Search for


TEXT SIZE

search for



CrossRef (0)
Antibacterial activity of Chamaecyparis obtuse Extract and Profile of Antimicrobial Agents Resistance for Methicillin-Resistant Staphylococcus aureus
Biomed Sci Letters 2024;30:32-35
Published online March 31, 2024;  https://doi.org/10.15616/BSL.2024.30.1.32
© 2024 The Korean Society For Biomedical Laboratory Sciences.

Jong Hwa Yum,*

Department of Clinical Laboratory Science, Dongeui University, Busan 47340, Korea
Correspondence to: Jong Hwa Yum. Department of Clinical Laboratory Science, Dongeui University, Busan 47340, Korea.
Tel: +82-51-890-2682, Fax: +82-505-182-6877, e-mail: auxotype@deu.ac.kr
*Professor.
Received January 11, 2024; Revised January 23, 2024; Accepted February 5, 2024.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
In vitro antimicrobial activities of hot water extracts of Chamaecyparis obtuse, for methicillin-resistant Staphylococcus aureus (MRSA) was compared to commonly used conventional antimicrobial agents. All MRSA was susceptible to linezolid or vancomycin, but also to erythromycin. MIC range and MIC90 to erythromycin, clindamycin, levofloxacin, tetracycline for MRSA were each 4 關g/mL, 2 ~ >128 關g/mL, 돞0.06 ~ >128 關g/mL, 0.25 ~ >128 關g/mL, 0.25~64 關g/ mL and 4 關g/mL, .128 關g/mL, >128 關g/mL, >128 關g/mL, 64 關g/mL. The hot water extracts of leaf of C. obtuse had the lowest MIC range, MIC50, and MIC90 (0.125 關L/mL) for the MRSA tested, and it was possible more potent than various conventional antimicrobial agents. Screen antibacterial drug candidate with high antibacterial activity such as derivatives of C. obtuse leaf extract such as terpinen-4-ol or using combined therapy with commercialized antibacterial agents will likely be helpful in treating refractory MRSA infections.
Keywords : Chamaecyparis obtuse, Methicillin-Resistant Staphylococcus aureus, Antibacterial activity, Terpinen-4-ol, Antimicrobial agent
Body

理쒓렐 洹몃엺뼇꽦 援ш퇏쓽 빆洹좎젣 궡꽦씠 利앷븯怨 엳뼱 理쒓렐 紐 뀈媛 겙 臾몄젣濡 몢릺怨 엳떎. 깉濡쒖슫 移섎즺젣젣濡 빀꽦빟臾쇱씤 oxazolidinone 洹몃엺뼇꽦 꽭洹좎뿉 빆洹좊젰쓣 蹂댁씤떎. 쑀씪븯寃 떆뙋릺뒗 oxazolidinone씤 linezolid뒗 23S rRNA peptidyl transferase뿉 寃고빀븯뿬 꽭洹좎쓽 떒諛깆쭏 踰덉뿭 媛쒖떆瑜 뼲젣븳떎(Shinabarger, 1999).

떎뼇븳 吏뿭뿉꽌 룺꼻寃 궗슜릺뒗 빟臾쇱씤 linezolid뒗 methicillin-resistant Staphylococcus aureus (MRSA)쓣 룷븿븯뿬 vancomycin-resistant Enterococcus spp. (VRE) 諛 penicillin 궡꽦 Streptococcus pneumoniae 媛숈 遺遺꾩쓽 洹몃엺뼇꽦 꽭洹 媛먯뿼 移섎즺뿉 슚怨쇱쟻씠떎(Andes et al., 2002; Attassi et al., 2002; Kato et al., 2021). 洹몃윭굹, 理쒓렐 紐뉖챺 뿰援ъ뿉꽌뒗 釉뚮씪吏, 以묎뎅, 봽옉뒪, 룆씪, 씠깉由ъ븘 諛 뒪썾뜶뿉꽌 linezolid 궡꽦 staphylococci enterococci쓽 異쒗쁽 蹂닿퀬媛 젏李 利앷븯怨 엳떎. 뵲씪꽌, MRSA瑜 룷븿븳 洹몃엺뼇꽦 媛먯뿼솚옄쓽 移섎즺뿉 젏李 뼱젮씠 利앷븷 寃껋쑝濡 삁痢〓맂떎. Linezolid뿉 븳 二쇱슂 궡꽦 湲곗쟾 23S rRNA 쑀쟾옄쓽 룎뿰蹂씠 理쒓렐뿉 냼媛쒕맂 씠룞 媛뒫븳 chloramphenicol-florfenicol 궡꽦(cfr) methyltransferase 쑀쟾옄 븣臾몄씤 寃껋쑝濡 븣젮졇 엳떎(Jones et al., 2009).

