Search for


TEXT SIZE

search for



CrossRef (0)
PD-L1 Aptamer-functionalized Liposome Containing SAHA for Anti-lung Cancer Immunotherapy
Biomed Sci Letters 2024;30:37-48
Published online June 30, 2024;  https://doi.org/10.15616/BSL.2024.30.2.37
© 2024 The Korean Society For Biomedical Laboratory Sciences.

Si-Yeon Ryu* , Se-Yun Hong* and Keun-Sik Kim,**

Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
Correspondence to: Keun-Sik Kim. Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea.
Tel: +82-42-600-8434, Fax: +82-42-600-8408, e-mail: kskim11@konyang.ac.kr

*Graduate student, **Professor.
Received March 11, 2024; Revised May 8, 2024; Accepted June 5, 2024.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
Liposomes are one of the most actively studied and promising drug delivery systems for the treatment of various diseases. In this study, an aptamer-conjugated liposome called "aptamosome" was used, in which an anti-PD-L1 aptamer targeting cancer cells was conjugated to the liposome. These aptamosomes showed remarkable cellular uptake and efficient delivery to Lewis lung carcinoma 2 (LL/2) cancer cells. In addition, suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor (HDACi), was delivered through this aptamer to induce a strong anticancer immunotherapeutic effect. The results of this study showed that when LL/2 cells were treated with SAHA-entrapped aptamosome [SAHA] and liposome [SAHA] and free SAHA, aptamosome [SAHA] improved cell death compared with that of liposomes [SAHA] or free SAHA, and it has demonstrated anticancer efficacy. Moreover, aptamosome [SAHA] induce the secretion of chemokines that promote the migration of activated T cells into tumor tissues. Finally, in vivo experiments showed that aptamosome [SAHA] significantly inhibited the growth rate of LL/2 tumors. Therefore, liposomes combined with an anti-PD-L1 aptamer for efficient SAHA delivery are suggested as an excellent model for drug delivery systems suitable for targeting cancer cells.
Keywords : Aptamer, Drug delivery, HDACi, Liposome, PD-L1, SAHA