fish Consumption-A Narrative Review. Int J Environ Res Public Health. 2022. 19: 15929-15946.
    Pubmed KoreaMed CrossRef
  8. Choi H, Park SK, Kim MH. Risk Assessment of Mercury through Food Intake for Korean Population. Korean J Food Sci Technol. 2012. 44: 106-113.
    CrossRef
  9. Clarkson TW, Magos L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 2006. 36: 609-662.
    Pubmed CrossRef
  10. Groth E 3rd. Ranking the contributions of commercial fish and shellfish varieties to mercury exposure in the United States: implications for risk communication. Environ Res. 2010. 110: 226-236.
    Pubmed CrossRef
  11. Hightower JM, Moore D. Mercury levels in high-end consumers of fish. Environ Health Perspect. 2003. 111: 604-608.
    Pubmed KoreaMed CrossRef
  12. Kang SH, Lee MJ, Kim JK, Jung YJ, Hur ES, Cho YS, Moh A, Park KH. Contents of total mercury and methylmercury in deep-sea fish, tuna, billfish and fishery products. J Food Hyg Saf. 2017. 32: 42-49.
    CrossRef
  13. Kim CW, Kim YW, Chae CH, Son JS, Kim JH, Park HO, Kang YS, Kim JR, Hong YS, Kim DS, Jeong BG. The Relationship between Fish Consumption and Blood Mercury Levels in Residents of Busan Metropolitan City and Gyeongnam Province. J Agric Med Community Health. 2012. 37: 223-232.
    CrossRef
  14. Kim JH, Cho YT. Convergent association between socioeconomic status and the blood concentrations of mercury, lead, and cadmium in the Korean adult population: based on the sixth Korea National Health and Nutritional Examination Surveys (KNHANES 2013-2015). J Korea Conv Soc. 2019. 10: 51-61.
  15. Kim NY. Blood Mercury Concentration by the Frequency of Fish and Shellfish Consumption in Korean Adults, 2020.
  16. Kim SM. A Study on the EU's Legislative Proposal for a Regulation on Mercury for the Implementation of the Minamata Convention. 2017. 17: 1-23.
  17. Mahaffey KR, Clickner RP, Jeffries RA. Adult women's blood mercury concentrations vary regionally in the United States: association with patterns of fish consumption (NHANES 1999-2004). Environ Health Perspect. 2009. 117: 47-53.
    Pubmed KoreaMed CrossRef
  18. Morrens B, Bruckers L, Hond ED, Nelen V, Schoeters G, Baeyens W, Van Larebeke N, Keune H, Bilau M, Loots I. Social distribution of internal exposure to environmental pollution in Flemish adolescents. Int J Hyg Environ Health. 2012. 215: 474-481.
    Pubmed CrossRef
  19. Park GI, Byun YS, Joong Jeon M, Sakong J. The associations between blood mercury levels and shark meat intake among workers in Gyeongsangbuk-do. Ann of Occup and Environ Med. 2017. 29: 29-35.
    Pubmed KoreaMed CrossRef
  20. Sakong J. Health Effects of Mercury Exposure through Fish. Yeungnam Univ J Med. 2011. 28: 105-115.
    CrossRef
  21. Seo JW, Kim BG, Kim YM, Kim RB, Chung JY, Lee KM, Hong YS. Trend of blood lead, mercury, and cadmium levels in Korean population: data analysis of the Korea National Health and Nutrition Examination Survey. Environ Monit Assess. 2015. 7: 146-158.
    Pubmed CrossRef
  22. Sheehan MC, Burke TA, Navas-Acien A, Breysse PN, McGready J, Fox MA. Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review. Bull World Health Organ. 2014. 92: 254-269F.
    Pubmed KoreaMed CrossRef
  23. Sioen I, De Henauw S, Van Camp J, Volatier JL, Leblanc JC. Comparison of the nutritional-toxicological conflict related to seafood consumption in different regions worldwide. Regul Toxicol Pharmacol. 2009. 55: 219-228.
    Pubmed CrossRef
  24. Tyrrell J, Melzer D, Henley W, Galloway TS, Osborne NJ. Associations between socioeconomic status and environmental toxicant concentrations in adults in the USA: NHANES 2001~2010. Environ Int. 2013. 59: 328-335.
    Pubmed CrossRef
  25. Vrijheid M, Martinez D, Aguilera I, Ballester F, Basterrechea M, Esplugues A, Guxens M, Larrangaga M, Lertxundi A, Mendez M, Murcia M, Marina LS, Villanueva CM, Sunyer J. Socioeconomic status and exposure to multiple environmental pollutants during pregnancy: evidence for environmental inequity? J Epidemiol Community Health. 2012. 66: 106-113.
    Pubmed CrossRef
  26. Yorifuji T, Tsuda T, Inoue S, Takao S, Harada M. Long-term exposure to methylmercury and psychiatric symptoms in residents of Minamata, Japan. Environ Int. 2011. 37: 907-913.
    Pubmed CrossRef