MRSA瑜 鍮꾨’븳 洹몃엺뼇꽦 援ш퇏 媛먯뿼 移섎즺뿉 엳뼱 빆洹좎젣 궡꽦 臾몄젣媛 젏李 떖媛곹븯寃 몢릺怨 엳쑝硫, 誘쇨컙슂踰뺤쑝濡 媛먯뿼吏덊솚 移섎즺뿉 궗슜릺뼱 삩 떇臾쇰줈遺꽣 빆洹좊Ъ吏덉쓣 遺꾨━븯湲 쐞븳 뿰援ш 떎뼇븯寃 솢諛쒗엳 吏꾪뻾릺怨 엳떎(Lee et al., 2009; Hong et al., 2004; Yang et al., 2007). 洹 以 移⑥뿽닔 醫 異붿텧臾쇱뿉꽌 terpinen-4-ol 빆洹 슚怨쇰 굹궡뒗 二쇱슂 꽦遺꾩쑝濡 븣젮吏 諛 엳떎(Lee et al., 2009; Yang et al., 2007). 삉븳, 떇臾쇱뿉꽌 異붿텧븳 泥쒖뿰臾쇱쭏씠 빆궛솕 꽦遺 슚뒫쓣 媛吏硫댁꽌 媛곸쥌 蹂묒썝꽦 誘몄깮臾쇱쓽 꽭룷踰쎄낵 꽭룷留됱쓽 湲곕뒫쓣 빟솕떆궎怨 슚냼 솢꽦쓣 뼲젣븯뒗 寃껋쑝濡 蹂닿퀬릺뒗 벑 떎뼇븳 泥쒖뿰臾쇱쭏뿉꽌쓽 빆洹 슚뒫쓣 蹂닿퀬븳 諛 엳떎(Lee et al., 2015). 씠뿉 깉濡쒖슫 빟젣 깘깋 湲곗닠怨 蹂묒슜슂踰 벑쓽 諛⑸쾿 媛쒕컻씠 븘슂븯떎.

蹂 뿰援ъ뿉꽌뒗 援궡뿉꽌 遺꾨━맂 MRSA뿉 븳 빆洹좎젣 궡꽦 뼇긽쓣 遺꾩꽍븯怨, 씠뱾 꽭洹좎뿉 븳 Chamaecyparis obtuse쓽 옂怨 媛吏쓽 뿴닔異붿텧臾쇱쓽 빆洹 슚怨쇰 遺꾩꽍븯怨좎옄 븯떎.

2010뀈 遺궛떆 3李 쓽猷뚭린愿뿉꽌 諛섎났릺吏 븡寃 遺꾨━맂 S. aureus 25二쇰 遺꾩뼇 諛쏆븘 떆뿕긽쑝濡 떆뿕븯쑝硫, 洹좎쥌 룞젙 쟾넻쟻씤 諛⑸쾿怨 ID32 STAPH瑜 씠슜븯떎. S. aureus ATCC 25923 S. aureus ATCC 29213쓣 빆洹좎젣 媛먯닔꽦 떆뿕뿉 李몄“ 洹좎<濡 궗슜븯떎.

嫄댁“ C. obtuse 옂怨 媛吏瑜 媛곴컖 1 kg쓣 9 L DW.뿉 꽔怨 100℃뿉꽌 8떆媛 30遺 룞븞 뿴닔異붿텧 븳 썑, 100 mL濡 냽異뺥븳 뿴닔異붿텧臾쇱쓣 -70℃뿉 蹂닿븯뿬 떆뿕뿉 궗슜븯떎. C. obtuse 옂怨 媛吏 뿴닔異붿텧臾쇱쓣 硫멸퇏맂 鍮 뵒뒪겕뿉 0 μL, 5 μL, 10 μL, 15 μL, 洹몃━怨 20 μL뵫 泥④븯怨 嫄댁“떆耳 떆뿕 꽭洹좎뿉 븳 빆洹좊젰 떆뿕뿉 궗슜븯떎.

MRSA쓽 寃異쒖 CLSI (Clinical and Laboratory Standards Institute, 2018)쓽 沅뚯옣뿉 뵲씪 30 μg cefoxitin 뵒뒪겕瑜 씠슜븯뿬 methicillin뿉 빐 궡꽦씤 洹좎<瑜 꽑蹂꾪븯떎.

빆洹좎젣 理쒖냼뼲젣냽룄 떆뿕(Minimal inhibitory concentration; MIC) CLSI (Clinical and Laboratory Standards Institute, 2018)쓽 沅뚯옣뿉 뵲씪, 빆洹좎젣 媛먯닔꽦 떆뿕 104 colony forming units쓽 젒醫낆븸쓣 Mueller-Hinton agar (Difco Laboratories, USA)뿉 젒醫낇븯怨 18떆媛 룞븞 諛곗뼇븯뿬 怨좎껜븳泥쒗씗꽍踰(agar dilution method)쑝濡 떆뿕븯떎. 떆뿕뿉 궗슜븳 빆洹좎젣뒗 linezolid (Dong-A Pharmaceutical Co.), erythromycin (Sigma Chemical Co., St. Louis, Mo.), clindamycin (Korea Upjohn, Seoul, Korea), gentamicin (Chong Kun Dang, Seoul, Korea), levofloxacin (Daiichi Pharmaceutical Co., Tokyo, Japan), tetracycline (Sigma Chemical, St. Louis, MO), vancomycin (Daewoong Pharmaceutical Co., Seoul, Korea)씠떎.

C. obtuse 옂怨 媛吏 뿴닔異붿텧臾쇱쓣 媛곴컖 뵒뒪겕솗궛踰뺤쓣 씠슜븯뿬 엫긽뿉꽌 遺꾨━맂 MRSA뿉 븳 媛먯닔꽦 떆뿕뿉꽌 냽룄媛 利앷븿뿉 뵲씪 떆뿕 꽭洹좎쓽 뼲젣媛 利앷븯뿬 씠뱾 꽭洹좎뿉 븳 빆洹좊젰쓣 솗씤븯떎(Fig. 1). 삉븳, C. obtuse 옂 뿴닔異붿텧臾쇱쓽 빆洹좊젰 떆뿕 뿴닔異붿텧臾 媛곴컖쓽 냽룄蹂꾨줈 Mueller-Hinton agar (MH agar; Difco laboratories, USA)뿉 떆뿕 꽭洹 104 colony forming units쓽 젒醫낆븸쓣 젒醫낇븯뿬 18떆媛 룞븞 諛곗뼇븯뿬 怨좎껜븳泥쒗씗꽍踰뺤쑝濡 떆뿕븯떎.

Fig. 1. The result of antibacterial effect screen test for water extracts of Chamaecyparis obtuse branch (A) and leaf (B) for Methicillin-Resistant Staphylococcus aureus using disk diffusion test.

嫄댁“ C. obtuse 옂怨 媛吏쓽 뿴닔異붿텧臾쇱쓽 MRSA뿉 븳 빆洹좊젰 떆뿕 MH agar뿉꽌 뵒뒪겕솗궛踰뺤쑝濡 떆뿕븳 寃곌낵, C. obtuse 媛吏 異붿텧臾쇱뿉꽌뒗 紐⑤몢 빆洹좏솢꽦뒫씠 寃異쒕릺吏 븡븯떎(Fig. 1A). C. obtuse 옂 異붿텧臾쇱뿉꽌뒗 10 μL 20 μL 泥④븳 뵒뒪겕뿉꽌 媛곴컖 7 mm, 8 mm쓽 뼲젣瑜 蹂댁뿬 MRSA뿉 빐 빆洹좏솢꽦뒫쓣 솗씤븯떎(Fig. 1B).

엫긽뿉꽌 遺꾨━맂 MRSA뿉 븳 빆洹좎젣쓽 MIC 踰붿쐞뒗 linezolid 4 μg/mL vancomycin 0.5~1 μg/mL濡 궙 닔以쓣 蹂댁怨, MIC90 媛곴컖 4 μg/mL 1 μg/mL씠뿀쑝硫, 紐⑤몢 媛먯닔꽦 鍮꾩쑉씠 100% 씠뿀떎(Table 1). 洹몃윭굹 理쒓렐 linezolid vancomycin 궡꽦 洹좎< 異쒗쁽씠 利앷븯怨 엳뼱 씠뱾 빆洹좎젣뿉 븳 궡꽦洹 異쒗쁽씠 利앷븷 寃껋쑝濡 뙋떒맂떎. 삉븳, gentamicin쓽 MIC 踰붿쐞뒗 0.12~16 μg/mL濡 궙 닔以쓣 蹂댁怨, MIC90 8 μg/mL씠뿀怨, 씠 빆洹좎젣뿉 빐 媛먯닔꽦씤 洹좎< 鍮꾩쑉 88%씠뿀떎. Yum 벑쓽 2010뀈 蹂닿퀬뿉 쓽븯硫 gentamicin뿉 븳 援궡 꽌슱 吏뿭뿉꽌 遺꾨━맂 MRSA쓽 媛먯닔꽦 鍮꾩쑉 13%씠뿀떎(Yum et al., 2010). Gentamicin 궡꽦쑀쟾옄뒗 plasmid, transposon 벑 mobile element뿉 쓽빐 닔룊 쟾떖씠 媛뒫븳뜲, gentamicin뿉 븳 씠뱾 MRSA쓽 媛먯닔꽦 鍮꾩쑉 떆湲곕굹 吏뿭뿉 뵲씪꽌 李⑥씠媛 엳쓣 닔 엳뒗 寃껋쑝濡 뙋떒맂떎.

Antimicrobial activities of Chamaecyparis obtuse extract with those of other antibiotics against 25 Methicillin-Resistant Staphylococcus aureus

Antimicrobial agent MIC (µg/mL) % of isolatesb


Range 50% of strains 90% of strains S I R
Chamaecyparis obtuse extract 0.125 µL/mL 0.125 µL/mL 0.125 µL/mL NAa NA NA
Linezolid 4 4 4 100 NA 0
Erythromycin 2 ~ >128 4 >128 0 52 48
Clindamycin ≤0.06 ~ >128 0.12 >128 68 0 32
Gentamicin 0.12~16 0.5 8 88 12 0
Levofloxacin 0.25 ~ >128 0.25 >128 64 0 36
Tetracycline 0.25~64 0.5 64 72 0 28
Vancomycin 0.5~1 1 1 100 0 0

aNA, not applicable, bS, susceptible; I, intermediate; R, resistant



MRSA뿉 븳 洹 쇅 빆洹좎젣쓽 MIC 踰붿쐞뒗 erythromycin 2 ~ >128 μg/mL, clindamycin ≤0.06 ~ >128 μg/mL, levofloxacin 0.25 ~ >128 μg/mL, tetracycline 0.25~64 μg/mL씠뿀怨, MIC90 媛곴컖 >128 μg/mL, >128 μg/mL, >128 μg/mL, 洹몃━怨 64 μg/mL濡 넂븯떎. 삉븳, 씠뱾 빆洹좎젣쓽 MRSA뿉 븳 媛먯닔꽦쑉 媛곴컖 0%, 68%, 64%, 洹몃━怨 72%濡 굹굹, erythromycin쓣 젣쇅븯怨 븘吏곸 넂 媛먯닔꽦쑉쓣 蹂댁씠怨 엳쑝굹, 젏李 씠뱾 빆洹좎젣뿉 븳 궡꽦씠 利앷븯怨 엳뒗 異붿꽭씠誘濡 씠뱾 빟젣瑜 궗슜븳 MRSA 媛먯뿼利 移섎즺뿉 뼱젮씠 삁긽맂떎.

C. obtuse쓽 옂 異붿텧臾쇱쓽 MIC 踰붿쐞, MIC50 MIC90 紐⑤몢 0.125 μL/mL씠뿀떎. 씠뿉 C. obtuse쓽 옂 異붿텧臾쇱쓽 MRSA뿉 븳 빆洹좊젰씠 솗씤릺뿀떎. C. obtuse 옂 異붿텧븸 뵒뒪겕솗궛踰뺤뿉 쓽븳 빆洹좎젣 媛먯닔꽦 떆뿕뿉꽌 뼲젣瑜 삎꽦븯怨, MIC 떆뿕쓣 떆뻾븳 寃곌낵 0.125 μL/mL뿉꽌 MIC 媛믪쓣 굹궡뼱, 깉濡쒖슫 빆洹좎젣 썑蹂대Ъ吏덈줈뜥 湲곗〈 긽뭹솕맂 빆洹좎젣쓽 蹂묒슜슂踰뺤씠굹, 떇뭹궛뾽 벑뿉꽌 諛⑸젣濡쒖뜥 궗슜 媛뒫꽦쓣 蹂댁뿬二쇱뿀떎. 뵲씪꽌, C. obtuse 옂 異붿텧臾 꽦遺 以 terpinen-4-ol 벑怨 媛숈 꽦遺꾩쓽 쑀룄泥댁뿉 쓽븳 넂 빆洹좏솢꽦 臾쇱쭏쓣 깘깋븯嫄곕굹, 긽뭹솕맂 빆洹좎젣 蹂묒슜슂踰뺤쓣 궗슜븳떎硫 궃移섏꽦 MRSA 媛먯뿼 移섎즺뿉 룄씠 맆 寃껋쑝濡 삁긽맂떎.

ACKNOWLEDGEMENT

This work was supported by Dong-eui University foundation grant 2022, I thank professor Jeong-Hwan Shin of Inje University Busan Paik Hospital for his help in collecting strains.

CONFLICT OF INTEREST

The author declare no conflict of interest.

References
  1. Ogtrop ML, Peng J, Craig WA; D. In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob Agents Chemother. 2002. 46: 3484-3489.
    Pubmed KoreaMed CrossRef
  2. Attassi K, Hershberger E, Alam R, Zervos MJ. Thrombocytopenia associated with linezolid therapy. Clin Infect Dis. 2002. 34: 695-698.
    Pubmed CrossRef
  3. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Tests; approved standards M2-M11. 28th ed. 2018. CLSI. Wayne PA.
  4. Hong EJ, Na KJ, Choi IG, Choi KC, Jeung EB. Antibacterial and antifungal effects of essential oils from coniferous trees. Biol Pham Bull. 2004. 27: 863-866.
    Pubmed CrossRef
  5. Jones RN, Ross JE, Bell JM, Utsuki U, Fumiaki I, Kobaysashi I, Trunidge JD. Zyvox annual appraisal of potency and spectrum program: linezolid surveillance program results for 2008. Diagn Microbiol Infect Dis. 2009. 65: 404-413.
    Pubmed CrossRef
  6. Kato H, Hagihara M, Asai N, Shibata Y, Koizumi Y, Yamagishi Y, Mikamo H. Meta-analysis of vancomycin versus linezolid in pneumonia with proven methicillin-resistant Staphylococcus aureus. J Glob Antimicrob Resist. 2021. 24: 98-105.
    Pubmed CrossRef
  7. Lee JH, Lee BK, Kim JH, Lee SH, Hong SK. Comparison of chemical compositions and antimicrobial activities of essential oils from three conifer trees; Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtuse. J Microiol Biotechnol. 2009. 19: 391-396.
    Pubmed CrossRef
  8. Lee JW, Yoon JH, Park JW. Effect of grapefruit seed extract fir abtubacteruak activity on the coated packaging. Food Eng Prog. 2015. 19: 104-110.
    CrossRef
  9. Shinabarger D. Mechanism of action of the oxazolidinone anti-bacterial agents. Expert Opin Investig Drugs. 1999. 8: 1195-1202.
    Pubmed CrossRef
  10. Yang JK, Choi MS, Seo WT, Rinker DL, Han SW, Cheong GW. Chemical composition and antimicrobial activity of Chamaecyparis obtuse leaf essential oil. Fitoterapia. 2007. 78: 149-52.
    Pubmed CrossRef
  11. Yum JH, Choi SH, Yong D, Chong Y, Im WB, Rhee DK, Lee K. Comparative In vitro activities of torezolid (DA-7157) against clinical isolates of aerobic and anaerobic bacteria in South Korea. Antimicrob Agents Chemother. 2010. 54: 5381-5386.
    Pubmed KoreaMed CrossRef